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ABSTRACT

Stochastic differential equations of ltdo—type are considered and the theory of stochastic
differential inequalities is systematically developed. Sufficient conditions for stability in
probability, with probability one and in the mean of the [t6-type stochastic differential
equations are given, using the methed of cone-valued Lyapunov functions. Necessary
conditions for the construction of stochastic cone-valued Lyapunov functions are obtained
for the cases where the Ité-type stochastic differential equations have uniform asymptotic
stability in probability and uniform asymptotic stability in the mean.
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1 Introduction

Many biological, physical and social phenomena can be described by a system of stochastic
differential equations of Ito—type. It is well known [1] that the method of vector Lyapunov
functions provides an effective tool for the discussion of the stability analysis of Ito-
type stochastic differential equations. However, this method crucially depends on the
requirement of quasimonetione non-decreasing property of the comparison system. It
is also well known {3] that the requirement of quasimonotone non—decreasing property
is restrictive. In [1,3], it was shown that the theory of differential inequalities through
cones together with the companison principle of the method of cone-valued Lypunov
functions removes this unpleasant restriction of the method of vector Lyapunov functions
and provides an effective and flexible tool for the investigation of the stability behaviour
of the solutions of ordinary differential equations.

In this paper, we are concerned with the idea of extending the theory developed in 1,3}
for the ordinary differential equations to the stochastic differential equations of It6-type.
We shall systematically develop the theory of stochastic differential inequality through
cones, and obtain various stability results for the stochastic differential equations of 1to-
type in the framework of cone-valued Lyapunov functions.

2 Stochastic Differential Inequalities

Ir: this section we develop the theory of differential inequalities through cones for the
It6-type stochastic differential equations. We give sufficient conditions for the existence
of maximal solution precess of the It6-type comparison differential equation relative to a
cone K C R". We also state comparison theorems for the Ité-type stochastic differential
equation in the framework of cone—valued Lypunov functions.

Consider the Itd-type stochastic differential equations

(2.1) dr = f({,r)dt + ot,z) dz(t), 2{to) = zo

where f € C{R, x RY,R"],0 € C[R, x RV, R"] and z € R[(, Y] is a normalized N-
vector Wiener process. Consider the Ito-type comparison stochastic differential equation

{2.2) du = g(t, u)dt + G(t, w)dz(t}, u(ty) = ua

where ¢ € C[Ry x B* R"|,G € C[R, x R",R“’],n < N,z € R[Q, R"] is a normalized
n-vector Wiener process. We assume that f,g, 0, are smooth enough to guarantee the
existence of the solution process of (2.1) and (2.2).

Let R™ denote the n-dimensional Euclidean space with any convenient norm || - | and
scalar product (-,-}, By = [0,00), R} = {u € R* 1w, 2 0,i = 1,...,n}. Define 5, by,
§, = {c € B : |zl < . > O},

Definition 2.1. A proper subset K ¢ R™ is called a cone if (1) AK C K,A 2 0 (i)
K+KCK @)K =R, (ivi Kn{~K) = {0} (v) K is non empty; where K denotes
the closure of K and K° denotes the interior of K. We also denote the boundary of K
by OK.

The order relation on R™ induced by the cone K is defined as follows: Let 2,y € K,
then :c% yifandonlyify—z € K and z ;{(c yifand enly if y — 2z € K°.
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Definition 2.2 The set K* is called the adjoint! cone if K = {¢ € B™: (¢,z) 2 0
for all 2 € K} satisfies properties (i)-(v) of Definition 2.1.

Definition 2.3. A function ¢ : D — R", D C R", is said to be quasimonotone
relative to the cone K i 2,y € D and y — 2 € K imply that there exists ¢o € K] such
that (¢o,y — ) = 0 and (¢o, g(y) — ¢(x)) 2 0, where Kg = K~ — {0}.

Definition 2.4. (Property A). Let h € C[K, R%] be defined by Aiz) = hi(z.),i =
1,2,...,n; so that h{z) = (hi(zx1), ha{ze), ..., Aa(za))T. Let ® € C[RL, K} with the
following properties

(i} @(0) = 0, (ii) (u}% ®(u) if and only if v, € u,, 1 =1,2,...,n,
(i) 181 = ||”|| (i) ®((fo. Gt u)Fllwl s)é) < bk (||u|i(;))
ds
), ot
where (¢ € C[Ry x K, R"™],|| || is the matrix or vector norm in R" and || - |5 is the

generalized norm of vectors defined in Definition 4.5 in [1]. ¢y € AJ,w € K, (t,u) €
Ry x K and é is a unit vector in K.

