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HIGHLIGHTS

• An overview on photophysical properties of conductive metal–organic frameworks (MOFs) including photoconductivity and photo-

luminescence is provided.

• Miscellaneous applications of MOFs with photophysical properties are discussed.

• Recent advances in integration of photoactive MOFs with practical devices are summarized.

ABSTRACT Metal–organic frameworks (MOFs) are a class of 

hybrid materials with many promising applications. In recent years, 

lots of investigations have been oriented toward applications of MOFs 

in electronic and photoelectronic devices. While many high-quality 

reviews have focused on synthesis and mechanisms of electrically 

conductive MOFs, few of them focus on their photophysical prop-

erties. Herein, we provide an in-depth review on photoconductive 

and photoluminescent properties of conductive MOFs together with 

their corresponding applications in solar cells, luminescent sensing, 

light emitting, and so forth. For integration of MOFs with practical 

devices, recent advances in fabrication of photoactive MOF thin films 

are also summarized.
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1 Introduction

As a collective class of crystalline materials containing 

metal nodes connected by organic ligands, metal–organic 

frameworks (MOFs) have attracted much attention [1]. The 

high porosity, stability and exceptional topological and 

compositional tunability make MOFs applicable in many 

fields such as gas storage, separation [2], catalysis [3] and 

ionic transport [4]. In recent years, more and more conduc-

tive MOFs have been designed and synthesized with their 

electrical conduction nature widely discussed. Conductive 

MOFs have been demonstrated as promising materials to 

improve technologies such as energy conversion and stor-

age, electrochemical capture and release, battery systems, 

chemical sensing, and catalysis [5]. Especially, under irradi-

ation of laser, conductive MOFs generally exhibit surprising 
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reactions such as the change of electrical conductivity and 

light emission effect [6]. As is known to all, light energy has 

played a more and more significant role in modern society 

due to its renewability and eco-friendliness. The effective 

utilization of light energy will help alleviate energy crisis. 

These laser-induced photophysical properties of conductive 

MOFs expand their applications in light harvesting, analyte 

sensing and so on and provide another possible way to utilize 

the light energy [7]. Furthermore, with the help of advances 

in fabrication of MOF thin films, it is enabled to integrate 

functional MOFs with electronic and optoelectronic devices.

While many excellent reviews have focused on the synthe-

sis, mechanisms, and miscellaneous applications of conduc-

tive MOFs [8–11], few of them focus on their photophysical 

properties (i.e., their responses under irradiation of laser). 

Therefore, in this review, we will discuss in detail the pho-

tophysical properties of conductive MOFs. Specifically, 

we provide an in-depth review on the photoconductive and 

photoluminescent properties of MOFs as well as their cor-

responding applications in solar cells, luminescent sensors, 

lighting devices, and so forth. In addition, for integration in 

practical devices, MOFs need to be prepared in forms of thin 

films, so in the last section we will discuss recent advances 

in deposition of MOF thin films that exhibit exceptional pho-

tophysical properties and hold a bright prospect in electronic 

and optoelectronic fields.

2  Photoconductivity

2.1  Photoconductive MOFs

The band gap theory accounts for conductive or insulating 

properties of many MOFs. For MOFs with large band gap 

between the valence band (VB) and conduction band (CB), 

it is usually hard to realize charge transfer and hence electri-

cal conductivity. Upon irradiation at wavelengths exceeding 

the band gap, electrons can be excited from the VB to CB, 

which arouse electron–hole separation with positive holes 

created in the VB and negative electrons in the CB. Based on 

the above band gap mechanism, lowering the band gap is a 

promising strategy for synthesis of photoconductive MOFs, 

which exhibit increased electrical current under illumina-

tion and can possibly function as photoactive electrodes for 

many optoelectrical applications such as water splitting and 

solar cells. In general, the band gap of MOFs with electron 

donor–acceptor pairs is relatively narrow. In MOFs of 

donor–acceptor architecture, electrons are released by the 

electron donor and the electron acceptor further promotes 

the charge transfer by enhancing electron–hole separation 

and inhibiting electron–hole recombination. Therefore, it is 

a promising strategy to synthesize photoconductive MOFs 

through donor–acceptor architecture, which usually involves 

photoactive organic compounds. Besides photoconductivity 

based on the organic moieties, attempts have also been made 

to explore the effects of inorganic building unit on photocon-

ductive properties of MOFs.

2.1.1  Photoconductivity Based on Organic Moieties

Electron-accepting ligands As metal centers in MOFs tend 

to emit electrons due to their reduction property, they usu-

ally serve as electron donors. Therefore, electron-accepting 

organic ligands are typically involved in construction of 

donor–acceptor architecture for photoluminescent MOFs. 

With suitable band gap, electrons will be generated and 

transferred from the metal center to ligand upon irradiation 

at some wavelengths.

1,4,5,8-Naphthalene diimides (NDIs) are a class of 

organic compounds with excellent semiconductive and opti-

cal properties. On basis of this, the photoactive response of 

MOF-CoNDI-py-2, featuring Co(II), N,N′-bis(4-pyridyl)-

1,4,5,8-naphthalene diimide (NDI-py) and terephthalic acid 

(TpA), was observed [12]. Upon irradiation, a charge trans-

fer from the metal center to the π-acceptor NDI-py occurred, 

which promoted hole transport through the Co–TpA direc-

tion and electron transport through the NDI-py direction. 

As shown in Fig. 1, the as-synthesized MOF exhibited ani-

sotropic photoconductivity and the highest photoresponse 

intensities (Jph) obtained coincided with the charge transfer 

band. Interestingly, in this case, a photoresistive–photore-

sponsive dual behavior was observed. While mostly the cur-

rent increased upon illumination, at negative bias sometimes 

the current decreased under illumination at some wave-

lengths. This special photoresistance phenomenon could be 

ascribed to the metal centers as charge trap sites in their 

oxidation state which may impede the charge transfer.

Another typical  example is  the 3D frame-

w o r k  { [ C u I C u 2
I I ( D C T P ) 2 ] N O 3 · 1 . 5 D M F } n 

(DCTP = 4′-(3,5-dicarboxyphenyl)-4,2′:6′,4′’-terpyridine) 

with a narrow band gap of 2.1 eV [13]. Upon irradiation, 
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electrons jumped into the CB and holes were generated in 

the VB. Local density of states (LDOS) and partial density 

of sates (PDOS) analysis revealed that the valance-band 

maximum (VBM) was dominated by Cu 3d orbitals and the 

conduction-band minimum (CBM) mainly consisted of 2p 

orbitals of C and N of the ligand. Thereby, the excited elec-

trons transferred from Cu to neighboring C and N atoms. 

Notably, for this photoconductive MOF, the CBM was 

higher than  H+/H2 energy level and the VBM was lower 

than  O2/H2O level, enabling the production of  H2 and  O2 

with this MOF under irradiation.

Electron-donating ligands Not all ligands serve as 

electron acceptors in photoconductive MOFs. For some 

electron-donating ligands, guest molecules are usually 

required to form donor–acceptor pairs. Porphyrins, for 

example, are excellent electron donors with delocalized 

π-systems. Recently, Liu et al. have conducted research to 

compare the photoconductivity of Cu(BDPC) and Zn(TPP) 

SURMOFs with embedded  C60 fullerene and found that 

the physical properties of both SURMOFs were con-

siderably distinct although they shared the very similar 

lattice constants and pore sizes [14]. While  C60-loaded 

Cu(BDPC) responded to light irradiation slightly with 

their conductivity almost unaffected by irradiation of light 

of various wavelengths, the opposite was true for  C60@

Zn(TPP), which was ascribed to the different linkers in 

them as Cu(BDPC) possessed phenyl-based linkers and 

Zn(TPP) porphyrinic linkers. As shown in Fig. 2a, apply-

ing 2 V to the  C60@Zn(TPP) sample, the current increased 

from 0.11 in the dark to 9 nA upon irradiation of photon 

wavelength at 455 nm (blue light). Figure 2b shows that 

the current increased with voltage roughly exponentially in 

the dark, whereas for light of 455 nm, the current was pro-

portional to the voltage, revealing almost ideal ohmic con-

duction behavior with a conductivity of 1.3 × 10−7 S cm−1, 

corresponding to a conductivity increase upon illumina-

tion by 2 orders of magnitude. The photoconductivity of 

 C60@Zn(TPP) was attributed to the interaction of electron-

donor porphyrin linkers and electron-acceptor  C60 guest 

molecules. Upon irradiation, the Soret band of porphyrin 

was activated, enabling the generation of electron–hole 

pairs, and at the same time,  C60 significantly improved the 

separation and transfer of electron–hole pairs, restraining 

their recombination and the electron back-transfer. Fur-

thermore, it is possible to modify the active components, 

porphyrin and fullerene, without changing the crystal 

structure.  C60-COOH@Zn(DAP) with a different por-

phyrin linker (DAP = [10,20-bis(4-carboxyphenyl)5,15-

diazaporphyrinato]zinc(II)) was thus synthesized and 

showed similar photoconductance properties.

It has been revealed that the delocalized π electrons 

can effectively decrease the band gap of MOFs and hence 

promote photoconductive properties. A research on 

4-(4-oxopyridin-1(4H)-yl)phthalic acid  (H2L) and three 

 H2L-based MOFs ZnL(DPE)(H2O)·H2O (DPE = (E)-

1,2-di(pyridine-4-yl)ethene), CdL(H2O)2 and CdL was 

conducted [15]. Even though the three as-synthesized 

MOFs shared the same  L2− ligand, the band gap of the 

first MOF was much lower than that of either the other two 

or the free  H2L ligand, which was ascribed to the presence 

of DPE ligand in the first MOF. DPE ligand as N-donor 

was a planar molecule full of π electrons over the large 
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Fig. 1  a, b Photoresponse intensities at 20 V (different combinations 

of b1, b2 and t1, t2 stand for different crystal orientations). c Elec-

tronic absorption spectrum of MOF-CoNDI-py-2. Reprinted with 

permission from Ref. [12]. Copyright 2017, Springer Nature
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conjugated system, which decreased the conduction-band 

minimum (CBM) of the first MOF and therefore its band 

gap. The decrease in the band gap considerably improved 

the photoconductivity of the MOF. The photocurrent 

response of the MOF and  H2L is shown in Fig. 3. The 

largest photocurrent density of the MOF was approxi-

mately 8 × 10−5 mA cm−2, much larger than that of  H2L 

(3 × 10−5 mA cm−2).

