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Conductive carbon nanofiber interpenetrated
graphene architecture for ultra-stable sodium
ion battery
Mingkai Liu1,7, Peng Zhang1,7, Zehua Qu2, Yan Yan1, Chao Lai 1, Tianxi Liu3,4,5 & Shanqing Zhang6

Long-term stability and high-rate capability have been the major challenges of sodium-ion

batteries. Layered electroactive materials with mechanically robust, chemically stable, elec-

trically and ironically conductive networks can effectively address these issues. Herein we

have successfully directed carbon nanofibers to vertically penetrate through graphene sheets,

constructing robust carbon nanofiber interpenetrated graphene architecture. Molybdenum

disulfide nanoflakes are then grown in situ alongside the entire framework, yielding molyb-

denum disulfide@carbon nanofiber interpenetrated graphene structure. In such a design,

carbon nanofibers prevent the restacking of graphene sheets and provide ample space

between graphene sheets, enabling a strong structure that maintains exceptional mechanical

integrity and excellent electrical conductivity. The as-prepared sodium ion battery delivers

outstanding electrochemical performance and ultrahigh stability, achieving a remarkable

specific capacity of 598 mAh g−1, long-term cycling stability up to 1000 cycles, and an

excellent rate performance even at a high current density up to 10 A g−1.
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S
odium ion batteries (SIBs), as one of the most promising
candidates among next-generation energy storage systems,
have attracted tremendous interest due to sodium’s natural

abundance and ready accessibility1–11. However, compared to
lithium ions (0.59 Å), the larger diameter (0.99 Å) of sodium ions
(Na+) limits the number of suitable electroactive materials and
hinders the electrochemical interfacial reaction kinetics. As such,
owing to the sluggish Na+ insertion/extraction efficiency, the
poor rate performance of SIBs has been well recognized as an
inherent challenge12–15. In the last decade, much effort has been
devoted to developing promising 2D structural anode materials,
such as phosphorus16, carbonaceous materials17,18, metallic
alloys, and two-dimensional carbides (MXenes)19,20, to improve
the electrochemical performances of SIBs and promote their
practical application21–25

Among the investigated electrode materials, 2D molybdenum
disulfide (MoS2), a layered transition-metal-dichalcogenide
(TMD) material with S–Mo–S motifs stacked together by Van
der Waals forces, is considered one of the most promising anode
materials for SIBs26–28. MoS2 materials can be further modified as
intercalation-type anode materials with expanded d-spacing to
improve the electrochemical performances of state-of-art anodes.
However, MoS2-based electrodes exhibit poor rate capability and
fast capacity fading upon cycling due to low electrical con-
ductivity and the huge volume variations during charge/discharge
process29–31. Incorporation of MoS2 nanomaterials into highly
conductive carbonaceous matrices was suggested as an effective
way to address this problem32–35. To date, several MoS2-carbon
hybrid materials have been developed, such as MoS2-graphene
composites, MoS2-CNT hybrids, and MoS2-carbon spheres36–38.
The electrochemical performance, in terms of specific capacity,
has been significantly improved due to the excellent electrical
conductivity offered by the carbon matrices ensuring rapid elec-
tron transfer in the charge/discharge processes. However, there is
still much room for improvement in terms of rate capability and
stability of these anode materials. Thus, development of MoS2/
carbon hybrids with resilient porous structure for rapid ionic
transport and storage is urgently needed and of great importance.

Graphene is considered a most promising carbon material due
to its inherent advantages, including large surface area, high
conductivity and exceptional mechanical strength39–42. However,
such advantages would vanish if the graphene sheets restack.
Carbon nanotubes (CNTs) and carbon nanofibers (CNFs) are
used to prevent the restacking of graphene sheets but the
improvement is very limited. Such simple hybrids offer limited
surface area enhancement and limited channels for ionic transfer
due to the fact that the CNTs and CNFs are in parallel with the
graphene plane. It is extremely challenging to steer the CNFs to
vertically penetrate through the graphene plane. To the best of
our knowledge, this vertical penetration has not been achieved in
the literature.

In this work, inspired by the floors-and-pillars concept in
construction (Supplementary Fig. 1), we design and develop a
robust 3D conductive CNFs interpenetrated graphene (CNFIG)
architecture by directing CNFs to penetrate through the graphene
sheets. MoS2 nanoflakes are then in situ deposited on the surface
of the CNFIG framework, producing a MoS2@CNFIG hybrid. It
is envisaged that the MoS2@CNFIG hybrid possess several
important advantages due to its unique structural characteristics,
including: (i) excellent transportation channels can be integrally
preserved during the rapid penetration of electrolyte and rapid
transfer of ions for long-term cycles; greatly contributing to the
high rate performance of the assembled batteries; (ii) the CNFs
can simultaneously act as supporting pillars between different
carbon layers and play an important role in rapid transfer of
electrons; and (iii) due to their homogeneous deposition, all the

active sites of MoS2 nanosheets can be thoroughly exposed to the
electrolyte and Na+, which produces high energy density for the
MoS2@CNFIG hybrid. Furthermore, the MoS2@CNFIG hybrid in
this work could inspire more electrode designs with stable inner
structures with high rate performance and long-term cycling
stability.