Let V € C{Ry x S,, K|, Vi, Vi, Vi exist and are continuous for (f,2) € Ry = S, and
K ¢ R", where V; is an N x n Jacobian matrix of V{t,z) and V., is an n x n Hessian
matrix whose elements (9%/0z;8z;)V(l.z) arc N-dimensional vectors. By [td’s formula
we obtain

(2.3) dVi(t,z) =L V(t, z) dt + Vo(t,2) a(t,z) d=z(t] .

where

(2.4) LVt o) =V(i,z)+ Vi(t,z) fiL,z)+ % tr{Voe(t,2) o(t,x) o7 (1, z)}
Theorem 2.1. Assume that
(1} Property A holds,
(i) m(#) is a solution of

(2.5) dm = g(t,m)dt + G({,m) dz{t),m(ty) = mq

where m € C[R,, K),g € C[Ry x K, B, G € C[Ry x K, R, K  R*,z € R, R"] is

a normalized n-vector Wiener process. Then
1
Ellm(dl) < Bllmollel + 7 [ [ ot mis)lg ds] 1 2 to
2

Proof.  Let g, < ¢a-1, Where g,.g,_1 are two points in K c R}, such that ¢, — 0

asn —ooand g =¢ = (1,1,...,1)T. Let 7, = [{gul| and 71 = ||gn_1 |} and define for

n=12,...
'[T’H ds -
w HPAu(s))I

Let A={u € R:0<|luj <}, B={ue K:n < |ull < mer O = {u€ K : |Ju| >
Ta—1}- Then there exists a twice continuouslv differentiable cone-valued function Talu)

- v o e g - E W A T PR haias A

defined on K C R} such that T,(0) = 0 and

i for ue A
Ta(u) =< between Dand u for ue B
u for ueC

o for v € A
T.(u) = { between D and e for u € B

e for ue
0 . for uc A
vy =  between 0 and ——————— for u e B
Titw) ][ @A ()|
0 for ve

We can then extend T,{u) appropriately as a twice continucusly differentiable cone-valued
function to the largest cone K < R™. That is Ty (u) = Te(ll¢]l¢) so that as n — oo we
have T, ([[ullg) = |lulls. Now applying té's formula on T, ({|m(t)|
taking expectation of both sides we obtain

ET(Im(t)lg)] = E[T(lmollg))
+E uo imis)g) g(s,m(s)) ds]

+F | j Talllm(s)la) Gs,mls)) d=()]
VB [§ [ T me)) Gls.m(s) 67 (s.m(s}s

o), integrating and

By the property of stochastic integral we have

E{ [ TiIms)) G,m(e)) da(s)] =0
Also for some ¢y € K, w € K and using property A we have that
E[[[ 3 (T Imiollg) Gloum(s)) 6 (s, mis)s]
= B[ (Tl 160 i)

t]
< B| [ Smax Tl )i 1UIG s, mis)) I )]

tg‘ZmE

IA

elf 5 2max (TS| (o, Gl m{s DI [l €)1)ds]

e
i

B E[ {mﬂ'\ld’(h(m(smn}‘ ‘0]
o5

5 max tr{|I T (lm(s) )] II‘I’(h(m(S)))II}ds]
ir
t—ity e

-~]—>0 as n— 0o .
n




Since ||T1(|m(f}llg < 1 we have that
£ [ 7o) ols,mis)ds]
E U:o I (sl IIQ(S,m(S))IIG’S]

B[ hatsm(elds] -

By the definition of Tr{u}, as n — 00 we have

Tl = Nim(t))ll;  and  Tullimollg) = llmolig

and so the conclusion of the Theorem follows.

