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Abstract

In this paper we present a dynamical systems framework for analyzing multi-agent rendezvous problems

and characterize the dynamical behavior of the collective system. Recently, the problem of rendezvous has been

addressed considerably in the graph theoretic framework, which is strongly based on the communication aspects of

the problem. The proposed approach is based on set invariance theory and focusses on how to generate feedback

between the vehicles, a key part of the rendezvous problem. The rendezvous problem is defined on the positions

of the agents and the dynamics is modeled as linear first order systems. The proposed framework however is not

fundamentally limited to linear first order dynamics and can be extended to analyze rendezvous of higher order agents.

In the proposed framework, the problem of rendezvous is cast as a stabilization problem, with a set of constraints

on the trajectories of the agents defined on the phase plane. We pose the n-agent rendezvous problem as an ellipsoidal

cone invariance problem in the n dimensional phase space. Theoretical results based on set invariance theory and

monotone dynamical systems are developed. The necessary and sufficient conditions for rendezvous of linear systems

are presented in form of linear matrix inequalities. These conditions are also interpreted in the Lyapunov framework

using multiple Lyapunov functions. Numerical examples that demonstrate application are also presented.

Index Terms

Multi-agent rendezvous, cooperative dynamical systems, monotone systems, cone invariance, non-negative

matrices.

I. INTRODUCTION

Recently there has been considerable interest in multi-agent coordination or cooperative control [1]. This has

led to the emergence of several interesting control problems. One such problem is the rendezvous problem. In
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a rendezvous problem, one desires to have several agents arrive at predefined destination points simultaneously.

Cooperative strike or cooperative jamming are two examples of the rendezvous problem. In the first scenario,

multiple strikes are executed within a time interval, from different agents firing from different distances and

traveling at different speeds. In the second scenario, one or more agents need to start jamming slightly before the

strike vehicle enters the danger zone and sustain jamming until strike vehicle exits. In both the scenarios, it is

imperative that all the agents act simultaneously else the objective is not fulfilled.

The idea of rendezvous extends beyond just convergence to a static set of destination points or the origin.

Rendezvous can also entail formation flying or interception problems where the origin is effectively moving.

Interception of incoming ballistic missiles is a rendezvous problem where the origin becomes a moving target and

one of the agents is non cooperating. Formation flying is a type of rendezvous problem where multiple agents

must coordinate position and velocity. The docking of two spacecraft is a rendezvous problem that involves the

two spacecraft matching both position and velocity with the proper orientation. Air-to-air refueling is another

rendezvous problem. Additional applications arise in submersibles where robotic vehicles must converge upon a

set location, either moving or stationary.

In the current literature, several researchers have addressed problems related to path planning with timing

constraints. In 1963, Meschler [2] investigated a time optimal rendezvous problem for linear time varying systems.

He assumed that both the rendezvous point and rendezvous time are not known a priori and that determining the

minimum time at which rendezvous occurred was of interest. In principle, complicated rendezvous problems can

be formulated using optimal control theory [3] and solved numerically. However, for many vehicles, obstacles

and threats, the resulting optimization problem becomes quite complicated and the computational time increases

very rapidly with problem size. McLain et al. [4], [5] have proposed decomposition methods that breaks down

the monolithic problem into sub-problems that can be solved efficiently in a decentralized manner. Similar

decomposition methods have also being proposed in [6], [7], [8], [9], [10] that solve path planning problems with

timing constraints in a decentralized manner. Rendezvous problems solved in this framework are not amenable for

formal analysis that is required for the purposes of verification and validation and it is difficult to assert guarantees

on stability and limits of performance.

The problem of rendezvous has also been addressed as a consensus problem in the graph theoretic framework.

Lin et al. [11] apply consensus seeking to a rendezvous problem for a group of mobile autonomous agents, where

both the synchronous case and the asynchronous case are considered. The algorithm presented is provable correct,
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however does not address uncertainty in communication or dynamics. Cortes et al. [12] proposed an iterative

algorithm with guaranteed convergence and is robust with respect to communication failures. Jadbabaie et al.

[13] developed a coordination algorithm based on nearest neighbor rules. Smith et al. [14] solves the rendezvous

problem with fixed communication topology based on Euclidian curve shortening methods and is restricted to

planar rendezvous. Ren et al. [15] provides a survey of multi-agent coordination problems based on graph theoretic

framework. The strength of the graph theoretic framework is its ability to analyze the communication aspect of the

rendezvous problem. It however does not characterize the behavior of the collective system, which is necessary to

generate feedback between the vehicles. This is the prime difference between the state-of-the-art in this area and

the work presented in this paper.

In the dynamical systems literature the problem of cooperation and competition have been addressed in the context

of cone invariance. The cone is used to define a partial order on the system trajectories, which results in the

cooperative or competitive behavior of the system. In the seminal work by Hirsch [16], [17], [18], [19], [20], [21]

on systems of differential equations that are competitive or cooperative, he developed what is known as monotone

dynamical systems theory [22]. He demonstrated that the generic solution of a cooperative and irreducible system

of differential equations converges to a set of equilibria. Furthermore, the flow on a compact limit set of an

n-dimensional cooperative or competitive system of differential equations is shown to be topologically conjugate

to the flow of an n − 1 dimensional system of differential equations, restricted to a compact invariant set.

Invariant sets play an important role in many situations when the behavior of the closed-loop system is constrained

in some way. Blanchini [23] provides an excellent survey of set invariant control. Invariant sets that are cones

have found application in problems related to areas as diverse as industrial growth [24], ecological systems and

symbiotic species [25], arms race [26] and compartmental system analysis [27], [28]. In general, cone invariance

is an essential component in problems involving competition or cooperation.