Results
Structural characterizations of CNFIG architecture. The pre-
paration of the hierarchical CNFIG architecture is schematically
illustrated in Fig. 1a. CNFs with an average diameter of 1 μm
(Fig. 1b), were prepared from the PAA fiber membranes (Sup-
plementary Fig. 2). The carbon fiber networks were derived from
the electrospun PAA fiber networks (Supplementary Fig. 3) under
chemical imidization and high-temperature carbonization. Here,
the PAA matrix was polymerized by ODA and PMDA monomers
(Supplementary Fig. 4). CNFs were dispersed within graphene
oxide solution under strong sonication and stirring. Graphene
oxide (GO) sheets with large domain size were presented in
Fig. 1c. PAA powder (Supplementary Fig. 5) can be redispersed
into ultrapure water with the assistance of triethylamine (TEA),
forming the PAA chains. Vertically aligned channels can be
clearly observed in the overall image of the carbon networks
(Fig. 1d). These channels can contribute to the rapid penetration
of electrolyte and quick transfer of Na+. More interestingly,
numerous CNFs are perpendicularly placed across the aligned
channels acting as supporting pillars between the adjacent carbon
layers (Fig. 1e). Detailed morphological information can be found
in the SEM image at high magnification, (Fig. 1f). Most of the
CNFs are inserted through the carbon layers. This CNFIG aerogel
with extremely stable channels can provide excellent transfer
pathways for electrolyte and ions. Meanwhile, the supporting
CNF pillars can further act as conductive bridges to accelerate the
transfer of electrons, which will contribute to the electrochemical
performance of the electrodes.

The vertically aligned channels, as well as the porous
morphology of CNFIG, can be maintained even under large
pressure. Figure 1g schematically illustrates the compressible
capability of the robust CNFIG aerogel due to the excellent
supporting/interconnecting effect of the inserted CNFs. Figure 1h
presents images of CNFIG aerogel being compressed and
released. The CNFIG aerogel can completely recover to its
original shape without any mechanical fracture even after being
compressed up to 90%. The compressive stress-strain curves at
the set strains (ε) of 60, 70, 80, and 90% for CNFIG aerogel are
shown in Supplementary Fig. 6. A linear elastic region at ε < 60%
and the densification region at ε > 60% can be detected in the
compressive stress-strain curves. A much higher compressive
stress of approximate 0.25 MPa can be achieved at the set strain
ε= 90%. In addition, the cyclic stress-strain curves of CNFIG at a
maximum strain of 90% were cycled more than 100 times. The
stable and constant stress-strain curves in the 1st, 30th, and 100th
cycles further confirm the recoverability of this CNFIG aerogel.
Meanwhile, the CNFIG aerogel that was compressed 100 times
shows a stable layered morphology with constant channels and
supporting CNF pillars (Supplementary Fig. 7), which further
confirms its robust capability43. CNFs with larger diameter of
900 nm can also be interpenetrated across the graphene sheets
(Supplementary Fig. 8), which illustrates the general application
of this fabrication strategy.

Formation mechanism of CNFIG. Figure 2 demonstrates the
proposed formation mechanism of CNFIG. With prepared GO/
PAA/CNF solution vertically dipped into the liquid nitrogen, ice
pillars will be homogeneously grown on a vertical direction inside
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the formed block (Fig. 2a). Aligned pores will be created after the
ice pillars were removed, resulting from the freeze-drying treat-
ment. Here, the perpendicular alignment of CNFs might be
resulted from several factors. Firstly, CNFs and GO sheets can be
tightly connected with the assistance of PAA molecular chains
due to the existed functional groups on their surface or on the
chains of PAA (such as –COOH, –OH, etc.) (Fig. 2a), apart from
the electrostatic interaction between CNFs and GO sheets. With
ice pillars growing, PAA/GO matrix will be pushed aside to form
the precursor for carbon layers. During this process, the long
CNFs that attached on different GO sheets are directed to a
direction vertical to the ice pillars due to the pull force (f) as
illustrated in Fig. 2b. Here, it should be stated that most of the
CNFs can be forced to perpendicularly across the carbon layers,
however, still leaving a little to be attached on the surface of the
formed PAA/GO mixture layers, as seen in Fig. 2c. Secondly, the
existence of PAA molecular chains and GO sheets plays an
important role in the formation of CNFIG, as demonstrated in
Fig. 2d–g. Disordered pores with large size will be formed if only
PAA polymer matrix was used (Fig. 2d). And this phenomenon
can be ascribed to the typical self-assembled aerogel of polymers
as a result of the freeze treatment in liquid nitrogen44,45. How-
ever, with the assistance of introduced raw GO sheets, clearly
aligned carbon layers or pores can be achieved in the obtained
carbon aerogel due to the interfacial interaction of PAA chains
and GO sheets (Fig. 2e) in the preparation process. The important
role of PAA chains can also be demonstrated, as seen in Fig. 2f,
carbonic foam with disordered porous structures will be resulted
if only pristine GO and CNFs were used. This result further
illustrates that the crosslink of PAA polymer chains on the sur-
face of CNFs and GO sheets has a vital function to generate the

aligned pores and carbon layers. Also, this result can be an
effective confirmation of the interfacial interaction between CNFs
and GO sheets. Meanwhile, if GO sheets was not used,
CNF@PAA mixture that used as precursor will only create a
similar self-assembled morphology as that of pure PAA matrix, as
seen in Fig. 2g. Thirdly, the length of CNFs can also determine
the final morphology of CNFIG. Here, the average length of the
used CNFs is about 30–40 μm. If shorter CNFs were used (i.e.
2–3 μm), the obtained CNFIG architecture (Fig. 2h) will only has
a similar morphology as that of GO@PAA (Fig. 2e). The shorter
CNFs will only be attached on the surface of carbon layers yet not
perpendicularly crossed them, as demonstrated in Supplementary
Fig. 9. These results demonstrate the formation mechanism of
CNFIG that PAA molecular chains, GO sheets, the length of
CNFs and ice pillars can play a crucial role in determining the
final morphology of CNFIG architectures.