It remains now to show that 7,(u) can indeed be extended as a twice continuously
differentiable cone-valued function to the largest cone X C R". Let K; C R" such that
K C K, C R Let T, : K; — K, be a function defined on K| with values in K such
that D(T,) € D(T,,), where D(T,) denotes the domain of T,. Let Gny+ @ny—1 be any points
in K such that ¢, _,:"’b Gry—1 and ¢, — U asn — oo and gp = &', a fixed point in K such

1

A=A

that ifa' € K, then o' = e. Let Ay = {u € Ky :0< |Jul| €7, }, By = {w € Kyt 7,
“uH < Tﬂl—l}acl = {IL S ]"1 : IEu“ 2 Tﬂ1—1}1 where Try = H‘?MH and Tm 1= ”qﬂ,_]H
Define a function T, : K; — K, such that T, {0) =0 and

0 for u € A]
Ta (1) = ¢ between 0 and |jal]lu for u € B
lat{)u for ve

clearly T}, (u) is a twice continuously differentiable function defined on K;, for,

0 for ue A,
Ty (u) = « between 0 and |la'ff e for u € B

[l e for we )
and
0 for u € Ay
1
TV (u) = 4 between 0 and laj € for u€ B,

2| @Ch{Jtullz )il
for we
If u € K, then a! = e and so Ty, (u) = To{u). )
Generally by choosing points ¢n,,qn, -1 € K,, K C K, C K, € ... C K, C RB" such
that ga, < g¢n.—1 and ¢, — 0 as n, — oo and gy = 4", a fixed point in K, such that if
K%

a" € K, then a" = ¢, we can define a function T,, : K. — K. which 15 twice continuously
differentiable on K, such that D(T,} € D(T,,) and if u € K then T, (v) = Tu(u). I
K, is the largest cone in B™ and D(T,,} = K, then T, is the required extension of T;.
If K, is not the largest cone in A", then we take a collection S of all twice continuously
differentiable functions f defined on the subset of the largest cone in RB® such that for al!
Fe 8 DTN C D(f)and f(u)= ()foruGK

Introduce a partial ordering in S as follows: If D(f1) € D(fz) and fi(u) = fo{u) for
u € D(f;) then write f; C fr for fi,f; € S. Let W be a totally ordered subset of 5.
Define a function g by

Di9)= Y, D). sluy=f(w, weD(f).

g is uniquely defined, for if fi, f; € W and since W is totally ordered, then f; C f; or

fg C fl and if u [ D(fl) n D(fg], then f](’u) = f;(u).
From the definition of g, it follows that g is a twice continuously differentiable function
defined on some subset of the largest cone in B", and so g € 5. Since D(g) = fgw (f),

then g is an upper bound for W. Thus a partially ordered set S is such that every totally
ordered subset of S has an upper bound which is in §. Then by Zorn’s lemma, there
exists a maximal element ¢ € S.

We claim that the domain of § is the largest cone in £*. Suppose this claim were false,
then there would exist an element v in the largest cone in R® with v & D(§) in which case
g would have an extension §* defined on I}{§) + {v}. This then contradicts the fact that
§ is the maximal element in §. Therefore D(§) is equal to the largest cone in B™ and so
§ is the required extension of T, and so the proof of Theorem 2.1 is now complete.

Theorem 2.2. Let the assumptions of Theorem 2.1 hold and suppose that g(t,2) >0
K

a.s. Thenmo€ K C R} = m{t) € K as. fort >t
Proof. Since m(t) is a solution of (2.5), then for all t > #,, we have

m(l)=mg + [:g(s,m(s]) ds + /;: G(s,m(s)) dz(s)
and so
m(1)] = E[mo] + F U a(s,m(s}) ds] +E Uu Gis,m(s)) d:(s)} .
Since E Ufo G(s,m(s)) dz(s) ] = 0, by the property of stochastic integral, then we have
(26) Ef(t)) = Elmol + E [ [ g(s,mi(s)) ds]
Also from Theorem 2.1 we have
(27) B(im()ig) < Ellmol) + 5 ([ Nats,m(a))lg ds ) as.

