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Abstract: Conductive covalent organic frameworks (c-COFs) have been widely used in electrochemi-
cal energy storage because of their highly adjustable porosity and modifiable skeletons. Additionally,
the fast carrier migration and ion catalysis requirements of micro-electrochemical energy storages
(MEESs) are perfectly matched with c-COFs. Therefore, c-COFs show great potential and unlimited
prospects in MEESs. However, the main organic component blocks electron conduction, and the
internal active sites are difficult to fully utilize, which limits the application of c-COFs. In order to
overcome these obstacles, a great deal of research has been conducted on conductivity enhancement.
This review first focuses on the exploration of c-COFs in the field of electrical conductivity. Then,
the mechanism and explanation of the effect of synthesis on electrical conductivity enhancement are
discussed, which emphasizes the range and suitability of c-COFs in MEESs. Finally, the excellent
performance characteristics of c-COFs are demonstrated from the MEES perspective, with key points
and potential challenges addressed. This review also predicts the direction of development of c-COFs
in the future.

Keywords: covalent organic frameworks; micro-electrochemical energy storage; density functional
theory; conductive

1. Introduction

With the rapid development of the internet and information technology, human soci-
ety is also accelerating into a new era of digitalization and intelligence. With the help of
advanced micro-electronic devices, accurately treating diseases, obtaining environmental in-
formation, and monitoring equipment performance have become more accessible [1–9]. In
the face of the diverse requirements of various applications, the design of micro-electronic
devices needs to be considered in dimension, shape, performance, flexibility, and other
aspects [10–12]. At the same time, as an important part of micro-electronic devices, micro-
electrochemical energy storage (MEES) system has become the focus to meet the develop-
ment requirements of micro-electronic devices. MEES devices include micro-batteries and
micro-supercapacitors. At first, this refers to miniaturized batteries or capacitors whose
sizes are smaller than those of traditional electrochemical energy storage devices in at
least one dimension. Later, this extended to miniaturized energy storage devices with
non-traditional structures or special capabilities. This has very broad application prospects
in various situations, especially in unusual environments, such as micro-robots, wearable
devices, and medical implants [13–15].
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Similar to conventional electrochemical energy storage devices, the overall optimiza-
tion of MEES electrode materials and devices is the focus of its development. At present, the
overall optimization of the device has been fully studied in most research, but the electrode
material suitable for MEES is still unknown [16–18]. Compared with traditional electro-
chemical energy storage devices, flexible, designable, and customizable electrode materials
are required to seamlessly integrate with various environments [19,20]. Unfortunately, most
of the traditional electrochemical energy storage electrodes are fixed in shape, poor in
flexibility, and large in volume, which means they cannot meet the strict requirements of
the new generation of micro-electronic products [21–23]. Therefore, extensive research is
being conducted with the goal of improving the energy storage capacity of MEES without
sacrificing the power density and cycling stability of the electrode material.

Under such strict requirements, covalent organic framework (COF) materials come
into view [24–26]. This organic framework connected by covalent bonds provides an excel-
lent material for this pioneering MEES development (Figure 1). Its high porosity, aligned
ion channel, and dynamic reversible crystal structure can meet MEES requirements for
stretchability, bendability, and designability, while the energy density and power density
are not far behind the current commercial electrode materials [27,28]. COFs have many
advantages required for MEES devices, but as a branch of organic compounds, their low
conductivity becomes their limitation in energy storage materials [29]. Generally, sufficient
conductive agent is added to improve the conductivity of the slurry when preparing the
electrode, which will greatly reduce the specific mass capacity of the MEES electrode. Re-
ducing the amount of conductive and binder can improve the electrochemical performance
of MEES. Therefore, many studies have been carried out to optimize the conductivity
of COFs. In 2019, a COF that generates uninterrupted p-electron delocalization in the
two-dimensional (2D) direction was reported by introducing a plane-conjugated triazine
nucleus into a 2D framework. Its large specific surface area and unique nano-fiber structure
make it a good application in micro-flexible supercapacitors [30]. In addition, due to the
interaction of 3,5-dicyano-2,4,6-trimethylpyridine, and 1,3,5-triazine, the C=C bond in the
synthesized COF is not replaced, which is conducive to improving the p-type electron
delocalization of the 2D sp2 carbon chain [31,32]. It is a good method to enhance the
conductivity of COF.
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Herein, we first focus on the exploration of conductive COFs (c-COFs) in the field
of electrical conductivity. Then, the mechanism and explanation of the effect of synthesis
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on electrical conductivity enhancement are discussed, which emphasizes the range and
suitability of c-COFs in MEESs. Finally, the excellent performance characteristics of c-COFs
are demonstrated from the MEES perspective, with key points and potential challenges
addressed. This review also predicts the direction of development of c-COFs in the future.

