INTERNATIONAL CENTRE FOR THEORETICAL PHYSICS

CONE-VALUED LYAPUNOV FUNCTIONS
AND THE STABILITY OF STOCHASTIC DIFFERENTIAL EQUATIONS

INTERNATIONAL ATOMIC ENERGY AGENCY
गIMLI
UNITED NATIONS EDUCATIONAL, SCIENTIFIC AND CULTURAL ORGANIZATION

International Atomic Energy Agency

and
United Nations Educational Scientific and Cultural Organization INTERNATIONAL CENTRE FOR THEORETICAL PHYSICS

CONE-VALUED LYAPUNOV FUNCTIONS AND THE STABILITY OF STOCHASTIC DIFFERENTIAL EQUATIONS

Edet P. Akpan ${ }^{1}$
International Centre for Theoretical Physics, Trieste, Italy.

ABSTRACT

Stochastic differential equations of Itô-type are considered and the theory of stochastic differential inequalities is systematically developed. Sufficient conditions for stability in probability, with probability one and in the mean of the Ito-type stochastic differential equations are given, using the method of cone-valued Lyapunov functions. Necessary conditions for the construction of stochastic cone-valued Lyapunov functions are obtained for the cases where the Itô-type stochastic differential equations have uniform asymptotic stability in probability and uniform asymptotic stability in the mean.

MIRAMARE-TRIESTE
June 1993

[^0]
1 Introduction

Many biological, physical and social phenomena can be described by a system of stochastic differential equations of Itô type. It is well known [I] that the method of vector Lyapunov functions provides an effective tool for the discussion of the stability analysis of Itottype stochastic differential equations. However, this method crucially depends on the requirement of quasimonotone non-decreasing property of the comparison system. It is also well known [3] that the requirement of quasimonotone non-decreasing property is restrictive. In $[1,3]$, it was shown that the theory of differential inequalities through cones together with the comparison principle of the method of cone-valued Lypunov functions removes this unpleasant restriction of the method of vector Lyapunov functions and provides an effective and flexible tool for the investigation of the stability behaviour of the solutions of ordinary differential equations.

In this paper, we are concerned with the idea of extending the theory developed in $[1,3]$ for the ordinary differential equations to the stochastic differential equations of Ito-type. We shall systematically develop the theory of stochastic differential inequality through cones, and obtain various stability results for the stochastic differential equations of It \hat{o}^{-} type in the framework of cone-valued Lyapunov functions.

2 Stochastic Differential Inequalities

In this section we develop the theory of differential inequalities through cones for the Itô-type stochastic differential equations. We give sufficient conditions for the existence of maximal solution process of the Itô-type comparison differential equation relative to a cone $K \subset R^{n}$. We also state comparison theorems for the Ito-type stochastic differential equation in the framework of cone-valued Lypunov functions.

Consider the Itô-type stochastic differential equations
(2.1) $\quad d x=f(t, x) d t+\sigma(t, x) d z(t), \quad x\left(t_{0}\right)=x_{0}$
where $f \in C\left[R_{+} \times R^{N}, R^{N}\right], \sigma \in C\left[R_{+} \times R^{N}, R^{N^{2}}\right]$ and $z \in R\left[\Omega, R^{N}\right]$ is a normalized N_{-} vector Wiener process. Consider the Itô-type comparison stochastic differential equation

$$
\begin{equation*}
d u=g(t, u) d t+G(t, u) d s(t), \quad u\left(t_{0}\right)=u_{0} \tag{2.2}
\end{equation*}
$$

where $g \in C\left[R_{+} \times R^{n}, R^{n}\right], G \in C\left[R_{+} \times R^{n}, R^{n^{2}}\right], n \leq N, z \in R\left[\Omega, R^{n}\right]$ is a normalized n-vector Wiener process. We assume that f, g, σ, G are smooth enough to guarantee the existence of the solution process of (2.1) and (2.2).

Let R^{n} denote the n-dimensional Euclidean space with any convenient norm $\|\cdot\|$ and scalar product $(\cdot),, R_{+}=\{0, \infty), R_{+}^{n}=\left\{u \in R^{n}: u_{i} \geq 0, i=1, \ldots, n\right\}$. Define S_{0} by, $S_{\rho}=\left\{x \in R^{N}:\|x\|<\rho_{1} \rho>0\right\}$.

Definition 2.1. A proper subset $K \subset R^{n}$ is called a cone if (i) $\lambda K \subset K, \lambda \geq 0$ (ii) $K+K \subset K$ (iii) $K=\bar{K}$, (iv) $K \cap(-K)=\{0\}$ (v) $K^{\text {o }}$ is non empty; where \bar{K} denotes the closure of K and K^{0} denotes the interior of K. We also denote the boundary of K by ∂K.

The order relation on R^{n} induced by the cone K is defined as follows: Let $x, y \in K$, then $x<_{K} y$ if and only if $y-x \in K$ and $x \underset{K^{0}}{<} y$ if and only if $y-x \in K^{\circ}$.

Definition 2.2 The set K^{*} is called the adjoint cone if $K^{*}=\left\{\phi \in R^{n}:(\phi, x) \geq 0\right.$ for all $x \in K$) satisfics properties (i)-(v) of Definition 2.1

Definition 2.3. A function $g: D \rightarrow R^{n}, D \subset R^{n}$, is said to be quasimonotone relative to the conc K if $x, y \in D$ and $y-x \in \partial K$ imply that there exists $\phi_{0} \in K_{0}^{\prime}$ such that $\left(\phi_{0}, y-x\right)=0$ and $\left(\phi_{0}, g(y)-g(x)\right) \geq 0$, where $K_{0}^{*}=K^{*}-\{0\}$.

Definition 2.4. (Property A). Let $h \in C\left[K, R_{+}^{n}\right]$ be defined by $h(x)=h_{i}\left(x_{i}\right), i=$ $1,2, \ldots, n$; so that $h(x)=\left(h_{1}\left(x_{1}\right), h_{2}\left(x_{2}\right), \ldots, h_{n}\left(x_{n}\right)\right)^{T}$. Let $\Phi \in C\left[R_{+}^{n}, K\right\}$ with the following properties:
(i) $\Phi(0)=0$, (ii) $\Phi(v) \frac{\leq}{K} \Phi(u)$ if and only if $v_{i} \leq u_{i}, i=1,2, \ldots, n$,
(iii) $\|\Phi\| \geq\|\nu\|$, (iv) $\Phi\left(\left(\phi_{0},\|G(t, u)\|^{2}\|w\|_{G}\right) \hat{e}\right) \leq \Phi\left(h\left(\|u\|_{\dot{G}}\right)\right)$
(v) $\int_{0+} \frac{d s}{\| \Phi(h(u(s)))]}=\infty$
where $G \in C\left[R_{+} \times K, R^{n^{2}}\right],\|\cdot\|$ is the matrix or vector norm in R^{n} and $\|\cdot\|_{0}$ is the generalized norm of vectors defined in Definition 4.5 in [1]. $\phi_{0} \in K_{0}^{*}, w \in K,(t, u) \in$ $R_{+} \times K$ and \hat{e} is a unit vector in K

