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ABSTRACT

Stochastic differential equations of Ito-type are considered and the theory of stochastic
differential inequalities is systematically developed. Sufficient conditions for stability in
probability, with probability one and in the mean of the Ito-type stochastic differentia]
equations are given, using the method of cone-valued Lyapunov functions. Necessary
conditions for the construction of stochastic cone-valued Lyapunov functions are obtained
for the cases where the Ito-type stochastic differential equations have uniform asymptotic
stability in probability and uniform asymptotic stability in the mean.
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1 Introduction
Many biological, physical and social phenomena can be described by a system of stochastic
differential equations of It6-type. It is well known [I] that the method of vector Lyapunov
functions provides an effective tool for the discussion of the stability analysis of Ito-
type stochastic differential equations. However, this method crucially depends on the
requirement of quasimonotone non-decreasing property of the comparison system. It
is also well known [3] that the requirement of quasimonotone non-decreasing property
is restrictive. In [1,3], it was shown that the theory of differential inequalities through
cones together with the comparison principle of the method of cone-valued Lypunov
functions removes this unpleasant restriction of the method of vector Lyapunov functions
and provides an effective and flexible tool for the investigation of the stability behaviour
of the solutions of ordinary differential equations.

In this paper, we are concerned with the idea of extending the theory developed in [1,3]
for the ordinary differential equations to the stochastic differential equations of Ito-type.
We shall systematically develop the theory of stochastic differential inequality through
cones, and obtain various stability results for the stochastic differential equations of Ito-
type in the framework of cone-valued Lyapunov functions.

2 Stochastic Differential Inequalities
In this section we develop the theory of differential inequalities through cones for the
Ito-type stochastic differential equations. We give sufficient conditions for the existence
of maximal solution process of the Ito-type comparison differential equation relative to a
cone K C Rn. We also state comparison theorems for the Ito-type stochastic differential
equation in the framework of cone-valued Lypunov functions.

Consider the Ito-type stochastic differential equations

(2.1) dx = f{t, x)dt + u(i, x) dz(t), x(t0) = xa

where / € C\R+ x RN, RN}: <y e C[R+ x RN, R"2] and z € R[ft, RN] is a normalized N-
vector Wiener process. Consider the Ito-type comparison stochastic differential equation

(2.2) du = g(t, u)dt + Git, u)dz(t), u(/0) = u0

where g € C[R+ x Rn,Rn\,G 6 C[R+ x R",Rn%n < J V , z 6 R[il,R"] is a normalized
n-vector Wiener process. We assume that f,g,a,G are smooth enough to guarantee the
existence of the solution process of (2.1) and (2.2).

Let .ffn denote the n-dimensional Euclidean space with any convenient norm |j • || and
scalar product {-,•),£+ = [0,ao),R% = {u € i f : u, > 0, i = 1,. . . ,n}. Define Sp by,
Sp = {xeRN:\\x\\<p,p>n}.

Definition 2.1. A proper subset K C Rn is called a cone if (i) \K C K, A > 0 (ii)
K + K C K (iii) K = K, (iv) K n i-K) = {0} (v) K° is non empty; where K denotes
the closure of K and K° denotes the interior of K. We also denote the boundary of K
by dK.

The order relation on Rn induced by the cone K is defined as follows: Let x,y £ K,
then x < y if and only if y - x € K and x < y if and only if y - x 6 A'0.



Definition 2.2 The set K* is called the adjoint cone if K~ = {> € Rn • (<M) > 0
for all x 6 K} satisfies properties (i)-(v) of Definition 2.1.

Definition 2.3. A function g : D —f Rn, D C Rn, is said to be quasimonotone
relative to the cone K if x, y 6 D and y — x e 3/f imply that there exists gd0 G A'J such
that (^o,3/ - x) = 0 and (<fo, j (y) - 5(1)) > 0, where A^ = A" - {0},

Definition 2.4. (Property A). Let h e C[h',Rl\ be defined by h(x) - h,(x,),i -
1,2, . . . , n ; so that fcfz) = ( M ^ i ) , ft2{^2), • • •, hn(xn))

T. Let * £ C[R%, K] with the
following properties:

(i) *(0) = 0, (ii) *(u) < *(u) if and only if D, < u,, i = 1,2, . . . , n.