Organic guest molecules Besides the above researches 

where organic compounds directly serve as the ligands in 

photoconductive MOFs, donor–acceptor architecture can 

also be constructed completely with two different guest 

molecules with one as electron acceptor and the other as 

electron-donor. In this case, MOFs usually function as not 

only a host but also a photon antenna. Taking advantages 

of the highly ordered structure and permanent porosity 

of MOFs, a typical electron-accepting organic compound 

α,ω-dihexylsexithiophene (DH6T) and a typical electron-

donating organic compound [6] -phenyl-C61-butyric acid 

methyl ester (PCBM) were infiltrated into the channel and 

cavity of MOF-177  (ZnO4(BTB)2; BTB = 1,3,5-benzen-

etribenzoate) [16]. The MOF in this MOF-donor–acceptor 

hybrid served as a host which confined and stabilized guest 

molecules, preventing their phase segregation, as well as a 

photon antenna which harvested light and transferred it to 

the guest acceptor molecules. This MOF-donor–acceptor 

hybrid provides another promising strategy that photocon-

ductivity can be realized by carefully and appropriately 

designing the guest@MOF system.

2.1.2  Photoconductivity Based on Inorganic Moieties

Although most reported photoconductive MOFs are based 

on the photoactive organic ligands, photoconductivity origi-

nated from inorganic building unit of MOFs has also been 

demonstrated. A mdip-based Ti-MOF with the formula 

 Ti12O15(mdip)3(formate)6 (mdip = 3,3′,5,5′-tetracarboxy-

diphenylmethane), namely MIL-177-LT (LT stands for low 

temperature and HT below for high temperature), underwent 
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an irreversible phase transformation into MIL-177-HT upon 

heating at 280 °C for 12 h, as shown in Fig. 4 [17]. The 

dimensionality change of the inorganic secondary building 

units in MIL-177 (LT: 0D; HT: 1D) had a significant impact 

on the photophysical properties. In contrast to MIL-177-LT 

which generated extremely weak photoconductivity signals 

upon ultraviolet (UV) laser irradiation due to the lack of con-

duction pathways in their frameworks, MIL-177-HT exhib-

ited exceptional photoconductive response with the carrier 

mobility calculated to be at least 4 × 10−4  cm2  s−1 V−1, 

comparable to nano-sized  TiO2 materials [18]. After phase 

transformation, MIL-177-HT exhibited a narrow band gap 

of 3.67 eV. This revealed that the band gap of MOFs could 

be lowered and photoconductivity could be increased by 

increasing the dimensionality of the inorganic building unit. 

MIL-177-HT was the first reported photoconductive MOFs 

whose photoconductivity mainly came from the inorganic 

Ti–O building unit. Further research on the conduction 

mechanism and the possible functions of inorganic building 

unit for photoconductivity is still under way.

2.2  Applications

2.2.1  Solar Cells

As a kind of clean and reproducible energy, solar energy is 

expected to alleviate the energy crisis and reduce environ-

ment pollution induced by conventional fuels. Solar cells 

with high light harvesting and conversion efficiency are thus 

desired to optimize the energy structure. By converting light 

energy into electrical energy, photoconductive MOFs are 

promising for the construction of photoanodes in solar cells 

with higher efficiency, stability, and lower cost. Typically, a 

photoanode consists of a thin film of photosensitizer coated 

on porous metal oxide supported by a conductive and trans-

parent substrate. The substrate widely used in photoanode is 

FTO glass.  TiO2 and ZnO are the most commonly adopted 

metal oxides. And MOFs and derivatives have attracted 

much attention as photosensitizer in photoanodes.

It should be noted that while many MOFs have been 

reported to serve as functional additives or interlayers to 

modify the electrodes or electrolytes and improve charge 

generation and electrical conductivity in dye-sensitized solar 

cells, hybrid perovskite solar cells and organic solar cells, 

which has been summarized and discussed in an excellent 

review [19], investigations on photoconductive MOFs that 

directly serve as photoactive sensitizers in photoanodes 

are rare and limited. Most reported researches in this field 

focus on guest@MOFs systems, where the guest molecules 

like QDs, POM and dyes serve as photosensitizer to absorb 

photons and generate electrons and the MOF hosts better 

improve adsorption property and suppress charge recombi-

nation, which will be illustrated in detail as the following.

QDs are prominent photoactive materials with broad 

adsorption band and effective exciton generation and pre-

sent a bright prospect for solar cells with relatively lower 

cost compared to silicon. A research innovatively combined 

CdTe QDs with MOF NTU-9, whose band gap is compara-

ble to that of semiconductive  TiO2 [20]. The CdTe/NTU-9 

composite was used as photosensitizer in photoanode of a 

dye-sensitized solar cell and yielded a photoelectric con-

version efficiency (PCE) up to 3.20%, much higher than 

1.67% obtained with CdTe alone. The improved PCE was 

mainly ascribed to the enhanced adsorption capacity and 

lower charge recombination rate due to the ordered porous 

structure of NTU-9. Furthermore, polyoxometalate (POM), 

a kind of metal-oxide cluster compound, is an excellent 

electron acceptor with light-absorbing properties. POM@

MOF hybrid is another effective system as photosensitizer 

for modification of photoanodes in solar cells. POM@

MOF(Fe) hybrids were synthesized solvothermally by 

Zhang et al. and coated on ZnO photoanode [21]. As shown 

in Fig. 5a, compared to bare ZnO photoanode, the POM@

MOF(Fe)-modified ZnO photoanode exhibited an increase 

in photoelectric conversion efficiency from 0.057 to 0.073%. 

Figure 5b illustrates the mechanism of charge transfer of 

Discrete Ti-O clusters

Oxo/Ti=1.25

Thermally induced structural transformation

Infinite Ti-O network

Oxo/Ti=1.50

Fig. 4  Thermally induced phase transformation of MIL-177. 

Reprinted with permission from Ref. [17]. Copyright 2018, Springer 

Nature
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POM@MOF(Fe). Upon irradiation, electrons were excited 

and transferred from the ligand of POM to the MOF(Fe) 

and then injected into the conduction band of ZnO. This 

process could enhance electron injection and electron–hole 

separation as well as photon capture, leading to higher pho-

toelectric conversion efficiency.

Despite most researches on guest@MOFs systems with 

guest molecules as the photoactive sensitizer, some investi-

gations on photoactive MOFs as the direct photosensitizer 

have been conducted as well. A graphene-doped Eu-MOF 

was synthesized to construct graphene-MOF/TiO2/FTO 

photoanode [22]. In this case, the photoactive Eu-MOF 

served as photosensitizer that adsorbed photons and gen-

erated electrons, and graphene facilitated charge transfer. 

Upon irradiation, electrons were generated from the LUMO 

level of the Eu-MOF and transferred through graphene to 

the conduction band of  TiO2. The synergy of Eu-MOF and 

graphene accounted for the excellent photoconductivity of 

this fabricated photoanode, which presented a photoelectric 

conversion efficiency of 2.2%. Solar cells based on Pd-por-

phyrin Zn-SURMOFs 2 thin films grown through lay-by-

layer method were fabricated and exhibited an efficiency 

of 0.45% [23]. As discussed above, porphyrin ligands are 

effective photoactive donors and in this solar cell, elec-

trons were excited and injected from porphyrin ligand to 

the FTO substrate. An indirect band gap was observed in 

Pd-porphyrin Zn-SURMOFs 2, which strongly suppressed 

the electron–hole recombination, improving the photovoltaic 

device performance. However, in general, the photoelectric 

conversion efficiencies of photoanodes made from photo-

conductive MOFs in available researches are still relatively 

low. Further researches in future to obtain higher efficiency 

are needed.

2.2.2  Water Splitting

Water splitting consists of two half-cell reactions, namely 

hydrogen evolution reaction (HER) at cathode and oxygen 

evolution reaction (OER) at anode. To date, it is the major 

way to produce  H2, which is a kind of renewable and eco-

friendly energy helpful for environment protection and 

sustainable development. Conventionally, water splitting is 

realized through noble metal-based electrochemical cata-

lysts like Pt, Ru, Ir and their oxides. However, the rareness 

in nature and high cost of noble metals limit their wide 

commercial applications. Photoelectrochemical (PEC) 

water splitting, which converts solar energy into chemical 

energy through photoactive electrodes, has attracted much 

attention due to a wide range of sources for the electrodes. 

Over the last few years, many MOFs have been utilized as 

cocatalysts [24–26] or interlayers at the semiconductor/

electrolyte interface [27, 28] to improve photogenerated 

charge transfer or promote efficient charge injection at the 

semiconductor/electrolyte interface. In addition to MOFs 

as cocatalysts or interlayers, photoconductive MOFs have 

also investigated as photoanodes in photoelectrochemical 

water splitting.
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For better PEC performance, the photoanode used in water 

splitting should possess outstanding light adsorption capacity, 

efficient charge separation and transfer properties and high 

stabilities. In general, photoanodes for photoelectrochemical 

water splitting fabricated from photoconductive MOFs pos-

sess several advantages: (i) a wide range of adsorption band 

in the Vis/near-IR range, which the wavelengths of solar light 

are mainly located within; (ii) the interface between MOF 

layer and the semiconducting substrate allows for effective 

charge injection from the MOF into the substrate and sup-

presses charge recombination, enhancing charge transfer rate; 

(iii) the porosity and large surface area of MOFs provide lots 

of active sites for OH-− coordination and the ordered struc-

ture can retain stable in a long time. For example, the visible-

light-responsive ZIF-67 was utilized to synthesize ZnO@

Au@ZIF-67, which exhibited relatively high photoconversion 

efficiency up to 0.80% compared to ZnO@Au [29]. This was 

mainly ascribed to the visible-light adsorption of ZIF-67 and 

enhanced electron–hole separation. Upon irradiation, elec-

trons were transferred from ZIF-67 shell to ZnO@Au core. 

Recently, Natarajan et al. have synthesized a Co(II)-MOF 

with a suitable band gap of 2.2–2.4 eV [30]. Upon irradiation, 

holes were generated in the d-valence band of the transition 

metal Co and facilitated the coordination of  OH− to the sur-

face of MOF-based photoanode, accelerating charge transfer 

and water splitting. Notably, the crystal structure of photo-

conductive MOFs can affect the final  H2 evolution activity. 

