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Latent class analysis (LCA) is an increasingly popular tool that researchers can use to identify

latent groups in the population underlying a sample of responses to categorical observed variables.

LCA is most commonly used in an exploratory fashion whereby no parameters are specified a

priori. Although this exploratory approach is reasonable when very little prior research has been

conducted in the area under study, it can be very limiting when much is already known about the

variables and population. Confirmatory latent class analysis (CLCA) provides researchers with a

tool for modeling and testing specific hypotheses about response patterns in the observed variables.

CLCA is based on placing specific constraints on the parameters to reflect these hypotheses. The

popular and easy-to-use latent variable modeling software package Mplus can be used to conduct a

variety of CLCA types using these parameter constraints. This article focuses on the basic principles

underlying the use of CLCA, and the Mplus programming code necessary for carrying it out.

Latent class analysis (LCA) is an increasingly popular analytic technique useful for identifying

latent groups based on a set of observed response variables, which can be either dichotomous or

polytomous. It is important to note here that a variant of LCA known as latent profile analysis

can be used when the observed variables are continuous, but the focus of this article is on LCA

with dichotomous observed variables. Table 1 includes a simple taxonomy for organizing the

appropriate analysis by the type of research question to be addressed and the type of data avail-

able. These are merely examples of the many research questions that can be addressed by these

models, and are not intended to be an exhaustive list. Typically, LCA is carried out in an ex-

ploratory manner where there does not exist a strong a priori hypothesis regarding the number or

nature of the latent classes underlying the data (Hoijtink, 2001). In such cases, a researcher can

fit several proposed models to the data with each differentiated by the number of latent classes,

and compare the resulting fit indexes to determine which best corresponds to the observed data.

This exploratory analysis approach works under the implicit presumption that there is not

a well-developed theory regarding the nature of latent groups to be found in the population

(Laudy, Boom, & Hoijtink, 2005). However, in cases where substantive theories regarding

Correspondence should be addressed to W. Holmes Finch, Department of Educational Psychology, Ball State

University, TC 521, Muncie, IN 47306, USA. E-mail: whfinch@bsu.edu
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CONDUCTING CONFIRMATORY LCA USING MPLUS 133

TABLE 1

Taxonomy of Models for Latent Categorical Variables

Type of Observed Variable

Type of
Research Question Categorical Continuous

Exploratory Latent class analysis (How many latent

classes underlie a set of categorical
observed variables?)

Latent profile analysis Cluster analysis

(How many latent classes underlie a
set of continuous observed variables?)

Confirmatory Confirmatory latent class analysis (Are

there three latent classes underlying a
set of categorical variables, with Group
1 having higher response probabilities

than Group 2 and Group 3 having the
lowest probabilities, as theory would
suggest?)

Confirmatory latent profile analysis (Are

there three latent classes underlying a
set of observed continuous variables
such that Group 1 has the highest

mean values, followed by Group 2,
which in turn has higher means than
Group 3, as theory would suggest?)

Note. Example research questions associated with each analysis are shown in parentheses.

the number and nature of these latent classes have been developed, exploratory LCA might

be inefficient, not taking advantage of this prior knowledge. Confirmatory LCA (CLCA) is

an alternative approach to latent class modeling that allows for the formulation of specific

hypotheses regarding the nature and number of latent classes in the data. These hypotheses

are expressed as a set of parameter constraints for an estimated LCA model (Croon, 1990).

The goal of this article is to demonstrate how such parameter constraints can be used in a

common latent variable modeling software package, Mplus, to carry out CLCA. First, we

briefly introduce the basic LCA model, and then describe how constraining parameter values

can be used to express specific hypotheses regarding latent classes in the population. We will

then present several examples of CLCA using a set of dichotomous items taken from a survey

on adolescent purpose.

LATENT CLASS ANALYSIS

The basic LCA model is described in some detail by McCutcheon (2002). Assume that data

have been collected for four observed, dichotomous variables, X1, X2, X3, and X4, and that

there exists a latent categorical variable Y , which accounts for the relationships among these

four observed variables. The LCA model linking the latent and observed variables can then be

expressed as:

 X1X2X3X4Y
ijklt D  Y

t  
X1jY
it  

X2jY
jt  

X3jY
kt  

X4jY
lt (1)

where

 Y
t D Probability that a randomly selected individual will be in latent class t of latent

variable Y

 
X1jY
it D Probability that a member of latent class t will provide a response of i for observed

variable X1
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134 FINCH AND BRONK

 
X2jY
jt D Probability that a member of latent class t will provide a response of j for observed

variable X2

 
X3jY
kt D Probability that a member of latent class t will provide a response of k for observed

variable X3

 
X4jY
lt

D Probability that a member of latent class t will provide a response of l for observed

variable X4

The LCA model in Equation 1 asserts that the observed variables are conditionally indepen-

dent given a particular class in Y (Goodman, 2002). This notion of conditional independence

is very similar to local independence in the context of item response theory, which states

that when the latent trait influencing responses to items on an instrument is held constant,

individuals’ responses to any two items are statistically independent. As an example, take an

individual from the population who has the following probability values for the three classes

in Y :  Y
1 D 0:6,  Y

2 D 0:25, and  Y
3 D 0:15. These results indicate that the individual is most

likely to be in Class 1 of the latent variable, with only a 1/4 chance of being in Class 2 and

a less than 1/5 chance of being in Class 3. In addition, assume that observed variable X1 is a

survey item asking whether an individual hopes to pursue a career helping other people after

finishing college. A value for  
X1jY
Yes_1 of 0.75 would indicate that an individual in the first class

of the latent variable would have a fairly high likelihood of responding “Yes” to this item.

Another way to interpret this result would be that most individuals in latent Class 1 plan to

help others after finishing college. The degrees of freedom for the latent class model with four

indicators are calculated as DF D .IJKL � 1/ � Œ.I C J C K C L � 4/T � 1�. Here, I , J , K,

and L represent the number of categories in each of the observed response variables, and T is

the number of latent categories.