(in) > HI, (iv)

| | ( ( ( ) ) ) | |
where G' £ C[fl+ X iV, fi" ], || • || is the matrix or vector norm in R™ and || • \\^, is the
generalized norm of vectors defined in Definition 4.5 in [1], <>o £ A'Q,UJ £ A", ((,u) 6
fl+ x A' and e is a unit vector in K.

Let V € C[R+ x Sp, A'], V(, Vr, 14Z exist and are continuous for (i,.r) G i?+ x 5 , and
A' C R", where Vr is an TV x n Jacobian matrix of V(t,x) and Vxl: is an n x n Hessian
matrix whose elements (32/0ii3xJ)V''((.a:) arc JV-dimensional vectors. By Ito's formula
we obtain

(2.3)

where

dV(t,x) = L V(t,x) dt+Vx(t,x) a(t,x)

(2.4) /, V(t,x) = Vt(i,x) + Vx(t,x) f(t,x) + X- tr{Vxx{t,x) a(t,x) <7T(t,x)}

Theorem 2 .1 . Assume that
(i) Property A holds,
(ii) m(t) u a solution of

(2.5) dm = g(t,m)dt + G(t, m) dz(t),m(ta) = m0

whF.it rn e C[R+tK],g e C[R+ x / C , ^ " ] ^ ' e
a normalized n-vector Wiener process. Then

R\U,Rn] is

A ds\ .t "> tn .

Proof. Let qn < <?„_], where qn.qn-\ are two points in K C fi+, such that <;„ —» 0

as n —* 00 and q0 = e = ( 1 , 1 , . . . , 1)T. Let Tn = ||^n|| and rn_i = ||?n-i| | and define for
re= 1,2,. . .

r
Let A = {u € K : 0 < ||u|| < r n } , B = {u € K : rn < ||u|[ < r^^.C = {u £ K : \\u\\ >
!•„_!}. Then there exists a twice continuously differentiable cone-valued function Tn(u)

defined on /if C R^ such that Tn(0) = 0 and

( 0 for u G 4
r n (u) = I between 0 and u for u G JE?

I u for u G C

I;' 0 for u € A
K(u) = i between 0 and e for u g £?

U for a e C

T"(,,\ _ J between 0 and

l o

for u G A
for u f B

for u € C

We can then extend Tn(u) appropriately as a twice continuously differentiable cone-valued
function to the largest cone K C R". That is Tn(u) = rn(| |«||(j) so that as i n oo we
have TndluHg) = ||ti||G. Now applying Ito's formula on T^(j|?n(f)||o), integrating and
taking expectation of both sides we obtain

E[Tn(\\m(t)\\6)] = E[Tn(\\mo\\6

+ E

ds

dz(s}\

By the property of stochastic integral we have

(s}\\6) G[S,m(*)) <**{*)] = 0 ,

Also for some ^0 6 K^w € K and using property A we have that

r>

2 n
• 0 as n



Since ||r;(||m(i)llo < 1 we have that

<
K

< E\['\\g{Sfm(s))\\ds] .

By the definition of Tn(u), as n -KXJ we have

and Tn(\\mo\\6) =

and so the conclusion of the Theorem follows.
It remains now to show that Tn(u) can indeed be extended as a twice continuously

differentiable cone-valued function to the largest cone K C Rn• Let K\ C Rn such that
K C Ki C Rn. Let Tni : K\ —> A'i be a function defined on A\ with values in A'I such
that D(Tn) C D(Tn,), where D(Tn) denotes the domain of Tn. Let ?„,,?„,-1 be any points
in A'j such that <?„, < <7n,-i and gni —» 0 as n —• oo and g0 =

 a \ a fixed point in Kl such
^']

that if a1 € A', then a1 = e. Let Aj = {u 6 A', : 0 < ||u|| < r,,,}, £ , = {«£ A'i : T», <
||u|j < T , , . , } ^ , = {u € A', : ||wt| > rni-i}, where rni = ||$ni|| and rni_., = ||?ni_i||.
Define a function 71,, : A'j -> A'j such that Tn, (0) = 0 and

10 for it e J4,

between 0 and IJa'Hi/ for « 6 A
lla'Hu for ueCiclearly 7'n] (u) is a twice continuously differentiable function defined on A'i, for,