Two MOF compounds with different crystal structures were 

synthesized from 4′-(2,4-disulfophenyl)-3,2′:6′,3″-terpyridine 

 (H2DSPTP) organic ligand and  CuSO4·5H2O [31]. Although 

the two compounds shared the same ligand and metal ion, 

they exhibited different PEC performances. The structure 

with more extensive π–π interactions than the other facilitated 

photogenerated hole transfer and thus inhibited electron–hole 

recombination, enabling higher photoconversion efficiency. 

Therefore, crystal structure of photoconductive MOFs should 

also be taken into consideration for efficient photoelectro-

chemical  H2 evolution.

3  Photoluminescence

3.1  Types of Photoluminescent MOFs

Recent years have seen tremendous progress in researches on 

MOFs with photoluminescent properties. In fact, many other 

materials such as lanthanide metals and molecule dyes also 

have been found to display photoluminescence. However, 

low absorption coefficient [32], aggregation-caused quench-

ing (ACQ) [33], poor stability and other unavoidable defects 

prevent these traditional photoluminescent materials from 

large-scale applications in practical field. To overcome these 

defects, the most adopted strategy is to combine the excep-

tional porosity, stability and tunability of MOFs with the 

photoluminescence of conventional materials. The reported 

photoluminescence obtained in MOFs can be concluded as 

three types: linker-based luminescence, metal-centered lumi-

nescence and guest-induced luminescence.

3.1.1  Liker‑Based Luminescence

Ligand-centered luminescence In some MOFs containing 

photoactive ligands, the photoluminescence is attributed 

to the intraligand emission or ligand-to-ligand charge or 

energy transfer, namely ligand-centered luminescence. In 

general, ligands with aromatic moieties possess more possi-

bilities to realize photoluminescence because the conjugated 

π-electrons abundant in aromatic rings are easily excited to 

induce π − π* transition or facilitate charge transfer, which 

can lead to luminescent emission. Till now, many organic 

ligands have been investigated and most of them exhibit pho-

toluminescence as expected, shown in Table 1.

It is proposed that the conformation of ligands mainly 

influences the emission band and that the luminescence 

intensity can be modulated by the distance between neigh-

boring ligands. This was confirmed by the research on a 

series of  H3TTPCA-based Pb-MOFs that had different com-

positions of metal oxygen clusters  [Pb7(COO)12X2] (X = Cl, 

Br, or I) [34]. The emission spectrums of the three MOFs 

and free  H3TTPCA molecule under 371 nm excitation were 

compared. As shown in Fig. 6a, the emission band shifted 

from 440 for  H3TTPCA to 467 nm for Pb-MOFs, which was 

attributed to the increase in the conformation of the organic 

ligand from one in free  H3TTPCA to three in the MOFs. The 

effect of conformation of organic ligand was also confirmed 

by the red shift presented by Bi-MOF [Bi(BTC)(H2O)]·H2O 

compared to  H3BTC [35]. Red-shifted luminescence band 

caused by increased ligand conformation may be due to the 

reduced molecule vibration and decreased loss of energy by 

radiationless decay. Furthermore, Fig. 6b shows that with an 
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increase in the halogen atom radius in the three Pb-MOFs, 

the distances of organic ligand in the three MOFs increased 

as well, which accounted for the decrease in the lumines-

cence intensities at 467 nm of the three MOFs as observed 

in Fig. 6a. The photoluminescence of the three MOFs origi-

nated from π* − π transition of the organic ligand, and thus, 

an increase in ligand distance should negatively influence 

inter-ligand charge transfer and thereby result in lower lumi-

nescence intensity. Comparisons between the synthetic and 

activated (heated under vacuum at 100 °C for 4 h) MOFs 

further evidenced the relationship between ligand distance 

and luminescence intensity. After activated, two MOFs 

exhibited increased ligand distance and decreased lumines-

cence intensity, while the other exhibited decreased ligand 

distance and enhanced luminescence intensity.

Sometimes in order to enhance the luminescence intensity 

or fluorescence changes in MOFs for detection and sens-

ing, another organic ligand is introduced as an antenna that 

absorbs more light and transfers the energy to the emissive 

ligand. For MOF  Zn2(NDC)2(DPTTZ), naphthalene dicar-

boxylate (NDC) serves as an antenna and energy donor and 

N,N′-di(4-pyridyl)thiazolo-[5,4-d]thiazole (DPTTZ) func-

tions as energy acceptor and light emitter [36]. As shown 

in Fig. 7a, a good overlap between the adsorption spectra 

of NDC and the emission spectra of DPTTZ was observed, 

which was the prerequisite for Förster resonance energy 

transfer from NDC to DPTTZ. Figure 7b shows the exclu-

sively DPTTZ-centric emission in spite of excitation wave-

lengths, which was rarely observed in other photolumines-

cent MOFs. What is more, compared to free DPTTZ ligand, 

Table 1  Organic ligands that enable photoluminescence

Organic ligands Abbreviation used in text References

1,10-phenanthroline-5,6-dione PHDI [96]

2,5-dihydroxyl-1,4-terephthalic acid DHTA [96]

4, 40-bis(pyridyl)diphenyl ether BPDPE [39]

3-(3,5dicarboxylphenyl)-5-(4-carboxylphenyl)-1-H-1,2,4-triazole H3DBPT [97]

1,1′,1″-(1,3,5-triazine-2,4,6-triyl)tripiperidine-4-carboxylic acid H3TTPCA [34]

Bismuth-1,3,5-benzenetricarboxylic acid H3BTC [35, 98]

N,N′-di(4-pyridyl)thiazolo-[5,4-d]thiazole DPTTZ [36]

3-(3′,5′-dicarboxylphenoxy)phthalic acid H4L [47]

para-terphenyl-3,30,5,50-tetracarboxylic acid H4TPTC [99]
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 Zn2(NDC)2(DPTTZ) exhibits more efficient fluorescence 

changes in the presence of  Hg2+ under illumination at a wide 

wavelength region, making it a possible sensor for  Hg2+.

Ligand-to-metal charge transfer As one of the possible 

ways to realize photoluminescence in MOFs, ligand-to-

metal charge transfer is due to the interactions between 

metal ions and organic ligands. It is typically observed in 

Pb/Zn/Cu-based MOFs, where the metal center binds to O 

atoms of the organic ligand and charge transfer occurs from 

ligand to metal through metal–oxygen bonds. For example, 

[Pb(H2O)(γ-CD)](NO3)2·11H2O (γ-CD–Pb), obtained from 

γ-cyclodextrin and  Pb2+, exhibited photoluminescence with 

maximum emission wavelength at 345 nm excited at 290 nm 

[37]. While cyclodextrins are non-aromatic ligands and 

lack photoluminescence, it was the presence of Pb(II) that 

induced charge transfer from ligand to metal center through 

Pb–O bonds under irradiation and hence photolumines-

cence. In  Zn3·BDC·2BTC·2NH(CH3)2·2NH2(CH3)2, a new 

emission peak at 430 nm was attributed to charge transfer 

from O atoms of the ligands to the empty 4 s orbitals of 

 Zn2+ [38]. The aforementioned photoconductive ZnL(DPE)

(H2O)·H2O [15] also exhibited a weak photoluminescence 

band at 450 nm due to ligand-to-metal charge transfer in 

the presence of N-donor ligand DPE. However, the lumi-

nescence intensity of this MOF was much weaker than the 

free  H2L ligand, since the MOF exhibited reduced charge 

recombination which improved the photoconductivity but 

inhibited photoluminescence. Interestingly, ligand-to-metal 

charge transfer can also occur between the ligand of MOFs 

and metal ions in the environmental solutions. A new emis-

sion band was observed in [CuI(BPDPE)]n when treated 

with  Al3+ solutions, making it a possible  Al3+ sensor [39], 

which will be discussed in detail in the following.

Metal-to-ligand charge transfer Photoluminescence in 

some MOFs originates from metal-to-ligand charge trans-

fer. Typically, metal-to-ligand charge transfer involves π-rich 

ligands which serve as effective electron acceptors in MOFs. 

The metal involved in metal-to-ligand charge transfer is 

mainly  d10 Cu(I), whose d electrons are right in the valence 

orbitals to facilitate charge transfer. The emissions of a 

series of Cu(I) MOFs of 2,2′-dipyridylamine derivatives, 

formulated as  [Cu6(tppa)(μ3-Br)6]n,  [Cu2(tppa)(μ-CN)2]n, 

[Cu(tpbpa)Br]n,  [Cu4(tpbpa)2(μ-I)4]n,  [Cu4(tpbpa)(μ-CN)4]n 

and  [Cu8(tpbpa)(μ-CN)8]n·2nH2O, were all ascribed to 

metal-to-ligand charge transfer due to the presence of π-rich 

ligands with a lower energy of the π*-orbital, which were 

more prone to induce metal-to-ligand charge transfer [40]. 

Compared to the corresponding free ligands, the emission 

bands of these MOFs were all red-shifted but in various 

degrees due to different ligand conformations, indicative of 

the influence of ligand conformations on the emission bands. 

For example, the tppa ligands in  [Cu6(tppa)(μ3-Br)6]n and 

 [Cu2(tppa)(μ-CN)2]n adopted inward- and trans-conforma-

tions, respectively, as shown in Fig. 8a. The emission bands 

of these two MOFs shown in Fig. 8b revealed different emis-

sion peaks at 569 and 573 nm, respectively.
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3.1.2  Metal‑Centered Luminescence

Lanthanide is well known to be a series of metals that 

exhibit exceptional photoluminescent properties such as 

large Stoke shift, extremely sharp emission and long life 

time, owing to the unique f–f transitions between the 4f 

electrons. However, the low absorption coefficient of lan-

thanide metals hinders their wide applications in practical 

luminescent devices. One feasible strategy to overcome 

this defect is to combine lanthanide metals with MOFs, 

which afford effective energy donor organic ligands 

that serve as an antenna with excellent light absorption 

properties. Besides, some rare earth metals also exhibit 

photoluminescence under irradiation. Therefore, many 

metal-centered luminescent MOFs have been successfully 

synthesized by directly constructing frameworks with lan-

thanide or rare earth metals or by doping non-luminescent 

MOFs with lanthanide or rare earth metals, as shown in 

Table 2.