2. Conductivity Enhancement Mechanism
2.1. Strategies on Conductivity Enhancing

COF is a porous polymer crystal that allows organic ligand units to combine pre-
cisely at the atomic scale, repeatedly creating ordered skeletal structures and pore chan-
nels [33–35]. Due to this, researchers can fine-tune COFs to find breakthroughs that reduce
the difficulty of electron migration. In this section, we summarize the strategies for conduc-
tivity modification of COFs experimentally and theoretically, and discuss the relationship
between methods and conductivity, the mechanisms of electronic conductivity changes,
and design strategies.

2.1.1. Ligand-Bond Coordination Strategies

To construct c-COFs, much effort has been focused on introducing conductive ligands,
such as 4-thiophenephenyl, imidazolate and other ligand units into the framework skeleton.
Among them, redox-active groups, such as quinones, semiquinones, and catecholates, can
be incorporated into COFs to enhance conductivity [36,37].

It is a nice strategy to construct c-COFs by promoting proper spatial and energy
overlap of organic ligand orbitals through covalent bonds to achieve charge transfer [38].
Coordination bonds in c-COFs composed of specific organic ligands have matching energy
levels and good orbital overlap, which can generate long-distance charge transfer pathways,
which is beneficial for improving charge transfer.

In addition, a continuous conjugated structure is introduced on the main chain, and
the electron in the conjugated system is delocalized at the level of the whole molecular
main chain to conduct electricity. In conductive coordination polymers, organic ligands
can be used as carrier fluids, while redox-active ligands can be delocalized by continu-
ous conjugation. Therefore, the conductivity of COFs can be achieved by linking redox-
active ligands. 2D planar redox ligands, such as 2,3,6,7,10,11-hexahydroxytriphenylene
(HHTP), 2,3,6,7,10,11-hexaaminotriphenylene (HITP), 1,2,3,4,5,6-Benzenehexamine (HAB),
and 2,3,6,7,10,11-Triphenylenehexathiol (HTTP), usually show good conductivity due to
the effective overlap and continuous conjugation of the front orbitals of organic ligands,
which is due to the electron delocalization in the plane.

2.1.2. Ligand A—A Stacking Strategy

Organic segments in COFs with non-covalent interactions can form a space-charge
transport pathway. For organic molecules, effective charge transfer requires that a charge
can be transferred from one molecule to another without being captured or dispersed [39,40].
In a similar manner, organic ligands with a tendency to form A-A stack structures can give
COFs excellent electrical conductivity. A typical example of this is based on the research of
the c-COFs of hexadecafluorophthalocyanines and octaminophthalocyanines [41]. Periodic
and ordered phthalocyanine columns with A-A stacking have good permanent porosity and
chemical stability. The conductivity reaches 12.7 S m−1 or more. The A-A stack structure
can form strong π-π interaction between layers due to the superposition of faces [42]. This
A-A stacked structure can form an interaction between layers due to the superposition of
each side. The interaction of atoms in the conjugated system results in the change of π (or p)
electron distribution in the system. This weak interaction, also known as π-π interaction,
facilitates charge transfer [43]. In addition, it is found that the neatly arranged 2D COFs
and the intrinsic free radicals are also conducive to electron diffusion, which brings high
conductivity to COFs.



Crystals 2022, 12, 1405 4 of 22

2.1.3. Proton Grotthuss Transfer Strategy

In the hopping transport mechanism, electrically loaded fluids (electrons or holes) are
positioned at specific positions with discrete energy levels and jump between adjacent posi-
tions. Jump transport depends on charge jumps between adjacent units in a given situation
(the spatial distance is narrow and the energy difference between adjacent units regulated
by redox activity is small). In addition, skip transport is closely related to temperature, and
higher temperatures lead to higher conductivity. This jumping mechanism enables protons
to jump by means of hydrogen bonding and molecular rearrangement, which is called the
Grotthuss mechanism [44–46].

For the MEES equipment, fast charge and discharge and high energy density are
its pursuits. Proton Grotthuss transfer can promote the redox reaction of the electrode,
which can make the MEES equipment have better performance, especially if the micro-
supercapacitor has outstanding performance. A novel COF was synthesized by combining
tris(4-formylphenyl)amine (TFPA) ligand with Azo-NHBoc molecule (Figure 2b–d) [47].
The capacitance of COF was up to 440 F g−1 (Figure 2e), higher than that of traditional
capacitor materials.
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Figure 2. Grotthuss transfer strategy has positive effects on electrochemical performance.
(a) Schematic illustrations of the Grotthuss transport mechanisms [44]. Copyright 2014, American
Chemical Society. (b) Simulated structure of NKCOF–8. (c) Galvanostatic charge-discharge curves of
CNT/NKCOF–2 at different current densities. (d) CV curves of NKCOF–2 and CNT/NKCOF–2 at a
scan rate of 30 mV s−1. (e) Specific capacities of CNT/NKCOF–2 at different current densities [47].
Copyright 2021, Wiley-VCH.