Fabrication and structural characterization of MoS2@CNFIG
hybrid. The CNFIG aerogel also possesses a high electrical con-
ductivity, up to 15.6 S cm−1, as confirmed by the electrical
current-voltage curve (Supplementary Fig. 10). Meanwhile, a
break copper wire can be connected by a piece of CNFIG in a
turn-on electrical circle (Supplementary Fig. 11), demonstrating
the good electrical conductivity of this CNFIG matrix. Here, the
developed CNFIG aerogel is used as a conductive template for the
homogeneous deposition of layered MoS2 nanoflakes (Fig. 3a).
The robust MoS2@CNFIG hybrid is fabricated via a versatile
interfacial deposition approach and subsequent high-temperature
treatment. Due to the homogeneous deposition reaction, layered
MoS2 nanoflakes can be uniformly anchored on the carbon layers
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and the CNF bridges. Here, the vertically aligned channels in
the MoS2@CNFIG hybrid ensure rapid penetration of the elec-
trolyte and also contribute to the rapid transfer of sodium
ions (Fig. 3b). The excellent electrical conductivity of CNFIG
matrix can also provide effective pathways for fast electron

transportation (Fig. 3c), which will benefit the insertion/extrac-
tion of sodium ions.

The vertically aligned channels created inside the 3D carbonic
CNFIG networks are integrally maintained in the developed
MoS2@CNFIG nanohybrid (Fig. 4a). SEM images focusing on the
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cross section of the MoS2@CNFIG hybrid further demonstrate
that the CNFs are vertically aligned with the carbon layers
(Fig. 4b, c). This result confirms the stable architecture with
porous channels within the MoS2@CNFIG hybrid. The homo-
geneously deposited MoS2 skins on the surface of the carbon
layers and the CNFs are clearly illustrated by the SEM image at
high magnification (Fig. 4d). The MoS2 nanomaterials possess
good porous structures and “nanoflake” morphologies, contribut-
ing to a much higher specific surface area of MoS2@CNFIG
hybrid (310 mg−1) compared with pure MoS2 (92 mg−1)
(Supplementary Fig. 12), which can further permit complete
utilization of their active sites during the charge/discharge
process. In this work, the thickness of the MoS2 skin is about
200 nm, which can be obtained from the endpoint of a CNF pillar
coated by MoS2 nanoflakes (Fig. 4e). Furthermore, the carbon
layers are also completely wrapped by the homogeneously
deposited MoS2 layers (Fig. 4f). MoS2@CNFIG hybrid aerogel
can be cut into round pieces with an average thickness of 2.5 mm
(Supplementary Fig. 13), which can be directly used as anode for
LIBs. In this MoS2@CNFIG hybrid aerogel, the large voids among
the graphene layers can play two roles on the battery performance
(i.e., specific capacity and rate capability). On one hand, as
indicated by the examiner, the voids among the graphene layers
could reduce the tap density and therefore lower the volumetric
energy density. On the other hand, since it is widely recognized
that sodium ion have a much larger size than lithium ion, the
voids in the CNFIG architecture provide the space to grow MoS2
nanoflakes, offer ample pathways for the mass transport and
storage of large sodium ions, tolerate the volume changes during
charge/discharge processes.

From these SEM observations, we notice that (i) the good
porous structure of the CNFIG matrix is maintained, (ii) MoS2

nanomaterials with 2D flake-like geometry are homogeneously
deposited on the surface of CNFIG without any aggregation, and
(iii) the thin MoS2 layers are in tight contact with the CNFIG
matrix which can greatly decrease the interfacial resistance for the
MoS2@CNFIG hybrid. These structural characteristics can
facilitate the rapid transmission of ions and electrons contributing
to the outstanding electrochemical performances of the
MoS2@CNFIG hybrid. In comparison, randomly arranged
CNFs/graphene sheets/MoS2 (CNF/G/MoS2) composites without
vertically aligned pores exhibit aggregated morphologies, as seen
in Supplementary Fig. 14. Also, pure MoS2 materials exhibit
“sphere” morphologies with a diameter of 2 μm (Supplementary
Fig. 15) wherein a large number of their active sites are closely
wrapped inside the MoS2 spheres, potentially unused during the
electrochemical reaction processes.