Since mg € K, thenmpy—0 € K = m.;.> 0 and also by hypothesis g(t,u) > > 0 then
[lmellg = mo and ||g(t, m(t))] 5 = g(¢, m(t)} and so (2.7} becomes

(2.8) E(im{t)le S Elrma) + E (l:g(s,m(s))) ds as.
From {2.6) and (2.8) we have

E(|lm{t}lla

= [m(#)lls

E(m(t)) as.

m{l) a.s.
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It is obvious that only the equality is admissible. Therefore |m(¢)[is = m(t) = m(t)> 0 =
K

m{t) -0 K =>m(t)e K.
Theorem 2.3. Assume that
(i) G € ClRy x K, B}, 91,97 € C|Ry x K, R",gi{t,u)> 0 a.s. i = 1,2, are quasi-
K

monotone in u relative to K for cach £ € R, and z(1) is a normalized n~vector Wiener
process.
(it) Property A holds with condition (iv) replaced by

(o, [G(2, v} = Gl 0) Pllwllg)e) £ S(h{]lv = wllg))
(iii) ©(¢), u(t) are solutions of

)o du = gy{toudt + Gt w)dz(t), u(to) = o
(29) dv = go(t,u)dt + G{t,v}d=(t), olto) = v
respectively and gq(¢,u) 5 g2(t, 1) for (t,u) € Ry x K. Then 1.!0% = u(t}% v(t) a.s.,

12>ty
Proof. Define m{t) = v(1) — u(t) so that

(2.10) dm = g"(t,m)di + G*(t,m)dz(t), mlte} = mo

where

GHt,m) = G{t,v) - Gt u)
[PARY
g'(f,ﬂl} = 92(3sb‘) -gl(tvu)

Obviously (2.10) is an Ité-type stochastic differential equation and m(t) satisfies (2.10).
Since v(t), u(t) are solutions of (2.9), then m(t} = v(t) —u(t) is [\—measurable and sample
continucus, where T, is a sub-o-algebra of T defined on R, and I' is the o-algebra of
subsets of the sample space 2. Also

Llllor(s, oDl + 1G5, u()P) ds < 20, wpt
and .
[ lsato, o)+ 16T, o)1) ds < 50, w1

Now

[ g™ () + 1676, m(s)) 1) ds
J et vlsh) = it o)) |+ 1Gis,vis)) = Gl u(s))P) ds
[ st + 16wt} ds + [ U aals, o)l + DG, DI} ds

< oo w.p.l.

IA

Thus m(t) is a solution process of (2.10). Now let uo§ vg, then vy —ug = mg € K. Then
by Theorem 2.2, (1) € K a.s. = m(i} % 0= u(t)% v(t) a.s.

Theorem 2.4. Let the conditions (i) and (7i) of Theorem 2.9 hold. Assume further
that

m.:.luu--__._—__ pp—— ——

(a) llg(t,u)|| + 1G(t,u)ll € L + M| for some constanis L > 0 and M > 0.
(b) u(te) = ug > 0 is independent of z(1) and for a positive constant ¢, E[l|luol]'] < c.

Then there erists a mazimal solufion process of (2.2) relative to K for each t € Ry,
Theorem 2.5. Assume that

(1) V € C[Ry % 5, K|, V;, V; and Vo exist and are continuous for (t,z) € Ry x 5, and
for each (t,x} € Ry x S, LV(t,2) < g{t,V(t,z)), where L is the operator defined
K
in (2.4).

(i} g € C[Ry x K, R, g(t,u) is concave and quasimonotone in u relative to K for each
t € Ry and r(t) is the marimal solution of deterministic comparison system

{2.12) u' = g(t,u), u{ty) = up
relative fo K.
(i) For the solution process z(t) of (2.1) E[V(t,z)] ezists for t > t,. Then

E[V(io,fn)i‘g, Up = EW@J)]% r(t), tz4l.

Remark 2.1. The proofs of Theorems 2.4 and 2.5 follow similar reasoning as in the
proofs of Theorems 4.6.1 and 4.8.1 in 2] respectively, with appropriate modifications and
50 are omitted here,

3 Stability Theory

Definition 3.1. The trivial sclution 1 = 0 of {2.12) is said to be ¢o-equistable if
given € > 0, there exists § = &(to,£) which is continuous in #y for each ¢ such that the
inequality (o, uo} < & implies (@o, (1)) < £,t > ty where ¢y € K.

Other ¢g-stability notions can be similarly defined.