In this paper we formulate rendezvous problems as cone invariance problems. Theoretical results on necessary and

sufficient conditions for rendezvous are developed in the ellipsoidal cone invariance framework. Similar results

have also been developed using polyhedral cones [29], but is not included in this paper. The rendezvous problem

is defined on the positions of the agents and the dynamics is modeled as linear first order systems. The proposed

framework however is not fundamentally limited to linear first order dynamics and can be extended to analyze

rendezvous of higher order agents. For applications with higher order vehicle dynamics, we assume that the

rendezvous trajectories generated from the first order models will be tracked reasonable closely.
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The paper is organized as follows. We first interpret rendezvous in phase plane and define the rendezvous problem

along with notions of perfect and approximate rendezvous. The problem of rendezvous is then analyzed using

ellipsoidal cones. This is followed by theoretical results and numerical examples.

II. RENDEZVOUS IN THE PHASE PLANE

In this paper we define the rendezvous problem to be the problem of determining a control algorithm that drives

multiple agents to a desired destination point. The trajectories of the agents must be such that they visit the

destination point only once and arrive at the same time.

Consider two scalar systems or agents V1 and V2, characterized by first order dynamics, as

V1 : ẋ1 = f1(x1) + g1(x1)u1 ; f1(0) = 0

V2 : ẋ2 = f2(x2) + g2(x2)u2 ; f2(0) = 0,
(1)

where xi ∈ R for i ∈ {1, 2} and the destination point being the origin. Let x1 and x2 in eqn. (1) be the spatial

coordinates of V1 and V2 on the real line. It is of interest to design control laws u1 and u2 such that V1 and V2

reach the origin of the real line at the same time. This is depicted in fig.1(a).

ORIGIN

ORIGIN

(a) Rendezvous at the origin.

ORIGIN

ORIGIN

(b) Rendezvous at a region R about origin.

Fig. 1. Rendezvous on the real line.

Clearly agents that are exponentially stable will reach the origin as time tends to infinity. In such a case the

comparison of arrival times at the origin, of two different agents becomes meaningless. Even with cooperative

control in place, if the origin is exponentially stable, rendezvous at origin will occur at infinite time in theory. From

a practical standpoint, it is desired that the agents achieve rendezvous in finite time. For this reason we relax the

definition of rendezvous to be such that rendezvous is achieved if the agents enter a certain neighborhood around

the origin, at the same time. We define this region to be the rendezvous region R.

R = {x ∈ R : −δ ≤ x ≤ δ} for some δ > 0
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Therefore a valid rendezvous is one in which agents enter R at the same time. This is illustrated in fig. 1(b). In

Section II-B we will relax this definition for agents entering R at approximately the same time.

A. Rendezvous Interpretation on Phase Plane

Rendezvous is best visualized on the phase plane. To interpret rendezvous for first order systems in eqn.(1) in the

phase plane, we define the following

U1 = {(x1, x2) : −δ ≤ x1 ≤ δ}

U2 = {(x1, x2) : −δ ≤ x2 ≤ δ}

S = U1 ∩ U2

F = (U1 ∪ U2) − (U1 ∩ U2)

W = (R2 − (U1 ∪ U2)).

(2)

We refer to S as the rendezvous square and F as the forbidden region.

A

B

C

Forbidden Regions

Rendezvous Square

Fig. 2. Perfect rendezvous in phase plane.

With reference to fig.2, the strip on x2-axis is U1, the strip on x1-axis is the region U2 and the rendezvous square

is the destination set where the trajectories must converge to. The rendezvous square S is the set of configurations

with both agents in the rendezvous region R. The rendezvous problem is well-posed if the initial conditions of the

two agents satisfy

(x1(0), x2(0)) ∈ W, (3)

i.e. both the agents start far from the rendezvous region. If the condition in eqn. (3) is violated either V1, or V2,
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or both start from within the rendezvous region R. In fig.2 trajectory B starts from an invalid initial point. The

forbidden region is the set of points F where one agent enters the rendezvous region much before the other. In

fig.2, trajectory C crosses the forbidden region which implies that the agent V1 with state x1 comes within the

rendezvous region prior to the final entry. Such trajectories are not acceptable, i.e. the trajectories must satisfy

(x1(t), x2(t)) /∈ F ∀t. (4)

Trajectory A is an example of two agents, with valid initial conditions, achieving rendezvous as desired.

B. Perfect and Approximate Rendezvous

With constraint defined in eqn.(4), the only way trajectories can enter S is through the corners of the rendezvous

square, i.e. through one of the points

(δ, δ), (δ,−δ), (−δ, δ) and (−δ,−δ), (5)

as shown in fig.2.

This implies that the agents are constrained to enter S at precisely the same time, which is the time the trajectory

meets one of the four corners of S. In most applications it is acceptable if agents V1 and V2 reach the rendezvous

region within a certain time interval ∆T of each other. We now refer to the case when ∆T is zero as ideal or

perfect rendezvous and the case when ∆T is small as real or approximate rendezvous.

Since the phase plane does not reveal time explicitly, we use a related measure ρ to characterize rendezvous. We

will first define ρ, its relation to ∆T will be explained thereafter. To define ρ, we first introduce tV1
and tV2

to be

the arrival times of agents V1 and V2 at the boundary of the rendezvous region R, i.e.

tV1
= inf [ t | x1(t) ∈ U1 ]

tV2
= inf [ t | x2(t) ∈ U2 ] .

Clearly, ∆T is given by

∆T = |tV1
− tV2

| . (6)

Therefore the time ta at which the trajectory enters the region U1 ∪ U2 in the phase plane is given by

ta = min(ta1
, ta2

).

For a given trajectory x(t) = [x1(t) x2(t)]
T

, ρ can be defined to be the maximum ratio of the distance from the
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origin of the two agents, after one of them has reached the rendezvous region R. It can be expressed as

ρ =
max(|x1(ta)|, |x2(ta)|)
min(|x1(ta)|, |x2(ta)|)

=
max(|x1(ta)|, |x2(ta)|)

δ
. (7)

The parameter ρ can also be defined using ||.||1 or ||.||2 as well,

1-norm : ρ = |x1(ta)|+|x2(ta)|+···+|xn(ta)|
nδ ,

2-norm : ρ =

√
x2

1
(ta)+x2

2
(ta)+···+x2

n(ta)√
nδ

.