Let $V \in C\left[R_{+} \times S_{\rho}, K\right], V_{t}, V_{x}, V_{x x}$ exist and are continuous for $(t, x) \in R_{+} \times S_{\rho}$ and $K \subset R^{n}$, where V_{x} is an $N \times n$ Jacobian matrix of $V(t, x)$ and $V_{x x}$ is an $n \times n$ Hessian matrix whose elements ($\left.\partial^{2} / \partial x_{i} \partial x_{j}\right) V(t, x)$ are N-dimensional vectors. By Itô's formula we obtain

$$
\begin{equation*}
d V(t, x)=L V(t, x) d t+V_{x}(t, x) \sigma(t, x) d z(t) \tag{2.3}
\end{equation*}
$$

where
(2.4) $L V(t, x)=V_{t}(t, x)+V_{x}(t, x) f(t, x)+\frac{1}{2} \operatorname{tr}\left\{V_{x x}(t, x) \sigma(t, x) \sigma^{T}(t, x)\right\}$

Theorem 2.1. Assume that
(i) Property A holds,
(ii) $m(t)$ is a solution of

$$
\begin{equation*}
d m=g(t, m) d t+G(l, m) d z(t), m\left(t_{0}\right)=m_{0} \tag{2.5}
\end{equation*}
$$

where $m \in C\left[R_{+}, K\right], g \in C\left[R_{+} \times K, R^{n}\right], G \in C\left[R_{+} \times K, R^{n^{2}}\right], K \subset R^{n}, z \in R\left[\Omega, R^{n}\right]$ is a normalized n-vector Wiener process. Then

$$
E\left\{\|m(t)\|_{\dot{G}}\right]{\underset{\tilde{R}}{ }} E\left[\left\|m_{0}\right\|_{\dot{G}}\right]+E\left[\int_{t_{0}}^{t}\|g(s, m(s))\|_{\dot{G}} d s\right], t \geq t_{0} .
$$

Proof. Let $q_{n}<_{K^{0}} q_{n-1}$, where q_{n}, q_{n-1} are two points in $\hat{K} \subset R_{+}^{n}$, such that $q_{n} \rightarrow 0$ as $n \rightarrow \infty$ and $q_{0}=e=(1,1, \ldots, 1)^{T}$. Let $\tau_{n}=\left\|q_{n}\right\|$ and $\tau_{n-1}=\left\|q_{n-1}\right\|$ and define for $n=1,2, \ldots$.

$$
\int_{\tau_{n}}^{T_{n-1}} \frac{d s}{\|\Phi(h(u(s)))\|}=n
$$

Let $A=\left\{u \in \dot{K}: 0 \leq\|u\| \leq \tau_{n}\right\}, B=\left\{u \in \hat{K}: \tau_{n}<\|u\|<\tau_{n-1}\right\}, C=\{u \in \hat{K}:\|u\| \geq$ $\left.\tau_{n-1}\right\}$. Then there exists a twice continuouslv differentiable cone-valued function $T_{n}(u)$
defined on $\dot{K} \subset R_{+}^{n}$ such that $T_{n}(0)=0$ and

$$
\begin{gathered}
T_{n}(u)= \begin{cases}0 & \text { for } u \in A \\
\text { between } 0 \text { and } u & \text { for } u \in B \\
u & \text { for } u \in C\end{cases} \\
T_{n}^{\prime}(u)= \begin{cases}0 & \text { for } u \in A \\
\text { between } 0 \text { and } e & \text { for } u \in B \\
e & \text { for } u \in C\end{cases} \\
T_{n}^{\prime \prime}(u)= \begin{cases}0 & \text { for } u \in A \\
\text { between } 0 \text { and } \frac{\varepsilon}{n \| \Phi\left(h\left(\|u\|_{\dot{G}}\right)\| \|\right.} & \text { for } u \in B \\
0 & \text { for } u \in C\end{cases}
\end{gathered}
$$

We can then extend $T_{n}(u)$ appropriately as a twice continuously differentiable cone-valued function to the largest cone $K \subset R^{n}$. That is $T_{n}(u)=T_{r i}\left(\|u\|_{\dot{G}}\right)$ so that as $n \rightarrow \infty$ we have $T_{n}\left(\|u\|_{G}\right)=\|u\|_{\dot{G}}$. Now applying Ito's formula on $T_{n}\left(\|m(t)\|_{\dot{G}}\right)$, integrating and taking expectation of both sides we obtain

$$
\begin{aligned}
E\left[T_{n}\left(\|m(t)\|_{\dot{G}}\right)\right]= & E\left[T_{n}\left(\left\|m_{0}\right\|_{\dot{G}}\right)\right] \\
& +E\left[\int_{t_{0}}^{t} T_{n}^{\prime}\left(\|r n(s)\|_{\dot{G}}\right) g(s, m(s)) d s\right] \\
& +E\left[\int_{t_{0}}^{t} T_{n}^{u}\left(\|m(s)\|_{\dot{G}}\right) G(s, m(s)) d z(s)\right] \\
& +E\left[\frac{1}{2} \int_{t_{0}}^{t} \operatorname{tr}\left\{T_{n}^{\prime \prime}\left(\|m(s)\|_{\hat{G}}\right) G(s, m(s)) G^{T}(s, m(s))\right\} d s\right]
\end{aligned}
$$

By the property of stochastic integral we have

$$
E\left[\int_{t_{0}}^{t} T_{n}^{\prime}\left(\|m(s)\|_{\hat{G}}\right) G(s, m(s)) d z(s)\right]=0
$$

Also for some $\phi_{0} \in K_{0}^{*}, w \in K$ and using property A we have that

$$
\begin{aligned}
E & {\left[\int_{t_{0}}^{t} \frac{1}{2} \operatorname{tr}\left\{T_{n}^{\prime \prime}\left(\|m(s)\|_{G}\right) G(s, m(s)), G^{T}(s, m(s))\right\} d s\right] } \\
& =E\left[\int_{t_{0}}^{t} \frac{1}{2} \operatorname{tr}\left\{T_{n}^{\prime \prime}\left(\|m(s)\|_{\dot{G}}\right)\|G(s, m(s))\|^{2}\right\} d s\right] \\
& \leq E\left[\int_{t_{0}}^{t} \frac{1}{2} \max _{m \in B} \operatorname{tr}\left\{\left\|T_{n}^{\prime \prime}\left(\|m(s)\|_{\dot{C}}\right)\right\|\left\|\Phi\left(\|G(s, m(s))\|^{2} \hat{e}\right)\right\|\right\} d s\right] \\
& \leq E\left[\int_{t_{0}}^{t} \frac{1}{2} \max _{m \in B} \operatorname{tr}\left\{T_{n}^{t r}\left(\|m(s)\|_{G}\right)\| \| \Phi\left(\left(\phi_{0},\|G(s, m(s))\|^{2}\|w\|_{\dot{G}}\right) \hat{e}\right) \|\right\} d s\right] \\
& =E\left[\int_{t_{0}}^{t} \frac{1}{2} \max _{m \in B} \operatorname{tr}\left\{\left\|T_{n}^{\prime \prime}\left(\|m(s)\|_{\dot{G}}\right)\right\|\|\Phi(h(m(s)))\|\right\} d s\right] \\
& =E\left[t r\left\{\frac{e}{n \| \Phi(h(m(s)))}\|\cdot\| \Phi(h(m(s))) \|\right\} \frac{t-t_{0}}{2}\right] \\
& =E\left[\frac{t-t_{0}}{2} \cdot \frac{e}{n}\right] \rightarrow 0 \text { as } n \rightarrow \infty .
\end{aligned}
$$