It should be noted that it is crucial to choose appro-

priate organic ligands for synthesis of metal-centered 

photoluminescent MOFs. Aromatic ligands with a 

π-conjugated system or a heterocyclic organic ligand are 

ideal ligands to this end, and to better improve their light 

adsorption capacity, carboxylic groups are extensively 

utilized to modify the ligands. In the synthesized MOFs, 

organic ligands function as antennas and sensitizers, 

which effectively adsorb light and transfer the energy to 

the metal center.  H4L+Cl− ligand, for example, was pre-

pared by modifying  H2Bcpi+X− ligand with imidazole and 

two aromatic carboxylic acids, as shown in Fig. 9 [41]. 

The as-synthesized  H4L+Cl− ligand exceptionally met 

the demand for antennas in photoluminescent MOFs. A 

series of LnMOFs formulated as {[Ln(L)(H2O)2]·5H2O}n 

(Ln = Eu, Tb, Gd, and  EuxTb1−x) with superior photo-

luminescent properties were thus synthesized based on 

 H4L+Cl− ligand.

In general, metal-centered luminescent MOFs inherit 

the luminescent properties of the original metals, as both 

of them have the similar emission bands. Most of LnMOFs 

can emit light with several colors, corresponding to a num-

ber of different transitions from excitation state to ground 
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state characteristic of lanthanide metals. For example, two 

hybrids of MR-MOF-Eu and WR-MOF-Eu synthesized 

through assembly of MOFs based on Eu metal ions and 

2-amino-1,4-benzendicarboxylic acid  (NH2-BDC) with 

two microsphere resins (Wang resin (WR) and Merrifield 

resin (MR)) exhibited similar emission bands at around 579, 

590, 614, 650, and 697 nm due to characteristic 5D0 → 7FJ 

(J = 0–4) transitions of  Eu3+, as shown in Fig. 10a, b [42]. 

{[Eu(L)(H2O)2]·5H2O}n based on the aforementioned 

 H4L
+Cl− ligand [41] also presented similar emission bands 

at 579, 581, 617, 653, and 697 nm, as shown in Fig. 11. 

Photoluminescent MOFs with the same lanthanide metal 

possess similar emission bands due to their characteristic 

state transitions. Notably, different lanthanide metals can be 

combined into one MOF to obtain a combination of different 

luminous colors. Modulation of the proportions can result in 

tunable colors and even white light emission, which will be 

discussed in detail in the following. The characteristic emis-

sion bands of commonly used lanthanide metals are listed in 

Table 3 along with recently synthesized MOFs.

3.1.3  Guest‑Induced Photoluminescence

Many molecules are well photoluminescent but with poor 

stability and intrinsic aggregation-caused quenching effect, 

hindering their practical applications. Encapsulation of 

these molecules into the pores of MOFs, where the guest 

Table 2  Metals involved in MOFs to induce photoluminescence

Metal centers Characteristic emissions Synthesized MOFs References

Tb 5D4 → 7F6 489 nm
5D4 → 7F5 543 nm
5D4 → 7F4 582 nm
5D4 → 7F3 623 nm

MR-MOF-Tb

WR-MOF-Tb

[42]

Tb-SA [32]

{[Tb(L)(H2O)2]·5H2O}n [41]

[Tb(TCBA)(H2O)2]2·DMF [100]

{[Me2NH2
+][Tb(L)(H2O)2]}n [101]

[TbL2(H2O)4]n·nNO3 [102]

TbTMA [103]

Eu 5D0 → 7F0 579 nm
5D0 → 7F1 590 nm
5D0 → 7F2 614 nm
5D0 → 7F3 650 nm
5D0 → 7F4 697 nm

MR-MOF-Eu

WR-MOF-Eu

[42]

Eu(Ln)@bio-MOF-1 [52]

{[Eu(L)(H2O)2]·5H2O}n [41]

[Eu2(SO4)2(H6htp)(H2O)4]·10H2O [104]

{[Eu(2,5-FDA)0.5(Glu)(H2O)2]·xH2O}n [105]

Zn(BDC)(dpNDI): 2% Eu [106]

{(Me2NH2
+)[Eu(L)(H2O)2]}n [101]

[EuL2(H2O)4]n·nNO3 [102]

Sm 4G5/2 → 6F5/2 561 nm
4G5/2 → 6F7/2 596 nm
4G5/2 → 6F9/2 644 nm
4G5/2 → 6F11/2 703 nm

MR-MOF-Sm

WR-MOF-Sm

[42]

[Sm2(SO4)2(H6htp)(H2O)4]·10H2O [104]

{[Sm(2,5-FDA)0.5(Glu)(H2O)2]·xH2O}n [105]

{(Me2NH2
+)[Sm(L)(H2O)2]}n [101]

[SmL2(H2O)4]n·nNO3 [102]
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COOHHOOC
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Cl−
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X−=Cl−, Br− H2Bcpi+X− H4L+Cl−

Fig. 9  Modification of  H2Bcpi+X– for  H4L
+Cl–. Reprinted with per-

mission from Ref. [41]. Copyright 2019, American Chemical Society
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molecules are isolated from each other to avoid aggrega-

tion-caused quenching effect, has been adopted to obtain 

photoluminescent MOFs. The rigid structure of MOFs also 

provides protection for luminescent molecules and enhances 

the material stability. A large class of these guest molecules 

is organic dyes such as cyanine and rhodamines [33]. Others 

include perovskites like  MAPbBr3 [43], quantum dots [44], 

and so forth.

A recent research conducted by Let et al. adopted rho-

damine B (RhB) and Bio-MOF-1 to synthesize dye@MOF 

composite [33]. RhB was chosen because of its cationic 

nature, exceptional photoluminescence and abundant free 

carboxylic groups to interact with  Fe3+. The anionic nature 

of Bio-MOF-1 framework facilitated effective bonds with 

cationic RhB molecules in an ion-exchange process. As 

shown in Fig. 12a, the PXRD profiles of as-synthesized 

Bio-MOF-1 and Bio-MOF-1@RhB exhibited minimal 

difference, indicating that the pristine MOF structure was 

nearly unaffected upon the encapsulation of RhB molecules. 

Figure 12b displays the TGA profiles of RhB, Bio-MOF-1 

and Bio-MOF-1@RhB. While RhB molecules experienced 

substantial loss after ~ 300 °C, Bio-MOF-1@RhB showed 

no obvious loss up to 400 °C, indicating that the confinement 

effect of MOF could significantly enhance the stability of 

RhB, enabling its application in  Fe3+ detection.

Quantum dots (QDs) are small particles with superior 

photoactive properties. PEG-ZnS QDs@ZIF-67 nanohybrids 

were synthesized through encapsulation of polyethylene gly-

col (PEG)-capped ZnS quantum dots into ZIF-67 [45]. The 

adsorption properties of ZIF-67 to capture and concentrate 

 Cu2+ facilitated ZnS QDs to detect  Cu2+ as selective lumi-

nescent sensor. Notably, compared to traditional QDs like 

CdSe and PbSe, carbon quantum dots (C-QDs) possess more 

attractive advantages such as higher stability, lower toxicity 

and so forth. A C-QDs@UiO-66-(COOH)2 composite film 

was fabricated through electrophoretic deposition and served 

as luminescent temperature sensor [46]. In addition to QDs, 

photoactive perovskites can not only improve photoconduc-

tivity in solar cells, but also promote photoluminescence 

in MOFs. However, the inherent instability inhibits their 

practical applications. For example, organic  MA+ cations 

of  MAPbX3 (MA = CH3NH3, X = Cl, Br, I) undergo rapid 

degradation in polar solutions or high temperature. Encap-

sulating  MAPbX3 into MOFs can greatly enhance its stabil-

ity, and its application in information protection has been 

demonstrated [43]. QDs and perovskites as guest molecules 
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Table 3  Photoluminescent sensors based on MOFs toward various analytes

Target analyte Luminescent MOFs as sensors KSV  (M−1) Limit of detection (LOD) References

Fe3+ Bio-MOF-1@RhB 5.5 × 104 1.1 ppm [33]

[Pb1.5(DBPT)]2·(DMA)3(H2O)4 1.2 × 105 2.5 ppm [97]

[Bi(BTC)(H2O)]·H2O 2.02 × 104 1.59 μM [35]

{[Cd1.5(DBPT)(DiPyDz)(H2O)]·3.5H2O}n 4.789 × 105 78 ppb [58]

[Cd(L)(pda)] 1.03 × 105 112 ppb [59]

{[Tb(Cmdcp)(H2O)3]2(NO3)2·5H2O}n 5.532 × 103 4.0 μM [56]

[Zn(1,6-NDS)(bbimb)1.5]·2H2O 7.17 × 103 1.76 × 10−4 M [107]

[Cd2(1,6-NDS)2(bbimb)3(H2O)4]·2H2O 1.01 × 104 1.80 × 10−4 M [107]

Cu2+ Tb-SA 6.298 × 103 1 × 10−4 M [32]

PEG-ZnS QDs@ZIF-67 – 0.96 nM [45]

Al3+ [CuI(BPDPE)]n 1.2560 × 104 2.1 × 10−6 M [39]

[Pb1.5(DBPT)]2·(DMA)3(H2O)4 4.3 × 104 – [97]

Cr2O7
2− [Bi(BTC)(H2O)]·H2O 1.95 × 104 1.64 μM [35]

[Cd(L)(pda)] 1.01 × 105 126 ppb [59]

Zr4+ [Pb1.5(DBPT)]2·(DMA)3(H2O)4 1.6 × 105 – [97]

In3+ [Pb1.5(DBPT)]2·(DMA)3(H2O)4 1.6 × 105 – [97]

O2 MIL-100(In) ⊃ Tb3+ 7.59 0.4% [108]

TBBPA (tetrabromo-bisphenol A) MOF-74(Zn)-en – 0.75 μg L−1 [53]

nitrobenzene Zn3(BTC)2: 4%Eu(III) 3.957 × 103 0.97 ppm [51]

NP(p-nitrophenol) In-atp – 2 × 10−3 U  L−1 [48]

picric acid(TNP) [CuI(BPDPE)]n 1.5 × 104 1.09 × 10−6 M [39]

2,4-dinitrophenol [Zn(H2L)(2,2-bipy)]n 1.83 × 104 7.08 × 10−4 mM [47]

acetone {[Cd1.5(DBPT)(DiPyDz)(H2O)]·3.5H2O}n – 0.0013% (v/v %) [58]

DMA (N,N-dimethylacetamide) [Pb1.5(DBPT)]2·(DMA)3(H2O)4 – – [97]

triiodothyronine hormone (T3) Cu-MOF-NPs – 0.198 ng  dL−1 [50]

L-cysteine {[Ca1.5(μ8-HL1)(DMF)2]·DMF}n – 15 nM [109]

Alpha-fetoprotein (AFP) Cu-MOF-NPs – 1.18 ng mL−1 [49]

Bio-MOF-1 simulated

In
te

n
s
it
y
 (

a
.u

.)