Transmission electron microscopy (TEM) and high-resolution
TEM (HRTEM) were used to further investigate the morpholo-
gical features and crystal structures of the MoS2@CNFIG hybrid.
The TEM images of MoS2@CNFIG at low magnification (Fig. 4g)
demonstrate the successful hybridization of CNFs, carbon layers
and MoS2 nanoflakes. The MoS2 nanomaterials with a 2D flake-
like morphology are homogeneously anchored on the surface of
CNFs and carbon layers without any aggregation. This suggests
that the synthesis strategy developed in this work ensures a quasi-
epitaxial growth of MoS2 along the 1D CNFs and 2D carbon
layers. The large number of pores (Supplementary Fig. 16a),
permit exploitation of all the MoS2 active sites during the sodium
ion insertion/extraction process. Meanwhile, the semitransparent
MoS2 layers (Supplementary Fig. 16b) indicate that the anchored
MoS2 nanoflakes consist of only a few layers without severe
restacking. The thickness of the MoS2 layer is about or <200 nm
(Supplementary Fig. 17), which is consistent with the SEM result
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hybrid (scale bars, b 10 μm; c 5 μm); d MoS2 layers homogeneously anchored on the CNF bridges (scale bar= 2 μm); e SEM image of an endpoint of CNF

coated with MoS2 nanoflakes (scale bar= 1 μm); f SEM image of selected area of MoS2@CNFIG hybrid with MoS2 nanoflakes anchored on the carbon
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and carbon matrix (scale bars, h 10 nm; i 2 nm)

NATURE COMMUNICATIONS | https://doi.org/10.1038/s41467-019-11925-z ARTICLE

NATURE COMMUNICATIONS |         (2019) 10:3917 | https://doi.org/10.1038/s41467-019-11925-z | www.nature.com/naturecommunications 5

www.nature.com/naturecommunications
www.nature.com/naturecommunications


(Fig. 4e). The thin layer geometry of MoS2 nanoflakes can be also
confirmed by the HRTEM images (Fig. 4h, i), in which 4–8 layers
of MoS2 with an expanded d-spacing of 0.64 nm can be detected.
The tight contact between carbon layers and the anchored MoS2
nanoflakes is also confirmed by these HRTEM images. The
carbon matrix with a typical d-spacing of 0.34 nm, corresponding
to the (002) crystal phase, is homogeneously hybridized with the
introduced MoS2 nanoflakes.

Energy-dispersive X-ray (EDX) analysis was conducted to
confirm the uniform deposition of MoS2 on the carbonic CNFIG
networks (Supplementary Fig. 18). The SEM image of the selected
cross section of MoS2@CNFIG is presented in Supplementary Fig.
18a and the corresponding EDX elemental distributions of C, S,
and Mo elements are presented in Supplementary Fig. 18b–d,
respectively. These elemental mappings indicate the successful
hybridization of MoS2 nanoflakes and the CNFIG networks with
homogeneous distribution. Here, the poor C element signals can
be ascribed to the carbon networks being completely enclosed by
the homogeneously anchored MoS2 nanoflakes. Supplementary
Fig. 19 exhibits the XRD patterns of the CNFIG framework, pure
MoS2 and the MoS2@CNFIG hybrid. The pure CNFIG matrix
exhibits a broad diffraction peak at around 25.9°, which is related
to the (002) crystal plane of the carbon materials46. The
diffraction peaks of pure MoS2 can be indexed to the hexagonal
phase of MoS2 material (JCPDS No. 37−1492). Similar diffraction
peaks at 14.02°, 33.28°, and 58.52° detected in the XRD patterns
of the MoS2@CNFIG hybrid can be assigned to the (002), (100),
and (110) planes of MoS2 crystals47,48. Here, the diffraction peak
at 14.02° corresponds to an interlayer spacing of 0.64 nm, which is a
little larger than that of other reported MoS2 materials (0.62 nm)49.
Thus, the expanded d-spacing of MoS2 in the MoS2@CNFIG
hybrid can efficiently improve the insertion/extraction kinetics of
sodium ions. Thermogravimetric analysis (TGA) measurement
was conducted to determine the weight percentage of MoS2
materials in the developed MoS2@CNFIG hybrid (Supplementary
Fig. 20). The slight weight loss before 200 °C can be ascribed to
water evaporation. The apparent decreasing curve between 240
and 405 °C indicates the oxidation of MoS2 to MoO3. The
combustion of carbon matrix occurred between 405 and 520 °C,
and the weight loss at temperatures higher than 670 °C was due to
the evaporation of MoO3 in air50. Here, the weight percentage of
MoS2 in the MoS2@CNFIG hybrid is calculated to be approxi-
mately 88.0 wt%.

Electrochemical properties. The electrochemical properties of
the MoS2@CNFIG hybrid and pure MoS2 were evaluated by
assembled coin cells with pure sodium metal as the counter
electrode, and pure MoS2 or MoS2@CNFIG hybrid as the anode
materials (Fig. 5). Figure 5a presents the cyclic voltammograms
(CVs) of the MoS2@CNFIG hybrid at 0.1 mV s−1 in the 1st, 2nd,
and 5th cycles between 0.1 and 3.0 V. The reduction process of
MoS2 can be divided into two steps: (i) the insertion of sodium
ions into MoS2 interlayers (Eq. 1) and (ii) the conversion of MoS2
to Mo accompanied by the formation of Na2S (Eq. 2)51,52.

MoS2 þ xNaþ þ xe� ¼ NaxMoS2 ð1Þ

NaxMoS2 þ 4� xð ÞNaþþ 4� xð Þe� ¼ 2Na2SþMo ð2Þ

In the first cathodic scan, a strong peak observed at 0.6 V is
associated with Na+ insertion into the MoS2 interlayer spacing
according to Equation 1, and the formation of a solid electrolyte
interface (SEI) layer owing to the decomposition of the
electrolyte53. The peak under 0.5 V in the deep cathodic process
can be assigned to the electrochemical decomposition of MoS2 to

form metallic (Mo) nanograins and amorphous Na2S matrix
according to Eq. 254. Also, a broad anodic peak at 1.75 V observed
in the first charging process, can be ascribed to the oxidation of
Mo nanograins to MoS255. The CV curves in the 2nd and 5th
cycles almost overlapped, suggesting high reversibility and good
cycling stability of sodium ions storage in this MoS2@CNFIG
hybrid.