For the rest of the paper, rendezvous will always be specified by δ and a design measure of approximate rendezvous,

ρdes. In other words we will call a given rendezvous to be successful, if all the trajectories satisfy

ρ ≤ ρdes. (8)

This notion of approximate rendezvous is illustrated in fig.3. Whenever a trajectory starting in the first quadrant

enters the region U1 ∪ U2 it is constrained to lie within the angle generated by joining the points

(δ, δρdes), (0, 0), and
(

δρdes, δ
)

.

There exists similar constraints for trajectories originating in the other quadrants. The introduction of ρ in the

definition of rendezvous allows trajectories to enter the forbidden region F as long as they remain within the above

mentioned angle set by the design constraint. By the definition of ρ in eqn. (7) it is clear that for a given trajectory

ρ ≥ 1. Therefore a specification of rendezvous is meaningful if and only if

ρdes ≥ 1. (9)

Note that for perfect rendezvous the specification becomes ρdes = 1.

In the worst case, at the time of entry of the first agent, ta, the distances of the two agents from the origin can

differ by δ(ρdes − 1). By ensuring that the trajectories remain within the bold lines in fig.3, upon entry in the

region U1 ∪ U2 we can make sure that the two agents enter the rendezvous region R within a small time ∆T of

each other. Thus the constraint in eqn.(8) helps keep ∆T small.

In fig.3 both trajectories A and B fail to achieve perfect rendezvous as they do not enter the rendezvous square S

from its four corners. On the basis of eqn.(8), trajectory B is unacceptable. Trajectory A is acceptable since it lies

within the angle defined by the bold lines.
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A

Forbidden Regions

Rendezvous Square

B

Fig. 3. Approximate rendezvous in phase plane.

III. LYAPUNOV FUNCTIONS AND MULTI-AGENT RENDEZVOUS

In this section we motivate the use of control Lyapunov functions (CLFs) to solve the rendezvous problem. Consider

the Lyapunov function candidate

V (x1, x2) = x2
1 + x2

2 + (x2
1 − x2

2)
2. (10)

Ensuring V̇ < 0 guarantees that all the three terms in eqn. (10) goes to zero as time tends to infinity. If x1 and

x2 denote the spatial coordinates of agents V1 and V2 and the origin is the rendezvous point, the first two terms

ensure that they converge to the origin and the third term ensures that the agents reach the origin simultaneously.

This is demonstrated by the following example.

Let the dynamics of the agents be given by

ẋ1 = u1

ẋ2 = u2.
(11)

It is easy to verify that V (x) in eqn. (10) is a CLF. Sontag in [30] proposed a formula for producing a stabilizing

controller based on the existence of a CLF V (x). Because of its guarantee of stabilization and of providing a

convenient relationship between closed-loop trajectories and CLF level sets, Sontag’s formula is used here. For

nonlinear systems with affine input such as

ẋ = f(x) + g(x)u,
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Sontag’s formula can be written as

us =







−Vxf+
√

(Vxf)2+q(x)VxggT V T
x

VxggT V T
x

gT V T
x Vxg 6= 0

0 Vxg = 0
(12)

where Vx = ∂V (x)
∂x .

For the system in eqn. (11) and control derived from V (x) in eqn. (10) using Sontag’s formula, the phase portrait

is shown in fig.4(a).
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−8

−6

−4

−2

0
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6

8

10

x
1

x
2

(a) (b)

Fig. 4. Rendezvous using control Lyapunov functions.

The term (x2
1 − x2

2)
2 in eqn.(10) ensures that the agents become equidistant from the origin by converging them

to the lines x1 = ±x2 prior to their arrival at the origin. In this sense, rendezvous is achieved for any ρdes and δ.

fig.4(b) shows the phase portrait for the same system but with Lyapunov function defined as

V (x1, x2) = (x2
1 + x2

2)
[

a + be−8x2

1
x2

2
/d2(x2

1
+x2

2
)2

]

. (13)

Rendezvous is achieved by V1 and V2 in fig. 4(b) only under restricted values of ρdes for a given δ. In one sense,

however, rendezvous achieved by V1 and V2 in fig. 4(b) is ”better” than that in fig. 4(a) because the agents are

equidistant from the origin only locally. Rendezvous in fig. 4(a) forces the agents to be equidistant from the origin

even at large distances, which may not be necessary.

Thus, it is possible to implicitly satisfy the constraints on ρ, as defined in eqn. (8), if the Lyapunov function has a

certain form. For valid rendezvous, trajectories in phase plane should not cross either axes. If V̇ is negative definite

for all points in the phase plane and trajectories are constrained to be within the quadrant they start from, outside

S, the level sets are expected to have clover leaf appearance as shown in fig.5(a). Figure 5(a) shows the level

sets of the Lyapunov function defined in eqn.(13) and the corresponding Lyapunov surface is shown in fig.5(b).
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The level set of these control Lyapunov functions provide insight into why rendezvous is achieved for these cases.
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(a)
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(b)

Fig. 5. Desired Lyapunov surface and its level sets.

With control using Sontag’s formula for the system in eqn.(11), rendezvous is achievable because trajectories are

constrained to be normal to the level set contours. Controllers based on CLF’s, whose level sets are similar to those

in fig. 5(a), should drive agents for system eqn.(11) to a successful rendezvous.

IV. CONE INVARIANCE AND RENDEZVOUS

The system trajectories shown in fig.4(a) and fig.4(b) render a wedge-like region invariant. For the Lyapunov function

given by eqn.(10), the invariant wedge degenerates to a line as shown in fig.6(a). For the Lyapunov function given

by eqn.(13), the invariant region is a wedge as shown in fig.6(b).

Invariant Line

(a) Invariant line.

Invariant Wedge

(b) Invariant wedge.

Fig. 6. Invariant regions rendered by system trajectories.