In addition, in order to prove the promoting effect of the Grotthuss mechanism on
electrode materials, scholars studied and analyzed the proton conductivity and theoretical
proton transfer activation energy of this new COF [48]. It is confirmed that the proton
Grotthuss transfer mechanism can rapidly transfer protons to the redox site buried deep in
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the stacked frame, which can promote the reaction kinetics, accelerate the reaction process,
and improve the utilization rate of the active site.

2.1.4. Post-Synthetic Modification Strategy

It is challenging to synthesize COFs with high electrical conductivity for the first
step. Post-synthetic modification has become an important strategy for enhancing the
conductivity of COFs [49,50]. After the synthesis of COF, chemical modification is carried
out without destroying the precursor of the COF’s original structure, and new functional
groups or specific point modifications are introduced to improve the electrical conductivity.
Meanwhile, in post-synthetic modification, functional groups are introduced or attached to
the pore surface of COFs while maintaining structural integrity [51].

Polymer Introduction

Weikai Wang and co-workers found that COF-316 has the advantages of rich porosity,
inter-connected hollow regions, and easy modification, and can be effectively combined
with conductive polypyrrole materials to produce more excellent electrochemical character-
istics (Figure 3a) [52]. The hydrogen bond interaction in a uniform composite structure im-
proves the charge transfer efficiency and enhances the stability of the structure (Figure 3b).
In the study of COFs used in energy storage systems, Mulzer et al. introduced PEDOT into
the post-synthetic modification of COF films to enhance the electrical conductivity and sig-
nificantly improve electrochemical reactions [53]. The improved material has tens of times
the current response and high-cycle stability in supercapacitors (Figure 3c,d). In addition,
for 2D porphyrin-based or phthalocyanine-based COFs, post-processing can significantly
improve the ease of ion migration, thus, flexibly improving the sensing performance of
the COF [54].
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(a) CV curves of COF–316, HHTP, and TPAN at the scan rate of 30 mV s−1. (b) The capacitance
retention curves of COF–316–1@PPy FTCEs under various bending angles of 0◦, 45◦, 90◦, 120◦, 135◦,
150◦, and 180◦ at 50 mV s−1. Inset: The photograph and sketch map of the TFSCs under bending [52].
Copyright 2021, Wiley-VCH. (c) CV response at 20 mV s−1 in 0.5 M H2SO4 of a PEDOT-modified
DAAQ–TFP film, 1 µm-thick (blue), and the same as-synthesized DAAQ–TFP film before EDOT
polymerization (red). The inset presents the cyclic voltametric response for the unmodified film
using an expanded current scale. (d) The integrated charge associated with the oxidative wave of a
PEDOT-modified DAAQ–TFP COF film (blue) and unmodified DAAQ–TFP COF film (red) recorded
over various scan rates indicate that the PEDOT-modified films store more charge and tolerate faster
scan rates than the unmodified films [53]. Copyright 2016, American Chemical Society.

Surface Doping

Surface doping modification of COF crystals is also an important way to improve the
conductivity. More flexible and positively charged organic linkers containing other parts
can effectively coordinate with coordination functional groups. These organic linkers can
enhance energy matching with ligand orbital overlap by forming a continuous delocalized
charge pathway. In particular, materials containing azo ligands (including nitrogen) exhibit
high electrical conductivity.

At present, the engineering of conductivity modification of COFs used in MEES is
a very new topic, so in this section, a modification of MOF conductivity is taken as an
example. In view of the inherent poor conductivity of organic frames, He et al. used
the receptor molecular doping strategy to adjust the conductivity of organic frame thin
film electrodes [55]. After doping with 7,7,8,8-tetracyanoquinododimethane (TCNQ), its
overall conductivity increased 40 times, and the specific area capacitance of the micro-
supercapacitor devices was up to 95.1 mF cm−2 (Figure 4b). In addition, the modified
material continues its excellent flexibility, indicating that its molecular doping strategy can
well customize the electronic properties of organic framework materials used for energy
storage and conversion. As a result, this work can open up a brand new way for scholars
to modify the conductivity of COFs used in MEES.

