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CONES OF MATRICES AND SET-FUNCTIONS AND 0-1 OPTIMIZATION* 

L. LOVASZt AND A. SCHRIJVERt 

Abstract. It has been recognized recently that to represent a polyhedron as the projection of a 
higher-dimensional, but simpler, polyhedron, is a powerful tool in polyhedral combinatorics. A general 
method is developed to construct higher-dimensional polyhedra (or, in some cases, convex sets) whose 
projection approximates the convex hull of 0-1 valued solutions of a system of linear inequalities. An 
important feature of these approximations is that one can optimize any linear objective function over them 
in polynomial time. 

Jn the special case of the vertex packing polytope, a sequence of systems of inequalities is obtained 
such that the first system already includes clique, odd hole, odd antihole, wheel, and orthogonality constraints. 
In particular, for perfect (and many other) graphs, this first system gives the vertex packing polytope. For 
various classes of graphs, including I-perfect graphs, it follows that the stable set polytope is the projection 
of a polytope with a polynomial number of facets. 

An extension of the method is also discussed which establishes a connection with certain submodular 
functions and the Mobius function of a lattice. 
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0. Introduction. One of the most important methods in combinatorial optimization 
is that which represents each feasible solution of the problem by a 0-1 vector (usually 
the incidence vector of the appropriate set), and then describes the convex hull K 
of the solutions by a system of linear inequalities. In the nicest cases (e.g., in the 
case of the bipartite matching problem) we obtain a system that has polynomial size 
(measured in the natural "size" n of the problem). In such a case, we can compute 
the maximum of any linear objective function in polynomial time by solving a linear 
program. In other cases, however, the convex hull offeasible solutions has exponentially 
many facets and so can only be described by a linear program of exponential size. For 
many combinatorial optimization problems (including those solvable in polynomial 
time), this exponentially large set of linear inequalities is still "nice" in one sense or 
another. We mention two possible notions of "niceness": 

-Given an inequality in the system, there is a polynomial size certificate of the 
fact that it is valid for K. If this is the case, the problem of determining whether a 
given vector is in K is in the complexity class co-NP. 

-There is a polynomial time separation algorithm for the system; that is, given 
a vector, we can check in polynomial time whether it satisfies the system, and if not, 
we can find an inequality in the system that is violated. It follows, then, from general 
results on the ellipsoid method (see Grotschel, Lovasz, and Schrijver [14]) that every 
linear objective function can be optimized over K in polynomial time. 

Many important theorems in combinatorial optimization provide such "nice" 
descriptions of polyhedra. Important examples of polyhedra with "nice" descriptions 
are matching polyhedra, matroid polyhedra, stable set polyhedra for perfect graphs, 
etc. On the other hand, stable set polyhedra, in general, or travelling salesman poly
hedra, are not known to have "nice" descriptions (and probably do not have any). 
Typically, to find such a "nice" description and to prove its correctness, one needs ad 
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hoe methods depending on the combinatorial structure. However, one can mention 

two general ideas that can help in obtaining such linear descriptions: 

-Gomory- Chvatal cuts. Let P be a polytope with integral vertices. Assume that 

we have already found a system of linear inequalities valid for P whose integral 

solutions are precisely the integral vectors in P. The solution set of this system is a 

polytope K containing P which will in general be larger than P. We can generate 

further linear inequalities valid for P (but not necessarily for K) as follows. Given a 
linear inequality 

valid for K, where the a; are integers, the inequality 

L a;X; ~ LaJ 

is still valid for P but may eliminate some part of K. Gomory [11] used a special 
version of this construction in his integer programming algorithm. If we take all 
inequalities obtainable in this way, they define a polytope K' with P ~ K' c K. Repeat
ing this with K' in place of K we obtain K", etc. Chvatal [8] proved that in a finite 

number of steps, we obtain the polytope P itself. 