ASSESSMENT OF FIT FOR LATENT CLASS MODELS

LCA involves the estimation of two types of parameters: (a) the probability of a particular

response for an observed variable conditional on latent class membership, and (b) the probability

of being in a specific latent class, t . Estimation of these parameters can be carried out using

maximum likelihood estimation (MLE) via the EM algorithm, as is done in the Mplus software

package (B. O. Muthén, 2001), and model fit can be assessed using a variety of statistical tools

(Nylund, Asparouhov, & Muthén, 2007). Nylund et al. (2007) conducted an extensive simulation

study comparing a large number of these tools and found that among the information criteria,

the sample size adjusted Bayesian information criterion (aBIC) was superior to alternatives

such as the Akaike information criterion (AIC), the consistent AIC, and the standard BIC. The

aBIC takes the likelihood ratio statistic and applies a penalty for an increased number of model

parameters. It is calculated as:

aBIC D ¦2
� df � Œln.N �/� (2)

where

df D model degrees of freedom

N �
D

�

NC2
24

�
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CONDUCTING CONFIRMATORY LCA USING MPLUS 135

The aBIC is used for comparing the fit of multiple models, with lower values indicating

relatively better model fit.

In addition to the information criterion, Nylund et al. (2007) also examined the performance

of three hypothesis testing approaches to assessing model fit: the chi-square-based likelihood

ratio test (LRT), the Lo–Mendell–Rubin (LMR) test, and the bootstrap likelihood ratio test

(BLRT). The LRT is not appropriate for comparing mixture models with differing numbers

of classes because it does not follow the chi-square distribution under the null hypothesis of

no difference in model fit when testing the number of classes (McLachlan & Peel, 2000). In

contrast, the LMR statistic is appropriate for comparing mixture models with differing numbers

of classes because it does not rely on the chi-square distribution for the difference in model

likelihood values, instead using an approximation of this distribution to obtain the appropriate

p values. A significant LMR result indicates that the mixture model with k classes fits the data

better than the simpler k�1 class model. The BLRT also allows for the comparison of likelihood

values for mixtures with differing numbers of classes by resampling from the null hypothesis

of no difference. A complete discussion of the BLRT appears in McLachlan and Peel (2000).

It should be noted that whereas these tests only allow for comparisons of models with differing

numbers of latent classes and the same parameterization, the aBIC statistic can be used to

compare models with the same number of latent classes, different parameterizations, or both.

As noted earlier, the aBIC is based on the log-likelihood value, which provides information

about how well a given model fits the observed data. Therefore, it is possible to compare any

two models using the aBIC whether they have different numbers of parameters, unlike with

the LMR and BLRT tests.

CONFIRMATORY LATENT CLASS ANALYSIS

As mentioned previously, most applications of LCA in practice involve exploratory analyses in

which no a priori hypotheses regarding the nature of latent classes are explicitly tested (Laudy

et al., 2005). In such cases, researchers do not attempt to explicitly test any theories about

underlying groups in their substantive area, but rather allow the data to suggest the number and

nature of such groups. However, in many fields prior work might provide the researcher with

ideas regarding the characteristics of latent groups underlying the data, which can be explicitly

tested. To develop and test such models, a set of parameter restrictions must be used to express

these hypotheses explicitly. McCutcheon (2002) describes three types of parameter constraints

that can be used in CLCA modeling: (a) equality restrictions, (b) deterministic restrictions, and

(c) inequality restrictions.

In the case of equality restrictions, a researcher might wish to test that one or more item

parameter values are equal across latent classes. For example, in his description of using CLCA

with items measuring antisocial behavior, B. O. Muthén (2001) used an example in which two

latent classes were constrained to have equal likelihoods for having broken into a building.

Using such restrictions, Muthén was able to explicitly express theories regarding the expected

subtypes of antisocial behavior in terms of expected common and distinct response patterns by

individuals in the sample.

Deterministic model restrictions focus on testing whether conditional response probabilities

equal some specific value, often 0 or 1, for one or more latent classes (McCutcheon, 2002).
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136 FINCH AND BRONK

For example, suppose a researcher hypothesizes that the population contains a latent class that

does not exhibit antisocial behavior. He or she might believe that no members of this class will

endorse an item stating that they intend to injure another person, which can be expressed in a

CLCA by restricting the conditional probability of endorsing this item a priori to be 0 for one

of the latent classes.

A third type of CLCA parameter constraints involves using inequality restrictions to test

hypotheses regarding the relative likelihood of latent classes endorsing an item. For example, the

researcher interested in antisocial behavior might believe that latent classes in the population

can be ordered based on their likelihood of endorsing the item “seriously threaten another

individual” in the following way:  
X1jY
11 > x

X1jY
12 >  

X1jY
13 >  

X1jY
14 . Such a set of constraints

can be explicitly modeled in the CLCA analysis to determine if this pattern actually exists in

the population.

It is presumed that the hypotheses tested with CLCA come from prior research, clinical

observation, or both, much in the way that hypotheses assessed using confirmatory factor

analysis come from prior knowledge in the substantive area being studied. Each of these

three approaches to setting parameter constraints can be carried out using the popular Mplus

software package (L. K. Muthén & Muthén, 2008), with the Mixture model add-on option. In

this article, we describe how CLCA using parameter restrictions can be conducted in Mplus

and then provide an extensive example demonstrating each of these.