Discharge/charge curves for the 1st, 2nd, and 5th cycles at a
constant current density of 0.1 A g−1 are shown in Fig. 5b. The
initial discharge curve possesses a long plateau between 0.5 and
1.0 V, which is consistent with the large cathodic peak at about
0.6 V in the first CV curve. The MoS2@CNFIG hybrid exhibits a
highly reversible specific capacity of 598 mAh g−1 at 0.1 A g−1

based on the total mass of MoS2 and CNFIG matrix. A recovered
charge capacity of 585 mAh g−1 can also be observed, indicating
a high Coulombic efficiency of ~97.8% in the 2nd cycle. The
in situ growth of MoS2 nanoflakes with intimate contact between
MoS2 nanoflakes and the CNFIG matrix has effectively avoided
irreversible capacity. The good reversible ability of sodium ions in
this MoS2@CNFIG hybrid is further confirmed by the superstable
discharge/charge plateaus in the 2nd and 5th cycles (Fig. 5b).
However, the coarse CV curves of pure MoS2 (Supplementary
Fig. 21) with much lower current intensities indicate inferior
sodium ions storage capabilities. Also, a much lower specific
capacity of 253 mAh g‒1 for pure MoS2 is observed from its
discharge/charge curves (Supplementary Fig. 22). The obvious
decrease in the specific capacities in the 2nd (219 mAh g−1) and
5th (179 mAh g−1) cycles for pure MoS2 further confirms its poor
reversible capability for sodium ions storage.

The rate capacities can be used to demonstrate the sodium ion
storage capabilities of the MoS2@CNFIG hybrid at low and high
current densities. The MoS2@CNFIG hybrid exhibits reversible
capacities of 594, 533, 498, 477, and 456 mAh g−1 at current
densities of 0.1, 0.5, 1.0, 2.0, and 5.0 A g−1, respectively (Fig. 5c).
More than 77% of the specific capacity observed at 0.1 A g−1 is
maintained when the current density is increased to 5.0 A g−1,
indicating that the MoS2@CNFIG hybrid is a good anodic
candidate at low and high current densities. More importantly, a
high specific capacity of 582 mAh g−1 can be achieved when the
current density is returned to 0.1 A g−1 after being cycled at high
rates. This superior rate performance results from the excellent
structural stability with the assistance of the inserted CNF pillars,
and the intimate contact between MoS2 and the conductive
CNFIG matrix with greatly shortened sodium ion diffusion
distances. The Coulombic efficiencies of the MoS2@CNFIG
hybrid gradually increase after the initial capacity loss, and
quickly approach 100% after several cycles, indicating good
reversibility. Comparatively, pure MoS2 spheres exhibit a specific
capacity of 253 mAh g−1 at 0.1 A g−1 and a much lower capacity
of 32 mAh g−1 when the current density is increased to 5.0 A g−1.
This inferior rate performance of pure MoS2 can be ascribed to its
heavy aggregation morphology that results in serious structural
collapse after several cycles. The superior rate capability of the
MoS2@CNFIG hybrid can be further confirmed by the stable
discharge/charge voltage profiles at 0.1, 0.5, 1.0, 2.0, and 5.0 A g−1

(Fig. 5d).
The electrochemical impedance spectra (EIS) of the

MoS2@CNFIG hybrid and pure MoS2 are presented in Fig. 5e.
All the impedance measurements are made at the fully discharged
state after 10 cycles. The impedance spectrum of the MoS2@CN-
FIG hybrid is composed of a depressed semicircle in high-
medium frequencies and a straight line in low frequencies. The
non-symmetrical semicircle at high-medium frequencies consists
of two parts, the resistance of SEI film (Rs) and charge transfer
resistance (Rct)56. The sloping line in the low frequency is
associated with the diffusion kinetics of Na+ in active materials53.
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Here, the kinetic parameters can be obtained from the equivalent
circuit (Supplementary Fig. 23) which was utilized for fitting the
EIS spectra. The MoS2@CNFIG hybrid exhibits a much lower Rct

value (100 Ω) than that of pure MoS2 (234Ω), indicating its
higher electronic/ionic conductivity. Here, the Warburg impe-
dance data in the low-frequency region of the Nyquist plots are
utilized to analyze the chemical diffusion coefficient of sodium
ions. Figure 5f shows the fitted line of Z′–ω−1/2 (ω= 2πƒ) in the
low frequencies. The lower slope (σ= 33.4) of the MoS2@CNFIG
hybrid compared to pure MoS2 (σ= 242.3) indicates the superior
insertion/extraction kinetics of sodium ions in the MoS2@CNFIG
electrode.