Since $\| T_{n}^{\prime}\left(\|m(t)\|_{G} \leq 1\right.$ we have that

$$
\begin{aligned}
& E\left[\int_{t_{0}}^{t} T_{n}^{t}\left(\|m(s)\|_{\dot{G}}\right) g(s, m(s)) d s\right] \\
& \quad \underset{\bar{K}}{\leq} E\left[\int_{t_{0}}^{t}\left\|T_{n}^{\prime}\left(\|m(s)\|_{\dot{G}}\right)\right\|\|g(s, m(s))\| d s\right] \\
& \\
& \stackrel{\varsigma}{K} E\left[\int_{t_{0}}^{t}\|g(s, m(s))\| d s\right] .
\end{aligned}
$$

By the definition of $T_{n}(u)$, as $n \rightarrow \infty$ we have

$$
T_{n}(\| m(t))\left\|_{\dot{G}}=\right\|(m(t)) \|_{\dot{G}} \quad \text { and } \quad T_{n}\left(\left\|m_{0}\right\|_{\dot{G}}\right)=\left\|m_{0}\right\|_{\hat{G}}
$$

and so the conclusion of the Theorem follows.
It remains now to show that $T_{n}(u)$ can indeed be extended as a twice continuously differentiable cone-valued function to the largest cone $K \subset R^{n}$. Let. $K_{1} \subset R^{n}$ such that $\hat{K} \subseteq K_{1} \subset R^{n}$. Let $T_{n_{1}}: K_{1} \rightarrow K_{1}$ be a function defined on K_{1} with values in K_{1} such that $D\left(T_{n}\right) \subseteq D\left(T_{n_{1}}\right)$, where $D\left(T_{n}\right)$ denotes the domain of T_{n}. Let $q_{n_{1}}, q_{n_{1}-1}$ be any points in K_{1} such that $q_{n_{1}} \underset{K_{1}^{0}}{<} q_{n_{1}-1}$ and $q_{n_{1}} \rightarrow 0$ as $n \rightarrow \infty$ and $q_{0}=a^{1}$, a fixed point in K_{1} such
that if $a^{1} \in \dot{K}$, then $a^{1}=e$. Let $A_{1}=\left\{u \in K_{1}: 0 \leq\|u\| \leq \tau_{n_{1}}\right\}, B_{1}=\left\{u \in K_{1}: \tau_{n_{1}}<\right.$ $\left.\|u\|<\tau_{n_{1}-1}\right\}, C_{1}=\left\{u \in K_{1}:\|u\| \geq \tau_{n_{1}-1}\right\}$, where $\tau_{n_{1}}=\left\|q_{n_{1}}\right\|$ and $\tau_{n_{1}-1}=\left\|q_{n_{1}-1}\right\|$ Define a function $T_{n_{1}} ; K_{1} \rightarrow K_{2}$ such that $T_{n_{1}}(0)=0$ and

$$
T_{n_{1}}(u)= \begin{cases}0 & \text { for } u \in A_{1} \\ \text { between } 0 \text { and }\left\|a^{2}\right\| u & \text { for } u \in B_{1} \\ \left\|a^{1}\right\| u & \text { for } u \in C_{1}\end{cases}
$$

clearly $T_{n_{1}}(u)$ is a twice continuously differentiable function defined on K_{1}, for,

$$
T_{n_{1}}^{\prime}(u)= \begin{cases}0 & \text { for } u \in A_{1} \\ \text { between } 0 \text { and }\left\|a^{1}\right\| e & \text { for } u \in B_{1} \\ \left\|a^{1}\right\| e & \text { for } u \in C_{2}\end{cases}
$$

and

$$
T_{n_{1}}^{\prime \prime}(u)= \begin{cases}0 & \text { for } u \in A_{1} \\ \text { between } 0 \text { and } \frac{\left\|a^{2}\right\| e}{n \| \Phi\left(h\left(\mid \|_{\dot{G}}\right)\right) \mid} & \text { for } u \in B_{1} \\ 0 & \text { for } u \in C_{1}\end{cases}
$$

If $u \in \hat{K}$, then $a^{1}=e$ and so $T_{n_{1}}(u)=T_{n}(u)$.
Generally by choosing points $q_{n_{r}}, q_{n_{r}-1} \in K_{+}, \hat{K} \subseteq K_{1} \subseteq K_{2} \subseteq \ldots \subseteq K_{\tau} \subset R^{n}$ such that $q_{n_{r}}<q_{K_{r}} q_{n_{r}}$ and $q_{n_{r}} \rightarrow 0$ as $n_{r} \rightarrow \infty$ and $q_{0}=a^{r}$, a fixed point in K_{r} such that if $a^{r} \in \dot{K}$, then $a^{r}=e$, we can define a function $T_{n_{r}}: K_{T} \rightarrow K_{r}$ which is twice continuously differentiable on K_{r} such that $D\left(T_{n}\right) \subseteq D\left(T_{n_{r}}\right)$ and if $u \in \hat{K}$ then $T_{n_{r}}(u)=T_{n}(u)$. If K_{r} is the largest cone in R^{n} and $D\left(T_{n_{r}}\right)=K_{r}$, then $T_{n_{r}}$ is the required extension of T_{n} If K_{r} is not the largest cone in R^{n}, then we take a collection S of all twice continuously differentiable functions f defined on the subset of the largest cone in R^{n} such that for all $f \in S, D\left(T_{n}\right) \subseteq D(f)$ and $f(u)=T_{n}(u)$ for $u \in \hat{K}$.

Introduce a partial ordering in S as follows: If $D\left(f_{1}\right) \subseteq D\left(f_{2}\right)$ and $f_{1}(u)=f_{2}(u)$ for $u \in D\left(f_{1}\right)$ then write $f_{1} \subset f_{2}$ for $f_{1}, f_{2} \in S$. Let W be a totally ordered subset of S. Define a function g by

$$
D(g)=\bigcup_{f \in W} D(f), \quad g(u)=f(u), \quad u \in D(f)
$$

g is uniquely defined, for if $f_{1}, f_{2} \in W$ and since W is totally ordered, then $f_{1} \subset f_{2}$ or $f_{2} \subset f_{1}$ and if $u \in D\left(f_{1}\right) \cap D\left(f_{2}\right)$, then $f_{1}(u)=f_{2}(u)$.

From the definition of g, it follows that g is a twice continuously differentiable function defined on some subset of the largest cone in R^{π}, and so $g \in S$. Since $D(g)=\bigcup_{f \in W} D(f)$, then g is an upper bound for W. Thus a partially ordered set S is such that every totally ordered subset of S has an upper bound which is in S. Then by Zorn's lemma, there exists a maximal element $\hat{g} \in S$.

We claim that the domain of \hat{g} is the largest cone in $R^{r i}$. Suppose this claim were false, then there would exist an element v in the largest cone in R^{n} with $v \notin D(\hat{g})$ in which case \hat{g} would have an extension \hat{g}^{*} defined on $D(\hat{g})+\{v\}$. This then contradicts the fact that \dot{g} is the maximal element in S. Therefore $D(\hat{g})$ is equal to the largest cone in R^{n} and so \hat{g} is the required extension of T_{n}, and so the proof of Theorem 2.1 is now complete.