( 0 for u e Ai
T'nj{u) = f between 0 and \\al\\ e for u G B,

for a

and
'0

"" (u) = { between 0 and

for u e

for u £

for u £

If u e A', then a1 = e and so Tni («) = Tfl(u).
Generally by choosing points ^n, ,9nr-i € A'r, A' C A'i C K2 Q • • - C A*r C if" such

that qnr < ((„,_, and qnr —» 0 as nT —• oo and g0
 = "ri a fixed point in KT such that if

aT 6 /i^, then ar = e, we can define a function Tnr : KT —* KT which is twice continuously
differentiable on KT such that D(Tn) C D{Tnr) and if u g A' then 2;r(u) = Tn{u). If
A'r is the largest cone in /J" and D{Tnr) = A'r, then Tnr is the required extension of Tn.
If A'r is not the Sargest cone in R", then we take a collection S of all twice continuously
differentiable functions / defined on the subset of the largest cone in Rn such that for al!
/ € S, D(Tn) C D(f) and f(u) = Tn(u) for u£K.

Introduce a partial ordering in 5 as follows: If D(f}) C D(fi) and /i(u) = h(u) f°r

u € /?(/)) then write / i C /2 for / i , / 2 € 5. Let VK be a totally ordered subset of S.
Define a function g by

D(g)=UwD(f), S(«) = /(«), «€ZJ(/).

j is uniquely defined, for if / i , / j € W and since Ĥ  is totally ordered, then /i C / j or
/2 C / , and if u € D(/i) n £>(/,), then /,(i/) = /2(«).

From the definition of ^, it follows that g is a twice continuously differenttable function
defined on some subset of the largest cone in R71, and so g € S. Since D(g) = U D(f),

then g is an upper bound for W. Thus a partially ordered set S is such that every totally
ordered subset of S has an upper bound which is in S. Then by Zorn's lemma, there
exists a maximal element g <E S.

We claim that the domain of g is the largest cone in R". Suppose this claim were false,
then there would exist an element v in the largest cone in R" with v $ D(g) in which case
g would have an extension g" defined on D(g) + {v}. This then contradicts the fact that
g is the maximal element in S. Therefore D(g) is equal to the largest cone in Rn and so
g is the required extension of Tn, and so the proof of Theorem 2.1 is now complete.

Theorem 2.2. Let the assumptions of Theorem 2.1 hold and suppose that g{t,u) > 0

a.s. Then m0 € K C R\ => m(t) € K a.s. for t > t0.
Proof. Since m(t) is a solution of (2.5), then for all t > tu, we have

ft ,t
I g(s,m(s))ds+ G{s,m(s)) dz(s)

Jta JtQ

and so

E[m{t)} = E[m0] + E f ['g(S,Tn(s)) ds] + £ [ / ' G(S,m(s)) dz{

Since E \fta G(s,rn(s)) dz(s)\ = 0, by the property of stochastic integral, then we have

(2.6) E[m(t)} = E[m0] + E [ £ g(S, m(s))

Also from Theorem 2.1 we have

(2.7) £ ( I M 0 U < mi^oWa) + £ (f M*M*))U ds) a-s- •

S i n c e m 0 € K, t h e n m 0 — 0 6 A" => m 0 > 0 a n d a l so by h y p o t h e s i s g ( t , u ) > 0 t h e n
A K

llmollg = mo and ||5(<,m(i))||,j = g(t,m(t)} and so (2.7) becomes

(2.8) E(\lm(t)\\6 < E(m0) + E ( f g{s, m{s))) ds a.s.

From (2.6) and (2.8) we have
E{\\m{t)U < E(m(t)) a.s.

A'



• • * . * *

It is obvious that only the equality is admissible. Therefore ||m(t)||(} = m(t) =i- m(t) > 0 =*•

m(t) - 0 G K => m(t) 6 K.
Theorem 2.3. Assume that
(i) G € C[R+ x K,R"%gugi <= C[R+ x K,Rl],gi(t,u)> 0 a.s. i = 1,2, are quasi-

K

monotone in u relative to K for each t € R+ and z(t) is a normalized n-vector Wiener

process.