Definition 3.2. The trivial solution = = 0 of (2.1) is said to be stable in probability if
for each €,4 > 0,% € R, there exists a positive function § = §(1p, £, 7) that is continuous
in 1o for each ¢ and n such that the inequality

Plllzoll > 6} < n = P{liz(t)]l > e} <n, t24o.

Definition 3.3. The trivial solution z = 0 of (2.1} is said to be steble with probability
one (w.p.1) if for each ¢ > 0,4 € Ay, there exists a positive function é = 6(ty, <) such
that the inequality

Haoll <& wopl=>|z{t)l<e wpl, (>t.

Definition 3.4. The trivial solution & = 0 of (2.1) is said to be stable in the mean
if for each £ > 0, ¢y € Ry, there exists a positive function § = §{t,, £} continuous in #g for
each ¢ such that

(E{llzollP))/? < 8 = (E(lz(6)|P))' P <&, 1215 p21.

7



Other notions of stability in probability, stability with probability one and stability in
the mean can be similarly defined, (see [2]).

Theorem 3.1. Lel the conditions of Theorem 2.5 hold. Assume further that f{t,0} =
0,9(t,0) =0 ond for some ¢y € K, (t,2) € Ry x 5,

(3.1) blI=lIP} < (do, V(ts2)) < alt, flz]]%}

p>1l,a,b€ K, ais concave and b conver, and a(t,r) = a[r).
Then, the trivial solution = = 0 of (2.1) solisfies each one of the stabilily notions of
Definition 3.2 if the trivial solution v = 0 of (2.2) satisfies each one of the corresponding
stability notions of Definition 3.1.

Remark 3.1. For the definition of X-class functions see [1].

Proof. (i) Assume that the trivial solution uw = 0 of (2.2) is ¢g-equistable. Then
given b(¢Pp) > 0 n > 0, > 0, there exists 6; = §1(fo, £, n) such that

(Poarp) < &1 = (o, 7{8)} < b(e™n), o€ K.

Now given  and for any 6, Markov’s inequality gives
E hed P
Pllzol > 5 < ElI= ]

Now choose § such that P{||zo| > 6) < ﬂl.l:_:llﬂ and E [ﬂ%llf] = 5. It then follows that

(3.2} Pllzoll > 8) < .
Now choose t, such that (¢y, ug} = a(fy, E{||zo||")) and 8, = &;(¢s, &, 1) such that a(ts, &) <
6 and 78" < &. Then E [] = 5 < & = E[llzo]l*] < 6. Now
Elilzoll”] < & = alty, E[j|zo/I”]}) = (do. u0) < &
= (Bur() < blPn), 1>t

We now claim that the inequality (3.2) implies

Pllz)| > e} <n. tzto.
Suppose this claim is false, then there would exist a ¢; > ¢, such that (3.2) holds and
(3.3) P{ll={tr)ll > e} = 9.

Let z{t) be any solution process of {2.1) such that E{V{1o, Iq)];: uy and let ¢, be the

first exit time of x(t) from S, = {z € A" : |lz|]| < £} and let + = min{¢,t,}. Then by
Theoremn 2.5 we have

(do, E[V (7, 2(7)}]) < (¢, (1))

and from {3.1) we have

Eb(llz(m)I)] < (¢, EV(r)])

(do.7(t)} < blePn) .

WA A

By convexity of b and Jensen’s inequality we have

(3.4) YE[(m)IP]) < E[(ll(7)P)] < bePm) .
From (3.3}, (34) and Markov's inequality we have

P,

El|lz()|I? I3
bm) = B(P{(r)l > <h) < & (l”e‘—)”—]) <8(22) <utn-
which is absurd. This absurdity justifies our claim.

The proofs for uniform stability in probability, asymptotic stability in probability and
uniform asymptotic stability in probability can be given using similar arguments as in the
case of stability in probability given above.

Remark 8.7. Theorems giving sufficient conditions for stability with probability one
and stability in the mean can be similarly formulated and proved, in a straightforward
manner using the arguments in Theorem 3.1.