Unfortunately, the number of steps needed may be very large; it depends not only 

on the dimension but also on the coefficients of the system with which we start. Another 

problem with this procedure is that there is no efficient way known to implement it 

algorithmically. In particular, even if we know how to optimize a linear objective 
function over K in polynomial time (say, K is given by an explicit, polynomial size 
linear program), and K' = P, we know of no general method to optimize a linear 

objective function over P in polynomial time. 
-Projection representation (new variables). This method has received much atten

tion lately. The idea is that a projection of a polytope may have more facets than the 
polytope itself. This remark suggests that even if P has exponentially many facets, we 

may be able to represent it as the projection of a polytope Q in higher (but still 
polynomial) dimension, having only a polynomial number of facets. Among others, 
Barahona [4]; Liu [16]; Ball, Liu, and Pulleyblank [3]; Maculan [19]; Balas and 

Pulleyblank [l], [2]; Barahona and Mahjoub [5]; and Cameron and Edmonds [6] have 

provided nontrivial examples of such a representation. It is easy to see that such a 
representation can be used to optimize linear objective functions over P in polynomial 

time. In the negative direction, Yannakakis [26] proved that the travelling salesman 

polytope and the matching polytope of complete graphs cannot be represented this 

way, assuming that the representation is "canonical." (Let P s;; IR" and P' s;; !Rm be two 

polytopes. We say that a projection representation 7r: P'-.;. P is canonical if the group 

f of isometries of IR" preserving P has an action as isometries of !Rm preserving P' so 
that the projection commutes with these actions. Such a representation is obtained, 

e.g., when new variables are introduced in a "canonical" way-in the case of the 

travelling salesman polytope, this could mean variables assigned to edges or certain 

other subgraphs, and constraints on these new variables are derived from local proper

ties. If we have to start with a reference orientation, or with specifying a root, then 

the representation obtained will not be canonical.) No negative results seem to be 

known without this symmetry assumption. 
One way to view our results is to provide a general procedure to create such 

liftings. The idea is to extend the method of Grotschel, Lovasz, and Schrijver [12] for 

finding maximum stable sets in perfect graphs to general 0-1 programs. We represent 
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a feasible subset not by its incidence vector v but by the matrix vv r. This squares the 
number of variables, but in return we obtain two new powerful ways to write down 
linear constraints. Projecting back to the "usual" space, we obtain a procedure some
what similar to the Gomory-Chvatal procedure: it "cuts down" a convex set K to a 
new convex set K' so that all 0-1 solutions are preserved. In contrast to the Gomory

Chvatal cuts, however, any subroutine to optimize a linear objective function over K 

can be used to optimize a linear objective function over K'. Moreover, repeating the 
procedure at most n times, we obtain the convex hull P of 0-1 vectors in K. 

Our method is closely related to recent work of Sherali and Adams [22]. They 
introduce new variables for products of the original ones and characterize the convex 
hull, in this high-dimensional space, of vectors associated with 0-1 solutions of the 
original problem. In this way they obtain a sequence of relaxations of the 0-1 optim
ization problem, the first of which is essentially the N operator introduced in § 1 below. 
Further, members of the two sequences of relaxations are different but closely related; 
some of our results in§ 3, in particular, formula (6) and Theorem 3.3, follow directly 

from their work. 
This method is also related to (but different from) the recent work of Pemantle, 

Propp, and Ullman [20] on the tensor powers of linear programs. 
In § 1, we describe the method in general, and prove its basic properties. Section 

2 contains applications to the vertex packing problem, one of the best studied com
binatorial optimization problems. It will turn out that our method gives in one step 
almost all of the known classes of facets of the vertex packing polytope. It will follow, 
in particular, that if a graph has the property that its stable set polytope is described 
by the clique, odd hole, and odd antihole constraints, then its maximum stable set can 
be found in polynomial time. 

In § 3 we put these results in a wider context by raising the dimension even higher. 
We introduce exponentially many new variables; in this high-dimensional space, rather 
simple and elegant polyhedral results can be obtained. The main part of the work is 
to "push down" the inequalities to a low dimension and to carry out the algorithms 
using only a polynomial number of variables and constraints. It will turn out that the 
methods in § 1, as well as other constructions like TH ( G), as described in Grotschel, 
Lovasz, and Schrijver [13], [14], follow in a natural way. 

1. Matrix cuts. In this section we describe a general construction for "lifting" a 
0-1 programming problem in n variables to n2 variables, and then projecting it back 
to the n-space so that cuts, i.e., tighter inequalities still valid for all 0-1 solutions, are 
introduced. It will be convenient to deal with homogeneous systems of inequalities, 
i.e., with convex cones rather than polytopes. Therefore we embed the n-dimensional 
space in !Rn+J as the hyperplane x0 = 1. (The Oth variable will play a special role 
throughout.) 