Similarly, the synthesized COF is doped to make the bad orbital overlap between organic
ligands in COF form conductive channels under the action of redox-active guest molecules,
so as to enhance the conductivity of non-conductive COFs [56]. Meng and his co-workers
synthesized c-COF by using 2,3,9,10,16,17,23,24-octa-aminophthalocyanine nickel (II) and
pyrene-4,5,9,10-tetraone (Figure 4c) [57]. Its intrinsic conductivity is 2.51 × 10−3 S m−1. This
c-COF was then doped with the previously reported I2 dopant, increasing its conductiv-
ity by another three orders of magnitude [58–61]. Similarly, Yang et al. grew a layer of
COF film in situ on the substrate under solvothermal conditions, and the conductivity
increased by four orders of magnitude after doping with iodine, because the anisotropic
carrier transport in the frame was conducive to the transfer of out-of-plane holes [62].
At the same time, this conductive columnar stacked COF has good electrochemical per-
formance, with a long cycling performance (Figure 4d) and a normalized capacitance
of 19 µF cm−2. In general, post-synthetic modification can improve the conductivity of
COF without destroying the original properties, which is a very promising strategy in
conductivity modification [53,63,64].
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tivities of the Cu3(BTC)2, TCNQ@Cu3(BTC)2, BQ@Cu3(BTC)2, and PMDI@Cu3(BTC)2 thin films.
(b) Specific capacitances calculated from CV curves as a function of scan rate [55]. Copyright 2020,
Wiley-VCH. (c) Synthetic Route for 2D Conductive COF–DC–8 [57]. Copyright 2019, American
Chemical Society. (d) Cycling stability test at 80 mV s−1. Inset: comparison of initial and 1500th CV
curve [62]. Copyright 2021, American Chemical Society.

2.2. Theoretical Assistances Explanation

The high speed and high efficiency of numerical algorithms are always the goals
of people. Theoretical simulation has become an important method for accelerating the
experimental cycle and reducing experimental consumption in view of the large number of
ligands used to prepare COF and the difficulty in explaining its conductivity modification.
Density functional theory can accurately simulate the interaction between COF molecules,
intuitively prove the path of electron or proton migration, and better guide the conductivity
modification strategy of COF. In addition, molecular dynamics simulation can simulate
c-COFs on a large scale, which plays a guiding role in the synthesis and application of
COFs. The factors of the COF conductivity modification strategy are analyzed from the
perspectives of density functional theory and molecular dynamics simulation.

2.2.1. Density Functional Theory

Density functional theory (DFT) is a representative theoretical simulation method,
which is widely used to simulate various properties of COFs, including hydrogen storage
capacity [65], stacking mode [66,67], catalytic performance [68], and most importantly,
electrical conductivity. As one of the most intuitive and accurate simulation methods
for complex conductivity analysis, DFT is widely used [69], especially in COF ligands
with many complex bonds and spatial arrangements. It has been reported in the past
that organic polymers can conduct electrons both through bonds and through space, and
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their correctness has been confirmed by DFT [70–72]. At the same time, the continuous
overlap of molecular π-orbitals in COF contributes to charge transfer, and a large number of
conjugated structures make π-π interactions between organic ligands easy to form, which
has great potential for opening the direction of COF conductivity modification. In addition,
some 2D COFs are capable of forming A-A stacks and have also been shown to readily
form electron pathways [73–76].

On this basis, the researchers conducted simulation analysis of COFs, revealing the
preference for atomic configuration. It is found that the A-A stack structure is the most
stable among all COF structures (Figure 5a), which is in good agreement with the results
obtained by morphology characterization [77]. However, the embedment of alkali-metal
ions leads to a meta-stable state and tends to increase the torsion angle to stabilize the
structure. In addition, the simulation also shows that the existence of nitrogen functional
groups can further increase the alkali-metal ion storage capacity of the material, which is
expected to increase the electrical conductivity of the material [78,79].

For COFs used in electrochemical energy storage devices, DFT simulation is the best
choice considering both time and efficiency, and a large number of studies have been carried
out in this area [80–82]. Wolfson and Schkeryantz used DFT to analyze the potassium ion
storage capacity of 1,3,5-tris(arylethynyl)benzene and dehydrobenzoannulene ligands and
found that the presence of alkynyl units could promote the binding of potassium ions
with ligands. Thus, the potassium storage capacity of the electrode material is increased
(Figure 5b) [83]. At the same time, the extended linear structure and the flexibility of the
frame offer the possibility of accommodating more potassium ions. He et al. synthesized
a COF that overlaps the direction of the p-column preferentially, which can provide a
convenient transport channel for ions and electrons, and showed excellent electrochemical
performance of 486.3 F g−1 [84]. Importantly, the DFT simulation results showed that the
COF has low orbital localization, a narrow bandgap, and a low electron transport energy
barrier, which fully explains its good electrical conductivity and provides a new choice for
MEES device materials.

2.2.2. Molecular Dynamics

Since the density functional theory simulation needs to take into account every atom
of COF, its volume cannot support multi-molecular simulation, which often requires an
extremely long time to get results. Molecular dynamics is therefore a good choice for
large-scale simulations. In general, in order for the microscopic simulation system to reflect
the macroscopic experimental phenomenon, periodic boundary conditions are needed to
replicate the simulated object system periodically to avoid the edge effect that does not
exist in practice. In principle, for any particle system, the time-dependent Schrodinger
equation needs to be solved, but in practical work, it pays more attention to the motion
trajectory of the nucleus, and the Born–Oppenheimer approximation is used to solve the
classical mechanical motion equation. This greatly reduces the difficulty of calculation, in
order to efficiently obtain the properties of the whole system in a specific environment.