PARAMETER CONSTRAINTS IN MPLUS

As described previously, the conduct of CLCA involves the placement of constraints on model

parameters (typically conditional probabilities) that reflect the substantive hypotheses proposed

by the researcher. In Mplus these constraints are expressed using variable threshold values,

which for dichotomous variables such as those used in this article, are rescaled probabilities

for a particular response category. The relationship between the response probability (P ) and

the variable threshold (£) takes the form (B. O. Muthén, 2001):

P D
1

1 C e�£
(3)

Thus large positive thresholds indicate the probability of a specific response value is rela-

tively low, whereas large negative values suggest that the probability of the response is relatively

high. In the Mplus User’s Guide for Version 5, L. K. Muthén and Muthén (2008) provide some

guidelines for interpreting and using thresholds, suggesting that a value of C3 represents a very

low probability of a particular variable response, whereas a �3 reflects a very high probability.

Indeed, in the context of an item response a C3 threshold translates to a probability of endorsing

the item of 0.047, whereas a �3 translates to a probability of item endorsement of 0.953. In

addition, they suggest that C1 and �1 threshold values can be interpreted as low and high

probabilities, respectively. Once parameter estimation is completed, a determination must be

made regarding the fit of the model to the data using the fit statistics described previously and

recommended by McCutcheon (2002). The following is a brief description of the data that are

used in the following examples.
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CONDUCTING CONFIRMATORY LCA USING MPLUS 137

Purpose in Life

Recently the youth development literature has experienced a sea change. Previously researchers

focused on addressing young people’s shortcomings and weaknesses, whereas today more at-

tention is paid to enhancing youths’ talents and capacities. Identifying developmental problems

can be a relatively straightforward task, but identifying signs of optimal youth development can

present a challenge. One of the key guideposts researchers have recently begun to point to as an

important indicator of positive youth development is the presence of an inspiring and prosocial

purpose in life (Benson, 2006; Damon, 2009). A purpose in life is a stable and generalized

intention to accomplish something that is simultaneously meaningful to the self and leads

to productive engagement with the world beyond the self (Damon, Menon, & Bronk, 2003).

There are two components of this definition distinguishing purpose from the broader context of

meaning in life: (a) a purpose can be viewed as a long-term goal, and (b) a purpose is personally

meaningful, but it also has a prosocial desire to have an impact on the world beyond the self.

Participants

The data used in the following examples included 153 adolescents and 237 emerging adults

who either lived in or attended college in the Midwest (N D 390). The sample was 47%

male and predominantly White, representing the ethnic makeup of the Midwest data collection

location.

Measures

Participants completed the Revised Youth Purpose Survey (Bundick et al., 2006), which was

created by members of the Stanford Center on Adolescence to assess the prevalence and types

of purpose present among adolescents. Purpose is assumed to consist of a subset of sources of

meaning. Although individuals can find meaning in either externally directed aims (e.g., helping

those who are less fortunate) or internally directed pursuits (e.g., seeking fame and fortune)

purposes only include those sources of meaning that include a desire to have an impact on the

broader world (e.g., the intention to work toward a cure for cancer). Therefore, participants

were asked to rate both internally oriented concerns and externally directed pursuits. The list

of types of purpose intentionally included more externally directed aims because the authors

of the survey were primarily interested in discovering more about the purpose construct. The

specific types of purpose included in this study were drawn in part from studies of young

people’s sources of meaning conducted by De Vogler and Ebersole (1980, 1981, 1983) and

Showalter and Wagener (2000), and adapted by the Stanford Center on Adolescence youth

purpose research team. The types of purpose are listed in Table 2.

PARAMETER ESTIMATION FOR CLCA MODELS

Four of the purpose items were used to assess a series of hypotheses regarding the nature of

purpose among adolescents particularly as it pertains to their need to be creative and change

the way people think versus their desire to have fun and make money. These items, which
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138 FINCH AND BRONK

TABLE 2

Types of Purpose

Internally Directed Aims Externally Directed Aims

Live life to the fullest Help others

Make money (y10)a Serve God or a higher power
Have fun (y15)a Make the world a better place
Be successful Change the way people think (y4)a

Have a good career Create something new (y5)a

Make things more beautiful

Fulfill my obligations (to others)
Do the right thing
Discover new things about the world

Earn the respect of others
Serve my country
Support my family and friends

aVariables included in the confirmatory latent class analyses with
(variable name).

appear in Table 2 along with their Mplus variable names, were converted from a 7-point Likert

scale ranging from strongly disagree to strongly agree to a binary scale (1 D agree, 0 D do not

agree). This change to the data was made for two reasons. First, the researchers participating

in this study believed that youth would generally either endorse or not endorse the types of

purpose being asked about on the instrument. In other words, although the items were originally

placed on a 7-point Likert scale, subsequent work has led researchers to believe that most youth

actually think of these types of purpose in a yes–no way. In addition, because response patterns

on the 7-point scale were indeed bimodal for these items, with the vast majority of respondents

tending to either agree or strongly agree or disagree or strongly disagree with the statements, this

supposition appears to be upheld empirically. Therefore, the decision was made to rescale the

data to conform to the latest thought in the field that was also buttressed by empirical evidence.

However, it should be noted that making such changes to the data is not without consequence.

First of all, the participants did provide responses based on a 7-point Likert scale, even though

the vast majority was at one end or the other. Therefore, the psychometric properties of the

items are no longer known because reliability and validity analyses done previously would only

apply to the full 7-point scale. Second, because some of the respondents did have scores that

were in the middle of the scale, collapsing categories does result in a loss of information. In this

instance, however, it was determined that because the bimodal data matched the dichotomous

distribution of responses that researchers expected, this combining of categories was reasonable.

