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Abstract—Polypyrrole nanofibers are synthesized through a

template-free chemical route and used as the active component

for hydrogen gas sensing at room temperature. The synthesis of

polypyrrole nanofibers was achieved by using bipyrrole as an ini-

tiator to speed up the polymerization of pyrrole with FeCl3 as the

oxidizing agent. Scanning and transmission electron microscopy

studies indicate that the resulting polypyrrole forms a nanofibrous

mat with average nanofiber diameter of 18 nm. Fourier transform

infrared spectroscopy and elemental analysis confirms that the

structure of the nanofibers is comparable to bulk polypyrrole. Gas

sensing properties of polypyrrole nanofibers were investigated

by depositing nanofiber dispersions on an interdigited conducto-

metric transducer. The sensor performance was tested through

programmable exposure towards different concentrations of

hydrogen gas diluted in synthetic air in an environmental cell at

different temperatures. A short response time of 43 s was observed

upon exposure to a concentration of 1% hydrogen with a decrease

in film resistance of 312 
 at room temperature. The sensor

sensitivity was analyzed with gradual elevation of the operating

temperature.

Index Terms—Conducting polymers, hydrogen sensors, polypyr-
role nanofibers.

I. INTRODUCTION

C
ONDUCTING polymers such as polypyrrole, polyaniline,

polythiophene, and their derivatives have been investi-

gated for gas sensing applications for more than 20 years [1].

Gas sensors based on conducting polymers have many features

that are superior to their metal oxides counterparts including

high sensitivities, short response time, and room temperature

operation. In contrast, metal oxides generally operate at ele-

vated temperatures around 300 C [2]. Conducting polymers

are easily synthesized through chemical or electrochemical

Manuscript received October 31, 2007; revised January 4, 2008; accepted
January 8, 2008. This work was supported in part by the Microelectronics Ad-
vanced Research Corporation (MARCO) and its Focus Center Research Pro-
gram on Functional Engineered NanoArchitectonics (FENA) and in part by the
U.S. National Science Foundation under Grant DMR-0507294 (R.B.K.). The
associate editor coordinating the review of this paper and approving it for pub-
lication was Prof. Evgeny Katz.

L. Al-Mashat, W. Wlodarski, and K. Kalantar-Zadeh are with the Sensor
Technology Laboratory, School of Electrical and Computer Engineering,
RMIT University, GPO Box 2476V, Melbourne 3001, Australia (e-mail:
laith.almashat@ieee.org; ww@rmit.edu.au; kourosh.kalantar@rmit.edu.au).

H. D. Tran and R. B. Kaner are with the Department of Chemistry and Bio-
chemistry and California NanoSystems Institute, University of California, Los
Angeles, CA 90095-1569, USA (e-mail: htran@chem.ucla.edu; kaner@chem.
ucla.edu).

Color versions of one or more of the figures in this paper are available online
at http://ieeexplore.ieee.org.

Digital Object Identifier 10.1109/JSEN.2008.917476

processes, and new polymers can be designed by the substitu-

tion of different functional groups onto the polymer backbone.

Polypyrrole and its derivatives (PPy) are formed through the

oxidation of pyrrole or substituted pyrrole monomers. The ox-

idation is usually carried out by either electropolymerization

on a conductive substrate (electrode) with the application of

an external potential, or by chemical polymerization in solu-

tion through the use of a chemical oxidant. The two methods

produce PPy with different chemical and electrical properties

[3]. Changes to the electrical conductivity of PPy have been

noted upon exposure to various organic and inorganic gases.

Blanc et al. [4] measured the conductivity of PPy films obtained

by electropolymerization method under exposure to O , NH ,

NO diluted in synthetic air or N at 100 C. It was established

that a wide range of organic vapors can alter the conductivity

of PPy, which facilitated its application in field effect transistor

(FET)-based gas sensors [5]–[8]. A CO sensor was fabricated by

Liu et al. [9] by growing a PPy film on the surface of an inter-

digitated-capacitive transducer using the electropolymerization

technique. Recently, Waghuley and coworkers [10] reported a

CO sensor based on PPy film synthesized using chemical poly-

merization of the pyrrole monomer.