Similarly, for COFs, a single molecule cannot reveal the macroscopic physicochemical
properties shown as an aggregate. In recent years, much work has been conducted to study
the molecular dynamics of COF multi-molecular systems. Cuniberti et al. used classical
molecular dynamics simulations to study the behavior of COF ligands at the air-water
interface and analyzed in depth the advantages of liquid-gas interface synthesis of COF to
improve the quality and control the properties of the synthesized materials (Figure 5c) [85].
It was found that the presence of water promoted the angular rotation of azine dihedral
to the planar configuration, which was more favorable for the synthesis of 2D COF and
the polymerization of large-area COF monolayers. In addition, molecular dynamics can
well simulate the properties of membrane surfaces. Recent simulation studies show that in
regulating the hydrophilicity of the film, the pre-deposited COF layer can slow down the
diffusion rate of the reaction interface by hydrogen bonding, thus, reducing the thickness
of the film and avoiding the formation of interface defects (Figure 5d) [86].
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In summary, molecular dynamics has unique advantages in the preparation and
application of COFs. Unfortunately, there are few reports on the application of molecular
dynamics simulation of COF in MEES. However, this simulation method has a very broad
prospect for the performance improvement of MEES devices by COF.

3. Synthesis Strategies of Organic Frameworks

The synthesis of COF is to covalently combine organic ligands into a designed frame
structure, which has strict requirements on the reaction environment (such as temperature,
solvent, and pressure), synthesis parameters (such as time and catalyst), and reaction steps.
Small differences can lead to product differences in morphology, porosity, and other aspects.
In general, top-down and bottom-up strategies are two defined synthesis strategies [87,88].
In this section, we give a brief overview of both strategies and discuss the advantages and
disadvantages of each approach.

3.1. Top-Down Strategy

The basic methods of the top-down strategy include the wet chemical method and the
liquid phase stripping method. The main principle is that the bulk material is dispersed in
the solvent and then degraded by sound waves. The generated bubbles will be accompanied
by micro-jet and vibration waves in the process of bursting, and concentrated tensile stress
will be generated between the layers of bulk material to assist stripping.

The COF monolayer membrane structure has full application prospects in filtration,
screening, and energy in terms of ion permeability, selectivity, and order. Since molecules
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in COF crystals are bound together only by hydrogen bonds or van der Waals forces, the
monolayer structure of COF can be obtained by simple mechanical, ultrasonic, and chemical-
mediated stripping [89,90]. This top-down preparation method results in materials that
retain their original crystal properties, such as pore structure, electrical conductivity, and
ionic affinity. Li and Zhang prepared porous COF-1 nano-sheets by the ultrasonic stripping
method, and their excellent permeability, inherent porosity, and strong covalent bond gave
them great advantages in molecular screening [91]. David W. Burke and his collaborators
used acid-mediated reactivation of imine bonds in COF to partially dissociate COF particles
and eventually repolymerize uniformly on the membrane, resulting in a highly crystallized
and mechanically good membrane structure (Figure 6a,b) [92]. This strategy of using acid
to strip COFs could open up a number of potential applications for such materials that
were previously unrealized.
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Figure 6. Specific COF structures can be constructed via different synthesis strategies. (a) Overview of
the acid-exfoliation and film-casting procedures. (b) HRTEM image of an exfoliated BND–TFB COF
sheet [92]. Copyright 2019, Wiley-VCH. (c) Schematic illustration of employing twisty monomers
to achieve ordered stacking for producing long-range ordered COF assemblies. (d) FESEM images
of flower-shaped TAPA–TFPA COF assemblies at different scales [93]. Copyright 2021, American
Chemical Society. (e) Solid-vapor IP for the TFP–PDA membrane, including membrane growth and
HF etching step to obtain free-standing membrane [94]. Copyright 2020, American Chemical Society.

The top-down preparation method can obtain thin-layer COFs without destroying
the original morphology and can easily prepare COFs suitable for different application
environments. However, the huge material waste caused by it cannot be ignored, and there
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are still defects and deficiencies in the regulation of the distance between atoms and ions.
Most importantly, the 2D COF ligand reduces the specific surface area of the material during
the stripping process by eliminating the need for stacking and creating amorphous linked
polymers, resulting in a loss of catalytic, molecular screening, and energy storage properties.
Therefore, new preparation methods need to be explored and innovated by scholars.

3.2. Bottom-Up Strategy

A bottom-up strategy means that before synthesizing a COF, functional groups with
functions are connected to structural units, and then react with other structural units, so
that the functionalized groups can be evenly distributed in COFs, and the position of active
sites on COFs can be accurately controlled. Several methods can be classified as bottom-up
strategies, such as chemical vapor deposition (CVD), PLD, and spray coating [95].