Therefore, the only admissible trajectories for approximate rendezvous are those that arrive at the origin while

remaining in the wedge-like region I as shown in fig.7(a).
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Invariant Region

(a) Region I in 2 dimensional state space.

A

Forbidden Regions

Rendezvous Square

B

C

(b) Possible trajectories in I.

Fig. 7. Cone invariance and rendezvous.

For n agents achieving rendezvous, the region I becomes a cone in n-dimensional phase space. Depending on the

norm used to define ρ in eqn.(7), the cone is either polyhedral or ellipsoidal. For ∞-norm, as is in eqn.(7), the

cone is a polyhedral cone with 2n − 2 sides, a polyhedral cone with n sides for 1-norm or an ellipsoidal cone for

2-norm. This is shown in fig.8.

Polyhedral Cone 

with n-sides

Quadratic Cone in n-dimension Polyhedral Cone

with 2n-2 sides

n constraints 1 constraint 2n-2 constraintsComplexity

Desired region 

of invariance

Norm

Fig. 8. Region I in 3 dimensional state space.

Cone invariance alone does not guarantee that the agents reach the origin. Figure 7(b) shows trajectories A, B and

C. Trajectory A achieves cone invariance but does not reach the origin. Trajectory B reaches the origin but escapes

the cones. Trajectory C is the only trajectory that reaches the origin and stays within the cone. We are interested

in trajectories such as C.

V. ELLIPSOIDAL CONE INVARIANCE AND RENDEZVOUS

In this section we analyze the rendezvous problem in the framework of ellipsoidal cone invariance. We first

present mathematical preliminaries on ellipsoidal cones and related invariance theory. Formulation of the rendezvous

problem as a cone invariance problem is then presented. This is followed by necessary and sufficient conditions for
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rendezvous in one and two dimensions. The controller synthesis problem is presented next. The section concludes

with numerical examples that demonstrate application of the theory.

A. Mathematical Preliminaries

1) Ellipsoidal Cones: An ellipsoidal cone in R
n is the following,

Γn = {ξ ∈ R
n : Kn(ξ,Q) ≤ 0, ξT un ≥ 0}, (14)

where Kn(ξ,Q) = ξT Qξ, Q ∈ R
n,n is a symmetric nonsingular matrix with a single negative eigen-value λn and

un is the eigen-vector associated with λn.

The boundary of the cone Γn is denoted by ∂Γn and is defined by

0 6= ξ ∈ ∂Γn ≡ {ξ ∈ Γn : Kn(ξ, Q) = 0}.

The outward pointing normal is the vector Qξ for ξ ∈ ∂Γn.

Theorem 1 (2.7 in [31]): If Γn is an ellipsoidal cone, then there exists a nonsingular transformation matrix M ∈

R
n,n such that

(M−1)T QM−1 =





P 0

0 −1



 = Qn

where P ∈ R
n−1,n−1, P > 0 and P = P T .

Let the transformed state be x = Mξ. The ellipsoidal cone in x is therefore,

Γn = {x :





w

z





T 



P 0

0 −1









w

z



 ≤ 0} (15)

where x = (w z)T , w ∈ R
n−1, z ∈ R.

An ellipsoidal cone in three dimension is shown in Fig.(9). The axis of the cone is the eigen-vector associated with

the z axis.

2) Ellipsoidal Cone Invariance: Consider a linear autonomous system

ξ̇ = Aξ. (16)

A cone Γn is said to be invariant with respect to the dynamics in eqn.(16) if ξ(t0) ∈ Γn ⇒ ξ(t) ∈ Γn, ∀t ≥ t0,

i.e. if the system starts inside the cone, it stays in the cone for all future time. Such a condition is also known as

exponential non-negativity, i.e. eAtΓn ∈ Γn.
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Fig. 9. Ellipsoidal cone in 3-dimension.

It is well known that certain structure in the matrix A imposes constraints on eAt [32]. The most well known result

is the condition of non-negativity on A which states that if Aij ≥ 0 for i 6= j, then non-negative initial conditions

yield non-negative solutions. Schneider and Vidyasagar [33] introduced the notion of cross-positivity of A on Γn

which was shown to be equivalent to exponential non-negativity. Meyer et al. [34] extended cross-positivity to

nonlinear fields.

Let us characterize p(Γn) to be the set of matrices A ∈ R
n,n which are exponentially non-negative on Γn. It is

defined by the following theorem.

Theorem 2 (3.1 in [31]): Let Γn be an ellipsoidal cone as in eqn.(15). Then,

p(Γn) = {A ∈ R
n,n :< Aξ, Qξ >≤ 0, ∀ξ ∈ Γn}. (17)

Theorem 2 states that A is such that the flow of the associated vector field is directed towards the interior of Γn,

i.e. the dot product of the outward normal of Γn and the field is negative at the boundary of the cone. This leads

to the result on the necessary and sufficient condition for exponential non-negativity of ellipsoidal cones.

Theorem 3 (3.5 in [31]): A necessary and sufficient condition for A ∈ p(Γn) is that there exists γ ∈ R such that,

QnÂ + ÂT Qn − γQn ≤ 0.

where Qn is defined in Theorem 1 and Â = MAM−1.

Proof Please refer to pg.162 of [31].

3) Monotone Dynamical Systems: A dynamical system

ẋ = f(t, x)
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is monotone [22] if x0 ≤ x1 ⇒ x(t, t0, x0) ≤ x(t, t0, x1), where x(t, t0, x0) is the solution of the differential

equation and the inequality is component-wise. For linear systems positivity (or negativity) invariance implies

monotonicity [35]. Therefore, theorem 3 is also necessary and sufficient conditions for monotonicity.

We define a partial order with respect to the cone Γn as ≤Γn
, defined by

x1 ≤Γn
x2 ⇔ Kn(x1, Q) ≤ Kn(x2, Q)

where Kn is defined in eqn.(14). Other relations such as <Γn
,≥Γn

and >Γn
can be similarly defined.