(ii) Property A holds with condition (ivj replaced by

*{(*,, ||G(*,t,) - G(t,v)\nw\\6)e) < *(k(||o - «||,j))

(iii) v(t),u{t) are solutions of

(2.9)
du =
dv = v(t0) =

respectively and gi(t,u) < g2(t, u) for (*,u) € R+ x K. T h e n u0 < v0 =*• u(t) < v{t) a.s.,
" A f\

i >t0.

Proof. Define m{t) - v(t) - u(t) so that

(2.10) dm = gm(t, m)dt + G'(t,m)dz(t), m(t0) = mQ

where
G'(t,m) = G{t,v) - G(t,u)

(2-11)

g"(t,m) = g3(t,v) -g

Obviously (2.10) is an Ito-type stochastic differential equation and m(t) satisfies (2.10).
Since v(t),u(t) are solutions of (2.9), then m(t) — v(t) — u(t) is rt-measurable and sample
continuous, where F, is a sub-cr-algebra of T defined on R+ and T is the tr-algebra of
subsets of the sample space il. Also

and

Now

< oo , w.p.l

< oo, w.p.l

-gi(»M*)

< oo w.p.l ,

Thus m{t) is a solution process of (2.10). Now let Wo H va, then v0 — ua — ma G K. Then

by Theorem 2.2, m(t) € K a.s. => m(t) > 0 => u(t) < v(t) a.s.
A A'

Theorem 2.4. Let the conditions (t) and (ii) of Theorem 2.3 hold. Assume further
that

(a) ||s{t,u)|| + ||G(t,u)|| < L + M||u|| for some constants L > 0 and M > 0.

(b) u(i0) = UQ > 0 is independent of z{t) and for a positive constant c, E[\\UQ\\4] < c.

T/ien there exists a maximal solution process of (2.2) relative to K for each t £ i?+.
Theorem 2.5. /Issame £feo(

(i) V e C[R+ x Sf, K],Vt, Vx and VTX exist and are continuous for (t, x) £ R+ x £„ and
/or eacft (f,i) € R+ x 5 p ,LV(( , i )^ y(«, V(i,z)), mftere I is rte operator defined
in (2.4).

(ii) 3 G C[it+ x A', fl"],y((,u) is concave and quasimonolone in u relative to K for each
t 6 R+ and r(t) is the maxima! solution of deterministic comparison system

(2.12) u' = g(t,u), u{t0) = u0

relative to K.

(iii) For the solution process x(t) o/(2.1) E[V(t,x)} exists for i > (0. Then

E[V(t0, ] < r(t), t > t 0 .

Remark 2.1. The proofs of Theorems 2.4 and 2.5 follow similar reasoning as in the
proofs of Theorems 4.6.1 and 4.8.1 in [2] respectively, with appropriate modifications and
so are omitted here.

3 Stability Theory

Definition 3.1. The trivial solution u = 0 of (2.12) is said to be 4>a~ equistable if
given e > 0, there exists 6 = S(tn,c) which is continuous in to for each s such that the
inequality (0o,uo) < * implies (4io,r(t)) < e,t > ta where <j>0 € A'J.

Other ^-stability notions can be similarly defined.
Definition 3.2. The trivial solution x = 0 of (2.1) is said to be stable in probability if

for each e, n > 0,to € R+, there exists a positive function 8 = S(to,s,T]) that is continuous
in <0 for each e and n such that the inequality

P{\\xo\\>(}<n^P{\\x(t)\\ t > t 0 .

Definition 3.3. The trivial solution x = 0 of (2.1) is said to be stable with probability
one (w.p.l) if for each e > O,io £ R+, there exists a positive function 6 = 6(tt),e) such
that the inequality

||*o||<S w.p.l =>\\x(t)\\<e w.p.l, t>t0.

Definition 3.4. The trivial solution x = 0 of (2.1) is said to be stable in the mean
if for each e > 0, t0 € R+, there exists a positive function S = S(tQ,e) continuous in t0 for
each e such that

6 >to; p>\.



Other notions of stability in probability, stability with probability one and stability in
the mean can be similarly defined, (see [2]).