Theorem 2.2. Let the assumptions of Theorem 2.1 hold and suppose that $g(t, u) \geq 0$
a.s. Then $m_{0} \in K \subset R_{+}^{r} \Rightarrow m(t) \in K$ a.s. for $t \geq t_{0}$.

Proof. Since $m(t)$ is a solution of (2.5), then for all $t \geq t_{0}$, we have

$$
m(t)=m_{0}+\int_{t_{0}}^{t} g(s, m(s)) d s+\int_{t_{0}}^{t} G(s, m(s)) d z(s)
$$

and so

$$
E[m(t)]=E\left[m_{0}\right]+E\left[\int_{t_{0}}^{t} g(s, m(s)) d s\right]+E\left[\int_{t_{s}}^{t} G(s, m(s)) d z(s)\right]
$$

Since $E\left[\int_{t_{0}}^{t} G(s, m(s)) d z(s)\right]=0$, by the property of stochastic integral, then we have

$$
\begin{equation*}
E[m(t)]=E\left[m_{0}\right]+E\left[\int_{t_{0}}^{!} g(s, m(s)) d s\right] \tag{2.6}
\end{equation*}
$$

Also from Theorem 2.1 we have

$$
\begin{equation*}
E\left(\|m(t)\|_{\hat{G}}\right) \leq E\left(\left\|m_{\hat{K}}\right\|_{\hat{G}}\right)+E\left(\int_{t_{0}}^{t} \| g(s, m(s))_{\dot{G}} d s\right) \text { a.s. } \tag{2.7}
\end{equation*}
$$

Since $m_{0} \in K$, then $m_{0}-0 \in K \Rightarrow m_{0} \geq 0$ and also by hypothesis $g(t, u) \geq 0$ then $\left\|m_{0}\right\|_{\dot{G}}=m_{0}$ and $\|g(t, m(t))\|_{\dot{G}}=g(t, m(t))$ and so (2.7) becomes
(2.8)

$$
E\left(\|m(t)\|_{\dot{G}} \leq E\left(m_{0}\right)+E\left(\int_{t_{0}}^{t} g(s, m(s))\right) d s\right. \text { a.s. }
$$

From (2.6) and (2.8) we have

$$
\begin{array}{ccl}
E\left(\|m(t)\|_{\dot{G}}\right. & \stackrel{\zeta}{K} & E(m(t)) \text { a.s. } \\
\Rightarrow\|m(t)\|_{\hat{G}} & \underset{K}{\zeta} m(t) \text { a.s. } \\
& 5
\end{array}
$$

It is obvious that only the equality is admissible. Therefore $\|m(t)\|_{\dot{G}}=m(t) \Rightarrow m(t)>\underset{\bar{K}}{ } 0 \Rightarrow$ $m(t)-0 \in K \Rightarrow m(t) \in K$.

Theorem 2.3. Assume that
(i) $G \in C\left[R_{+} \times K, R^{n^{2}}\right], g_{1}, g_{2} \in C\left[R_{+} \times K, R^{n}\right], g_{i}(t, u) \geq 0$ a.s. $i=1,2$, are quasimonotone in u relative to K for each $t \in R_{+}$and $z(t)$ is a normalized n-vector Wiener process.
(ii) Property A holds with condition (iv) replaced by

$$
\Phi\left(\left(\phi_{0},\|G(t, v)-G(t, v)\|^{2}\|w\|_{\dot{G}}\right) \hat{\epsilon}\right){\underset{K}{K}} \Phi\left(h\left(\|v-u\|_{\bar{G}}\right)\right)
$$

(iii) $v(t), u(t)$ are solutions of

$$
(2.9) \quad \begin{array}{lll}
d u=g_{1}(t, u) d t+G(t, u) d z(t), & u\left(t_{0}\right)=u_{0} \\
d v=g_{2}(t, u) d t+G(t, v) d z(t), & v\left(t_{0}\right)=v_{0}
\end{array}
$$

respectively and $g_{1}(t, u) \varsigma_{\hbar_{0}} g_{2}(t, u)$ for $(t, u) \in R_{+} \times K$. Then $u_{0} \varsigma_{K} v_{0} \Rightarrow u(t) \varsigma_{K} v(t)$ a.s., $t \geq t_{\mathrm{g}}$.

$$
P_{\text {rooof. }} \text {. Define } m(t)=v(t)-u(t) \text { so that }
$$

(2.10)

$$
d m=g^{*}(t, m) d t+G^{*}(t, m) d z(t), \quad m\left(t_{0}\right)=m_{0}
$$

where
(2.11)

$$
\begin{aligned}
& G^{*}(t, m)=G(t, v)-G(t, u) \\
& g^{*}(t, m)=g_{2}(t, v)-g_{1}(t, u)
\end{aligned}
$$

Obviously (2.10) is an Itô-type stochastic differential equation and $m(t)$ satisfies (2.10). Since $v(t), u(t)$ are solutions of (2.9), then $m(t)=v(t)-u(t)$ is Γ_{t}-measurable and sample continuous, where Γ_{t} is a sub- σ-algebra of Γ defined on R_{+}and Γ is the $\sigma-$ algebra of subsets of the sample space Ω. Also

$$
\int_{t_{0}}^{t}\left[\left\|g_{1}(s, u(s))\right\|+\|G(s, u(s))\|^{2}\right] d s<\infty, \quad \text { w.p. } 1
$$

and

$$
\int_{t_{0}}^{t}\left[\| g_{2}\left(s, v(s)\|+\| G(s, v(s)) \|^{2}\right] d s<\infty, \quad \text { w.p. } 1\right.
$$

Now

$$
\begin{aligned}
& \int_{t_{0}}^{t}\left\{\left\|g^{*}(s, m(s))\right\|+\left\|G^{*}(s, m(s))\right\|^{2}\right\} d s \\
& \quad=\int_{t_{0}}^{t}\left\{\left\|g_{2}(s, v(s))-g_{1}(s, u(s))\right\|+\|G(s, v(s))-G(s, u(s))\|^{2}\right\} d s \\
& \leq \int_{t_{0}}^{t}\left\{\left\|g_{1}(s, u(s))\right\|+\|G(s, u(s))\|^{2}\right\} d s+\int_{t_{0}}^{t}\left\{\left\|g_{2}(s, v(s))\right\|+\|G(s, v(s))\|^{2}\right\} d s \\
& <\infty \text { w.p.l }
\end{aligned}
$$

Thus $m(t)$ is a solution process of (2.10). Now let $u_{0}<_{K} v_{0}$, then $v_{0}-u_{0}=m_{0} \in K$. Then by Theorem $2.2, m(t) \in K$ a.s. $\Rightarrow m(t)>\underset{K}{\lambda} \Rightarrow u(t)<{ }_{K} v(t)$ a.s.

Theorem 2.4. Let the conditions (i) and (ii) of Theorem 2.9 hold. Assume further that
(a) $\|g(t, u)\|+\|G(t, u)\| \leq L+M\|u\|$ for some constants $L>0$ and $M>0$.
(b) $u\left(t_{0}\right)=u_{0}>0$ is independent of $z(t)$ and for a positive constant $c, E\left[\left\|u_{0}\right\|^{4}\right] \leq c$.