Theorem 3.2, Assume that for (t,z),(t,y) € D, D C [0,00) x 5., lo(t,2)] <
MM > 0,1 f{t,z} — Flt,9}] € L)z — y]l, L{t) > 0 and the solution process z(t)
of (2.1) is uniformly asymptotically stable in probebility. Then there exists a stochastic
cone—valued function V with the following properties:

{i) V € C[R} x 85, K|, Vi, V,, and V., exist and are continuous,

(i) for each (t,z) e Ry x S, L V(t,r]% g(t, V(t, 2)) where

LV(tz)y = WVtz)+ Vo(t,z) f(t, 1)
+% tr{Ve (t,2) e(t,2) o7 {t,2)}w ,
w = (LL,... 1} ek
(i) BVt )] < o
{iv) for some 6o € K and (t,z) € R, x S,
bt zll) < {0, V(L)) < alllz]l) -

Proof. (i) Define V(t,z) = ||z|?¢~'w. Then clearly V € C[R; x 5,,K]. V. =
—ez|Pw, V, = 6A)iz| %! where A is an N x n matrix given by

T ¥z Iy

Iy Iz N
A=

Ty Iy v TN

Viz = 6B||z|le™*, where B is an n x n matrix given hy

“.’E" +4I? 4111‘2 4$11n
421, |zl + 422 ... dxaz,
B =
4z,1 4r,x, vzl + 42

g
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Obviously, Vi, Vi, Vi exist and are continuous.

(ii) Let
oy Tzt O
0y P23 - O
o=
Tnl Orz *°° Tnn
then - N n
E J'fj 5: 013025 }: T30y
=1 =1 3=1
n n 2 n
2 o500, = T 2 3900
T =1 =1 1=1
aot =
Y T Y. OaCy ¥ ol
i=1 g=1 i=1
and T = Vo.oo7 is given by
Tn T T
T21 TE’E 12n
T =
}Tn] TﬂZ e Tnn
and { |
3 Trace of {Vi 00T} = E{Tu + T+ ...+ Tun)
where
Thn = {(la) + 43;1))(531 + U?z +.t afn} + 43,2200 011 + 01z + ...+ Fon0ia)
+. 42120001 F TaaCiz F ot oy, ) [T 2]
T = {4ta1(ouon +0120m + ... qumce) + (||f + 4z2) (o0 + 02 + ...+ a3,)

+.o 42 (0T + Ta0n + o+ Gan02a) }Be 72|
Ton = {42.01(00100 + 012002 + .o+ 0100.0) + 42022(021001 + OnaGnz + ... + O20503)
+ot (2l + 423)(oh + ol + o+ o) Yo 2 -

Now
Tl € diflzl’e™ + milizlle™, i=1,2,...n
where
d, = Z 60"-2]- and m; = Z 24.’1‘.‘.1‘); (Z cr‘jak_,)
=1 k=1 Jj=1
10
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Since || f(t,z) — f(t,)ll < L{t)[lz - yl|, then putting y = 0 gives || f(t, )| < L(t)||z]| and
so ||Vz(t, ) f(t, z)|| = €]|A||L{t)]|z]|Pe™* where || A]| is the matrix norm of A. Therefore

LVit,z) = Witz)+ Vet z)f(t,z)+ % Tr{Vie(t, z)o(t, 2)a (b, x)

1
—6—!MI"3&J + GA}I@“H?e_'f(t,z) + E{Tn + ng + e + Tnn)w

1
% 6Affz|%e™ f(t, z) + g(Tn + T+ 4+ Tl
Al n
% {BHAH L@lizlPe™ + 3 dljzle ™t + 3 m-'”fl"lle_t}w
=1 =1

choose constants ¢; and c; large enough so that ¢ fiz}| > 1 ard e|z}|* > 1, then we have

LVt

ZIA

{GHA”L“) +a 5‘: di+cp Xn: m‘} =] et
-1 =
g(t. Vit 2)) .

(iii) For all (t,x) € R, x §,, there exists M, 0 € M < oo, such that ||[V(t,z)]| £ M. Let
p(t,z) be any appropriate probability density function for V' then

E(WVI) = [ IVI plt.z) a2 = M [ p(t.2) dt = M < 0

where (1 is an appropriate sample space.
(iv) For some ¢p € K

(¢, V(t,2)) (do, lz[lPe™w) = [lzlPe™ (o, w}

(o, wll’ = alfjz)l, a€k .