Although PPy thin films can be very easily made by electro-

chemical deposition, their performance as gas sensing films is

affected by the fact that the active sensing components remain

embedded in the bulk, which limits both the efficiency and the

sensitivity. This can be improved by making PPy in a nanofiber

form to generate high surface area for a given mass or volume,

which can enhance the sensitivity by providing a porous struc-

ture that has better interactions between the sensing film and

the target gas molecules [11]. In order to enhance the chemical

sensing properties of PPy, an extensive amount of research

work has concentrated on the synthesis of nanostructured forms

of PPy. The production of nanostructured PPy has been studied

using templated synthetic methods employing mesoporous

silica, anodized aluminum oxide membranes, and particle

track-etched membranes [12], [13]. A bulk growth approach

using V O seeds as a template has also been reported recently

[14]. The method of surfactant-mediated synthesis, which has

been so successful in the synthesis of polyaniline nanofibers

yields only nonfibrous, granular powders in the case of polypyr-

role [15]. Fibrillar and tubular morphologies of polypyrrole

has been observed when -naphthalene sulfonic acid (NSA) or

p-toluenesulfonate acid (TsOH) is used as a dopant during the

synthesis process [16]. These fibers and tubes have diameters in

the range of 50–2000 nm and are formed presumably as a result

of the solution aggregation of the dopant anions. In general,

1530-437X/$25.00 © 2008 IEEE

Authorized licensed use limited to: RMIT University. Downloaded on August 5, 2009 at 23:55 from IEEE Xplore.  Restrictions apply. 



366 IEEE SENSORS JOURNAL, VOL. 8, NO. 4, APRIL 2008

Fig. 1. Distribution of PPy nanofiber diameters resulting from a template-free
synthesis using bipyrrole as an initiator.

a straightforward bulk synthesis of nanofibers of polypyrrole

directly from pyrrole monomer with average fiber diameter less

than 100 nm, has been difficult to achieve.

The application of nanostructured conducting polymers in

gas sensing has so far focused on polyaniline nanofibers [17],

[18]. Polyaniline nanofiber films outperform their convention

counterparts in terms of sensitivity and response time due to

their higher surface to volume ratios, which provide better inter-

action between the film and the target gas molecules. According

to the best of the authors’ knowledge, this paper is the first

study on PPy nanofibers thin films investigated for hydrogen

gas sensing applications.

Here, we report the fabrication of a hydrogen gas sensor from

polypyrrole nanofibers deposited on to conductometric trans-

ducers. Conductivity changes of the sensitive films upon expo-

sure to different concentrations of hydrogen gas under variable

operating temperature is measured.

II. SYNTHESIS AND CHARACTERIZATION OF

POLYPYRROLE NANOFIBERS

A. Synthesis

All chemicals were purchased from Sigma-Aldrich.

Monomers were distilled prior to use. Bipyrrole was syn-

thesized according to established procedures [19]. Reactions

were performed in 20 ml glass vials in which pyrrole (50 mg,

0.74 mmole) and bipyrrole (3 mg, 0.023 mmol) were dissolved

in 10 mL of methanol and rapidly mixed with a separate

solution of FeCl (120 mg, 0.74 mmol) in 10 ml of deionized

water. The reaction mixture was vigorously shaken for several

seconds and then left unagitated for one day. The crude product

was purified by centrifugation and washed multiple times with

deionized water. The purified product is typically resuspended

in deionized water to a concentration of 2 g/l. The resulting

nanofibrillar morphology of PPy from this synthetic process

was found to have a statistical distribution of nanofibrillar

diameters, as shown in Fig. 1. The mechanism of polypyrrole

nanofiber formation is described in great detail elsewhere [20].

B. Scanning Electron Microscope (SEM) and Transmission

Electron Microscopy (TEM) Analysis

The morphology of PPy nanofibers was analyzed with a

JEOL JSM-6700F Field Emission Scanning Electron micro-

scope by drop casting a g/l dispersion of PPy nanofibers

onto a silicon wafer and allowing it to dry in a clean room

environment.

Transmission electron microscopy (TEM) (JEOL 100CX)

was also used to characterize the PPy nanofibers. A scanning

electron microscope (SEM) and a TEM [Fig. 2(a) and (b)]

show that a nanofibrous mat of PPy has been created. The

PPy nanofibers have an average diameter of 18 nm based on

statistical analysis of the TEMs (Fig. 1) with lengths on the

order of several micrometers.

C. Elemental Analysis

Elemental analysis (conducted with a Thermo Electron/

FlashEA 1112 Elemental Analyzer) reveals that the ratio of

C/N of the polypyrrole nanofibers (3.5) is consistent with the

theoretical C/N ratio of pure polypyrrole (3.43) and lends further

support that the observed nanofibers are indeed polypyrrole.

D. Fourier Transform Infrared Spectroscopy (FTIR) Analysis

Fourier transform infrared spectroscopy (FTIR) was used to

analyze dispersions of PPy nanofibers. FTIR spectra were ob-

tained with a JASCO FT/IR-420 using pressed potassium bro-

mide (KBr) pellets. The spectrum shown in Fig. 3 reveals the

characteristic bands of PPy nanofibers. Absorption bands are

observed at 1488 and 1558 cm (stretching vibrations of the

pyrrole ring), 917 and 1200 cm (stretching vibrations of

doped PPy), and 1045 and 1315 cm (C-N stretching vibra-

tions and C-H deformations, respectively) indicating that the

PPy nanofibers share the same molecular structure as that of es-

tablished methods for making PPy [21].