General materials are usually prepared by acid etching or electron beam etching, which
are of high cost and low efficiency and cannot be produced on a large scale. The bottom-up
method mainly uses chemical synthesis to assemble organic small molecules into large-area
COFs [96,97]. Therefore, bottom-up self-assembly technology provides the possibility
for large-scale manufacturing of homogeneous COFs, but direct assembly through small
molecules remains a challenge. Wang et al. demonstrated that the synthesis of conductive
2D COFs can be carried out directly in solution, and directly self-assembled into nano-scale
or higher polymer structures by polycondensation of monomers with COF ligand structures
(Figure 6c,d) [93]. This is rare in previous work, because the poor reversibility of covalent
bonds leads to irregular monomer connections, and strong molecular interactions lead to
disordered stacking between 2D molecules [98–100].

In addition, it is possible to prepare COF easily and efficiently by bottom-up direct
synthesis with the interface method. Generally speaking, the liquid-liquid interface formed
between two insoluble liquids is a more reliable preparation method [101–103]. In further
studies, it was found that the diffusion rate of the gas-phase molecule was superior to that
of the liquid-phase monomer molecule, resulting in the synthesis efficiency at the gas-solid
interface being eight times that of the traditional liquid-liquid interface [94]. At the same
time, the stable gas-solid interface is beneficial for increasing the reaction temperature,
increasing the diffusion rate of the monomer, and further accelerating the reaction rate of
the COF two-phase monomer (Figure 6e). This work creates a new method of interface
preparation beyond the liquid-liquid interface and provides a basis for a new bottom-up
interface preparation method. In conclusion, bottom-up synthesis is a good choice for the
simple and efficient synthesis of long-range ordered meta-structure COFs by self-assembly
at a molecular scale.

In general, the synthesis of COF has a unique design principle, which can be pre-
pared by two different synthesis methods: bottom-up and top-down. Top-down synthesis
methods have been proven to be stable in the synthesis of materials over a long period
of time, including etching, stripping, and other traditional methods, but the yield of the
final product needs to be considered. Homogeneous products can be prepared with high
efficiency and low cost through bottom-up self-assembly of small molecules, including
direct synthesis, inter-facial synthesis, and other methods. The two methods have their
own advantages and disadvantages, so many factors should be considered in COF design
and an appropriate manufacturing strategy should be selected.

4. Design Criteria for Conductive COF Applied to MEES

Due to their unique physical and chemical properties, c-COFs have broad application
prospects in the electrochemical field [104–107]. For the electrode materials used in electro-
chemical energy storage devices, it is necessary to have a material with high adaptability to
ion de-embedding, fast ion-electron conduction path, and high density of active sites. In
recent years, much research has been devoted to promoting the development of COFs in
this field, and many achievements have been achieved [27,108–111]. Compared with MOF,
COF excludes the unwanted orbital overlap between the p-orbital of an organic ligand and
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the d-orbital of a metal ion, which gives a lot of inspiration to COFs and arouses the interest
of scholars [112]. Additionally, COFs are composed of light elements (such as C, O, H, and
N) connected via covalent bonds, which avoids the potential toxicity and environmental
pollution caused by heavy metals in MOFs [113]. In addition, when used as MEES electrode
materials, the crystal structure of MOF-based materials collapses during charging and
discharging, while the COF with elastic bond structure provides the possibility to adapt
to volume changes [114,115]. Specifically, COF can be used in new electrochemical energy
storage systems for the following reasons and characteristics.

4.1. Good Pore Distribution

According to most reports, porous frame structures are characterized by the high
density of COF reaction sites, modified skeletons, and high pore structures. These char-
acteristics enable active substances to be fully impregnated within the COF framework
channels, to better selectively adsorb gases or ions, and, more importantly, to improve elec-
trochemical reaction efficiency. Yang et al. took advantage of the uniform pore environment
and high pore density of COF to apply COF to monolayer membranes in osmotic power
generation and achieved an output power of more than 200 W m−2 (Figure 7a,b) [116].
If c-COF can be fully utilized with a well-ordered pore arrangement, low resistivity, and
ultra-high ionic conductivity, it can also perform surprisingly well on MEES devices. In
addition, the good pore structure improves the intrinsic specific surface area of the mate-
rial and has high chimerism with electrolyte molecules, effectively accelerating ion and
electron migration.
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Figure 7. Enhancement of electrochemical performance by good pore structure and aligned channels.
(a) Comparison of the osmotic power-generation performance of the COF monolayer membrane
with state-of-the-art results from the literature in terms of membrane thickness, pore density and
output power density. (b) Current density and output power density dependence on the external
load resistance on mixing artificial seawater with artificial river water [116]. Copyright 2022, Springer
Nature. (c) Physical isolation of sulfur (S8 ring) in the COF and covalent engineering of polysulfide
chains on the pore walls. (d) Charge-discharge curves of polysulfide@TFPPy–ETTA–COF at different
rates [117]. Copyright 2019, The Royal Society of Chemistry.
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4.2. Aligned Channels