One way to view our constructions is to generate quadratic inequalities valid for 
all 0-1 solutions. These may be viewed as homogeneous linear inequalities in the 
G) + n +I-dimensional space, and they define a cone there. (This space can be identified 
with the space of symmetric (n + 1) x (n + 1) matrices.) We then combine these quadratic 
inequalities to eliminate all quadratic terms in order to obtain linear inequalities not 
derivable directly. This corresponds to projecting the cone down the n +I-dimensional 
space. 

1.a. The construction of matrix cones and their projections. Let K be a convex 
cone in llln+i. Let K* be its polar cone, i.e., the cone defined by 

K*={uelll"+ 1: uTxG;O for all xEK}. 
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We denote by K 0 the cone spanned by all 0-1 vectors in K. Let Q denote the cone 
spanned by all 0-1 vectors x E ~n+I with x0 = 1. We are interested in determining K 0

, 

and generally we may restrict ourselves to subcones of Q. We denote by e; the ith unit 
vector, and set f; = e0 - e;. Note that the cone Q* is spanned by the vectors e; and J;. 
For any ( n + 1) x ( n + 1) matrix Y, we denote by Y the vector composed of the diagonal 
entries of Y. 

Let K 1 s; Q and K 2 s; Q be convex cones. We define the cone M(Ki. K 2 ) s; 
IR( n+i >xtn+i l consisting of all (n + 1) x ( n + 1) matrices Y = (yij) satisfying (i), (ii), and 

(iii) below (for motivation, the reader may think of Y as a matrix of the form xx 7 , 

where x is a 0-1 vector in K 1 n K 2). 

(i) Y is symmetric; 

(ii) Y = Ye0 , i.e., y;; =Yo; for all 1 ;;ii i;;ii n; 

(iii) u Tyv ~ 0 holds for every u E Kf and v E Kf. 
Note that (iii) can be rewritten as 

(iii') YKf s; K1. 

We shall also consider a slightly more complicated cone M+(KI> K 2 ), consisting 
of matrices Y satisfying the following condition, in addition to (i), (ii), and (iii): 

(iv) Y is positive semidefinite. 

From the assumption that K, and K 2 are contained in Q it follows that every 

Y =(Yu) E M (Ki. K 2 ) satisfies Yu~ 0, Yii ;;ii Y;; =Yo;;;; Yoo, and Yii ~ Yii + yjj - Yoo. 

These cones of matrices are defined by linear constraints and so their polars can 

also be expressed quite nicely. Let Upsd denote the cone of positive semidefinite 
(n + 1) x (n + 1) matrices (which is self-dual in the space Usym of symmetric matrices), 
and Uskew the linear space of skew symmetric ( n + 1) x ( n + 1) matrices (which is the 
orthogonal complement of Usym). Let U1 denote the linear space of (n + 1) x (n + 1) 
matrices (Wu), where w 0j = -wjj for 1 ;;;j ;;ii n, w 00 = 0 and Wu = 0 if i r" 0 and i .:P j. Note 
that U 1 is generated by the matrices J; eT (i = 1, · · ·, n). 

With this notation, we have, by definition, 

M(Ki, K 1 )* = U1 + Uskew+cone {uvT: u E Kf, v E Kf}, 

and 

M+(Ki, K1)* = u, + u,kew+ Upsd+cone {uv 7 : u E Kt' v E Kf}. 

Note that only the last term depends on the cones K 1 and K 2 • In this term, it would 
be enough to let u and v run over extreme rays of KT and Kf, respectively. So if K1 

and K 2 are polyhedral, then so is M(K 1, K2), and the number of its facets is at most 

the product of the numbers of facets of K 1 and K 2 • 

Note that Upsd and hence M+(Ki. K2) will generally be nonpolyhedral. 
We project down these cones from the ( n + 1) x ( n + 1 )-dimensional space to the 

(n +I)-dimensional space by letting 

N(Ki. K 2 ) = { Ye0 : YE M(Ki. K 2)} = { Y: YE M(Ki. K1)} 

and 

N+(Ki. K 2 ) = { Ye0 : YE M+(K1' K 2 )} = { Y: YE M+(Ki. K1)}. 