III. EXPERIMENTAL

A. Sensor Fabrication

The sensor consists of two physical layers, namely, a sensi-

tive thin film of PPy nanofibers that interact with the target gas

through redox reactions and a conductometric transducer that

transforms this reaction into an electrical signal to be captured

by a computerized monitoring system.

For the transducer fabrication, platinum was sputtered to form

the interdigitated electrode system on the front side and the

heater resistor on the backside. Polished sapphire (Al O ) was

used as a substrate because of its excellent electrical insulating

and heat conducting properties. An intermediate 30 nm thick

layer of titanium was used to improve the adhesion of the plat-

inum layer to the sapphire substrate. The structure was fabri-

cated using a standard liftoff technique. A schematic diagram

of the conductometric transducer utilized is shown in Fig. 4.

The sensing layer was formed by drop-casting a PPy

nanofiber dispersion onto the interdigital fingers of the trans-

ducer surface. Afterwards, the solution was allowed to evaporate

in a clean environment for one day. The thicknesses of the

resulting PPy nanofiber thin films were measured and found to

be m.
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Fig. 2. (a) Scanning and (b) transmission electron micrographs of PPy nanofibers.

Fig. 3. FTIR spectrum of PPy nanofibers obtained by the template-free syn-
thesis using bipyrrole as an initiator.

Fig. 4. Schematic diagram of the conductometric transducer pattern.

B. Computerized Gas Calibration System

The sensor was mounted inside an enclosed environmental

cell. Four mass flow controllers (MFCs) were connected to form

a single output that supplies gas to the cell. Teflon tubing was

used to prevent atmospheric contamination. A constant flow rate

of 0.2 liters per minute was delivered via the MFCs. The sensor

was exposed to a hydrogen gas pulse sequence with different

concentrations of hydrogen gas diluted in synthetic air at dif-

ferent temperatures.

A computerized gas calibration system was used to vary the

concentration of H gas in synthetic air. The sensor was con-

nected in series with a Keithley 2001 multimeter and a com-

puter was used to log data from the multimeter. The data was re-

lated to resistance variation over time. A programmable power

supply was connected to the gas calibration system. Elevation

Fig. 5. The dynamic sensor response towards different concentrations of H .

of the operating temperature was controlled by the same pro-

gram that supplies gas pulses to the chamber. A 5 V increment

at a time was used to raise the temperature from 22 C–100 C

gradually, with synthetic air flowing in the chamber. The sensor

was allowed to stabilize under synthetic air at each selected op-

erating temperature setting before exposure to the sequence of

hydrogen pulses diluted in synthetic air.

IV. RESULTS AND DISUSSION

The sensor was found to have a short response time of 43 s

upon exposure to a 1% H pulse with a resistance change of

312 . Fig. 5 shows the dynamic response of the sensor towards

different concentrations of hydrogen gas at room temperature

(22 C). Resistance decreases of 157, 205, 245, and 282 were

obtained for 0.06%, 0.125%, 0.25%, and 0.5% H with response

times of 75, 72, 61, and 61 s, respectively. Hence, it can be

concluded that the highest sensitivity is obtained for 1% H with

the shortest response time. Recovery time was fixed at 7 min

under synthetic air after the exposure to each hydrogen pulse.

The polypyrrole nanofiber sensor is reproducible, as shown

in Fig. 5, with the start of a new pulse sequence beginning with

0.06%. Testing with different operating temperature settings did

not produce any significant change in the sensor response time

or its selectivity towards different concentrations of H gas. Al-

though the concentration of H is doubled in consecutive pulses
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Fig. 6. The effect of elevating the operating temperature on film resistance in
synthetic air only (no H ).

the magnitude of the sensor response in Fig. 5 did not double,

likely due to saturation of the sensitive layer with hydrogen. This

is consistent with similar observation found for hydrogen sen-

sors based on other conducting polymer (such as polyaniline)

nanofibers [22].

The dynamic response is generated because of the interac-

tion between the polymer layer and the adsorbed gas molecules.

The interaction leads to a heterogeneous charge transfer reac-

tion [23] and hence to a chemical modulation of the polymer

doping level, which is directly related to the Fermi level of the

organic semiconductor [24]. This effect results in a change in

the electronic conductivity or the work function, , of the or-

ganic layer. In case of , the polarity of the response depends

on the ability of the diffusing gas molecules to exchange charge

density with the polymer matrix either by oxidation

or reduction . The gas molecules behave as electron

acceptors and donors, respectively. In Fig. 5, the resistance of

PPy nanofibers decreases during the exposure to H because

hydrogen may act as a reducing gas. Alternatively, a mecha-

nism involving the bridging of conducting polymer chains by

hydrogen has been proposed [22].