Based on prior research in the area of purpose, it is hypothesized that there exist four latent

classes with regard to creativity and personal gain: (a) those who want to change the way

people think, create something new, and have fun, but are relatively unconcerned about making

money; (b) those who only want to have fun and are unconcerned about changing the way

people think, creating something new, or making money; (c) those who are unconcerned about

changing the way people think or creating something new but who want to make money and

have fun; and (d) those who would like to make money, have fun, change the way people

think, and create something new. In the following sections, we provide examples of CLCA to

investigate the proposed latent classes using the parameter constraints discussed earlier.
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CONDUCTING CONFIRMATORY LCA USING MPLUS 139

EQUALITY CONSTRAINTS

One type of hypothesis for the purpose data is that certain of the four latent classes share

common response probabilities on the four items. An example of a set of proposed response

parameter constraints for this model appears in Table 3. The presence of a common number

for two or more classes on a given item indicates that the groups are constrained to have a

common threshold value for that item. Conversely, classes with different numbers for a given

item are allowed to have different threshold values and therefore different probabilities for

endorsing the item. As an example consider Classes 1 and 2, which are hypothesized to have a

common threshold parameter on the items “make money” and “have fun,” but not on “change

the way people think” or “create something new.” Note that in keeping with the hypothesis

briefly described earlier, all four classes are expected to have a common threshold value on the

item “have fun.” The Mplus commands for conducting this analysis appear in the Appendix.

The full set of commands as well as output that are presented in this article can be obtained

by contacting the first author.

Only the four variables of interest are used for this analysis, although all 17 items and

the student identifier are read in. The CLASSES statement defines the latent class variable

as being named “c” and having four classes. The ANALYSIS command indicates that we are

conducting a MIXTURE model analysis, and the STARTS subcommand tells Mplus the number

of random sets of starting values and the number of optimizations to use in the final estimation

of parameter values. The default is 10 random sets of starting values and two optimizations.

However, it is recommended that when more than two latent classes are present, more random

starts be used to avoid arriving at local maxima for parameter estimates (L. K. Muthén &

Muthén, 2008).

It is in the MODEL command where the parameter constraints displayed in Table 3 are

made explicit. The item thresholds are defined separately for each latent class, such as for

item y4, [y4$1*-2] (1);. The item name (y4) is given, followed by $1 indicating the first (and

only for this dichotomous item) threshold value. The *-2 provides a starting value for the

estimation of the threshold value (a starting probability of 0.881) and was selected because it

fell between the high and very high probability guidelines in the Mplus manual, corresponding

to the expectation that this group is very likely to endorse the item, although perhaps not at

rates exceeding 0.95. Note that for latent Classes 2 and 3, the starting value for this item was

2, corresponding to a probability of 0.119. The (1) numbers this parameter value and serves as

the method by which equality constraints are made, as described previously. The numbering

scheme for parameter constraints displayed in Table 3 is used here. In this way, we can ascertain

TABLE 3

Hypothesized Response Patterns for the Four-Class Confirmatory Latent Class

Analysis Model of Future Purpose

Item Class 1 Class 2 Class 3 Class 4

Change the way people think (y4) 1 2 2 1

Create something new (y5) 3 4 4 3
Make money (y10) 5 5 6 6
Have fun (y15) 7 7 7 7
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140 FINCH AND BRONK

the degree to which the hypothesized pattern matches the actual data. A brief discussion of a

very similar CLCA problem using such constraints appears in B. O. Muthén (2001).

Although in this example we provide starting values for the threshold parameters, but do

not constrain them to be a particular value, it is possible to constrain the threshold to be a

specific value for one or more groups. The decision on whether to allow the threshold to be

estimated (as in this example) or to be set to a predetermined value (appearing later) is based

on the goals of the researcher and the presence (or not) of hypotheses for the parameter values.

In this case, the researcher does not have an a priori hypothesis about the specific value of the

threshold in the population, although he or she believes it will be low, and therefore allows the

parameter to be estimated freely. As described later, the researcher can also force a threshold

to be a specific value.

We can be comfortable that parameter estimation converged normally due to the lack of a

message warning us about convergence problems. Had there been such a convergence problem,

a warning message would have been generated, and the results contained in the output could not

be relied on to be accurate. Note that we did receive a warning indicating that when estimating

models with more than two latent classes, we should increase the number of random starts

to avoid the problem of maximum likelihood converging to local maxima. We have done this

with the STARTS command, as discussed earlier. The fact that each of the 10 log-likelihoods

reached the same final value is an indication that the algorithm did not converge to local

maxima for any of the 10 tries, but rather converged to a single (presumably global) value. On

the other hand, if several of the log-likelihood values differed from one another, this would

suggest that some of the random starts had resulted in convergence to local maxima.

RANDOM STARTS RESULTS RANKED FROM THE BEST TO THE WORST LOGLIKE-

LIHOOD VALUES

Final stage loglikelihood values at local maxima, seeds, and initial stage start numbers:

-853.769 347515 24

-853.769 749453 33

-853.769 284109 82

-853.769 352277 42

-853.769 761633 50

-853.769 391179 78

-853.769 626891 32

-853.769 314084 81

-853.769 685657 69

-853.769 533738 11

WARNING: WHEN ESTIMATING A MODEL WITH MORE THAN TWO CLASSES, IT

MAY BE NECESSARY TO INCREASE THE NUMBER OF RANDOM STARTS USING

THE STARTS OPTION TO AVOID LOCAL MAXIMA.

THE MODEL ESTIMATION TERMINATED NORMALLY

The fit statistics for the four class model appear in Table 4. The aBIC value for this model

was 1715.616, and both the LMR and BLRT tests were statistically significant (p < :05). The
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CONDUCTING CONFIRMATORY LCA USING MPLUS 141

TABLE 4

Fit Statistics for Competing Models

Model LMR p Value BLRT p Value aBIC

Four-class <.0001 <.0001 1,715.616

Three-class .0986 .0810 1,732.302
Two-class <.0001 <.0001 1,731.880
Deterministic <.0001 <.0001 1,736.430

Inequality 1 NA <.0001 1,729.128
Inequality 2 NA <.0001 1,714.097

Inequality 2b NA <.0001 1,715.967

Note. LMR D Lo–Mendell–Rubin; BLRT D bootstrap likelihood

ratio test; aBIC D adjusted Bayesian information criterion.

aBIC value can be used to compare the fit of this model with that of others. The LMR and

BLRT tests are comparing the fit of four latent classes versus that of three, and in this case

indicate that the four-class solution provides the better fit.