For linear systems, invariance of the set Γn is equivalent to monotonicity with respect to Γn, i.e.

A ∈ p(Γn) ⇔ x0 ≤Γn
x1 ⇒ x0e

A(t−t0) ≤Γn
x1e

A(t−t0), t ≥ t0.

B. Rendezvous in One Dimension

Given a cone Γn, as in eqn.(15) and dynamics as in eqn.(16), we present conditions for stability and invariance.

We transform dynamics as

x = Mξ ⇒ ẋ = MAM−1x = Âx.

With respect to the partition x = (w z)T , the dynamics can be written as





ẇ

ż



 =





Aww Awz

Azw azz









w

z



 , (18)

where azz is written in small case to emphasize that it is a scalar.

For cone invariance, theorem 3 implies ∃γ ∈ R such that





w

z





T






AT
wwP + PAww − γP PAwz − AT

zw

AT
wzP − Azw γ − 2azz











w

z



 < 0.

For stability, consider the Lyapunov function V (w, z) = wT Pw + z2. It is a valid Lyapunov function since P > 0.

Therefore, for stability V̇ (w, z) < 0, which implies





w

z





T






AT
wwP + PAww PAwz + AT

zw

AT
wzP + Azw 2azz











w

z



 < 0.
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Therefore, for stability and cone invariance we have the following matrix inequalities,







AT
wwP + PAww PAwz + AT

zw

AT
wzP + Azw 2azz






< 0 (19)







AT
wwP + PAww − γP PAwz − AT

zw

AT
wzP − Azw γ − 2azz






< 0 (20)

A simplified sufficient condition is expressed in the following theorem, which also addresses the feasibility of the

LMIs in eqn.(19,20).

Theorem 4: A sufficient condition for cone invariance and stability is given by the following relations,

AT
wwP + PAww − 2azzP < 0

and

azz < −max(||g−||, ||g+||),

where g− = PAwz − AT
zw and g+ = PAwz + AT

zw.

Proof

Sufficiency for Stability

Define matrices

M1 =





AT
wwP + PAww 0

0 2azz



 , M2 =





0 g+

(g+)T 0



 .

For stability we need to show M1 + M2 < 0. Theorem 4 implies λmax(M1) = 2azz , 2azz < −||g+||, and

λmax(M2) = ||g+||. Therefore,

λmax(M1) + λmax(M2) < 0

⇒ λmax(M1 + M2) < 0

⇒ M1 + M2 < 0

Hence proved.

Sufficiency for Cone Invariance

Define matrices

M3 =





AT
wwP + PAww − γP 0

0 γ − 2azz



 , M4 =





0 g−

(g−)T 0



 .

For cone invariance we need to show M3 + M4 < 0. Theorem 4 implies λmax(M3) = 2azz , 2azz < −||g−||, and

λmax(M4) = ||g−||. Following the steps in the proof for stability, we can arrive at the conclusion that M3+M4 < 0.
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Hence proved.

Theorem 4 leads to the following corollary.

Corollary 1: Trajectories originating outside the cone will enter the cone in finite time.

Proof

The cone Kn(ξ,Q) can be written as Kn(x,Qn). Condition for cone invariance implies

K̇n(x,Qn) < γKn(x,Qn).

For x outside the cone, Kn(x, Qn) > 0. Stability and cone invariance implies γ < 2azz < 0, which implies

K̇n(x,Qn) < 0 outside the cone. Hence proved.

Initial conditions

outside the cone

Trajectories entering 

the cone 

Trajectories converging

to the origin.

Fig. 10. Cone as an attractor. If the eigenvalues are real the trajectories will converge radially to the origin. For complex eigenvalues, the

trajectories will converge spirally.

Example 1: Figure(10) illustrates trajectories for the system













ẋ1

ẋ2

ẋ3













=













−0.9713 0.0185 0.5813

0.5813 −0.9713 0.0185

0.0185 0.5813 −0.9713

























x1

x2

x3













. (21)

We observe that trajectories originating outside the cone, enter the cone. The eigenvalues of the system in

eqn.(21) are -0.3715, -1.2712 + 0.4874i, -1.2712 - 0.4874i. These correspond to the dynamics

of trajectories z(t), w1(t) and w2(t). The conditions for stability and cone invariance imply that the decay rate of

w(t) = [w1(t) w2(t)] is faster than that of z(t), which is observed here.
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As observed, trajectories with initial conditions outside the cone, enter the cone. Such trajectories will be valid

rendezvous trajectories if they enter the cone before intersecting the forbidden region F , as defined in eqn.(2), for

n-dimensions.

To characterize the set of valid initial conditions for which rendezvous is achieved, let us define hyperplanes

Hi = {x : xi = δ, i = 1, · · · , n}

and half space intersections

Si = {x : xj ≥ δ, j 6= i, j = 1, · · · , n}.

Let Ei be the ellipse segments defined by

Ei = Hi ∩ Si ∩ ∂Γn.

Let T be the closed curve obtained by the union of the ellipse segments, i.e.

T =

n
⋃

i=1

Ei.

Figure 11(a) shows the curve T for three agents, with δ = 1.

Let ∂Ω be the surface defined by

∂Ω = {x(t0) : x(t0)e
A(t−t0) ∈ T , for some t ≥ t0}.

Figure 11(b) shows the surface ∂Ω for three agents, with δ = 1.

Therefore, the set of all initial conditions x0 = x(t0), for which trajectories enter Γn before entering F is given by

Ω = {x(t0) : x(t0) ≤Γn
∂Ω}.

Clearly, for initial conditions outside Ω, the definition of approximate rendezvous is violated and can be

demonstrated as follows. Monotonicity implies, for all x(t0) >Γn
Ω, the solution satisfies x(t0)e

A(t−t0) >Γn
Ω.

Let ta = inft x(t0)e
A(t−t0) ∈ F . Therefore, x(t0)e

(ta−t0) >Γn
Ω, i.e. x(t0)e

A(t−t0) never enters the cone Γn before

entering F .