Clearly, M(Ki. K 2 ) = M(K2, K 1) and so N(Ki. K 2 ) = N(K2, K1) (and similarly for 

the "+" subscripts). 
If A E [R<n+i )x(n+i) is a linear transformation mapping the cone Q onto itself, then 

clearly M(AKi. AK2 ) = AM(Ki. K 2)AT. If n ~ 2, then from AQ = Q it easily follows 
that A 7e0 is parallel to e 0 , and hence N(AKi. AK2) = AN(Ki. Kz). In particular, we 

can "flip" coordinates, replacing X; by x0 - X; for some i .:P 0. 
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If K 1 and K 2 are polyhedral cones, then so too are M(Ki. K2) and N(Ki. K 2 ). 

The cones M+(Ki. K2) and N+(Ki. K2) are also convex (but generally not polyhedral), 

since (iv) is equivalent to an infinite number of linear inequalities. 

LEMMA 1.1. (K1 n Ki} 0 c;;; N+(Ki. K 2)£ N(Ki. K2) c;;; K1 n K2. 

Proof. (1) Let x be any nonzero 0-1 vector in K1 n Ki. Since K 1 c;;; Q, we must 

have x0 = 1. Using this it is easy to check that the matrix Y = xx T satisfies (i)-(iv). 

Hence x = Ye0 E N+(K1, Kz). 
(2) N+(Ki. K2) c;;; (K1, K 2) trivially. 
(3) Let x E N(Ki. K 2). Then there exists a matrix Y satisfying (i)-(iv) such that 

x= Ye0 • Now, by our hypothesis that K 1 c;;; Q, it follows that eoE Kf, and hence by 

(iii'), x = Ye0 is in K 2 • Similarly, x E K1. 0 
We will see that, in general, N(Ki. K2) will be much smaller than K 1 n K 2 • 

The reason why we consider two convex cones instead of one is technical. We 

shall need only two special choices: either K 1 = Kz = K or K1 = K, K 2 = Q. It is easy 

to see that 

N(K1 n K1, K1 n Ki) s;; N(Ki. Ki) c;;; N(K1 n K1, Q). 

This suggests that it would suffice to consider N(K, K); but, as we shall see, N(K, Q) 

behaves algorithmically better (see Theorem 1.6 and the remark following it), and this 

is why we allow two different cones. To simplify notation, we set N(K) = N(K, Q) 

and M(K) = M(K, Q). In this case, Kr = Q* is generated by the vectors e; and f;, 
and hence (iii') has the following convenient form: 

(iii") Every column of Y is in K; the difference of the first column and any other 

column is in K. 

1.b. Properties of the cut operators. We give a lemma that yields a more explicit 

representation of constraints valid for N ( K) and N +( K ). Unfortunately, the geometric 

meaning of N(K) and N+(K) is not immediate; Lemmas 1.3 and 1.5 may be of some 

help in visualizing these constructions. 
LEMMA 1.2. Let Kc;;; Q be a convex cone in !Rn+i and w E !Rn+i. 

(a) w E N ( K )* if and only if there exist vectors a i. • • · , an E K *, a real number A. 

and a skew symmetric matrix A such that a;+ Ae; + Ae; EK* for i = 1, · · · , n, ana 
w=I;=t a;+AI (where 1 denotes the all-1 vector). 

(b) w E N+(K)* if and only if there exist vectors a 1 , ···,an EK*, a real numbe1 

A, a positive semidefinite symmetric matrix B, and a skew symmetric matrix A such tha.J 

a;+Ae;+Ae; +Be; EK* for i = 1, · · ·, n, and w =I;= 1 a;+AI + B1. 