Long-term cycling behaviors of the MoS2@CNFIG hybrid are
shown in Fig. 5g. Here, coin cells with MoS2@CNFIG anodes
exhibit excellent long-term cycling stability at 1 A g−1. The
specific capacities of the MoS2@CNFIG hybrid are slightly
increased in the first 40 cycles due to the chemical activation of
the MoS2 nanoflake active sites in the MoS2@CNFIG hybrid. The
MoS2@CNFIG hybrid exhibits a sustainable specific capacity of
412 mAh g−1 in the 1000th cycle, delivering capacity retention of
86.2% based on its initial specific capacity (478 mAh g−1) in the
2nd cycle. More importantly, the MoS2@CNFIG hybrid also
exhibits a promising cycling life even at high current density of
5 A g−1. A reversible specific capacity of 366 mAh g−1 was

achieved at 5 A g‒1 after 1000 cycles, achieving capacity
retention of 86.9%. The MoS2@CNFIG hybrid also achieves high
Coulombic efficiencies approaching ~100% both at 1 and 5 A g−1,
indicating the excellent reversible insertion/extraction ability of
sodium ions inside its interpenetration networks. Comparatively,
pure MoS2 exhibits a sharp capacity decrease in the first 100
cycles (Supplementary Fig. 24). A much lower specific capacity of
34 mAh g−1 is obtained after 1000 cycles with poor Coulombic
efficiencies. Herein, the excellent sodium ions storage properties
of the MoS2@CNFIG hybrid can be ascribed to its hierarchical
geometry with aligned channels, high electronic/ionic conductiv-
ity and uniform dispersion of thin MoS2 layers. The introduced
CNFs acting as the supporting pillars are beneficial for
maintaining the structural integrity of the MoS2@CNFIG hybrid
by suppressing the stacking of MoS2 nanoflakes, resulting in its
superior electrochemical stability. The excellent porous structures
with stable channels and the perfect electronic/ionic conductivity
achieved by the MoS2@CNFIG hybrid ensure the reversible
insertion/extraction of sodium ions at a large scale, which
promotes the exploitation of all the active sites of MoS2
nanoflakes in rapid charge/discharge processes.

A CNF/G/MoS2 composite was also used an anode material to
fabricate the sodium cell, to examine its electrochemical activity
for sodium ions storage. This randomly arranged CNF/G/MoS2
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composite without any aligned channels exhibits comparable
specific capacities (584 mAh g−1) to that of the MoS2@CNFIG
hybrid at low current density of 0.1 A g−1 (Supplementary
Fig. 25). However, when the testing current density is increased
to 5.0 A g−1, the sodium ions storage capability of the CNF/G/
MoS2 composite is severely decreased to 120 mAh g−1, as
confirmed by its rate performance (Supplementary Fig. 26). This
poor performance of the CNF/G/MoS2 composite can be ascribed
to the absence of efficient aligned channels and the unexpected
utilization of the non-conducting polymer binder of PVDF.
Furthermore, this CNF/G/MoS2 composite also shows an inferior
long-term cycling life, with only 55% of its initial specific capacity
maintained (Supplementary Fig. 27). Comparison of the electro-
chemical performances of the CNF/G/MoS2 composite with those
of the MoS2@CNFIG hybrid further confirm the structural
advantages of the vertically aligned channels and robust template
matrix, which greatly contribute to the structural stability of the
electrode and provide efficient pathways for the transfer of
sodium ions and electrons. The EIS spectra of sodium ions cells
with CNF/G/MoS2 composite anodes are presented in Supple-
mentary Fig. 28. A higher Rct value (166 Ω) of the CNF/G/MoS2
composite demonstrates a larger charge transfer resistance. Here,
the Rct value (166Ω) of the CNF/G/MoS2 composite is lower than
the pure MoS2 electrode (234Ω), due to the introduced graphene
sheets template that restricts the restacking of the MoS2
nanoflakes, and the inserted CNFs that increase the internal
electrical conductivity. The higher slope (σ= 92.3) of the CNF/G/
MoS2 composite (Supplementary Fig. 29) compared with the
MoS2@CNFIG hybrid (σ= 33.4) demonstrates less efficient
sodium ions transfer inside the CNF/G/MoS2 composite anode,
which limits rapid sodium ions insertion/extraction under high
current densities. Moreover, the MoS2@CNFIG hybrid is
comparable with or superior to other types of carbon/MoS2
composites (Supplementary Fig. 30).

The structural integrity of the MoS2@CNFIG anode after being
cycled 1000 times is further confirmed by SEM imagery (Fig. 6a).
The vertically aligned pores of the MoS2@CNFIG anode are
completely preserved, which can ensure efficient diffusion
pathways for the electrolyte even after a long-term cycling
process, and provide sufficient expansion space for MoS2
nanoflakes. All these features can undoubtedly contribute to the
reversible insertion/extraction of sodium ions. EDX mapping of
Na, Mo, and S elements can be clearly detected (Fig. 6b),
confirming the stable structure of the MoS2@CNFIG hybrid and
its effective adsorption of sodium ions. The elemental map of Na
can be ascribed to the sodium ions being adsorbed via chemical
redox reactions. The mapping signal of C is due to the complete
wrapping of the carbon shells by MoS2 nanoflakes. This result
demonstrates that the anchored MoS2 nanoflakes do not fall off,
even after long-term cycling, and the tight contact between MoS2
nanoflakes and the carbon shells. Figure 6c shows that 12 light-
emitting diodes (LEDs) can be lit up by three coin cells connected
in series based on MoS2@CNFIG anodes, which further confirms
the potential practical applications of the developed MoS2@CN-
FIG hybrid.