The set Ω will include initial conditions originating from F . Therefore, the set of valid initial conditions for which

rendezvous is achieved is given by

ΩR = Ω ∩W,
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where W is defined in eqn.(2).

(a) The contour T . (b) The surface ∂Ω.

Fig. 11. Set of initial conditions for which trajectories enter the cone before entering the forbidden region. Figure 11(a) shows the closed

curve T , which is the intersection of the hyperplanes Hi, the half space intersections Si and the surface of the cone Γn. The surface ∂Ω is

shown in fig.11(b), which defines the set of all initial conditions for which trajectories enter the cone through the closed curve T .

Next we characterize matrices A ∈ p(∂Γn) where

p(∂Γn) := {A ∈ R
n,n : eAt(∂Γn) ∈ ∂Γn∀t ≥ 0}.

The necessary and sufficient conditions for A ∈ p(∂Γn) can be derived by setting vector field tangent to the locally

smooth surface of the cone, ∂Γn/{0}. As an LMI constraint this is equivalent to







AT
wwP + PAww − γP PAwz − AT

zw

AT
wzP − Azw γ − 2azz






= 0. (22)

This leads to the following result.

Theorem 5: Sufficient condition for rendezvous, defined by invariance of ∂Γn is given by the following:

AT
wwP + PAww = 2azzP (23)

AT
wzP = Azw (24)

azz <
−||Azw||

λmax





P 0

0 1





(25)

Proof:

Sufficiency for Invariance of ∂Γn : It is straight forward to see eqn.(23, 24) imply eqn.(22).
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Sufficiency for Stability : Given eqn.(25) is true,

⇒ azzλmax





P 0

0 1



 + ||Azw|| < 0

⇒ λmax





azzP 0

0 azz



 + λmax





0 AT
zw

AT
zw 0



 < 0

⇒





azzP AT
zw

Azw azz



 < 0

⇒





AT
wwP + PAww PAwz + AT

zw

AT
wzP + Azw 2azz



 < 0

which is the condition for stability. Hence proved.

Theorem 5 results in the following corollary.

Corollary 2: The surface of the cone ∂Γn is an attractor.

Proof

Condition for invariance of ∂Γn implies

K̇n(x, Qn) = γKn(x,Qn).

For x outside the cone, Kn(x,Qn) > 0. Stability and cone invariance implies γ = 2azz < 0 which implies

K̇n(x, Qn) < 0 outside the cone. Similarly, for x inside the cone, Kn(x,Qn) < 0. γ < 0 implies K̇n(x,Qn) > 0.

Hence proved.

C. Rendezvous in Two Dimensions

Here we consider rendezvous of n agents in two dimensions. Let the state of each agent be (ξxi
, ξyi

), i = 1, · · · , n.

Collectively their dynamics can be written as





ξ̇x

ξ̇y



 =





Aξxx
Aξxy

Aξyx
Aξyy









ξx

ξy



 , (26)

where ξx = (ξx1
· · · ξxn

)T and ξy = (ξy1
· · · ξyn

)T and Aξxx
, Aξxy

, Aξyx
, Aξyy

∈ R
n×n.

In this work we solve the rendezvous problem in two dimension as two separate rendezvous problems in one

dimension. We assume that cones ξT
x Qξx

ξx < 0 and ξT
y Qξy

ξy < 0, each satisfying eqn.(14), are given. We are

interested in determining necessary and sufficient conditions for cone invariance and stability.
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For ellipsoidal cones ξT
x Qξx

ξx < 0 and ξT
y Qξy

ξy < 0, there exists transformation Rx and Ry respectively such that

Qc
x = (R−1

x )T Qξx
R−1

x =





Px 0

0 −1



 ,

Qc
y = (R−1

y )T Qξy
R−1

y =





Px 0

0 −1



 ,

where Px, Py > 0 ∈ R
(n−1)×(n−1) and the superscript “c” on Qx and Qy denotes cones.

Let the transformed states be

x = Rxξx,

y = Ryξy.

The system dynamics with respect to the transformed states (x, y) can be written as





ẋ

ẏ



 =





Rx 0

0 Ry









Aξxx
Aξxy

Aξyx
Aξyy









R−1
x 0

0 R−1
y









x

y





=





Axx Axy

Ayx Ayy









x

y





Using theorem (3), the necessary and sufficient conditions for cone invariance with respect to trajectories x(t, t0, x0)

and y(t, t0, y0) are





AT
xxQc

x + Qc
xAxx − γxQc

x Qc
xAxy

AT
xyQ

c
x 0



 < 0, (27)





0 AT
yxQc

y

Qc
yAyx AT

yyQ
c
y + Qc

yAyy − γyQ
c
y



 < 0, (28)

for some γx ∈ R and γy ∈ R.

For stability, define

Qs
x =





Px 0

0 1



 , Qs
y =





Py 0

0 1



 ,

where the superscript “s” on Qx and Qy denotes stability.

Therefore V (x, y) = xT Qs
xx + yT Qs

yy is a valid Lyapunov function. Stability with respect to V (x, y) implies





AT
xxQs

x + Qs
xAxx Qs

xAxy + AT
yxQs

y

Qs
yAyx + AT

xyQ
s
x AT

yyQ
s
y + Qs

yAyy



 < 0 (29)
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Therefore, equations (27, 28, 29) are the necessary and sufficient conditions for rendezvous in two dimensions. If

the dynamics of ξx and ξy are decoupled, then the conditions simplify to the following,

AT
xxQc

x + Qc
xAxx − γxQc

x < 0,

AT
yyQ

c
y + Qc

yAyy − γyQ
c
y < 0,

AT
xxQs

x + Qs
xAxx < 0,

AT
yyQ

s
y + Qs

yAyy < 0.

(30)

Following the treatment presented in this section, these results can be easily extended to define necessary

and sufficient conditions for rendezvous in higher dimensions. Note that the approach presented, solves higher

dimensional rendezvous problems as separate rendezvous problems in each dimension, which is restrictive.