Theorem 3,1. Let the conditions of Theorem 2.5 hold. Assume further that f{t, 0) =
0,g(t,O) = 0 and for some <j>0 e KQ,(1,X) € R+ x Sf,

(3.1) KIND < (<t>o, V(t, a;)) < a(i, ||x||'J)

p > l,a, b £ /C, a is concave and b convex, and a(t,r) = a(r).
TAen, (fee trivial solution x = 0 of (2.1) satisfies each one of the stability notions of
Definition 3.2 i/ the trivial solution u — 0 o/(2.2) satisfies each one of the corresponding
stability notions of Definition 3.1.

Remark 3.1. For the definition of £-class functions see [ij.
Proof, (i) Assume that the trivial solution it = 0 of (2.2) is (/>o-equistable. Then

given b(eprj) > 0 n > 0,e > 0, there exists 8i = Si(to,£,rj) such that

A'o* .

Now given r) and for any £, Markov's inequality gives

Now choose £ such that P(| |io | | > 6) < ^ % 1 H and E f1 1^] = »?. It then follows that

(3.2) P(\\xa\\>S)<V.

Now choose to such that (rj>0,u0) — a(l0, E(\\xo\\
p)) and 62 = <5a(fn,e,'?) such that 0(^0,̂ 2) S

6, and J?i" < &. Then £ [ « ] = 7, < | ^ E[||io||"] < «j. Now

We now claim that the inequality (3.2) implies

P{||x(i)| |>£}<i7. t>t0.

Suppose this claim is false, then there would exist a tt > to. such that (3.2) holds and

(3.3) P{\\'(ti)\\ > s} = i} .

Let x{t) be any solution process of (2.1) such that E[V{IQ, xa)] < u0 and let tc be the

first exit time of x{t) from S, = (2 £ J!" : | | i | | < E} and let r = min{i,(t}. Then by
Theorem 2.5 we have

and from (3.1) we have

By convexity of b and Jensen's inequality we have

(3.4) KElHrW}) < E[b(\\x(T)\\")\ <

From (3.3), (3.4) and Markov's inequality we have

b ( 5 ) < 0{Tl) .
which is absurd. This absurdity justifies our claim.

The proofs for uniform stability in probability, asymptotic stability in probability and
uniform asymptotic stability in probabiiity can be given using similar arguments as in the
case of stability in probability given above.

Remark 3.7. Theorems giving sufficient conditions for stabiSity with probability one
and stability in the mean can be similarly formulated and proved, in a straightforward
manner using the arguments in Theorem 3. L.

Theorem 3.2. Assume that for (t,x),(t,y) € D,D C [0,oo) x Sp,\\o{t,x)\\ <
M;M > 0, \\f{t,x) - f(t,y)\\ < L(i)\\x - y\\,L(t) > 0 and the solution process x(t)
o/(2.1) is uniformly asymptotically stable in probability. Then there exists a stochastic
cone-valued function V with the following properties:

(i) V G C[R+ x Sf,K],Vt,Vx and Vri exist and are continuous,
(ii) for each (t, x) € R+ x SP! L V(t, x) < g(t, V(t,x)) where

LV(t,x) = Vt[t,x) + Vx(t,*)f(t,x)

UJ = ( 1 , 1 , . . . 1 ) T G K

(m)E[\\V(i,x)\\}<oo,
(iv) for some 4>0 £ A'* and (t,x) € R+ x Sf

Proof, (i) Define V(t,x) = \\x\\3e-'u. Then clearly V € C\R+ x S,,K}. V, =
~'||i|t3w, 14 = 6y4|}i||3e'! where A is an N x n matrix given by

i X2 • • • X f t \

A =

Vxx = 6f?||a;||e ', where B is an n x n matrix given by

B =

••• IMI + 4**



Obviously, Vt, Vt, VTI exist and are continuous,
(ii) Let

/<7;i (Tu

then

j = l 3 = 1

E crj
j=l '

. E 0-njO-l, £ CTry
\j=l J=l

j = l

E

and T = VIX<rtjT is given by

T =

and

where

T22 =

Now

where

\ ? ; i rn2 • • • T n n y

l- Trace of {V^aT} = i{rn + Tg2 + ... + '/„„)

and ra, =

Since ||/(t, i) - f[t, y)\\ < L(t)\\x - y\\, then putting y = 0 gives | |/(i, x) || < L(t)||i|| and
so 1114(4,i)/(t,a;)|| = eJ|j4||I(0||i||3e~' where |j^l|| is the matrix norm of A. Therefore

LV(t,x) = Vi{t,x) + VI{t,

-'f(t, x) + U

-Tr{VXI{t,

1=1 i=i

choose constants Ci and c2 large enough so that c-i\\x\\ > 1 and cj||xj|s > 1, then we have

LV(t,x) < U\\A\\L(t) + Cl J^di + aJZ,

= g(t,V{t,x)).