To evaluate the superior long-term cycling capability coupled
with a good rate performance, the MoS2@CNFIG hybrid was first
cycled at 1 A g−1 for 300 cycles then continuously cycled at high
current density up to 10 A g−1 for 400 cycles (Fig. 6d). The
MoS2@CNFIG hybrid exhibits a stable cycling performance by
achieving a reversible specific capacity of 322 mAh g−1 in the
300th cycle at 10 A g−1 and 303 mAh g−1 in the 700th cycle.
When the current density is returned to 1 A g−1, the MoS2@CN-
FIG hybrid shows a recoverable specific capacity of 421 mAh g−1

and can be further cycled 300 times with high Coulombic
efficiencies approaching ~100%. Here, the superior rate

performances of MoS2@CNFIG hybrid can be ascribed to its
excellent structural stability and the ultra-high utilization
efficiency of MoS2 nanoflakes due to their structural features.
The EIS spectra of the MoS2@CNFIG hybrid after being cycled
two and 1000 times are presented in Fig. 6e. The increased Rct
value in the 1000th cycle (162.3 Ω) compared with the initial
result in the 2nd cycle (100Ω), further confirms the structural
integrity and stable interfacial reaction during the long-term
cycling process. The TEM image of the cycled MoS2@CNFIG
hybrid exhibits flake-like MoS2 structures (Fig. 6f) with the
existence of clear lattice fringes (inset in Fig. 6f). Here, the
promising electrochemical storage of sodium ions can be ascribed
to the hierarchical structure of the MoS2@CNFIG hybrid
(Fig. 6g). Firstly, the nested structures produce nanoreservoirs
between adjacent MoS2 nanoflakes, which favor interfacial
interactions between the active sites of MoS2 and the electrolyte,
and shorten the ionic diffusion pathways57. Secondly, the
vertically aligned channels ensure the rapid penetration of
electrolyte and sodium ions, which helps relieve the mass-
transfer limitations of the electrochemical MoS2-sodium ions
reactions58. Thirdly, the tightly anchored MoS2 on the surface of
the CNFIG matrix provides good current collector/MoS2
electrical contact and much lower Rct resistance. Lastly, the
vertically aligned channels and the porous structure of the
MoS2@CNFIG hybrid provide sufficient volume expansion space
for active MoS2 nanomaterials (Fig. 6g), avoiding the structural
collapse responsible for irreversible capacities.

Discussion
In summary, we have rationally designed and successfully fabri-
cated a 3D MoS2@CNFIG nanohybrid with unique inter-
penetration networks as a free-standing anode for SIBs (without
the use of conductive additives and binders). The as-prepared
CNFIG framework provides ultra-stable channels and the sup-
porting pillars between different carbon layers, facilitating effi-
cient pathways for the rapid penetration of electrolyte and quick
transfer of sodium ions. The excellent electrical conductivity of
the CNFIG matrix, coupled with the robust interfacial contact
between MoS2 nanoflakes and CNFIG matrix, enable low charge
transfer resistance and full utilization of active sites of the
anchored MoS2 electroactive materials. The ultra-high mechan-
ical compression property of the CNFIG matrix can contribute to
the structural stability of the MoS2@CNFIG hybrid, avoiding any
unexpected structural collapse from the volume expansion of
MoS2 materials in charge/discharge processes. As a result, a high
specific capacity of 598 mAh g−1 and a long-term cycling stability
up to 1000 times with an average Coulombic efficiency of ~100%
are achieved by this MoS2@CNFIG hybrid. Importantly, the
MoS2@CNFIG hybrid also possesses an excellent rate perfor-
mance even at a high current density up to 10 A g−1 due to its
unique interpenetration networks. Furthermore, this
MoS2@CNFIG hybrid provides new insights for designing and
fabricating good porous electrode materials for energy storage in
other fields with high capacity, long cycling life, and excellent rate
performances.

Methods
Materials. Concentrated sulfuric acid (H2SO4, 98%), thiourea (CH4N2S), hex-
aammonium molybdate ((NH4)6Mo7O24), N, N-Dimethylacetamide (DMAc),
triethylamine (TEA), 4,4′-oxidianiline (ODA), and pyromellitic dianhydride
(PMDA) were purchased from Shanghai Chemical Reagent Company. Deionized
(DI) water was used throughout the experiments.

Synthesis of PAA powders. Poly(amic acid) (PAA) powders were prepared based
on ODA and PMDA. Typically, 2.15 g of ODA was dispersed into 27.5 mL of
DMAc by strong stirring at 0 °C. Then, PMDA (2.35 g) was gradually added into
the mixture and the reaction was maintained for 5 h in an ice bath. TEA (1.1 g) was
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dropped into the mixture drop-by-drop. After 5 h, a yellow viscous solution TEA-
PAA, was obtained and poured into DI water. The precipitate was washed several
times by DI water then freeze-dried, resulting in the formation of yellow PAA
powders.

Synthesis of CNF. The reaction product based on ODA and PMDA prior to the
addition of TEA can be directly used as a polymer matrix for electrospinning with a
weight percent of ~15%. Electrospinning was carried out at an applied voltage of
12–18 kV with a feeding speed of 0.5 mL h−1 with a distance of 18 cm between
the syringe and the aluminum collector. The obtained PAA film was carbonized at
300 °C in air for 2 h and at 900 °C in Ar for 5 h, resulting in the formation of carbon
nanofiber film. The obtained carbon nanofiber film was immersed into H2SO4 for
3 days, and further treated with strong sonication for 60min following by washing
with DI water, producing CNFs. For short CNFs with an average length of 2–3 μm,
the obtained long CNFs were further treated with ball-milling at 400 rpm for 4 h.