Example 2: Consider the following first order dynamics in (x, y) plane of three agents,





ẋ

ẏ



 =

































−1.4596 0.2140 0.6043 0.0000 0.0000 0.0000

0.6043 −1.4596 0.2140 0.0000 0.0000 0.0000

0.2140 0.6043 −1.4596 0.0000 0.0000 0.0000

0.0000 0.0000 0.0000 −2.3186 0.0439 1.2807

0.0000 0.0000 0.0000 1.2807 −2.3186 0.0439

0.0000 0.0000 0.0000 0.0439 1.2807 −2.3186





































x

y



 .
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(a) Initial conditions (5, 35), (50, 10), (50, 60).

0 2 4 6 8 10 12 14 16 18 20
0

0.2

0.4

0.6

0.8

1

1.2

1.4

ETA (sec)

Time (sec)

Vehicle 1

Vehicle 2

Vehicle 3

(b) Expected arrival times.

Fig. 12. Rendezvous of three agents in (x, y) plane. Agents modeled as first order systems in x and y.

Observe that the dynamics in x is decoupled from y. Figure 12(a) shows the trajectories of the three agents in (x, y)

plane achieving rendezvous with different sets of initial conditions. The trajectories are time stamped to indicate

their location with respect to time. In fig.12(a), we observe that the agents start far away from each other. Vehicles

1, 2 and 3 start from points (5, 35), (50, 10), (50, 60) respectively. At time T = 1.00 the trajectories are close to

each other. At T = 2.00 the trajectories overlap. Of particular interest is the trajectory of vehicle 1, which moves
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away from the origin to meet the other agents so that rendezvous is possible. Figure 12(b) shows expected time

of arrival (ETA) as a function of time. ETA is computed by dividing the instantaneous distance from origin by the

instantaneous average velocity. Observe that the initial ETA of the vehicles further away (Vehicle 2 and 3) is lower

than vehicles closer to the origin (Vehicle 1). This is due to the model of the position dynamics assumed, where

the velocity of the vehicle is linearly proportional to the distance from the origin. In this example we observe that

the ETA trajectories for all the vehicles begin to overlap as they approach the origin, indicating same arrival times

at the origin.

D. Rendezvous in Lyapunov Framework

In this section we derive necessary and sufficient conditions for rendezvous in the Lyapunov framework. We first

consider rendezvous in one dimension, followed by rendezvous in two dimensions.

1) Rendezvous in One Dimension: Consider two Lyapunov functions Vw(w) = wT Pw,P > 0 and Vz(z) = zT z.

The cone Γn can then be represented as

Γn = {





w

z



 : Vw(w) < Vz(z)}.

Conditions for rendezvous in the Lyapunov framework is then given by the following theorem.

Theorem 6: Necessary and sufficient conditions for rendezvous in terms of Lyapunov functions Vw and Vz are

Cone Invariance : V̇w − V̇z ≤ γ(Vw − Vz), γ ∈ R (31)

and

Stability : V̇w + V̇z < 0. (32)

Equality in eqn.(31) implies invariance of ∂Γn

Proof: These conditions are obtained by rewriting equations (20) and (19) in terms of the Lyapunov functions and

their derivatives.

2) Rendezvous in Two Dimensions: To analyze rendezvous in two dimensions in the Lyapunov framework, we first

partition the states as x = (wx zx) and y = (wy zy). Define Lyapunov functions

Vwx
= wT

x Pxwx

Vzx
= z2

x

Vwy
= wT

y Pywy

Vzy
= z2

y



22

Theorem 7: Necessary and sufficient conditions for rendezvous in two dimensions can be written in terms of these

four Lyapunov functions as follows,

V̇wx
− V̇zx

≤ γx(Vwx
− Vzx

), γx ∈ R,

V̇wy
− V̇zy

≤ γy(Vwy
− Vzy

), γy ∈ R,

V̇wx
+ V̇zx

< 0,

V̇wy
+ V̇zy

< 0.

(33)

Proof: These conditions are obtained by rewriting the equations (27, 28, 29) in terms of the Lyapunov functions

and their derivatives.

E. Controller Design Problem

Let us assume that there are n agents for which rendezvous is desired. Let us also assume that the agents are

modeled as first order LTI systems. Collectively, they can be written as

ξ̇ = Aξ + Bu. (34)

where A and B are matrices of appropriate dimensions and (A,B) is controllable. We also assume that we are

given an ellipsoidal cone Γn as defined by eqn.(15), where Q depends on the specified measure of rendezvous ρdes.

Therefore, given a cone Γn and n agents modeled as first order LTI systems, we are interested in determining

control u(t) such that the following are true,

ξ(t0) ∈ Γn ⇒ ξ(t) ∈ Γn, ∀t ≥ t0, and

ξ(t) → 0 as t → ∞
(35)

If we consider a full state feedback control framework, then

u = Fξ = FM−1x

and the closed-loop system is therefore

ẋ = M(A + BF )M−1x. (36)

which can be represented in the form as in eqn.(18).

Assuming that the pair (A,B) in eqn.(34) is controllable, the controller synthesis problem is to determine F such

that the LMI constraints in eqn.(19,20) are feasible. If the states are not available for feedback, the current approach

can be extended to incorporate any linear observer based controller design methodology.

For higher order dynamics, the controller synthesis problem is not straight forward. Consider agents whose dynamics
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is represented by the linear second order differential equation

miξ̈i(t) + diξ̇i(t) + kiξi(t) = ui(t),

where mi, di and ki are mass, damping and stiffness respectively. In matrix-vector notation the dynamics can be

represented by

d

dt





ξi

ξ̇i



 =





0 1

− k
m − d

m









ξi

ξ̇i



 +





0

1
m



ui.

For n agents the collective dynamics can be represented by the equation





ξ̇

η̇



 =





0 IN

Aηξ Aηη









ξ

η



 +





0

Bη



u, (37)

and we assume that the system is controllable.