The threshold values and proportion of individuals endorsing the items for the four-class

model as well as the latent class sizes appear in Table 5. Latent Classes 1 and 4 were the

largest, with more than 100 participants in each. When interpreting thresholds, it is important

to remember that large positive values indicate a lower likelihood of individuals endorsing

the item, whereas large negative values suggest just the opposite. For this example, the very

large estimates of 15.000 for some of the items mean that for the latent class in question,

the likelihood of endorsing these items is extremely small. Indeed, in each of these cases the

proportion of individuals doing so was 0. On the other hand, the threshold estimate for the

item “have fun” was �3.656 for all four classes, which translated into 97.5% of each group

endorsing this item. Latent Classes 1 and 4 both had slightly negative threshold values for the

first two items, indicating that they were more likely to endorse these than were members of

the other two latent classes, and more than 65% of the members in each group did so.

TABLE 5

Threshold Parameter Estimates and Proportion Endorsing Items for the Four-Class

Confirmatory Latent Class Analysis Model of Future Purpose

Item

Class 1

(120)

Class 2

(30)

Class 3

(48)

Class 4

(176)

Change the way people think (y4) �0.808 15.000 15.000 �0.808

Create something new (y5) �0.750 15.000 15.000 �0.750
Make money (y10) 15.000 15.000 �3.604 �3.604

Have fun (y15) �3.656 �3.656 �3.656 �3.656

Proportion in Each Group Endorsing Item

Change the way people think (y4) .692 0 0 .692

Create something new (y5) .679 0 0 .679
Make money (y10) 0 0 .974 .974
Have fun (y15) .975 .975 .975 .975
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142 FINCH AND BRONK

Based on these results, the proposed four latent class structure described earlier seems

plausible, although alternatives to this model are discussed later. Given the response patterns

contained in Table 5, it is possible to characterize these latent classes. Class 1 is made up of

individuals who plan on taking a creative role in society and changing the way people think,

but who are not particularly concerned about whether this role will result in a high income. In

contrast, Class 3 consists of those who are primarily concerned with making money and having

fun, but who have little interest in changing the way people think or in creating something

new. Class 4 is made up of people who are looking forward to both being creative/changing

the way people think and making money/having fun. Finally, Class 2 appears to contain those

participants who only want to have fun and have little or no interest in either being creative,

changing the way people think, or making money.

Although the latent classes already described do appear to correspond with those that

were originally hypothesized in Table 3, two alternative equality constraint models were also

considered here. It is important to note that the exploration of this and other alternative

models in this article is designed to be primarily pedagogical in nature. In actual practice,

a researcher using CLCA would base his or her decisions regarding the models to test on

hypotheses drawn from literature in the area of interest. Using the constraints common in

CLCA for exploratory analyses in an atheoretical manner is not recommended because it

creates the possibility of making substantive conclusions based on sampling variation rather than

theoretically supportable empirical findings. It is key that all analyses be guided by substantive

hypotheses, although researchers need not be limited to only a single one of these. In much the

same manner that those using structural equation modeling might have competing hypotheses,

based in theory, that can be compared with one another, so can the researcher using CLCA

have competing hypotheses about the nature of group membership in the population. The first

of these asserts that only three classes actually exist in the population, corresponding to Classes

1, 3, and 4 in Table 3. The model commands in Mplus for estimating this alternative model

appear in the Appendix. Note that only the CLASSES command was changed to reflect the

presence of three rather than four latent classes: CLASSES = c (3);

The fit statistics for this model appear in Table 4. We can determine that the four-class

model fit better than the three-class model based on a comparison of aBIC, for which the

four-class model had a lower value. In addition, the LMR and BLRT tests for the four-class

model indicated that it fit the data better than the three-class model. The results of LMR and

BLRT corresponding to the three-class model in Table 4 compare the fit of this model with

a two-class model. The results are not statistically significant for either test (p D :0986 and

p D :0810, respectively), indicating that the three-class model does not fit the data significantly

better than the two-class model.

In addition to the relatively poor fit indexes, the pattern of thresholds and corresponding

proportion of individuals endorsing the items for the three classes suggest that this solution

was not optimal (see Table 6). The a priori hypothesis was that the classes would consist of

individuals who were likely to endorse all of the items, those who would endorse all items

except for “make money,” and those who would only endorse the items “make money” and

“have fun.” However, the results presented in Table 5 reveal that the group endorsing all items

except for “make money” did not emerge. Rather, there were two classes whose members were

likely to endorse all of the items, albeit Class 2 had a somewhat lower probability of doing so.

This result would suggest that the three-class hypothesis does not seem plausible.
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CONDUCTING CONFIRMATORY LCA USING MPLUS 143

TABLE 6

Threshold Parameter Estimates and Proportion Endorsing Items for the

Three-Class Confirmatory Latent Class Analysis Model of Future Purpose

Item
Class 1
(103)

Class 2
(52)

Class 3
(219)

Change the way people think (y4) �1.952 �1.952 0.268

Create something new (y5) �15.000 �15.000 0.478
Make money (y10) �2.354 �0.160 �0.160
Have fun (y15) �2.335 �2.335 �2.335

Proportion in Each Group Endorsing Item

Change the way people think (y4) .876 .876 .433
Create something new (y5) 1.000 1.000 .383

Make money (y10) .913 .540 .540
Have fun (y15) .912 .912 .912

Finally, a two latent class solution was considered, in which one class was characterized by

low threshold values (high probability of endorsement) on all four items, and the other was

characterized by low thresholds on the items “make money” and “have fun” and high thresholds

on “change the way people think” and “make something new.” The fit statistics for this model

appear in Table 4. The aBIC value suggests that the two-class model fits the data slightly better

than the three-class alternative, but not as well as the original four-class model. In addition, the

significant LMR and BLRT test results indicate that the two-class model provides better fit than

a one-class model. Table 7 contains the threshold and proportion of individuals endorsing each

item. The response patterns seen herein do correspond, generally speaking, to the hypothesized

patterns for the two-class solution.