Then there exists a maximal solution process of (2.2) relative to K for each $t \in R_{+}$.
Theorem 2.5. Assume that
(i) $V \in C\left[R_{+} \times S_{e}, K\right], V_{t}, V_{x}$ and $V_{x x}$ exist and are continuous for $(t, x) \in R_{+} \times S_{\rho}$ and for each $(t, x) \in R_{+} \times S_{g}, L V(t, x) \leq g(t, V(t, x))$, where L is the operator defined in (2.4).
(ii) $g \in C\left[R_{+} \times K, R^{n}\right], g(t, u)$ is concave and quasimonotone in u relative to K for each $t \in R_{+}$and $r(t)$ is the maximal solution of deterministic comparison system
(2.12)

$$
u^{\prime}=g(t, u), \quad u\left(t_{0}\right)=u_{0}
$$

relative to K.
(iii) For the solution process $x(t)$ of (2.1) $E[V(t, x)]$ exists for $t \geq t_{0}$. Then

$$
E\left[V\left(t_{0}, x_{0}\right)\right] \stackrel{\varsigma}{K} u_{0} \Rightarrow E[V(t, x)] \underset{K}{\varsigma} r(t), \quad t \geq t_{0} .
$$

Remark 2.1. The proofs of Theorems 2.4 and 2.5 follow similar reasoning as in the proofs of Theorems 4.6 .1 and 4.8 .1 in [2] respectively, with appropriate modifications and so are omitted here.

3 Stability Theory

Definition 3.1. The trivial solution $u=0$ of (2.12) is said to be ϕ_{0}-equistable if given $\varepsilon>0$, there exists $\delta=\delta\left(t_{0}, \varepsilon\right)$ which is continuous in t_{0} for each ε such that the inequality $\left(\phi_{0}, u_{0}\right)<\delta$ implies $\left(\phi_{0}, r(t)\right)<\varepsilon, t \geq t_{0}$ where $\phi_{0} \in K_{0}^{*}$.

Other ϕ_{0}-stability notions can be similarly defined.
Definition 3.2. The trivial solution $x=0$ of (2.1) is said to be stable in probability if for each $\varepsilon, \eta>0, t_{0} \in R_{+}$, there exists a positive function $\delta=\delta\left(t_{0}, \varepsilon, \eta\right)$ that is continuous in t_{0} for each ε and η such that the inequality

$$
P\left\{\left\|x_{0}\right\|>\delta\right\}<\eta \Rightarrow P\{\|x(t)\|>\varepsilon\}<\eta, \quad t \geq t_{0} .
$$

Definition 3.3. The trivial solution $x=0$ of (2.1) is said to be stable with probability one (w.p.1) if for each $\varepsilon>0, t_{0} \in R_{+}$, there exists a positive function $\delta=\delta\left(t_{0}, \varepsilon\right)$ such that the inequality

$$
\left\|x_{0}\right\|<\delta \quad \text { w.p. } \Rightarrow \Rightarrow x(t) \|<\varepsilon \quad \text { w.p.1, } \quad t \geq t_{0} .
$$

Definition 3.4. The trivial solution $x=0$ of (2.1) is said to be stable in the mean if for each $\varepsilon>0, t_{0} \in R_{+}$, there exists a positive function $\delta=\delta\left(t_{0}, \varepsilon\right)$ continuous in t_{0} for each ε such that

$$
\left(E\left(\left\|x_{0}\right\|^{p}\right)\right)^{1 / p}<\delta \Rightarrow\left(E\left(\|x(t)\|^{p}\right)\right)^{1 / p}<\varepsilon, \quad t \geq t_{0} ; \quad p \geq 1 .
$$

Other notions of stability in probability, stability with probability one and stability in the mean can be similarly defined, (see [2]).

Theorem 3.1. Let the conditions of Theorem 2.5 hold. Assume further that $f(t, 0)=$ $0, g(t, 0)=0$ and for some $\phi_{0} \in K_{0}^{*},(t, x) \in R_{+} \times S_{p}$,

(3.1)

$$
b\left(\|x\|^{y}\right) \leq\left(\phi_{0}, V(t, x)\right) \leq a\left(t,\|x\|^{\text {F}}\right)
$$

$p \geq 1, a, b \in \mathcal{K}, a$ is concave and b convex, and $a(t, r)=a(r)$.
Then, the trivial solution $x=0$ of (2.1) satisfies each one of the stability notions of Definition 3.2 if the trivial solution $u=0$ of (2.2) satisfies each one of the correspotding stability notions of Definition 3.1

Remark 3.1. For the definition of \mathcal{X}-class functions see [1].
Proof. (i) Assume that the trivial solution $u=0$ of (2.2) is ϕ_{0}-equistable. Then given $b\left(\varepsilon^{P} \eta\right)>0 \quad \eta>0, \varepsilon>0$, there exists $\delta_{1}=\delta_{1}\left(t_{0}, \varepsilon, \eta\right)$ such that

$$
\left(\phi_{0}, u_{0}\right)<\delta_{1} \Rightarrow\left(\phi_{0}, r(t)\right)<b\left(\varepsilon^{\mathfrak{p}} \eta\right), \quad \phi_{0} \in K_{0}^{*}
$$

Now given η and for any δ, Markov's inequality gives

$$
P\left(\left\|x_{0}\right\|>\delta\right) \leq \frac{E\left[\left\|x_{0}\right\|^{p}\right]}{\delta^{p}}
$$

Now choose δ such that $P\left(\left\|x_{0}\right\|>\delta\right)<\frac{E\left[\left\|x_{0}\right\|^{p}\right]}{\delta^{p}}$ and $E\left[\frac{\left\|x_{0}\right\|^{p}}{\delta^{p}}\right]=\eta$. It then follows that

$$
\begin{equation*}
P\left(\left\|x_{0}\right\|>\delta\right)<\eta \tag{3.2}
\end{equation*}
$$

Now choose t_{0} such that $\left(\phi_{0}, u_{0}\right)=a\left(t_{0}, E\left(\left\|x_{0}\right\|^{\gamma}\right)\right)$ and $\delta_{2}=\delta_{2}\left(t_{0}, \varepsilon, \eta\right)$ such that $a\left(t_{0}, \delta_{2}\right) \leq$ δ_{1} and $\eta \delta^{p}<\delta_{2}$. Then $E\left[\frac{\left\|x_{0}\right\|^{p}}{g^{p}}\right]=\eta<\frac{\delta_{2}}{\delta^{p}} \Rightarrow E\left[\left\|x_{0}\right\|^{p}\right]<\delta_{2}$. Now

$$
\begin{aligned}
E\left[\left\|x_{0}\right\|^{p}\right]<\delta_{2} & \Rightarrow a\left(t_{0}, E\left[\left\|x_{0}\right\|^{\boldsymbol{p}}\right]\right)=\left(\phi_{0}, u_{0}\right)<\delta_{1} \\
& \Rightarrow\left(\phi_{0}, r(t)\right)<b\left(\epsilon^{p} \eta\right), \quad t \geq t_{0}
\end{aligned}
$$

We now claim that the inequality (3.2) implies

$$
P\{\|x(t)\|>\varepsilon\}<\eta \quad t \geq t_{0}
$$

Suppose this claim is false, then there would exist a $t_{1}>t_{0}$, such that (3.2) holds and

$$
(3.3)
$$

$$
\begin{equation*}
P\left\{\left\|x\left(t_{1}\right)\right\|>\varepsilon\right\}=\eta . \tag{3.3}
\end{equation*}
$$