Bio-MOF-1 Act.

Bio-MOF-1@RhB Act.

Rhodamine B

Bio-MOF-1 asmade

Bio-MOF-1@RhB

5 10 20

2θ (°)

30 35 100

(b)(a)

200 300

Temperature (°C)

400 500 6002515

100

80

60

40

20

0

W
e

ig
h

t 
(%

)

Fig. 12  a PXRD pattern of Bio-MOF-1 simulated (black), Bio-MOF activated (brown) & Bio-MOF@RhB activated (green). b TGA profiles 

of as-made Bio-MOF-1 (blue), RhB (green) & Bio-MOF@RhB (brown). Reprinted with permission from Ref. [33]. Copyright 2020, Elsevier. 

(Color figure online)



 Nano-Micro Lett. (2020) 12:132132 Page 14 of 32

https://doi.org/10.1007/s40820-020-00470-w© The authors

to promote photoluminescent properties of MOFs for light 

emitting and optical information protection will be further 

discussed in the following part.

3.2  Applications

3.2.1  Photoluminescent Sensors

Photoluminescent MOFs as sensors are expected to play an 

important role in many fields such as industrial production, 

environmental protection and health care. Many photolu-

minescent MOFs exhibit high sensitivity toward specific 

metal ions or substances harmful to environment or even 

human body. Photoluminescent MOFs as sensors reported 

recently are shown in Table 3. In particular, nitro explo-

sives (NEs) have been widely used in industrial production, 

but they can cause lots of problems, not only environmental 

pollution but also threat to human health and even country 

security. Effective NEs detections are in great demand, and 

photoluminescent MOFs have attracted much attention in 

this field. For example, [Zn(H2L)(2,2-bipy)]n based on  H4L 

ligand exhibited ligand-centered photoluminescence and was 

highly promising for detections of a series of nitroaromatic 

explosives, among which the detection of 2,4-dinitrophenol 

(2,4-DNP) could reach a high Ksv value of 1.83 × 104 M−1 

and a low detection limit of 7.08 × 10−4 mM, as shown in 

Fig. 13 [47]. In addition, luminescent MOFs can also func-

tion as biosensors in biological field. For instance, the alka-

line phosphatase (ALP) enzyme, as a signal for serious dis-

eases, can be detected in human serum samples by In-atp 

[48]. Similarly, Cu-MOF-NPs can detect alpha-fetoprotein 

(AFP) for liver cancer diagnosis [49] as well as triiodothyro-

nine hormone (T3) for thyroid disease diagnosis [50]. More 

recently reported luminescent MOF sensors toward various 

metal ions and organic molecules are listed in Table 3, and 

the mechanisms for luminescent sensing are discussed as 

following.

It has been widely observed that exposure to specific ana-

lytes can arise changes in the intensity of luminescence emit-

ted by MOFs. The changes may be luminescence quenching 

(turned off) or enhancement (turned on) or sometimes even 
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both, which can be explained by the theory of charge and 

energy transfer. One typical example is the aforementioned 

Cu(I)-MOF [CuI(BPDPE)]n, which presented an emission 

peak at 340 nm under excitation at 305 nm [39]. Treated 

with  Al3+ of increasing concentration, the emission intensity 

at 340 nm gradually decreased and the intensity of a new 

emission peak at 420 nm gradually got stronger, as shown in 

Fig. 14. This phenomenon could be ascribed to the change of 

charge transfer from ligand-to-ligand (BPDPE-to-BPDPE) to 

ligand-to-metal (BPDPE-to-Al3+) as a result of Al–O weak 

interactions in the presence of  Al3+.

Many photoluminescent MOFs display lumines-

cent quenching effect when exposed to external ions or 

molecules. The quenching effect can be analyzed by the 

Stern–Völmer equation:

where I0 refers to the pristine luminescence intensity of 

MOFs, I is the luminescence intensity of MOFs after being 

treated with external analytes, [M] denotes the concentration 

of the external analytes, and KSV is the quenching constant 

of MOFs. In terms of the quenching process, luminescent 

quenching can be divided into two parts: dynamic quench-

ing and static quenching. While for some luminescence 

quenching only one type of process either dynamic or static 

is involved, most quenching processes include both, such as 

the coexistence of dynamic and static quenching when an 

Eu(III)-doped Zn-MOF,  Zn3(BTC)2: 4%Eu(III), was exposed 

to nitrobenzene (NB) [51].

Dynamic quenching originates from the interactions 

between the energy donor and quencher. For example, the 

sensing mechanism of Eu(Ln)@bio-MOF-1 toward  O2 was 

confirmed as the  O2 quenching on long-range energy roll-

back from ligand triplet state to bio-MOF-1, as depicted 

in Fig. 15 [52]. Upon irradiation, the bio-MOF-1 matrix 

absorbed photons and transferred the energy to the organic 

diamine ligands of Eu(III) complexes, which further trans-

ferred the energy to emissive Eu(III) ions, resulting in strong 

red emission. There was supposed to be an energy roll-back 

procedure from ligand to bio-MOF-1. Due to the fully 

matched multiplicity, 3O2 could quench the energy roll-back 

procedure, accompanied by the release of 1O2, leading to the 

quenching effect of luminescence of Eu(Ln)@bio-MOF-1.
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In contrast, static quenching results from the generation 

of non-luminescent complexes between the fluorophore and 

quencher, diminishing the energy transfer between the fluo-

rophore and energy donor. A LnMOF thin film of terbium-

succinate (Tb-SA) was fabricated through cathodic electro-

deposition and showed highly eye-detectable luminescent 

response as a photoluminescent sensor for  Cu2+ in aqueous 

environment as well as high sensitivity, selectivity and sta-

bility [32]. The bright green light at 545 nm emitted from 

the film excited by laser at 303 nm could be quenched as a 

result of static quenching induced by non-luminescent com-

plex of  Cu2+ and succinic acid due to possible ion-exchange 

between  Cu2+ and  Tb3+, which inhibited the energy transfer 

in Tb-SA composite.

There are two ways to distinguish static and dynamic 

quenching: through the luminescence lifetime or through 

KSV response toward temperature change. On the one hand, 

luminescence lifetime retains nearly unchanged after static 

quenching, while in the case of dynamic quenching, increase 

in concentration of quencher gives rise to decrease in lumi-

nescence lifetime. The aforementioned Tb-SA exhibited 

static quenching in the presence of  Cu2+ since the lumi-

nescence lifetimes calculated with and without  Cu2+ were 

nearly equal to each other, as shown in Fig. 16 [32]. The 

dynamic quenching of Eu(Ln)@bio-MOF-1 toward  O2 was 

confirmed by the fact that the lifetime of Eu(III) emission 

obviously decreased when  O2 concentrations increased from 

0 to 100% [52]. On the other hand, in dynamic quenching 

the  KSV value increases with increased temperature, and 

for static quenching, the converse is true. For instance, the 

luminescence quenching induced by triiodothyronine hor-

mone (T3) in Cu-MOF-NPs investigated by Sheta et al. 

was ascribed to dynamic quenching because the KSV value 

was positively proportional to the temperature, as shown in 

Fig. 17, where the slopes of simulated lines stand for the 

KSV values [50].

While many luminescent sensors are fabricated based on 

quenching effect, others are based on the phenomenon of 

luminescence enhancement or generation of a new emis-

sion band. MOF-74(Zn)-en could act as a highly selective 

sensor for TBBPA [53]. Increases of both the concentra-

tion of TBBPA and interaction time resulted in enhanced 

fluorescence intensity of MOF-74(Zn)-en. The results 

shown in Fig. 18 revealed that the optimal contact time 

for TBBPA detection was around 40 min and the simu-

lated Stern–Völmer equation was F/F0 = 0.004[CTBBPA] + 1 

(R2 = 0.998). The possible mechanism could be attributed 

to Förster resonance energy transfer from MOF-74(Zn)-

en to TBBPA as TBBPA could interact with amino groups 

in MOF-74(Zn)-en and an overlap between the adsorp-

tion spectrum of MOF-74(Zn)-en and the emission spec-

trum of TBBPA was observed, enabling fluorescence 

enhancement. As for highly luminescent  Zn2(bpdc)2(bpee) 

MOF  (H2(bpdc) = 4,4′-biphenyldicarboxylic acid and 

bpee = 1,2-bipyridylethene), exposure to subppm amines 

turned on a new absorption band and a new luminescence 

band due to the release of bpee molecules exchanged by 

amines, enabling sensing functions [54].

Overall, to realize photoluminescence quenching 

or enhancement in MOFs for fabrication of practical 
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luminescent sensors toward different kinds of target analytes, 

five possibilities are usually taken into consideration: (1) 

structural transitions of MOFs induced by target analyte; (2) 

ion-exchange or ligand-exchange induced by target analyte; 

(3) interactions between target analyte and the fluorophore 

in MOFs; (4) the overlap between the absorption spectrum 

and of the target analyte and the excitation spectrum of the 

MOFs; (5) the overlap between the absorption spectrum of 

the MOFs and the emission spectrum of the target analyte. 

The first possibility was demonstrated in  Zn2(bdc)2(dpNDI) 

(PCP-Zn) [55]. Adsorption of benzene molecules into 

PCP-Zn would cause considerable transformation of the 
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Fig. 19  a PCP-Zn: Structure of pristine MOF before guest molecule introduction. b PCP*-Zn: Structure after guest-molecule-induced structural 

change, but without guest molecule. c Bz + PCP-Zn: Structure after adsorption of benzene in the MOF. d–f The same structures as a-c with sub-

frameworks colored as blue (subframework 1) and orange (subframework 2) and the hydrogens removed for clarity. Reproduced with permission 

from Ref. [55]. Copyright 2019, American Chemical Society
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framework structure (Fig. 19), which significantly decreased 

the distance between  HOMOPCP*-Zn and  LUMOPCP*-Zn and 

localized the orbitals, increasing the oscillator strengths 

and rendering the pristine non-luminescent PCP-Zn strong 

photoluminescence. The luminescence enhancement 

made PCP-Zn a promising sensor for benzene detection. 