For two-dimensional (2D) and three-dimensional (3D) COFs, the interaction between
their specific organic ligands promotes the formation of COF channels [118]. The columnar
structure formed by the stacking of aromatic groups in the 2D COF provides a transport
path for electrons and ions. The inter-weaving of the medium and short conjugated groups
in the 3D COF and the establishment of a growth-order conjugated system is also a good
transport path. This channel promotes the transport of electrons and ions, and reduces the
inherent transport resistance between ligands, and facilitates the transport of electrons and
ions to the deep reactive sites, thus, improving the overall utilization rate of COFs. For
example, TFPPy–ETTA–COF materials with one-dimensional (1D) channels provide good
carrier space for polysulfides (Figure 7c). The resulting COF has a high sulfur load, high
speed, and cycle stability, which has great application potential in lithium-sulfur batteries
(Figure 7d) [117].

4.3. Dynamic Reversible Crystal Structure

The organic ligands in COF are connected by covalent bonds, while the conjugated
organic groups condense the long-chain organic carbon structure by specific arrangement.
This structure is strongly covalently binding in the axial direction, but malleable in the
normal direction. Therefore, in the process of ion deintercalation, the material has properties
similar to respiration, which can well adapt to volume change and has high cyclic stability
in the electrochemical energy storage system. In addition, the malleability of COF also
enables it to be studied for flexible devices, especially for flexible MEES devices with wide
application prospects.

In 2017, Ma et al. analyzed the structural transformation and dynamic behavior of
3D COF (Figure 8a), revealing that –C=N– can be used as the design idea for dynamic
COF [119,120]. On this basis, Liu et al. successfully designed an FCOF–5 material with flex-
ible and reversible expansion and contraction during adsorption and desorption (Figure 8b)
and proved the important role of –C–O– in its respiration [121].
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structures transformation between FCOF–5 and FCOF–5–THF [121]. Copyright 2021, American
Chemical Society. (c) SEM image and schematic for uniaxial tension of nano-mechanical devices
(above). In situ tensile snapshots of the COF film with the whole process of crack propagation
(below) [120]. Copyright 2021, Elsevier Inc. (d) Variable-temperature van der Pauw conductivity
measurement. (e) GCD curves at different current densities (1–10 A g−1) [122]. Copyright 2019, The
Royal Society of Chemistry.

4.4. Excellent Mechanical Properties

Good pore and channel structure, and more importantly, excellent flexibility and
ductility, are the pre-conditions for good adaptability in MEES devices. In previous works,
2D COFs provide mechanical properties that are not available in conventional 2D materi-
als [123–125]. In order to evaluate the planar mechanical properties of 2D COFs, Fang et al.
studied the tensile mechanical behavior of CoFTAPb–DHTA films (Figure 8c). Quantita-
tive in situ SEM tests were used to study the tensile mechanical properties and fracture
behavior of COF films [120]. It is found that the 2D COF has excellent performance in
fracture strength and fracture toughness (~1.3 times that of graphene) and has insensitivity
to cracks. This property enables 2D COFs to maintain electrode integrity when applied to
MEES devices under morphological changes.

4.5. Electrochemical Activity

In addition to the above features, reversible electrochemical reaction and reduction
are other important features of COF. As a promising electrochemical material for MEES,
conducting COF has a variety of characteristics, such as high density of exposed active
sites, large specific surface area, stable chemical properties, and conductivity. Therefore, the
application of c-COFs in the field of energy storage has been widely studied in recent years
(Table 1) [126]. For example, a 2D Ni–COF with ultra-high conductivity (compared to other
COFs) and a large calculated specific surface area is used as an electrode material in super-
capacitors (Figure 8d) [122]. This 2D c-COF with square planar bivalent Ni coordination
has a highly conjugated skeleton, an ordered porous structure, and a large number of redox
centers, resulting in a high specific capacitance of 1257 F g−1 in supercapacitors. In addition,
its high conductivity compared to other COFs enables it to achieve satisfactory results in
long cycles. In particular, its excellent conductivity comes from the coordination of planar
bivalent Ni and the combination of the Ni-Salphen unit with p-conjugate. Therefore, its
high conductivity and large number of active sites significantly improve its capacitance and
cycling stability as an electrode material for MEES devices (Figure 8e). COF materials often
exhibit impressive electrochemical properties, especially huge specific capacities and large
energy densities, much higher than current conventional electrode materials [127–131].
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Table 1. COF-derived electrode materials and their electrochemical performance.

COFs BET (m2 g−1) Pores Size (nm) Specific
Capacitance Power Density Energy Density Capacity Retention Application Ref.