Let $x(t)$ be any solution process of (2.1) such that $E\left[V\left(t_{0}, x_{0}\right)\right] \underset{\mathcal{F}}{\leq} u_{0}$ and let t_{E} be the first exit time of $x(t)$ from $S_{t}=\left\{x \in R^{n}:\|x\|<\varepsilon\right\}$ and let $\tau=\min \left\{t, t_{\varepsilon}\right\}$. Then by Theorem 2.5 we have

$$
\left(\phi_{0}, E[V(\tau, x(\tau))]\right) \leq\left(\phi_{0}, r(t)\right)
$$

and from (3.1) we have

$$
\begin{aligned}
E[b(\|x(\tau)\|)] & \left.\leq\left(\phi_{0}, E[V(\tau))\right]\right) \\
& \leq\left(\phi_{0}, r(t)\right)<b\left(\varepsilon^{p} \eta\right) .
\end{aligned}
$$

By convexity of b and Jensen's inequality we have
(3.4)

$$
b\left(E\left[\|x(\tau)\|^{p}\right]\right) \leq E\left[b\left(\|x(\tau)\|^{p}\right)\right]<b\left(\varepsilon^{\boldsymbol{p}} T\right) .
$$

From (3.3), (3.4) and Markov's inequality we have

$$
b(\eta)=b\left(P\left(\|x(\tau)\|_{1}>\varepsilon\right\}\right)<b\left(\frac{E\left[\|x(\tau)\|^{p}\right]}{\varepsilon^{p}}\right)<b\left(\frac{\varepsilon^{p} \eta}{\varepsilon^{p}}\right)<b(\eta) .
$$

which is absurd. This absurdity justifies our claim
The proofs for uniform stability in probability, asymptotic stability in probability and uniform asymptotic stability in probability can be given using similar arguments as in the case of stability in probability given above.

Remark 3.7. Theorems giving sufficient conditions for stability with probability one and stability in the mean can be similarly formulated and proved, in a straightforward manner using the arguments in Theorem 3. L.

Theorem 3.2. Assume that for $(t, x),(t, y) \in D, D \subset[0, \infty) \times S_{p},\|\sigma(t, x)\| \leq$ $M ; M>0,\|f\{t, x)-f(t, y)\| \leq L(t)\|x-y\|, L(t)>0$ and the solution process $x(t)$ of (2.1) is uniformly asymptotically stable in probability. Then there exists a stochastic cone-valued function V with the following properties:
(i) $V \in C\left[R_{+} \times S_{p}, K_{j}\right], V_{t}, V_{x}$ and $V_{x x}$ exist and are continuous,
(ii) for each $(t, x) \in R_{+} \times S_{\rho}, L V(t, x) \widehat{S}_{K} g(t, V(t, x))$ where

$$
\begin{aligned}
L V(t, x)= & V_{t}(t, x)+V_{x}(t, x) f(t, x) \\
& +\frac{1}{2} \operatorname{tr}\left\{V_{x x}(t, x) \sigma(t, x) \sigma^{T}(t, x)\right\} \omega, \\
\omega= & (1,1, \ldots 1\}^{T} \in K
\end{aligned}
$$

(iii) $E[\|V(t, x)\|]<\infty$,
(iv) for some $\phi_{0} \in K_{0}^{*}$ and ($\left.t, x\right) \in R_{+} \times S_{\rho}$

$$
b(t,\|x\|) \leq\left(\phi_{0}, V(t, x)\right) \leq a(\|x\|) .
$$

Proof. (i) Define $V(t, x)=\|x\|^{3} e^{-t} \omega$. Then clearly $V \in C\left[R_{+} \times S_{\rho}, K\right] . \quad V_{t}=$ $-e^{-t}\|x\|^{3} \omega, V_{x}=6 A\|x\|^{2} e^{-t}$ where A is an $N \times n$ matrix given by

$$
A=\left(\begin{array}{cccc}
x_{1} & x_{2} & \cdots & x_{N} \\
x_{1} & x_{2} & \cdots & x_{N} \\
\vdots & \vdots & & \vdots \\
& & & \\
x_{1} & x_{2} & \cdots & x_{N}
\end{array}\right)
$$

$V_{x x}=6 B\|x\| e^{-t}$, where B is an $n \times n$ matrix given by
$B=\left(\begin{array}{cccc}\|x\|+4 x_{1}^{2} & 4 x_{1} x_{2} & \cdots & 4 x_{1} x_{n} \\ 4 x_{1} x_{2} & \|x\|+4 x_{2}^{2} & \cdots & 4 x_{2} x_{n} \\ \vdots & \vdots & & \vdots \\ 4 x_{n} x_{1} & 4 x_{n} x_{2} & \cdots & \|x\|+4 x_{n}^{2}\end{array}\right)$

Obviously, $V_{t}, V_{x}, V_{x x}$ exist and are continuous.
(ii) Let
then

$$
\sigma=\left(\begin{array}{cccc}
\sigma_{11} & \sigma_{12} & \cdots & \sigma_{1 n} \\
\sigma_{21} & \sigma_{22} & \cdots & \sigma_{2 n} \\
\vdots & \vdots & & \vdots \\
\sigma_{n 1} & \sigma_{n 2} & \cdots & \sigma_{n n}
\end{array}\right)
$$

$$
\sigma \sigma^{T}=\left(\begin{array}{cccc}
\sum_{j=1}^{n} \sigma_{1 j}^{2} & \sum_{j=1}^{n} \sigma_{1 j} \sigma_{2 j} & \cdots & \sum_{j=1}^{n} \sigma_{1 j} \sigma_{n j} \\
\sum_{j=1}^{n} \sigma_{2 j} \sigma_{1 j} & \sum_{j=1}^{n} \sigma_{2 j}^{2} & \cdots & \sum_{j=1}^{n} \sigma_{2 j} \sigma_{n j} \\
\vdots & \vdots & & \vdots \\
\sum_{j=1}^{n} \sigma_{n j} \sigma_{1 j} & \sum_{j=1}^{n} \sigma_{n j} \sigma_{2 j} & \cdots & \sum_{j=1}^{n} \sigma_{n j}^{2}
\end{array}\right)
$$

and $T=V_{x x} \sigma \sigma^{T}$ is given by

$$
T=\left(\begin{array}{cccc}
T_{11} & T_{12} & \cdots & T_{1 n} \\
T_{21} & T_{22} & \cdots & T_{2 n} \\
\vdots & \vdots & & \vdots \\
T_{n 1} & T_{n 2} & \cdots & T_{n n}
\end{array}\right)
$$

and

$$
\frac{1}{2} \text { Trace of }\left\{V_{x x} \sigma \sigma^{T}\right\}=\frac{1}{2}\left(T_{1:}+T_{22}+\ldots+T_{n n}\right)
$$