Examples for the second and third possibilities include 

 Zn2(bpdc)2(bpee) [54] and Tb-SA [32], respectively, which 

have been discussed before. As for the fourth possibility, 

a typical example is {[Tb(Cmdcp)(H2O)3]2(NO3)2·5H2O}n 

 (H3CmdcpBr = N-carboxymethyl-(3,5-dicarboxyl)pyri-

dinium bromide) as sensor toward  Fe3+ [56]. As shown in 

Fig. 20, there was an obvious overlap between the adsorption 

spectrum of  Fe3+ and the excitation spectrum of the MOF, 

which was not observed for other metal ions. The overlap 

revealed that  Fe3+ would compete with the MOF to adsorb 

light energy, disabling the MOF to adsorb enough light to be 

excited and emit photoluminescence, leading to a quench-

ing effect. The fifth possibility usually occurs between pho-

toadsorptive MOFs and emissive target analyte, such as the 

aforementioned MOF-74(Zn)-en for TBBPA detection [53]. 

Notably, for the design of luminescent MOFs as sensors, 

Lewis acidic/basic active sites are often involved. In par-

ticular, Lewis basic sites have a strong chelating ability to 

Lewis acidic ions like  Cu2+,  Zn2+,  La2+ [57],  Fe3+ [58] and 

so forth, hence promoting the sensitivity of sensors toward 

these metal ions. For example, {[Cd1.5(DBPT)(DiPyDz)

(H2O)]·3.5H2O}n possess  H3DBPT ligand that has open 

Lewis basic triazolyl groups, which can effectively bind to 

 Fe3+ ions [58]. The limit of detection of this MOF toward 

 Fe3+ can reach as low as 78 ppb, much lower than 112 ppb 

for [Cd(L)(pda)] [59].

3.2.2  Light Emitting

More and more attention is being paid to the possible appli-

cation of luminescent MOFs in lighting devices. Notably, 

based on the superior compositional tunability and diversity 

of MOFs, usually two or more emissive ions or molecules 

are involved in the construction of MOFs or guest@MOF 

hybrids to combine each emission color of each emissive 

component in order to obtain various high-quality colors. 

For example, a series of  H4L+Cl−-based {[EuxTb1−x(L)

(H2O)2]·5H2O}n with both  Eu3+ and  Tb3+ ions were synthe-

sized [41]. Dual emission of  Eu3+ and  Tb3+ was observed 

under excitation at 302 nm. As the molar ratio of  Eu3+ 

increased from 5 to 90%, the luminescence intensity of 

 Tb3+ at 544 nm gradually weakened and the luminescence 

intensity of  Eu3+ at 617 nm gradually enhanced, as shown in 

Fig. 21a. This phenomenon was ascribed to enhanced energy 

transfer from  Tb3+ to  Eu3+ as molar ratio of  Eu3+ increased, 

which gradually quenched the photoluminescence of  Tb3+. 

Specifically, under irradiation at 254 nm, the luminescence 

colors of the MOF smoothly changed from yellow-green, 

yellow, orange, orange-red to red as the molar ratio of  Eu3+ 

increased from 5 to 90% due to the synergy of  Tb3+ and 

 Eu3+ emissions, as shown in Fig. 21b. Multicolor emissions 

can be realized by modulating the molar ratio of different 

emissive components in one MOFs. In particular, based on 

three-primary colors theory, this dual emission mechanism 

has been widely applied in white-light-emitting field. The 

Commission International deI’Eclairage (CIE) color coor-

dinates are used to assess the quality of white light emit-

ted by various materials. The closer the CIE of MOFs is to 

the standardized coordinate for pure white light (0.3333, 

0.3333), the higher the quality and purity of emitted white 

light are. And the different emissive components commonly 

used for synthesis of white-light-emitting MOFs with excep-

tional color quality and quantum yield are lanthanide metal 

ions, guest molecules and organic ligands.

Mixed-LnMOFs synthesized from two or more types of 

lanthanide metals are promising candidates for white light 

emission. A series of mixed-LnMOFs [(EuxTb1−x)2(TDC

)3(CH3OH)2·(CH3OH)], abbreviated as  EuxTb1−x-MOFs, 
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were investigated with x = 0.5, 0.067, 0.05, 0.01, 0.00833, 

0.00667, and 0.005 [60]. The CIE chromaticity diagram 

of MOFs with different Eu ratios is depicted in Fig. 22. It 

was found that only  Eu0.00667Tb0.99333-MOF emitted white 

light under 350 nm excitation, with the CIE coordination of 

(0.3333, 0.3394) very close to that of pure white light. This 

research reveals that carefully tuning the ratio of different 

lanthanide metal ions in MOFs is a promising strategy to 

generate pure white light emission.

Dual emission for white light can be realized through 

introduction of luminescent guest molecules as well. The 

reported luminescent materials encapsulated into MOFs 

include iridium complex [61], fluorescent proteins (FPs) 

[62], carbon dots (CDs) [63], quantum dots (QDs), organic 

dyes and so on, as shown in Table 4. With optimal amount 

of guest molecules and excitation wavelengths, white light 

emission can be observed in the synthesized guest@MOF 

hybrids. As shown in Fig. 23, different amounts of blue-

light-emitting carbon dots (CDs) were encapsulated into a 

mixed-LnMOF which emitted yellow luminescence and the 

final hybrids exhibited different luminescence colors upon 

irradiation [63]. For CDs-3@LnMOF with 3 mL CDs, dif-

ferent CIE coordinates were obtained under various wave-

lengths in range of 360–380 nm and the best CIE coordinate 

could reach up to (0.334, 0.334) when CDs-3@LnMOF was 

irradiated under 370 nm. This revealed that the CIE coordi-

nates can be modulated through careful selections of guest 

molecule concentration and excitation wavelength. It should 

be noted that sometimes the luminescence bands of guest 

molecules will be influenced and changed upon encapsula-

tion into MOFs. For example, R-phycoerythrin (R-PE) pro-

teins were denatured after embedded into HSB-W1 frame-

work, which inhibited their pristine orange luminescence 

at 578 nm and aroused new green (518 nm) and red (600, 

647 nm) luminescence [62]. Synergy of emissions from 

R-PE and blue-light-emitting HSB-W1 finally resulted in 

high-quality white light emission with CIE of (0.33, 0.34).
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What is more, some LnMOFs with photoactive 

ligands can also generate dual emissions from Ln metal 

ions and organic ligands. In this case, the ligand-cen-

tered emission needs to be resensitized by dopant metal 

ions. For example, while the MOF [Eu(3-TPyMNTB)2]

(ClO4)3·2.5MeCN emitted characteristic red luminescence, 

the Ag-doped MOF  [EuAg3(3-TPyMNTB)2(H2O)(MeCN)]

(ClO4)6·4MeCN directly emitted white light due to the 

ligand-centered emission of TPyMNTB resensitized by 

doped  Ag+, as depicted in Fig. 24 [64].

One crucial challenge to light-emitting devices is the 

accompanying generated thermal energy. Under irradia-

tion, a considerable amount of light energy absorbed by the 

device is converted to thermal energy, which diffuses into 

the surrounding environment and is hard to reuse, lowering 

the overall efficiency of the lighting device. What’s worse, 

the generated thermal energy will increase device tempera-

ture, which will probably decrease the device luminescence 

lifetime or even directly damage the device. Interestingly, 

Table 4  Photoluminescent MOFs for white-light emission

MOFs Guest molecules Excitation (nm) CIE References

HSB-W1 R-phycoerythrin (R-PE) 405 (0.33, 0.34) [62]

Cd-MOF (CP1) CdTe QDs 330 (0.33,0.32) [110]

[Eu1.22Tb0.78(1,4-phda)3(H2O)](H2O)2 CDs-3 370 (0.334, 0.334) [63]

[(CH3)2NH2]15[(Cd2Cl)3(TATPT)4]·12DMF·

18H2O

[Ir(ppy)2(bpy)]+ 370 (0.31, 0.33) [61]

ZIF-82 C-151 365 (0.16, 0.12) [111]

F (0.26, 0.58)

RB (0.57, 0.43)

[Eu(MCTCA)1.5(H2O)2]·1.75H2O H4TBAPy 350 (0.3482, 0.3301) [112]

[Me2NH2][In(bptc)] safranin O 380 (0.32, 0.33) [113]

ZJU-28 Cou-6/R6G/R101 460 (0.36, 0.34) [114]

[Eu0.05(H2O)4(pdc)]4SiMo12O40]·2H2O Eu3+ 295 (0.3425,0.2548) [92]

Eu3+/Tb3+ (0.3857,0.3377)

[Zn4OL2·xDMF]n DCM/C6 365 (0.32, 0.31) [115]

Zr-MOF CDs 365 (0.31, 0.34) [116]
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an effective solution toward this challenge was proposed. 

Carbon quantum dot (CQD) and stearic acid (SA) molecules 

were simultaneously incorporated into Cr-MIL-101-NH2 

to synthesize novel phase change materials (PCMs) [44]. 

As superior photoluminescent particles, CQD was utilized 

to render the composite light-emitting properties. Stearic 

acid functioned as thermal energy guest, which constantly 

adsorbed the generated heat in the process of photolumines-

cence, enabling thermal energy recycling and maintaining a 

relatively low temperature, hence improving luminescence 

efficiency and device lifetime. This PCMs system provides 

exciting improvement for lighting devices and is supposed 

to attract more and more attention.