Although we had a hypothesis regarding the likely number of classes present in the popu-

lation, four in this case, we also examined other possible solutions. Indeed, when conducting

an LCA, a researcher should be open to investigating other possible models in addition to

TABLE 7

Threshold Parameter Estimates and Proportion Endorsing Items for the Two-Class Confirmatory

Latent Class Analysis Model, Deterministic Confirmatory Latent Class Analysis Model,

and Inequality Constrained Confirmatory Latent Class Analysis Model for Future Purpose

Two-Class

Model

Deterministic

Model

Inequality

Constrained Model

Item

Class 1

(220)

Class 2

(154)

Class 1

(271)

Class 2

(103)

Class 1

(220)

Class 2

(154)

Change the way people �5.055/.994 5.443/.004 �0.098/.524 �15.000/1.000 �0.882/.707 0.231/.442

think (y4)

Create something new (y5) �0.873/.705 0.218/.446 �0.047/.512 �15.000/1.000 �4.207/.985 4.207/.015

Make money (y10) �0.401/.599 �0.401/.599 �0.098/.524 �15.000/1.000 �0.401/.599 �0.401/.599

Have fun (y15) �2.335/.912 �2.335/.912 �2.335/.912 �2.335/.912 �2.335/.912 �2.335/.912
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144 FINCH AND BRONK

the one that he or she originally proposed, or as is common in structural equation modeling,

have competing models that can be compared with one another. When comparing the models,

both the relative fit as measured by statistics such as the aBIC and the LMR and BLRT tests

must be considered, as well as the nature of the latent classes revealed by the analysis and

their correspondence to substantive theories about how participants group together. This latter

concern is similar to the way that groupings of observed variables into factors must make

substantive sense for an exploratory factor analysis solution to be viable. The researcher can

make such determinations by examining the variable response patterns for members of the

latent classes and comparing them with what theory would predict. For the solution to have

meaning, the pattern of responses on these items for each class must be theoretically viable.

DETERMINISTIC CONSTRAINTS

In addition to constraining parameter estimates in two or more groups to be equal, it is also

possible to constrain thresholds to be a specific value, corresponding to McCutcheon’s (2002)

deterministic constraint CLCA. We can do this in Mplus by replacing the * in the MODEL

commands with @ for specific items. Whereas the * provides Mplus with starting values for

threshold estimation, @ sets the threshold value to the number immediately following it. Thus,

for example, if we expect all members of one latent class to endorse a specific item, we can

set the threshold so as to ensure the probability of endorsement to be 1 for this class. In the

two-class model described earlier, setting the threshold of Class 2 to �15 for Item 10 ensures

that all members of that class will indicate that they want to “make money.” Referring to

Equation 4, we can see that setting the threshold to �15 results in an endorsement probability

value of essentially 1:

P D
1

1 C e�£
D

1

1 C e�15
D

1

1 C 0:0000003
D 0:9999997

The MODEL statement for estimating this model appears in the Appendix.

Using Equation 4 it is possible to translate any probability value into a threshold that could

then be used in the Mplus MODEL statement. Although in this example only one parameter

value was set, it is possible to set multiple parameters to specific values to model very specific

latent class structures. Such constraints allow for the assessment of very specific hypotheses

regarding the latent class structure in the data. On the other hand, it should be noted that

estimation of model parameters in LCA is not done independently, so that setting one or more

thresholds to specific values will impact the estimation of other item threshold values as well

as latent class membership. As a result of such constraints, the estimation of other model

parameters might be unrealistic or apply to a very small number of participants. Therefore,

much care needs be taken prior to setting these values to ensure that there is a strong theoretical

basis for doing so.

The fit statistics for this deterministic model appear in Table 4. Based on the aBIC this

model fits the data less well than any of the equality constraint models previously described.

The significant LMR and BLRT tests reveal that this deterministic two-class model fits the data

better than a one-class model. The threshold and probability of endorsement values appear in
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CONDUCTING CONFIRMATORY LCA USING MPLUS 145

Table 6. Neither group displays item parameter values corresponding to those that had been

hypothesized, although the threshold for y10 is 1 for latent Class 2, as it was constrained to

be. It is important to note, however, that by setting one parameter to an extreme value we have

fundamentally changed the basic makeup of the resulting two-class solution as compared with

the results for the original two-class model.

Another issue of some import is that the deterministic model is nested in the two-class

model, because the former is essentially the same as the latter except for the constraint placed

on variable y10. Because of this nested relationship, it is possible to statistically compare the

fit of the models using the difference in their ¦2 values, much in the way that one can test

for differences of model fit for nested structural equation models. In this case, the likelihood

ratio ¦2 for the deterministic model was 41.623, with 8 df, and the likelihood ratio ¦2 for

the standard two-class model was 31.449 with 7 df. The ¦2 difference is 10.174 with 1 df

which yields a p value of .0014. Therefore we can conclude that the standard two-class model

provides significantly better data fit than the deterministic two-class model.

INEQUALITY CONSTRAINTS

The previous examples demonstrated how Mplus can be used to conduct a CLCA in which

specific group parameter values are constrained to be equal, and when a latent class is hypoth-

esized to have a specific probability value for an item. It is also possible to model specific

inequalities between latent classes for thresholds of one or more variables. For example, rather

than simply constraining two or more groups to have the same or different threshold values,

we can be more specific in modeling one latent class to have a higher threshold value (lower

probability of item endorsement) than another. For example, in the two-class model we might

hypothesize that the threshold for the item “create something new” will be lower for one latent

class than for the other. Using the MODEL CONSTRAINT command the researcher restricts

the threshold for one class to be the negative of the threshold for the other, ensuring that one

latent class will have a higher probability of endorsing the item than the other. It is also possible

to constrain the parameter of one class to be higher than that of another, without restricting

one to be the negative of the other. The Mplus MODEL statement for the first analysis appears

in the Appendix.