where

$$
\begin{aligned}
T_{11}= & \left\{\left(\|x\|+4 x_{1}^{2}\right)\left(\sigma_{11}^{2}+\sigma_{12}^{2}+\ldots+\sigma_{1 n}^{2}\right)+4 x_{1} x_{2}\left(\sigma_{21} \sigma_{11}+\sigma_{22} \sigma_{12}+\ldots+\sigma_{2 n} \sigma_{1 n}\right)\right. \\
& \left.+\ldots+4 x_{1} x_{n}\left(\sigma_{n 1} \sigma_{11}+\sigma_{n 2} \sigma_{12}+\ldots+\sigma_{n n} \sigma_{1 n}\right)\right\} 6 e^{-t} \mid x \| \\
T_{22}= & \left\{4 x_{2} x_{1}\left(\sigma_{11} \sigma_{21}+\sigma_{12} \sigma_{22}+\ldots \sigma_{1 n} \sigma_{2 n}\right)+\left(\|x\|+4 x_{2}^{2}\right)\left(\sigma_{21}^{2}+\sigma_{22}^{2}+\ldots+\sigma_{2 n}^{2}\right)\right. \\
& \left.+\ldots+4 x_{2} x_{n}\left(\sigma_{n 1} \sigma_{21}+\sigma_{n 2} \sigma_{22}+\ldots+\sigma_{n n} \sigma_{2 n}\right)\right\} 6 e^{-t}\|x\| \\
T_{n \pi}= & \left\{4 x_{n} x_{1}\left(\sigma_{11} \sigma_{n 1}+\sigma_{12} \sigma_{n 2}+\ldots+\sigma_{1 n} \sigma_{n n}\right)+4 x_{n} x_{2}\left(\sigma_{21} \sigma_{n 1}+\sigma_{22} \sigma_{n 2}+\ldots+\sigma_{2 n} \sigma_{n 2}\right)\right. \\
& \left.+\ldots+\left(\|x\|+4 x_{n}^{2}\right)\left(\sigma_{n 1}^{2}+\sigma_{n 2}^{2}+\ldots+\sigma_{n n}^{2}\right)\right\} 6 e^{-t}\|x\| .
\end{aligned}
$$

Now

$$
\left|T_{i i}\right| \leq d_{i}| | x\left\|^{2} e^{-t}+m_{i}| | x\right\| e^{-t}, \quad i=1,2, \ldots n
$$

where

$$
d_{i}=\left|\sum_{j=1}^{n} 6 \sigma_{i j}^{2}\right| \text { and } m_{i}=\left|\sum_{k=1}^{n} 24 x_{i} x_{k}\left(\sum_{j=1}^{n} \sigma_{i j} \sigma_{k j}\right)\right| .
$$

Since $\|f(t, x)-f(t, y)\| \leq L(t)\|x-y\|$, then puiting $y=0$ gives $\|f(t, x)\| \leq L(t)\|x\|$ and so $\left\|V_{x}(t, x) f(t, x)\right\|=C| | A\|L(t)\| x \|^{3} e^{-t}$ where $\|A\|$ is the matrix norm of A. Therefore

$$
\begin{aligned}
L V(t, x) & =V_{i}(t, x)+V_{x}(t, x) f(t, x)+\frac{1}{2} \operatorname{Tr}\left\{V_{x x}(t, x) \sigma(t, x) \sigma^{T}(t, x)\right\} \omega \\
& =-e^{-t}\|x\|^{3} \omega+6 A\left\|_{i^{\prime}}\right\|^{2} e^{-t} f(t, x)+\frac{1}{2}\left(T_{12}+T_{22}+\ldots+T_{n n}\right) \omega \\
& \leq 6 A\|x\|^{2} e^{-t} f(t, x)+\frac{1}{2}\left(T_{11}+T_{22}+\ldots+T_{n n}\right) \omega \\
& \underset{K}{\kappa}\left\{6\|A\| L(t)\|x\|^{3} e^{-t}+\sum_{i=1}^{n} d_{i}\|x\|^{2} e^{-t}+\sum_{i=1}^{n} m_{i}\|x\| e^{-t}\right\} \omega
\end{aligned}
$$

choose constants c_{1} and c_{2} large enough so that $c_{1}\|x\| \geq 1$ and $c_{2}\|x\|^{2} \geq 1$, then we have

$$
\begin{aligned}
L V(t, x) & <\underset{K}{<}\left\{6\|A\| L(t)+c_{1} \sum_{i=1}^{n} d_{i}+c_{2} \sum_{i=1}^{n} m_{i}\right\}\|x\|^{3} e^{-t} w \\
& =g(t, V(t, x)) .
\end{aligned}
$$

(iii) For all $(t, x) \in R_{+} \times S_{p}$, there exists $M, 0 \leq M<\infty$, such that $\|V(t, x)\| \leq M$. Let $p(t, x)$ be any appropriate probability density function for V then

$$
E(\|V\|)=\int_{\Omega}\|V\| p(t, x) d \Omega=M \int_{\Omega} p(t, x) d \Omega=M<\infty
$$

where Ω is an appropriate sample space.
(iv) For some $\phi_{0} \in K_{0}^{*}$

$$
\begin{aligned}
\left(\phi_{0}, V(t, x)\right) & =\left(\phi_{0},\|x\|^{3} e^{-t} \omega\right)=\|x\|^{3} e^{-t}\left(\phi_{0}, \omega\right) \\
& \leq\left(\phi_{0}, \omega\right)\|x\|^{3}=a(\|x\|, \quad a \in \mathbb{K}
\end{aligned}
$$

Since the solution process $x(t)$ of (1.1) is uniformly asymptotically stable in probability then given $\varepsilon>0, \eta>0, t_{0} \in R_{+}$, there exist $\delta=\delta(\varepsilon, \eta), T=T(\varepsilon)$ such that

$$
P\left\{\omega:\left\|x_{0}\right\| \geq \delta\right\}<\eta \Rightarrow P\{\omega:\|x\|>\varepsilon\}<\eta ; t \geq T(\varepsilon)+t_{0}
$$

It follows that there exist $\psi \in \mathcal{K}$ such that

$$
P\left\{\omega:\left\|x_{0}\right\| \geq \delta\right\}<\eta \Rightarrow P\{\omega:\|x\|>\psi(\|x\|)\}<\eta .
$$

We can take η arbitrarily small such that the above probabilities tend to zero. It then follows that it is fairly certain that the occurrence of the event

$$
\left\|x_{0}\right\|<\delta \Rightarrow\|x\| \leq \psi(\|x\|)
$$

and so we can find $c \in \mathcal{K}$ such that

$$
c\|x\|) \leq c\left(\psi^{\prime}(\|x\|)\right)
$$

and

For some $\phi_{0} \in K_{0}^{*}$ we have

$$
\begin{aligned}
\left(\phi_{0}, c(\|x\|) e^{-t} \omega\right) & \leq\left(\phi_{0}, c(\psi(\|x\|)) e^{-t} \omega\right) \\
e^{-t}\left(\phi_{0}, \omega\right) c(\|x\|) & \leq\left(\phi_{0}, \phi(\|x\|) e^{-t} \omega\right), \quad \phi \in \mathcal{K} . \\
b(t,\|x\|) & \leq\left(\phi_{0}, \phi(\|x\|) e^{-t} \omega\right), \quad b \in \mathcal{K} .
\end{aligned}
$$

Now defining $\phi(\|x\|)$ by $\phi(\|x\|)=\|x\|^{3}$ we obtain

$$
b(t, \mid x \|) \leq\left(\phi_{0}, V(t, x)\right) .
$$

And so we obtain

$$
b(t,\|x\|) \leq\left(\phi_{0}, V(t, x)\right) \leq a(\|x\|), \quad a, b \in \mathcal{X}
$$