3.2.3  Luminescent Thermometer

Compared to traditional thermometers, such as liquid-

filled thermometers, transistors, and thermocouples, which 

need direct physical contact with the tested environment, 

luminescent thermometers have attracted much attention 

due to their non-contact real-time temperature-sensing 

properties and can be applied in fast-moving samples and 

in strong magnetic or electronic situations. Excitingly, 

another promising application of photoluminescent MOFs 

is self-calibrating luminescent thermometer based on fluo-

rescence intensity ratio (FIR) technique. In this case, dual 

emissions are required and the intensities of emissions at 

different wavelengths response to the temperature change 

differently. The intensity ratio of emissions at two wave-

lengths is the basis to measure temperature. One example 

is  CsPbBr3@Eu-BTC which has been investigated in the 

temperature range of 20–100 °C and served as a reliable 

and stable thermometer with a high relative sensitivity  (Sr) 

of 3.9%/ °C at 20 °C and excellent temperature resolution 

of 0.004 °C [65]. As temperature increased, the photolumi-

nescence at 528 nm from  CsPbBr3 QDs got weaker, whereas 

the emission of  Eu3+ at 618 nm became stronger, as shown 

in Fig. 25. Other luminescent MOFs with potential for tem-

perature sensing based on FIR technique include the afore-

mentioned [(Eu0.0069Tb0.9931)2(TDC)3(CH3OH)2·(CH3OH)] 

in the range of 288–353 K [60],  Eu0.0069Tb0.9931-DMBDC 

(DMBDC = 2,5-dimethoxy-1,4-benzenedicarboxylate) in the 

range of 10–300 K [66], and so on. In addition, changes in 

the single-luminescence intensity at single wavelength of 

MOFs at different temperatures can also provide reference 

for temperature sensing. C-QDs@UiO-6-(COOH)2 [46] film 

can detect temperature change in the range of 97–297 K with 

the  Sr value up to 1.3%  K−1 at 297 K. Luminescence intensi-

ties of C-QDs@UiO-6-(COOH)2 at different temperatures 

are shown in Fig. 26a, and the relation between intensity and 

temperature is linear simulated in Fig. 26b.

3.2.4  Optical Information Protection

Based on the quenching and recovery of luminescence, the 

potential of MOFs for information encryption and decryp-

tion has also been investigated.  MAPbBr3@UiO-66, synthe-

sized by simply encapsulating the conventional luminescent 

 MAPbBr3 perovskite into the MOF UiO-66, was such stable 

material that it was used for information protection and anti-

counterfeiting because  MAPbBr3 could be converted into 

 PbBr2 by water and would recover when treated with MABr 

solution, as shown in Fig. 27 [43]. The single and bimetallic 

MOFs  [EuxTb2−x(1,4-phda)3(H2O)](H2O)2 (x = 0, 0.73, 1.22, 

1.57, 1.94, and 2) have also been demonstrated to serve as 

luminescent security inks [63]. In this case, special infor-

mation storage boxes were utilized, which were transparent 

under daylight but could be excited to emit luminescence 

under UV light. Letters were written on box by MOF ink that 

emitted the same luminescence color as the box. Addition of 

styrene could quench the luminescence of the MOF due to 

energy transfer from the MOF to styrene, enabling decoding 
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Fig. 25  Temperature-dependent PL spectra of  CsPbBr3@Eu-BTC in 

the temperature range of 20–100 °C excited at 339 nm (inset: the CIE 

(x, y) coordinate diagram of emission colors at various temperatures). 

Reprinted with permission from Ref. [65]. Copyright 2020, American 
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of the letters under UV light. Besides, styrene could easily 

evaporate in air, making it possible to erase and rewrite the 

letters.

4  Deposition of MOF Thin Films

For device integration, it is required that MOFs possess 

enough physical contacts with other materials and to meet 

this requirement, MOFs are often prepared in forms of thin 

films. It is of great significance to master how to fabricate 

high-quality MOF thin films with precise control over the 

thickness, morphology, density, crystallinity, roughness, 

and orientation, which determine the device performance 

of MOFs [67]. For conductive MOFs, it has been demon-

strated that thickness [68] and orientation [69] of thin films 

can affect the electrical conductivity. For photoluminescent 

MOFs, thin films possess advantages over powders, such 

as more binding sites for analyte molecules or ions, easy 

separation from solutions, less crystal defects and so forth. 

Many methods have been developed for deposition of MOF 

thin films, some of which have been demonstrated to exhibit 

flexibility toward various MOFs.

4.1  Electrochemical Deposition

Electrochemical deposition, including cathodic and anodic 

deposition, is a rapid method to fabricate MOF thin films 

and allows for mechanical and electrical contact between the 

MOF and substrate. For cathodic deposition, precursor metal 

ions and ligands are both required in electrolyte and the MOF 

thin film deposits on the surface of cathode. For instance, 

as shown in Fig. 28, with a graphite rod as the anode and 

the fluorine-doped tin oxide (FTO) conductive glass as the 

cathode, the Eu-HBPTC thin film appeared on the cathode 

when the two electrodes were immersed into the mixed 

solution of benzophe-none-3,30,4,40-tetracarboxylic dian-

hydride (BTDA), DMF and Eu(NO3)3·6H2O and a constant 

current was applied [70]. The thus synthesized Eu-HBPTC 

thin film presented the similar emission spectra to  Eu3+ ions 
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Fig. 27  Reversible fluorescence switching of the BJTU pattern writ-

ten on the paper at different stages under ambient and 365 nm UV 

light. Reprinted with permission from Ref. [43]. Copyright 2019, 

Elsevier
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and could be used as a highly selective sensor for carbon-

ate in aqueous solution even with the  CO3
2− concentration 

down to  10−4 M. Similarly, this method has succeeded in 

fabrication of the aforementioned MOF terbium-succinate 

(Tb-SA) thin film as a sensor for  Cu2+ [32]. Furthermore, 

using the same method, white-light-emitting thin films of 

LnCPs, formulated as  [Ln6(HMA)6(H2O)16]·17H2O (HMA-

Ln, Ln = Eu3+,  Gd3+,  Tb3+;  H3HMA = hemimellitic acid), 

were fabricated and exhibited satisfactory CIE coordinates 

reaching (0.33, 0.34) [71].

However, for anodic deposition, the MOF thin film depos-

its on the anode and the electrolyte only contains the precur-

sor organic ligands because metal ions for MOF construction 

come from the anode. A series of MOFs were deposited 

on indium tin oxide (ITO) glass previously coated by cor-

responding metallic films through anodic deposition, which 

proved to be a promising strategy for integration of MOFs 

with electronic devices, and attempts of involving more con-

ductive MOFs in this processing are under way [72].

The difference between anodic deposition and cathodic 

deposition was investigated by comparing the anodic depo-

sition of Cu-INA, Cu-INA(Cl), and Cu-INA(F) with the 

cathodic deposition of HKUST-1 [73]. It was demonstrated 

that the anodic deposition consists of four phases: initial 

nucleation, growth of MOF islands, intergrowth, and crystal 

detachment, as shown in Fig. 29. A lag time is needed for 

anodic deposition depending on the applied current and the 

metal-ion concentration threshold for MOF nucleation, while 

cathodic deposition can start at potentials less cathodic. 

However, anodic deposition facilitates better manipulation 

of the film characteristics like film thickness, crystal size, 

and morphology by varying synthesis parameters like volt-

age and current density, concentrations of ligands and con-

duction salt and temperature [72]. Though anodic deposition 

has been widely adopted to fabricate films with excellent 

electrocatalytic and proton-conductive properties [74, 75], 

investigations on MOF films with photophysical properties 

as luminescent sensors or photoconductive electrodes fabri-

cated through anodic deposition are still limited.

4.2  Electrophoretic Deposition

Electrophoretic deposition is based on the fact that the sus-

pended MOFs possess a surface charge. By immersing two 

identical conductive electrodes into the colloidal MOF sus-

pension and applying a fixed voltage between the two elec-

trodes, the MOF particles will move toward the oppositely 

charged electrode driven by the electric field and hence form 

a thin film. Interestingly, this method enables MOF particles 

to deposit on predefined positions and form micropatterned 

films. Take the fabrication of NU-1000 thin films on FTO 

for example: bare FTO platform was firstly modified with an 

insulating photoresist layer, and then photolithography was 

applied to create certain micropatterns of the photoresist 

layer; with NU-1000 deposited only on the exposed sections 

of FTO through electrophoretic deposition, followed by the 
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Fig. 28  Cathodic deposition of Eu-HBPTC thin film. Reprinted with 

permission from Ref. [70]. Copyright 2014, Royal Society of Chem-

istry

Fig. 29  Four phases of anodic deposition: a initial nucleation, b 

growth of MOF islands, c intergrowth, and d crystal detachment. 

Reprinted with permission from Ref. [73]. Copyright 2016, Royal 

Society of Chemistry
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removal of photoresist materials by immersing the platform 

in acetone, a micropatterned NU-1000 thin film was thus 

formed [76].

Through electrophoretic deposition, continuous and dense 

thin films of a series of photoluminescent LnMOFs were 

successfully fabricated on unmodified low-cost substrates 

including zinc plate, ITO and FTO glasses, rapidly in 5 min 

[77]. In particular, as-synthesized Tb-BTC films exhibited 

exceptional performances in the detection of nitrobenzene 

(NB) and  Cr3+ in solution and trinitrotoluene (TNT) and NB 

in gas phases. In addition, for the sake of ratiometric temper-

ature-sensing thin films, two dual-emitting Ln@UiO-66-Hy-

brid MOFs, with lanthanide metals and luminescent ligand 

integrated in a UiO-66-type structure, were deposited on 

FTO substrates through electrophoretic deposition where the 

charges from uncoordinated carboxylic groups played a criti-

cal role [78]. The thus synthesized Tb@UiO-66-Hybrid film 

was able to measure temperatures in range of 303–353 K 

with a relative sensitivity of 2.76%  K−1, while the tempera-

ture range and relative sensitivity for Eu@UiO-66-Hybrid 

film were 303–403 K and 4.26%  K−1, respectively. Later 

on, the same group used the same electrophoretic deposi-

tion methodology to fabricate C-QDs@UiO-66-(COOH)2 

composite thin film as a temperature sensor in range of 

97–297 K with a relative sensitivity of up to 1.3%  K−1 [46]. 

The film exhibited better temperature-sensing performances 

than non-film-state C-QDs@UiO-66-(COOH)2 composites, 

which to some extent corroborated the more excellent capac-

ities of thin films.

4.3  Layer‑by‑Layer Assembly

Layer-by-layer assembled method relies on the in situ growth 

of MOFs on different substrates. In general, the process 

includes repeating growth cycles of stepwise immersion of 

the substrate into solution of metal ions and then solution 

of organic ligands. The substrate is usually modified with a 

self-assembled monolayer (SAM) such as an organic link-

ing molecular or metal-oxide film, to facilitate the strong 

adhesion of MOFs to the substrate during crystal growth 

and better control the interface of the bottom substrate and 

the MOF films. It has been validated that the SAM surface 

can affect the nucleation and further influence the crystal 

growth [79]. The film thickness can be well controlled by 

the number of growth cycles.