Proof Assume that w E N(K)*. Then we[ E M(K)*, and so we can write 

n 

we[= I a,bi + I A;eJr +A, 
i i=l 

where a, EK*, b, E Q*, A; E IR, and A is a skew symmetric matrix. Since Q* is spanned 

by the vectors e; and f;, we may express the vectors b; in terms of them and obtain a 
representation of the form 

(1) we,j = I a;e{ +I aJr +I A;eJr +A, 
i=l i=l i=l 

where a;, a; EK*. Multiplying (1) by ei from the right we get 

(2) 
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Multiplying (1) by e0 and using (2) we get 

n n n n n 

w= I ii;+ I A;e;+Ae0 = I a;+ I Ae;+Ae0 = I a;+Al. 
i=l i-= 1 i=1 i=l 

Here aj -AA+ Aej =ii; EK*. Since, trivially, ej EK*, this condition remains valid if 
we decrease Aj. Hence we can choose all the Aj =-A equal. This proves the necessity 
of the condition given in (a). 

The sufficiency of the condition, as well as of assertion (b), are proved by similar 
arguments. D 

Our next lemma gives a geometric property of N(K), which is easier to apply 
than the algebraic properties discussed before. Let H; = {x E !Rn+i: x; = O} and G; = 
{x E IR"+ 1: X; = x0 }. Clearly, H; and G; are hyperplanes supporting Q at a facet, and all 
facets of Q are determined this way. 

LEMMA 1.3. For every convex cone K r;;;;_ Q and every I~ i ~ n, 

N(K) r;;;;_ (Kn H;) +(Kn G;). 

Proof Consider any XE N(K) and let YE M(K) be a matrix such that Ye0 =x. 

Let y; denote the ith column of Y. Then by (ii), Y; E G; and by (iii"), Yi E K, so Yi E K n G;. 
Similarly, y 0 -y;EKnH;, and so Ye0 =y0 =(y0 -y;)+y;E(KnH;)+(KnG;). D 

Let us point out the following consequence of this lemma: if Kn G; = {O}, then 
N ( K) r;;;;_ H;. If, in particular, K meets both opposite facets of Q only in the 0 vector, 
then N(K) = {O}. This may be viewed as a very degenerate case of Gomory-Chvatal 
cuts (see below for more on the connection with Gomory-Chvatal cuts). 

One could define a purely geometric cutting procedure based on this lemma: for 
each cone K r;;;;_ Q, consider the cone 

(3) No(K) = ni ((Kn G;) +(Kn H;)). 

This cone is similar to N ( K) but is generally bigger. We remark that this cone could 
also be obtained from a rather natural matrix cone by projection: this arises by imposing 
(ii), (iii), and the following restricted form of (i): Yo;= J';o for i = 1, · · · , n. 

Figure 1 shows the intersection of three cones in IR3 with the hyperplane x3 = 1: 
the cones K, N(K), and N(N(K)), and the constraints implied by Lemma 1.3. We 
see that the cone in Lemma 1.3 gets close to N ( K) but does not coincide with it. 

We remark that N(K n H;) = N(K) n H; for i = 1, · · ·, n; it should be noted that 
N(K n H;) does not depend on whether it is computed as a cone in IR"+ 1 or in H;. 

We can get a better approximation of K" by iterating the operator N. Define 
N'(K) recursively by N°(K) =Kand N'(K) = N(N'- 1(K)) fort~ l. 

THEOREM 1.4. Nn(K) = K". 

Proof Consider the unit cube Q' in the hyperplane x 0 = 0 and let 1 ~ t ~ n. Consider 
any face F of Q' of dimension n - t and let ft be the union of faces of Q' parallel to 

/ 

K N(K) 

FIG. I 
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F. We prove, by induction on t, that 

(4) N'(K) £cone (Kn F). 

For t = n, this is just the statement of the theorem. For t = 1, this is equivalent to 

Lemma 1.3. 
We may assume that F contains the vector e0 • Let F' be an (n - t + 1)-dimensional 

face of Q' containing F and let i be an index such that F' n Hi = F. Then, by the 

induction hypothesis, 

N'- 1(K) £cone (Kn F'). 

Hence by Lemma 1.3, 

N'(K) = N(N1-1(K)) £cone (N'- 1(K) n (Hi U Gi)) 

£cone ([cone (Kn F') n H;] U [cone (Kn F') n G;]). 

Now H; is a supporting plane of cone (K n F') and hence its intersection with the 

cone is spanned by its intersection with the generating set of the cone: 

cone (Kn F') n Hi= cone (Kn F'n Hi)£ cone (Kn F). 

Similarly, 

cone (Kn F') n G; scone (Kn F). 