Theorem 3.3. Assurne that for $(t, x),(t, y) \in D,\|\sigma(t, x)\| \leq M, M>0, \| f(t, x)$ $f(t, y) \mid \leq L(t)\|x-y\|, L(t)>0$ and the solution process $x(t)$ of (2.1) is uniformly asymptotically stable in the mean. Then there exists a stochastic cone-valued function V with the following properties:
(i) $V \in C\left[R_{+} \times S_{p} K\right], V_{t}, V_{x}, V_{x x}$ exist and are continuous
(ii) for each $(t, x) \in R_{+} \times S_{p}, L V(t, x) \leq g(t, V(t, x))$ where $L V(t, x)$ is as in Theorem 3.2.
(iii) $E[\|V(t, x)\|<\infty$
(iv) $b\left(t, E\left(\|x\|^{p}\right)\right) \leq\left(\phi_{0}, V(t, x)\right) \leq G\left(\|x\|^{p}\right)$ for some $\phi \in K_{0}^{*}:(t, x) \in R_{+} \times S_{p}, a, b \in \mathcal{X}$ and b is convex.

Proof. (i) Define $V(t, x)=\|x\|^{3 \nu} e^{-t} \omega$. Clearly $V \in C\left[R_{+} \times S_{\rho}, K\right] . V_{t}=-e^{-t}\|x\|^{3 p} \omega$,
$V_{x}=6 p A\|x\|^{3 p-1} e^{-t}$ where A is the $N \times n$ matrix given in Theorem 3.2. $V_{x x}=6 p B_{1} e^{-t}\|x\|^{3 p-2}$, where B_{1} is an $n \times n$ matrix given by

$$
B_{1}=\left(\begin{array}{cccc}
\|x\|+2(3 p-1) x_{1}^{2} & 2(3 p-1) x_{1} x_{2} & \cdots & 2(3 p-1) x_{1} x_{n} \\
2(3 p-1) x_{2} x_{1} & \|x\|+2(3 p-1) x_{2}^{2} & \cdots & 2(3 p-1) x_{2} x_{n} \\
\vdots & \vdots & & \vdots \\
2(3 p-1) x_{n} x_{1} & 2(3 p-1) x_{n} x_{2} & \cdots & \|x\|+2(3 p-1) x_{n}^{2}
\end{array}\right)
$$

Clearly $V_{i}, V_{x}, V_{x x}$ exist and are contimous.
(ii) Following similar computations as in Theorem 3.2 for $\sigma \sigma^{T}$ and $V_{x x} \sigma \sigma^{T}=T$ we obtain

$$
\left|T_{i i}\right| \leq d_{i}\|x\|^{3 p-1} e^{-t}+m_{i}\|x\|^{3 p-z_{1}} e^{-t}
$$

where

$$
d_{i}=\left|\sum_{j=1}^{n} 6 p \sigma_{i j}^{2}\right| \quad \text { and } \quad m_{i}=\left|\sum_{k=1}^{n} 12 p(3 p-1) x_{i} x_{k}\left(\sum_{j=1}^{n} \sigma_{i j} \sigma_{k j}\right)\right| .
$$

Similar arguments as in Theorem 3.2 show that

$$
L V(t, x) \underset{K}{\leq} g(t, V(t, x)) .
$$

(iii) Since $1 \leq p<\infty$ and $x \in S_{\rho}$ then $\|x\|^{3 p}<\infty$ and so $V=\|x\|^{3_{F}} e^{-t} \omega$ is bounded. Therefore $E(\|V\|)<\infty$.
(iv)

$$
\begin{aligned}
\left(\phi_{0}, V(t, x)\right) & =\left(\phi_{0},\|x\|^{3 p_{p}} e^{-t} \omega\right)=\left(\phi_{0}, \omega\right) e^{-t}\|x\|^{3 p} \\
& \leq\left(\phi_{0}, \omega\right)\|x\|^{3 p}=a\left(\|x\|^{p}\right), \quad a \in K .
\end{aligned}
$$

The solution process of (2.1) is uniformly asymptotically stable in the mean implies that given any $\varepsilon>0$, there exist $\delta=\delta(\varepsilon)$ and $T=T(\varepsilon)$ such that the inequality $\left(E\left(\|x\|^{p}\right)\right)^{1 / p}<\delta \Rightarrow\left(E\left(\|x\|^{p}\right)\right)^{1 / p}<\varepsilon, p \geq 1, t \geq T(\varepsilon)+t_{0}$. Since ε is arbitrary then we can choose $\psi \in \mathcal{K}$ such that

$$
E\left(\left\|x_{0}\right\|^{P}\right)<\delta^{P} \Rightarrow E\left(\|x\|^{P}\right) \leq \psi\left(\|x\|^{P}\right) .
$$

Then for some $\phi_{0} \in K_{0}^{*}$ we have $\left(\phi_{0}, E\left(\|x\|^{p}\right) e^{-t} \omega\right) \leq\left(\phi_{0}, \psi\left(\|x\|^{p}\right) e^{-t} \omega\right),\left(\phi_{0}, \omega\right) e^{-t} E\left(\|x\|^{p}\right) \leq$ $\left(\phi_{0}, \psi\left(\|x\|^{p}\right) e^{-t} \omega\right)$. Now for any convex function $\phi \in \mathcal{K}$, Jensen's inequality gives

$$
\begin{aligned}
\left(\phi_{0}, \phi\left(E\left(\|x\|^{p}\right)\right) e^{-t} \omega\right) & \leq\left(\phi_{0}, E\left(\phi\left(\|\left. x\right|^{p}\right)\right) e^{-t} \omega\right) \\
& \leq\left(\phi_{0}, \phi\left(\psi\left(\|x\|^{P}\right)\right) e^{-t} \omega\right) \\
\left(\phi_{0}, \omega\right) e^{-t} \phi\left(E\left(\|x\|^{p}\right)\right) & \leq\left(\phi_{0}, c\left(i \mid x \|^{P}\right) e^{-t} \omega\right), c \in \mathcal{K} . \\
b\left(t, E\left(\|x\|^{P}\right)\right) & \leq\left(\phi_{0}, V(t, x)\right), \quad b \in \mathcal{K} \text { and } b \text { is convex }
\end{aligned}
$$

where $c\left(\|x\|^{p}\right)$ is defined by $c\left(\|x\|^{p}\right)=\|x\|^{3 p}$.

Acknowledgrnents

The author wishes to thank Professor Abdus Salam, the International Atomic Energy Agency and UNESCO for hospitality and financial support at the International Centre for Theoretical Physics, Trieste.

References

[1] Akpan, E.P. and Akinyele, O., On the ϕ_{0}-stability of comparison differential systems. J. Math. Anal. Appl., 164 (1992), 307-324.
[2] Ladde, G.S. and Lakshmikantham, V., "Random Differential Inequalities" Academic Press, New York, 1980.
[3] Lakshmikantham, V. and Leela, S., Cone-valued Lyapunov functions. J. Nonlinear Anal. 1 (1977) 215-222.

[^0]: ${ }^{1}$ Permanent Address: Department of Mathematics, University of Uyo, Uyo,Nigeria.