For dynamical systems given by eqn.(37), the cone Γn defined on position states ξ is not closed-loop holdable

(pg.65 [36]). A cone Γn is said to be closed-loop holdable if there exists control u(t) such that the condition of

exponential non-negativity can be enforced, i.e.

∃u(t) : K̇n(ξ,Q) < 0, ∀ξ ∈ ∂Γ.

For the system in eqn.(37) and the cone in eqn.(14),

K̇n(ξ,Q) = ξ̇T Qξ + ξT Qξ̇

= ηT Qξ + ξT Qη,

which is independent of u. Therefore, the condition of exponential non-negativity cannot be enforced by any choice

of u.

However, it is possible to design tracking controllers, where reference ξr(t) is first determined using first order

models and then u(t) is determined to track the reference ξr(t). An example using this two degree of freedom

controller design is presented in the next section.

VI. EXAMPLE

In this section we consider rendezvous of three agents in the (x, y) plane. The open loop dynamics of the x and

y positions of each agent are modeled as second order systems, i.e.





ẋi

v̇xi



 =





0 1

−1 −1









xi

vxi



 +





0

1



uxi
, (38)
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ẏi

v̇yi



 =





0 1

−1 −1









yi

vyi



 +





0

1



uyi
. (39)

Since the x and y dynamics of the agents are second order systems, we first solve the rendezvous problem using

the first order dynamics and eqn.(20),(19) to generate reference trajectories xr
i (t), y

r
i (t), for each agent. Full state

feedback is assumed in determining the reference trajectories, i.e. every agent has position information of all the

agents. The feedback structure of the outer-loop (reference generation) structure is shown in Fig.13. Observe that

the reference trajectory is generated in a decentralized manner.

Agent 1

Agent 2

Agent 3

Rendezvous 

Reference Trajectory 

for  Agent 1

Rendezvous 

Reference Trajectory 

for  Agent 2

Rendezvous 

Reference Trajectory 

for  Agent 3

Fig. 13. Feedback structure of the outer-loop.

The reference trajectories are then tracked using a separately designed tracking controller. The inner-loop (tracking)

structure is shown in fig.(14) for tracking of reference xr(t). The tracking controller is identical for both xr(t) and

yr(t) and also for every agent.

+

Fig. 14. Feedback structure of the inner-loop.

Example 3: Simulation with Tracking Controller

Figure 15(a) shows the trajectories of the three agents. The initial conditions for position of the three agents are

(5, 35), (50, 10) and (50, 60) respectively. The initial velocities of the three agents along x, y are (10, 1), (−10, 20)

and (1,−30) respectively. We observe that the agents achieve rendezvous with a reasonably good position tracking

controller. The expected arrival times of the agents are shown in fig. 15(b). We observe that the ETA of all the

vehicles increase initially. This is due to the mismatch in the velocity of the system and the required velocity for
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rendezvous. The ETAs become identical as the vehicles approach the origin. This is also visible from the plots in

fig.12(a). We observe that the trajectories are close to each other at T = 10s and become identical at T = 20s.
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(a) Initial conditions (x, y): (5, 35), (50, 10), (50, 60). Ini-

tial conditions for (vx, vy): (10, 1), (−10, 20) and (1,−30).
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(b) Estimated arrival times.

Fig. 15. Rendezvous of three agents with second order dynamics in (x, y) plane. Reference position trajectories are generated using first

order dynamics. Position tracking controller is then used to track the reference.

Example 4: Simulation with Tracking Controller & Uncertainty in Vehicle Behavior

Figure 16(a) shows the same simulation as the previous example, but with vehicle 3 making an unexpected loop in

the time interval of T = [5, 15] seconds. We observe that the other vehicles modify their trajectories accordingly

to achieve rendezvous. This is particularly visible in the ETA plots as shown in fig.16(b). Due to the diversion

of vehicle 3, its ETA increases considerably. ETA of the other vehicles also increase appropriately so that they

achieve rendezvous. Note that the first peak in the ETA of vehicles 1 and 2 are due to the mismatch in the velocity

as in the previous example. The second peak is due to the deviation of vehicle 3 from the reference trajectory.

Once again the ETAs become identical as the vehicles approach the origin. Figure 16(a) shows that the vehicle

trajectories come close to each other by T = 20s and become identical at T = 30s.

The above examples demonstrate that the proposed method is also applicable to second order systems with suitably

designed position tracking controller. The method is also robust to changes in the vehicle behavior.

VII. COMMUNICATION ISSUES

In the proposed method we have assumed full state feedback for controller synthesis. In reality, the communication

topology may not allow such a luxury. In such cases, state estimations are required. Recent developments on

multi-agent consensus can be applied to estimate the positions of the agents. Future work along this direction is to

incorporate some of the results available in multi-agent consensus into this framework.
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(a) Initial conditions (x, y): (5, 35), (50, 10), (50, 60). Ini-

tial conditions (vx, vy): (10, 1), (−10, 20) and (1,−30).
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(b) Estimated arrival times.

Fig. 16. Rendezvous of three agents with second order dynamics in (x, y) plane and robustness with respect to uncertainty in vehicle

behavior.

VIII. SUMMARY

This paper presented our initial results on rendezvous of multiple agents. We addressed the problem in a non-graph

theoretic framework. The problem was formulated as a cone invariance problem and necessary and sufficient

conditions were developed using ellipsoidal cones, for systems with first order dynamics. The necessary and

sufficient conditions were also presented in the Lyapunov framework using multiple Lyapunov functions. A

control synthesis algorithm using full state feedback approach for first order system was also presented. Numerical

examples demonstrating application of this method to higher order systems and also robustness with respect to

uncertainty in vehicle behavior was also presented.

Future work along this theme is focussed on multiple directions including formal analysis of multi-agent rendezvous

with higher order dynamics, addressing state estimation and consensus and extension of this framework to nonlinear

systems using multiple Lyapunov functions.
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