Preparation of CNFIG. GO materials were prepared according to a modified
Hummers’ method39. CNFs (100 mg) were dispersed into a GO solution (200 mL,
1 mgmL‒1) under strong stirring and sonication. Then, PAA powder (0.4 g) was
dispersed into the mixture with the assistance of TEA (2 mL). The obtained
mixture was vertically frozen with the bottom of the container gradually
immersed into liquid nitrogen. The frozen GO/CNF/PAA composite was freeze-
dried at −50 °C under 10 Pa, and the obtained GO/CNF/PAA aerogel was

further carbonized at 900 °C in Ar for 5 h, resulting in the formation of CNF-
interpenetrated graphene, named as CNFIG.

Preparation of MoS2@CNFIG. (NH4)6Mo7O24 (1.5 mmol) and CH4N2S (21
mmol) were dissolved into 40 ml of ultrapure water, and 200 mg of CNFIG cake
were put into the solution. The resultant mixture was subjected to a hydrothermal
reaction at 220 °C for 12 h in a Teflon-lined stainless steel autoclave (50 mL). The
obtained dry solid materials were high-temperature treated at 700 °C for 2 h,
resulting in MoS2@CNFIG active materials. Pure MoS2 materials were prepared
according to the same method without the addition of the CNFIG matrix.

Preparation of CNF/G/MoS2. CNFs (100 mg), GO sheets (200 mg) and PAA
matrix (0.4 g) were firstly co-dispersed with the assistance of strong sonication
(1000W, 40 KHz). And these CNFs/GO/PAA composite were dried in the oven at
80 °C overnight, and were further carbonized in the furnace tube at 900 °C for 5 h
in Ar, achieving the development of CNFs/graphene sheets (CNF/G) composite
powder. Then, (NH4)6Mo7O24 (1.5 mmol) and CH4N2S (21 mmol) were dissolved
into 40 mL ultrapure water, and 200 mg of CNF/G powder were dispersed into the
above solution. Then the resultant mixture was subjected to a Teflon-lined stainless
steel autoclave (50 mL) and further reacted at 220 °C for 12 h. The obtained dry
solid materials were treated at 700 °C for 2 h, resulting in CNF/G/MoS2 active
materials.
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Materials characterization. The nanostructures and morphologies of the pre-
pared IN-C matrix and MoS2@CNFIG hybrid were studied by field-emission
scanning electron microscopy (SEM, Hitachi, SU8010) and transmission electron
microscopy (TEM, FEI Tecnai G2 F20). Energy dispersive X-ray spectroscopy
(EDX) detections were captured with an EDAX (PW9900). The weight percent of
samples were determined using thermogravimetric analysis (TGA) equipment (TA
500) from room temperature to 800 °C with a heating rate of 10 °C min−1. The
crystalline phases of the developed products were characterized by a XRD dif-
fractometer (Bruker. D8 Advanced) with Cu Kα= 0.154056 nm. The compression
tests of MoS2@CNFIG hybrid were performed on an electronic universal testing
machine (SANS, CMT6103). Electrical conductivity was tested on an electro-
chemical workstation (CHI 660D).

Electrochemical measurements. Electrochemical measurements of the prepared
materials were carried out by two-electrode CR2032 coin-type cells. The
MoS2@CNFIG hybrid was used as binder-free anodes, and sodium foil was used as
the cathode with a microporous glass fiber separator (Whatman) placed between
the sodium metal counter electrode and the working electrode. 1 M NaClO4 (Alfa
Aesar) in (1:1 v/v) dimethyl carbonate/ethylene carbonate was used as the elec-
trolyte. A washer, spring, and top casing were placed on top to complete the
assembly before crimping. For CNF/G/MoS2 and pure MoS2 anodes, they were
mixed with conductive additions and polymer binder, and were further coated on
copper foil to form the anode electrodes. For example, CNF/G/MoS2 (or pure
MoS2) powders (80 wt%) were mixed with acetylene black (Super P, 10 wt%) and
polyvinylidene fluoride (PVDF, 10 wt%) to prepare the pure MoS2 working elec-
trodes. Cyclic voltammograms (CVs) curves of the assembled coins were tested on
a BT2000 ARBIN between 0.1 and 3.0 V vs. Na/Na+. Discharge/charge curves of
the assembled coins were recorded on LAND 2001A testing systems. Electro-
chemical impedance spectroscopy (EIS) measurements were carried out based on a
Princeton-solartron system over the frequency range 100 kHz to 0.01 Hz under an
open circuit potential. Here, it is necessary to declare that the calculated specific
capacities of the prepared samples were based on the total mass of the
MoS2@CNFIG hybrid. The diffusion coefficient (D) of sodium ions inside the
electrodes was calculated based on the EIS spectra in the low-frequency region
according to the following equations:

D ¼
R2T2

2A2n4F4C2
σ
2

ZW ¼ RD þ RL þ σω
�1=2

Where R is the gas constant, T is the absolute temperature, A is the electrode area,
n is the number of electrons per molecule during oxidization (for sodium ions,
value is 1), F is the Faraday constant, C is the initial concentration (mol cm−3) and
σ represents the Warburg factor, which is relative to Zw according to the second
equation above. The Warburg factor (σ) can be detected from the slope value based
on Zw with the square root of the frequency (ω−1/2).

Data availability
The data that support the findings of this study are available from the corresponding
author upon request.
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