Tf–TAPA 159.55 1.47 583 mAh g−1 at 2 A g−1 96% (1500) at 8 A g−1 LIBs [132]

AAm–TPB 403 2.99 271 F g−1 at 1 A g−1 19.16 Wh kg−1

at 350 W kg−1 92% (10,000) at 5 A g−1 ASCs [133]

AZO–1 649 2.8 2800 W kg−1 140 mAh g−1 at 0.5 C (5000) at 10 C LIBs [134]

COF–316@PPy 452 1.56 783.6 µF cm−2

at 3 µA cm−2 100% (3400) at 20 µA cm−2 ASCs [52]

g–C34N6–COF 1003 15.2 mF cm−2

at 2 mV s−1
7.3 mWh cm−3

at 50 mW cm−3 93.1% (5000) ASCs [30]

e-COFs 1170 3.4 5.46 mF cm−2

at 1000 mV s−1
1002 mW cm−3 at
0.23 mWh cm−3 100% (10,000) EDLCs [135]

DAAQ–COFs/GA 425.3 1.77 378 F g−1 at 1 A g−1 30.5 Wh kg−1

at 700 W kg−1 88.9% (20,000) at 5 A g−1 ASCs [136]

AQ–COF@CNTs 905 144 mAh g−1

at 50 mA g−1 100% (3000) at 250 mA g−1 LIBs [137]

c-CNT@COF–3 576.7 1.5 418.7 F g−1 at 0.2 A
g−1

30.7 mWh cm−2 and
591.9 mW cm−2 94% (10,000) at 10 mA cm−2 ASCs [138]

TpPa–COF@PANI 574 1.3 95 F g−1 at 0.2 A g−1 83% (30,000) at 5 A g−1 ASCs [139]
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5. Conclusions and Outlook

The increasing demand for the miniaturization of electronic devices has stimulated
the research on electrochemical storage devices. In order to maintain the electrochemical
performance of micro-energy storage devices under the premise of reducing the scale, a
kind of electrode material that can meet the special requirements of MEES and has high
performance is needed. C-COF has a good application prospect in MEES due to its high
conductivity, excellent pore distribution, regular migration channel, and good mechanical
properties. In this paper, the conductive modification strategy, preparation strategy, and
the latest research progress of COF in MEES devices are reviewed. C-COF provides great
opportunities for the development of MEES devices, but the field is still in the preliminary
stage of exploration and will face many challenges to be solved.

Although preliminary studies show great promise for conducting COF in MEES elec-
trodes, there are still great challenges in practical application. The conductivity of c-COF has
a huge increase in the order of magnitude, but compared with mature electrode materials,
its conductivity has a large catch-up space. Generally speaking, adding a sufficient amount
of conductive agent can improve the utilization efficiency of c-COF, but this method will
reduce the specific mass capacity of the electrode material, which has a great impact on the
performance of MEES devices. Therefore, the design of a non-conductive and non-adhesive
MEES electrode will be an excellent solution. At the same time, as more and more COFs
are developed by scholars, a huge database is gradually forming. With the upgrading of
algorithms and the rapid improvements in computing power in computational materials
science, high-throughput computational screening and machine learning have become a
rapidly targeted experimental strategy. Such research could accelerate the development
of novel COFs for use in special MEES devices. It is foreseeable that, in the near future,
theoretical simulation will guide experimental research, accurately regulate the structure of
COF, and effectively utilize the performance of COF in all aspects.

It has been proven in many studies that the conductivity of 2D COFs is usually
better than that of 3D COFs. The reason is that 2D COF with limited layers can reduce the
migration distance of ions and electrons in a 2D plane and promote the diffusion of ions and
electrons. At the same time, the ordered A-A stack structure can allow ions and electrons to
move freely between layers, and the nitrogen-rich functional groups can enhance electrical
conductivity. However, the preparation process of 2D COF is more difficult than that of 3D
COF. Three-dimensional COF is generally synthesized from the bottom-up with the simple
solvothermal method without considering the complex 2D stack structure. On the contrary,
if the bottom-up method is used to prepare 2D COF, it needs extremely stringent conditions,
which is contrary to large-scale commercialization. In addition, the size, crystallinity, and
stacking mode of block COF on the kinetics of stripping still need to be further investigated.
Therefore, careful consideration is necessary for the design of COF before synthesis.

Other energy storage systems should also be considered by MEES, including micro-
lithium sulfur batteries, micro-lithium air batteries, etc. It is always the goal to maximize
the performance of c-COFs. In addition, future work should not be limited to the electro-
chemical storage of alkali-metal ions. For polyvalent ions, c-COF electrode materials have
a lot of scope for research, but they also face additional challenges. We believe that c-COF
can lead the development of post-lithium energy storage and has better application in the
latest MEES branch.
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