(iii) For all {t,x) e R+ x 5P , there exists M, 0 < M < oo, such that | |V(i,x)j | < M. Let
p((,x) be any appropriate probability density function for V then

= / \\V\\p(t,x)dil = M f p(t,x)dn = M <

where n is an appropriate sample space,
(iv) For some <j>0 G A'J

Since the solution process i(() of (1.1) is uniformly asymptotically stable in probability
then given £ > 0,t) > 0,(o e fl+, there exist (S = iS(£, rj), T = r(e) such that

^} < i) => P{" : \\x\\ >£}<T,;t> T{e) + tv .

It follows that there exist ip e K, such that

We can take rj arbitrarily small such that the above probabilities tend to zero. It then
follows that it is fairly certain that the occurrence of the event

and so we can find c £ K, such that

and

10 1]



For some <j>a £ Kg w e have

Now defining tf>(||x||) by «K||x||) = ||x||3 we obtain

b(t,\\x\\)<(<i,0,V{t,x)).

And so we obtain

% t , \ \ * \ \ ) < ( * o , V { t , x ) ) < a { \ \ x \ \ ) , a,bzK.

T h e o r e m 3 . 3 . A s s u m e t h a t f o r {t,x),{t,y) e D , \ \ a ( t , x ) \ \ < M,M > 0,\\f(t,x) -

f(t,y)\\ < L(t)\\x - y\\,L{t) > 0 and the solution process x(t) of (2.1) is uniformly
asymptotically stable in the mean. Then there exists a stochastic cone-valued function
V with the following properties:

(i) V e C'[R+ x Sp, K], Vt, Vx, Vxx exist and are continuous

(ii) for each (t,x) £ R+x Se,L V(t,x)< g(i,V(t,x)) where L V(t,x) is as in Theorem
h

3.2.

R+ x Sp,a,b 6 K(iv) b(t, E(\\x\\')) < (<t>0,V(t,x)) < G( | |x | | '1) for some <j> E

and b is convex.

Proof, (i) Define V{t,x) = |]z||3»e-'n>. Clearly V G C[R+ x Sp, A']. ^ = - e^Hipo ) ,
Vi = 6H||a:||3''-1e-' where A is the Arx» matrix given in Theorem 3.2. VXI = 6pB1e-t||x||3p-2,
where Bi is an n x it matrix given by

Clearly Vt, VX,VXX exist and are continuous,

(ii) Following similar computations as in Theorem 3.2 for aaT and VxxooT = T we obtain

where

and m, = J2p(3p-l)x,-a-t

. J 1 = 1

Similar arguments as in Theorem 3.2 show that

LV(t,x)< g(t,V(t,x)).
h

12

(iii) Since 1 < p < oo and x & Sp then ||z||3p < oo and so V = ||x||3pe~*u> is bounded.
Therefore £(||V||) < oo.

(iv)

The solution process of (2.1) is uniformly asymptotically stable in the mean implies
that given any e > 0, there exist 6 = 6(e) and T = T(e) such that the inequality
(EiWxW))1'" < S => (EiWxW))1/' <£,p>l,t> T(e) + t0. Since e is a r b i t r a r y then we

can choose 0 6 £ such that

E(\\xo\\*) < 6" ̂  E(\\x\\>>) < M\\x\\»).

Then for some ^o £ A"J we have (fa, E(\\x\\'')e-tu) < (<fo,*(||x||p)e-!w), (<j>a,u)e-* E(\\x\\p) <
(<j>o,ip(\\z\\p)e~'<*>). Now for any convex function <j> G K, Jensen's inequality gives

and 6 is convex

where c(||i||") is defined by c{\\x\\") = | | j | | 3 f ! .
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