The threshold value for y5 is named p1 in Class 1 and p2 in Class 2. The MODEL

CONSTRAINT command then establishes an explicitly directional hypothesis for the threshold

values and thereby the probabilities of item endorsement. In this case, the threshold for item y5

for latent Class 1 was set equal to the negative of the threshold for latent Class 2. This constraint

means that latent Class 1 will have a lower threshold and higher probability of endorsing the

item than will Class 2. The fit statistics appear in Table 4 in the Inequality 1 row. This model

does not fit the data as well as the four latent class solution, although it does appear to be

somewhat better than the other alternatives discussed previously, based on the value of aBIC.

Mplus does not provide the LMR test when using the MODEL CONSTRAINT command.

However, the BLRT is still available, with the significant value indicating that this two-class

model fits the data better than a one-class model would. The threshold and probability of item

endorsement values are displayed in Table 7. We constrained the threshold of the item “Create

something new” for latent Class 1 to be the negative of that for latent Class 2 in the MODEL
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146 FINCH AND BRONK

CONSTRAINT command, and indeed the resulting output yields a threshold of �4.207 for

latent Class 1 and 4.207 for latent Class 2. The corresponding proportion of individuals in Class

1 endorsing this item was 0.985, whereas for Class 2 the proportion endorsing was 0.015. The

other parameter estimates suggest that latent Class 1 corresponds to those individuals who are

likely to endorse all of the items on the scale, whereas latent Class 2 corresponds to those who

are most likely to endorse “make money” and “have fun” as their primary purposes in life. This

two-class inequality constrained model is nested within the more general two-class model so

that we can compare their relative fit to the data using the ¦2 difference test described earlier.

As noted previously, the ¦2 for the standard two-class model was 31.449 with 7 df, whereas

the ¦2 for this inequality constrained model was 37.073 with 9 df (there were two additional

constraints in this model, one involving the difference on variable y5 and the other involving

the equality of variable y10). The ¦2 difference was 5.624, with 2 df and a p value of .06.

Therefore, we would conclude that the fit of the two models was not significantly different.

Using the MODEL CONSTRAINT command, it is also possible to establish a somewhat

more sophisticated ordering of threshold values for two or more groups. For example, in the

three-group model, the researcher might have reason to believe that the likelihood of endorsing

“have fun” differs such that the groups are ordered sequentially, with one group having the

highest likelihood of item endorsement (lowest threshold), followed by the second group and

then the third. Using MODEL CONSTRAINT it is possible to express this ordering using the

Mplus commands in the Appendix.

In this case, the parameter restrictions are such that the third group has a threshold twice the

size of that for Class 1 on the item “have fun.” In turn, Class 2 has a threshold 1.5 times that for

Class 1. Other parameter restrictions could certainly be used here, but some combinations of

these restrictions might not be found in the data, thus resulting in empty groups. For example,

using Mplus we could introduce constraints that a single group has threshold values that are

three times as large as those of another group for the items “Make money,” “Change the way

people think” and “Create something new.” However, in the sample as a whole it might be

that no combination of individuals produced item responses that would satisfy this type of

constraint, resulting in a latent class containing no individuals. The fit statistics for the model

in which thresholds in one group are three times larger than those in another appear in Table 4

in the Inequality 2 row. The fit of this model is better than that of the others, which is likely

because only one set of parameter constraints was imposed, as opposed to the larger number

of constraints in the other models. The thresholds (proportion of endorsement) for y15 for the

three classes were �3.394 (0.968), �2.546 (0.927), and �1.697 (0.845), respectively.

If a researcher believes there to be an ordered pattern of group parameters on the item “have

fun,” but does not wish to place the specific restrictions on the degree of difference in these

values, he or she could use the following under MODEL CONSTRAINT:

p3>p2;

p2>p1;

This code requires the third class to have a higher threshold than the second class, which in

turn will have a higher threshold than the first class. Unlike the previous set of commands,

no constraints are placed on the magnitude of the difference between the parameters. The

resulting analysis (model fit values appear in Table 4 as Inequality 2b) produced an aBIC
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CONDUCTING CONFIRMATORY LCA USING MPLUS 147

just slightly larger than that for the previous set of constraints, and the BLRT was statistically

significant, indicating that three classes indeed fit the data better than two. The threshold values

(proportions of endorsement) for the three latent classes were �4.052 (0.983), �3.839 (0.979),

and �0.678 (0.663).

CONCLUSIONS

CLCA is a powerful tool for testing theories regarding the nature of specific latent classes in a

population. Unlike exploratory LCA, which does not incorporate a priori substantive hypotheses

about latent groups in the population, CLCA allows the researcher to specify response patterns

in the observed variables that correspond to what would be expected by underlying groups

given a specific hypothesis. These specifications take the form of restrictions of conditional

probabilities for item endorsement for different latent classes. The software package Mplus can

be used to model and assess CLCA solutions for dichotomous variables using restrictions on

thresholds, which correspond directly to probabilities of a given response. The three primary

types of CLCA modeling described in McCutcheon (2002), including equality constrained,

deterministic, and inequality constrained models can all be analyzed using Mplus.

Researchers employing CLCA can elect to use one or more of the modeling strategies

demonstrated. The guiding factor in selecting which of these to use should be the hypothesis,

based in substantive theory, that the researcher brings to the problem. For example, if the

primary research hypothesis simply states that two latent classes will have an equal likelihood

of endorsing an item, whereas a third class will potentially have a different such likelihood,

then the equality constraints described earlier might be sufficient. On the other hand, if theory

holds that one latent class will have a higher likelihood (or even more specifically be twice

as likely) to endorse an item than another class, then the inequality constraints might be

appropriate. If a researcher were to start with a specific hypothesis (e.g., one class is twice as

likely to endorse an item as the other class) but not find empirical support for it (i.e., model

fit is poor) he or she can then alter the model to be more general to ascertain if some other

pattern is more likely to be present in the population. In short, a researcher might examine

multiple, related hypotheses based on substantive considerations as well as empirical evidence.