The redox reaction of PPy is responsible for large changes

in its electrical resistance [25]. Most conducting polymers are

inherent anion-exchange materials in their conducting form due

to the positive charges delocalized over their backbones. It has

been shown that PPy is a strong anion exchanger with a capacity

of mol g [26]. Equation (1) describes the redox

reaction of PPy, which causes the conductivity changes in PPy

(1)

In this work, we also studied the effect of elevating the oper-

ating temperature on the dynamic response of PPy nanofibers to-

wards different concentrations of the hydrogen gas/synthetic air

mixture. Under synthetic air only, the changes in film resistance

as a function of increasing temperature from 22 C–100 C are

shown in Fig. 6. It can be seen that the film resistance decreases,

i.e., the conductivity increases, consistent with an increase in

the number of thermally activated carriers. Fig. 7 presents the

steady-state sensor response under hydrogen exposure.

Fig. 7. Variation of the steady-state response of PPy nanofiber sensor as a func-
tion of hydrogen gas concentrations.

The nonlinearity of the curves in the temperature range

between 22 C–55 C can be described by a Langmuir type

isotherm as established in the literature [27]. At higher op-

erating temperatures, the response is almost flat, suggesting

that the material’s response saturates presumably due to the

creation of a large number of carriers with high energy moving

freely in the polymer chain, thus preventing the polymer from

exhibiting its inherent redox reaction behavior. From Fig. 7, it

is evident that the conductivity of PPy nanofibers is increasing

with temperature elevation and the proposed idea for this obser-

vation is that the conductivity increase is due to improvement

in the nanostructured film quality because of the temperature

increase. At elevated temperatures, the nanostructured film is

expected to be smoother comprising dense nanofibrous mor-

phology that has less porosity compared with the film quality at

lower temperatures, resulting in an increase of the film conduc-

tivity due to the increase of charge carriers hopping between

localized states along the polymer chains in accordance with

Mott’s Variable Range Hopping (VRH) conduction model [28].

The high conductivity of the nanostructured film degrades the

sensor response significantly at high temperatures, as shown in

Fig. 7, due to the lack of deep penetration of the gas molecules

in the bulk of the sensitive layer.

It is worthwhile to mention that humidity has been suppressed

in this study through purging the gas chamber with dry synthetic

air for 1.5 h before starting the tests. The synthetic air used con-

stitutes of nitrogen 78%, oxygen 21%, and argon 1% according

to manufacturer data sheet. Diluting hydrogen in synthetic air

may produce some H O molecules but high operating tempera-

ture maintains H O in the vapor state and purging the cell with

dry synthetic air for 7 min after gas exposure eliminates the ef-

fect of humidity. Our decision to eliminate the effect of humidity
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Fig. 8. The conductometric sensor sensitivity as a function of temperature in-
crease for three concentrations of hydrogen gas in synthetic air mixture.

in our study is based on a previous report on the effect of hu-

midity on polyaniline nanofibers that concluded that humidity

can impair the sensor response [22].

The conductometric sensor sensitivity is defined by (2)

% (2)

where is the initial resistance of the sensor under synthetic

air and is the sensor resistance during the exposure to hy-

drogen gas. In an earlier study, it was shown that variation of

the nanofiber film thickness in the range of 0.2–2.0 m did not

produce any significant change in sensor sensitivities [11]. This

observation was interpreted in terms of the high porosity of the

nanofiber films and, hence, high surface to volume ratio which

also explains the enhanced sensitivity of these films compared

with conventional bulk thin films.

We found that sensitivity of the sensor degrades with in-

creasing temperature. Fig. 8 displays the relation between

variable temperature and sensor sensitivity. It can be seen that

the best operating temperature for the polypyrrole nanofibers in

gas sensing is at room temperature.

V. CONCLUSION

Polypyrrole nanofibers have been successfully synthesized

using a template-free route. The fibrillar morphology was con-

firmed using both SEM and TEM. The average diameter of the

polypyrrole nanofibers is nm with an average length of sev-

eral micrometers. Elemental analysis revealed a C/N ratio of 3.5,

which is consistent with the theoretical value for PPy. FT-IR

confirms that the structure of the nanofibers is comparable to

bulk polypyrrole. A conductometric transducer was fabricated

on a sapphire substrate and PPy nanofibers were deposited on

its electrode. The sensor performance was analyzed after expo-

sure to different concentrations of hydrogen gas in a synthetic

air mixture. A resistance shift of 312 in the presence of a 1%

hydrogen pulse was obtained with a 43 s response time. The

sensor sensitivity is largely dependent on the operating temper-

ature, as well as the concentration of the target gas. Optimum

sensor performance was found to be at room temperature. How-

ever, the sensor maintained its systematic response towards dif-

ferent concentrations of hydrogen gas at elevated temperatures

up to 100 C despite a slow degradation in sensitivity.
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