A

Since the solution process z(t) of (1.1) is uniformly asymptotically stable in probability
then given ¢ > 0, > 0,t5 € R, there exist § = (g,5), T = T(¢) such that

Plo:lzol 2 6} <n= Plw:jlz|l >} <mt 2 T{e) + iy .
It follows that there exist 3> € K such that
Plw: fizoll 2 6} <n = Plw:|lzlf > p(llz[}} <n .

We can take n arbitrarily small such that the above probabilities tend to zero. It then
follows that it is fairly certain that the occurrence of the event

llzoll < &= Hz|l < ¥{||=|)
and so we can find ¢ € K such that

ellzll) < (=l

and

elizllle™e < eluillzfle™w .
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For some ¢ € K we have
¢0,c([]::]|)e“u) < (doel#(llzl)))e w)
f@"ovw) (lell) < (g0, ¢(lzl)e”'w), ¢€K.
bt,llzl) < {do,d(llzle'w), be K.
Now defining ¢({|z||) by #((|z(]) = ||z|[* we abtain
b(t, fizi) < (¢0. V(L 7)) .
And so we obtain
bt {lx]) < {0, Vit 2)) <alllzf}, abe k.

Theorem 3.3. Assume that for {t,z),(t,y) € D, |le{t,z}| < M, M > 0| f(t,z) —

Fiepil € L)z — y|| L(t) > 0 and the solution process z(t) of (2.1) is uniformly
asymptohcally stable in the mean. Then there exists a stochastic cone-valued function
V' with the following properties:

(i) V € C[R, x 5,, K], Vi, V;, Vi exist and are continuous

(11} for each (¢,z) € Ry x §,, L V({,2) < g{t,V (!, x})) where L V(t,z} is as in Theorem
=
3.2,

() EfiV{t, o)) < oo
(iv) b(£, E([lz]|")) < (o, V(2. 7)) < G(|z|]%) for some ¢ € K7, (2, z) € By x 50,6 € K

and b is convex.

Proof (i) Define V(t,z) = |z[[*e'w. Clearly V € C[R, x §,, K]. Vi = —¢7¥||z||*w,

V, = 6pA|z]|** e~ where A is the N xn matrix given in Theorem 3.2. V., = 6pBe~t|jz]**73,

where By is an n x n matnix given by

=) +2(3p — Dz?  2(3p — 1)z 2(3p — z1240

2(3p — 1)z {lzll + 2(3p — )23 2(3p — 1)zyz,

By =

2(3p ~ 1)znmy 2(3p — l)znaz,

Clearly Vi, V., V,, exist and are contiruous.

]l + 2(3p — 1)z}

(ii} Following similar computations as in Theorem 3.2 for ago? and V.,e07 = T we obtain
1Ti) < 2P e + myl|z |
whete

=) ﬁpaé

=1

and m, =

i 12p(3p — L)a:xy (i cn,cr:m)

k=1 J=1

Similar arguments as in Theorem 3.2 show that

L V(t,r)% g(t, Vit o).
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{iii) Since 1 < p < oo and z € 5, then ||z|[* < = and so V = ||z||*¢ %w is bounded,
Therefore E(|V]}} < 0.

(iv)

(¢o, V(t,2)) (B0, lzlPe"w) = (o, w)e™"lx|f*

S0zl = a(ljzlf), ack.

1A i

The solution process of (2.1) is uniformly asymptotically stable in the mean implies
that given any € > 0, there exist § = é(¢) and T = T(c) such that the inequality

(E(fz|P))YPr < & = (E(lz|P})? < &,p > 1,t > T{e) + 5. Since £ is arbitrary then we
can choose 1 € X such that

B(flzo”) < & = E{lj=|l*) < %(||=").

Then for some ¢ € K7 we have (¢o, E([|z|P)e™w) < (do, ¥({|z||"}e 'w), ($o,w)e B(||2]F} <
{0, ¥(|iz]iP e *w). Now for any convex function ¢ € K, Jensen’s mequahty gives

(B0, ¢ E([lzIPYe™'w) < (b0, E(9(|[=]")) e7'w)
< (g0 dl([2l”))e ")
(o, w) e*$(E([l2?)) £ (o, clilz]]") e'w)ic€ K.
s |

B, E{||=]P)) ¢, V(t,z)), b€ K and & is convex
where ¢(||z||*) is defined by e(||x|l?) = ||=|*.
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