Fig. 30  Synthesis of  TiO2@MOF nanorod array photoanode through layer-by-layer method. Reprinted with permission from Ref. [28]. Copy-

right 2018, Springer Nature
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A p–n heterojunction photoanode for solar water splitting 

was fabricated by coating a porphyrin-based MOF PCN-225 

layer on a vertically aligned  TiO2 nanorod array through 

layer-by-layer self-assembly [28]. The specific processing is 

shown in Fig. 30. The  TiO2 nanorod arrays were alternately 

soaked into a 0.5 mM TCPP in ethanol solution and into a 

2 mM  ZrCl4 in ethanol solution at 40 °C with intervals set 

as 10 min. The above treatments were repeated for 5 cycles 

to obtain PCN-225 films with ideal thickness, and subse-

quently, the  TiO2@MOF samples were heated at 150 °C 

under an  N2 gas environment to strengthen the contact 

between the MOF and  TiO2. The thus synthesized  TiO2@

Co-MOF photoanode presented a photocurrent density of up 

to 2.93 mA cm−2 at 1.23 V (vs. RHE).

Interestingly, through layer-by-layer assembly method, 

Eu-SURMOF was deposited on top of Tb-SURMOF to form 

a hetero-multilayer architecture, which suppressed direct 

energy transfer from Tb(III) to Eu(III) and thereby made the 

modulation of the emission color easier [80]. An Eu-NDC@

HPNA thin film was also fabricated through this method and 

served as a luminescent sensor for formaldehyde, an illegal 

preservative in aquatic product, indicating that luminescent 

MOFs could play a significant role in food industry and our 

health [81].

While layer-by-layer assembly method has many advan-

tages such as well-controlled thickness and mild reaction 

condition at room temperature, there are still some disad-

vantages like tedious repeating operations, long reaction 

times, and so on. Therefore, some improved methods have 

been developed. A promising alternative method is to use 

the metal oxide itself as a template for MOF growth by 

sequential exposure to the metal cation and then the organic 

linker. With aluminum-doped zinc oxide (AZO) as a seed 

layer, copper benzene-1,3,5-tricarboxylate (Cu-BTC) MOF 

growth occurs rapidly only on the AZO surface and it is 

found that Cu-BTC morphology can be optimized through 

careful choice of the Cu salt, solvent system, and pH [82]. It 

was also found that zeolite imidazolate framework-8 (ZIF-

8) can directly assemble on gold surfaces when modified 

by cysteamine in colloidal suspensions, without the need to 

pretreat the substrate with SAM [83]. One of the challenges 

that block wide applications of layer-by-layer assembly in 

fabrication of electronic or optoelectronic devices lies in 

that it commonly relies on insulating SAMs to control the 

thin-film orientation, which could impede charge transpor-

tation. Inspired by these investigations, more convenient 

preparations of MOF thin films for high-performance pho-

toelectronic and photoluminescent devices through bet-

ter improved layer-by-layer assembly method should be 

included in future researches.

4.4  Solvothermal Deposition

The solvothermal growth of MOF films is a facile, efficient, 

and low-cost deposition method and thus has been widely 

adopted. Upon heating, MOFs growth occurs rapidly on the 

substrate surface. In general, this method allows for direct 

and oriented deposition of MOF particles on semiconduct-

ing metal-oxide-coated electrodes, which thereby makes it 

more attractive for production of electronic and optoelec-

tronic devices.

Under solvothermal conditions, pillared porphyrin frame-

work-11 (PPF-11) featuring Zn-tetrakis(4-carboxyphenyl)

porphyrin (ZnTCPP) and 2,2′-dimethyl-4,4′bipyridine was 

deposited on ZnO-coated FTO electrodes to form precisely 

[100]-oriented films, as shown in Fig. 31 [84]. DMF/EtOH 

solutions of Zn(NO3)2·6H2O, TCPP, DMBPY and 1  M 

 HNO3/EtOH were heated at 80 °C for 2 h, followed by the 

immersion of annealed ZnO–FTO slides into the above pre-

cursor solutions at upright positions at 80 °C for 30 min, 

which led to spontaneous formation of uniform crystal-

line films. Solar cells based on the as-synthesized PPF-11/

ZnO–FTO photoanode exhibited superior photovoltaic 

response with power conversion efficiency up to 0.86%, 

which was significantly linked to the covalent attachment to 

ZnO surface and [100] orientation of PPF-11 films.

Solvothermal deposition has also been utilized to generate 

MOF thin films as efficient luminescent sensors [85–87]. 

MOF-5 was deposited on ZnO-coated FTO substrate 

ZnO Film

FTO-Glass

ZnO Film ZnO

PPF-11

Solvothermal
film growth

FTO-Glass

(a) (b)

20 µm

Fig. 31  a Schematic diagram of the solvothermal growth of PPF-11 

film. b Cross-sectional-SEM images of solvothermally grown 10 μm 

thick PPF-11 film on ZnO layer. Reprinted with permission from Ref. 

[84]. Copyright 2019, American Chemical Society
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solvothermally, followed by postsynthetic introduction of 

 Tb3+ [85]. Tb(III)@MOF-5/ZnO was demonstrated to detect 

acetone molecules with high selectivity due to the lumines-

cence response of  Tb3+ ions. In this study, the failure of 

MOF-5 deposition on bare FTO revealed that ZnO coating 

was necessary for MOF-5 growth. Similarly, MIL-124@

Eu3+ film was deposited on porous ɑ-Al2O3 plate as ammo-

nia sensor with the limit of detection of 26.2 ppm [87].

4.5  Liquid–Liquid Interfacial Method

Liquid–liquid interfacial method is another facile and rapid 

method to obtain MOF thin films. Typically, it starts with 

the preparation of two immiscible liquid systems, which dis-

solve metal-ion salts and organic ligands, respectively. Then, 

by simply layering one of the liquid systems onto another, 

the MOF thin film appears at the liquid–liquid interface and 

can be observed through eyes [68, 88]. Further improvement 

of this method combines the spray technique by spraying the 

atomized solution of metal ions onto solutions of ligands 

[89, 90]. Since thin films form at liquid–liquid interface and 

can be easily separated from the liquid, this method is prom-

ising for fabricating free-standing MOF thin films without 

substrates. The main challenge of this method lies in the 

careful selection of immiscible solvents to dissolve metal 

ions and ligands, respectively. However, with its facile, con-

venient and time-saving advantages, liquid–liquid interfacial 

method holds a bright prospect for integration of MOF thin 

films with optical devices and should attract more attention.

4.6  Ultrasonic Spray Deposition

Ultrasonic spray deposition is a novel strategy for MOF 

thin-film fabrication. The process of this technique is 

shown in Fig. 32. Two precursor solutions of metal ions 

and organic ligands are held in two separated ultrasonic 

nebulizers to generate corresponding ultrafine mists, 

which are then transported through a gas flux and mixed 

on the heated substrate surface, where solvents evaporate 

and MOFs crystalize to form matrix-free thin films. Fol-

lowing the above processing,  Tb2(BDC)3 (BDC = 1,4-ben-

zenedicarboxylate) MOF films were deposited on various 

substrates and exhibited photoluminescent properties [91]. 

It was revealed that the temperature of the substrate played 

a crucial role in the structures, morphologies, and lumi-

nescence properties of the as-synthesized films and low 

temperatures tended to generate films with higher lumines-

cence intensities. As a time-saving, low-cost, and scalable 

new route for fabrication of luminescent MOF films, ultra-

sonic spray deposition can be considered a breakthrough 

for integration of MOFs in future optical devices.

4.7  Other Methods

Apart from the aforementioned methods, many other meth-

ods have also been developed to fabricate various MOF 

thin films with excellent photophysical properties. Spin 

coating, for example, has proved to be successful in the 

fabrication of white-light-emitting  Ln3+-functionalized 

 [La(H2O)4(pdc)]4[SiMo12O40]·2H2O thin films [92] as well 

as white-light-emitting  Sm3+@NENU-5 and  Eu3+/Tb3+@

NENU-5 thin films [93]. Besides, Langmuir–Blodgett 

method was utilized to fabricate semiconducting Cu-PPFs 

thin films for photoelectric conversion [94]. It should be 

noted that films of the same MOF fabricated through dif-

ferent methods usually differ in morphologies, surface 

coverage rate, and hence device performances. A research 

pointed out that luminescent MOF-76(Tb) films fabricated 

through hydrothermal, microwave-assisted, and layer-by-

layer methods presented pillar-like, sedimentary-rock-like, 
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Fig. 32  Scheme of the ultrasonic spray deposition system. Reprinted 

with permission from Ref. [91] Copyright 2019, Elsevier
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and needle-like crystal morphology, respectively, and 

layer-by-layer method achieved the highest surface cover-

age rate due to promoted metal-ion anchoring [95]. Some-

times, more than one method will be adopted to combine 

advantages of each method to fabricate better MOF films.

5  Conclusion and Outlook

In summary, conductive MOFs with photoconductive 

and photoluminescent properties have been widely inves-

tigated. Compared to conventional energy such as fossil 

fuels and natural gas that is limited in nature and contam-

inates our environment, light energy possesses superior 

advantages such as renewability and eco-friendliness. For 

effective utilization of light energy, many novel materi-

als have been developed and MOFs with excellent photo-

physical properties provide another possibility to this end. 

Photoconductive MOFs are promising materials for solar 

cells and water splitting with superior light adsorption 

capacity, high stability, low cost, and many other advan-

tages. Photoluminescent MOFs exhibit a bright prospect 

in many interesting fields such as luminescent analyte 

sensing, temperature sensing, light emitting, and optical 

information protection. In addition, thin films based on 

these photoconductive and photoluminescent MOFs have 

been reported, making it possible to integrate these MOFs 

with practical devices.

However, still there are challenges for further develop-

ment of these MOFs and more efforts should be done in 

many future works. For example, to date most of pho-

toconductive MOFs actually exhibit relatively low elec-

trical conductivity despite their superior light adsorption 

capacity, which to some extent restrains their application 

in solar cells. Attempts should be continued to synthesize 

MOFs with higher electrical conductivity and higher pho-

toelectric conversion efficiency. Also, most of the reported 

methods to fabricate MOF thin films are only applicable to 

some specific MOFs, and therefore, it is of great signifi-

cance to search for more facile and more flexible methods 

for MOF thin-film fabrication. It is believed that these 

advances will definitely extend the applications of MOFs 

to electronic and optoelectronic devices and probably arise 

impactful innovation in the field of materials.
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