However, a major caveat must be made here regarding the interpretation of such exploratory

analyses. If a researcher starts with specific hypotheses and then revises them to be more general

given the evidence provided by CLCA, they must be extremely careful not to make definitive

conclusions regarding the state of the population because the results they are seeing might well

be the result of sampling variation. Any conclusions drawn from these exploratory analyses

with CLCA would need to be kept tentative and used to design future studies in the area.

Given the relative ease with which these models can be estimated, it is important that

researchers carefully consider the hypotheses that they want to assess. Constraining some

parameters in the ways described here will have a direct impact on the estimation of other

parameters. Thus, it is important that the restrictions used have a theoretical basis and that they

be reasonable given the sample. Otherwise, the researcher might find that some combinations

of hypotheses result in untenable results, empty latent classes, or both.

One issue that must be considered by researchers interested in using LCA in general,

including CLCA models, is sample size. Early work in the area of sample size and LCA focused
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148 FINCH AND BRONK

on the necessary sample for the chi-square test of model fit to be accurate (e.g., Fienberg,

1979; Rudas, 1986). However, subsequent research (McCutcheon, 2002) has demonstrated the

limitations of using this test so that this work is no longer relevant to researchers using LCA.

More recent work has focused on the model fit statistics used in this study, including the

adjusted LMR, BLRT, and the aBIC. Lo, Mendell, and Rubin (2001) found that for samples of

less than 300 the adjusted LMR displayed low power for detecting the correct model. Henson,

Reise, and Kim (2007) reported that even with samples of 500, model fit statistics might

not exhibit sufficient power for correctly detecting the presence of a two-class latent model

versus one class in the conditions that they simulated. In addition to problems with accurately

identifying the correct model, Henson et al. also found that using LCA with samples of 500

was associated with problems obtaining convergence when estimating parameters. Although

this was not a problem with the examples demonstrated earlier, the Henson et al. simulation

study included more observed variables (9) than were used here. Work by Nylund et al. (2007)

produced similar results with respect to sample size. Specifically, they found that for the

smallest sample size condition (200) the ability of the BLRT and aBIC statistics to correctly

identify the number of latent classes was somewhat compromised, although with n D 500 both

methods were typically very accurate. It should be noted that the underlying models used in

the Henson et al. and Nylund et al. studies were somewhat different, as were the number of

indicator variables. Taken together, it would appear that LCA requires samples well into the

hundreds, with most simulation studies suggesting 500 as a worthy goal in practice. It should

be noted again, however, that the examples reported here were based on a sample of 374, albeit

with a small number of indicators.
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APPENDIX

Mplus Commands for LCA with Equality Constraints

TITLE: CLCA for 4 classes of adolescent purpose

DATA: FILE IS all.dat;

VARIABLE: NAMES ARE id y1-y17;

USEVARIABLES ARE y4 y5 y10 y15;

CATEGORICAL ARE y4 y5 y10 y15;

CLASSES = c (4);

ANALYSIS: TYPE = MIXTURE;

STARTS=100 10;

LRTBOOTSTRAP=100;

MODEL: %overall%

%c#1%

[y4$1*-2] (1);

[y5$1*-2] (3);

[y10$1*2] (5);

[y15$1*-2] (7);

%c#2%

[y4$1*2] (2);

[y5$1*2] (4);

[y10$1*2] (5);

[y15$1*-2] (7);

%c#3%

[y4$1*2] (2);

[y5$1*2] (4);

[y10$1*-2] (6);

[y15$1*-2] (7);

%c#4%

[y4$1*-2] (1);

[y5$1*-2] (3);
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[y10$1*-2] (6);

[y15$1*-2] (7);

OUTPUT: TECH11 TECH14;

Mplus Code for Estimating Alternate Equality Constraint Model with Three
Classes Rather Than Four

MODEL: %overall%

%c#1%

[y4$1*-2] (1);

[y5$1*-2] (3);

[y10$1*2] (5);

[y15$1*-2] (7);

%c#2%

[y4$1*-2] (1);

[y5$1*-2] (3);

[y10$1*-2] (6);

[y15$1*-2] (7);

%c#3%

[y4$1*2] (2);

[y5$1*2] (4);

[y10$1*2] (6);

[y15$1*-2] (7);

Mplus Code for Constraining One Group to Have All Members Endorse

Item y10

MODEL: %overall%

%c#1%

[y4$1*-2];

[y5$1*-2];

[y10$1*-2];

[y15$1*-2] (6);

%c#2%

[y4$1*2];

[y5$1*2];

[y10$1@-15];

[y15$1*-2] (6);

Mplus Code for Constraining the Threshold of Class 2 to Be the Negative of

the Threshold for Class 1

MODEL: %overall%

%c#1%

[y4$1*-2] (3);

[y5$1*-2] (p1);

[y10$1*-2] (5);

[y15$1*-2] (6);

%c#2%
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[y4$1*2] (4);

[y5$1*2] (p2);

[y10$1*-2] (5);

[y15$1*-2] (6);

MODEL CONSTRAINT:

p1=-p2;

Mplus Code for Ordering the Thresholds of Three Latent Classes

MODEL: %overall%

%c#1%

[y4$1*-2] ;

[y5$1*-2] ;

[y10$1*2] ;

[y15$1*-2] (p1);

%c#2%

[y4$1*-2] ;

[y5$1*-2] ;

[y10$1*-2] ;

[y15$1*-2] (p2);

%c#3%

[y4$1*2] ;

[y5$1*2] ;

[y10$1*-2];

[y15$1*-2] (p3);

MODEL CONSTRAINT:

p3=2*p1;

p2=1.5*p1;
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