Hence (4) follows. D 
Next we show that if we use positive semidefiniteness, i.e., we consider N+(K), 

then an analogue of Lemma 1.3 can be obtained that is more complicated but important 
in the applications to combinatorial polyhedra. 

LEMMA 1.5. Let K £ Q be a convex cone and let a E IR"+ 1 be a vector such that 

ai-:aOfor i= 1, · · ·, n and a0 6:0. Assume that arxE;;O is validfor Kn GJor all i such 

that a;<O. Then arx6:0 is validfor N+(K). 

(The condition that a0 6: 0 excludes only trivial cases. The condition that ai ~ 0 is 

a normalization, which can be achieved by flipping coordinates.) 

Proof First, assume that a 0 = 0. Consider a subscript i such that ai < 0. (If no 

such i exists, we have nothing to prove.) Then for every xE G;\{O}, we have a rx ~ aixi < 
0, and so, xe K. Hence Kn Gi ={O}, and so by Lemma 1.3, N+(K) £ N(K)£ Kn Hi. 

As this is true for all i with ai < 0, we know that a T x = 0 for all x E N +( K ). 

Second, assume that a0 >0. Let XE N+(K) and let YE M+(K) be a matrix with 

Ye0 = x. For any 1 ~ i ~ n, the vector Ye; is in K by (iii") and in Gi by (ii); so by 
the assumption on a, arYei6:0 whenever ai<O. Hence arY(a0 e0 -a)= 

a rY(-a1 e1 - • • • - anen) E;; 0 (since those terms with ai = 0 do not contribute to the 
sum anyway), and hence a TY(a0 e0 ) E;; a rya E;; 0 by positive semidefiniteness. 
Thus arYe0 =arxE;;0. D 

1.c. Algorithmic aspects. Next we turn to some algorithmic aspects of these con

structions. We have to start by sketching the framework we are using; for a detailed 
discussion, see Grotschel, Lovasz, and Schrijver (14]. 

Let K be a convex cone. A strong separation oracle for the cone K is a subroutine 

that, given a vector x E C"+1, either returns that x EK or returns a vector w EK* such 

that x r w < 0. A weak separation oracle is a version of this which allows for numerical 

errors: its input is a vector x EC" and a rational number e > 0, and it either returns 

the assertion that the euclidean distance of x from K is at most e, or returns a vector 
w such that \ w\ $; 1, w r x ~ e, and the euclidean distance of w from K * is at most e. If 
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the cone K is spanned by 0-1 vectors, then we can strengthen a weak separation oracle 
to a strong one in polynomial time. 

Let us also recall the following consequence of the ellipsoid method: Given a 
weak separation oracle for a convex body, together with some technical information 
(say, the knowledge of a ball contained in the body and of another one containing 
the body), we can optimize any linear objective function over the body in polynomial 
time (again, allowing an arbitrarily small error). If we have a weak separation oracle 
for a convex cone K ~ Q, then we can consider its intersection with the halfspace 
x0 ~ 1; using the above result, we can solve various important algorithmic questions 
concerning K in polynomial time. We mention here the weak separation problem for 
the polar cone K*. 

THEOREM 1.6. Suppose that we have a weak separation oracle for K. Then the weak 
separation problem for N(K) as well as for N+(K) can be solved in polynomial time. 

Proof. Suppose that we have a (weak) separation oracle for the cone K. Then we 
have a polynomial time algorithm to solve the (weak) separation problem for the cone 
M(K). In fact, let Y be any matrix. If it violates (i) or (ii), then this is trivially 
recognized and a separating hyperplane is also trivially given. (iii) can be checked as 
follows: we have to know if Yu EK holds for each u E Q*. Clearly it suffices to check 
this for the extreme rays of Q*, i.e., for the vectors e; and f;. But this can be done 
using the separation oracle for K. 

Since N(K) is a projection of K, the weak separation problem for N(K) can 
also be solved in polynomial time (by the general results from [14]). 

In the case of N+(K ), all we have to add is that the positive semidefiniteness of 
the matrix Y can be checked by Gaussian elimination, pivoting always on diagonal 
entries. If we always pivot positive elements, the matrix is positive semidefinite. If the 
test fails, it is easy to construct a vector v with v Tyv < O; this gives, then, a hyperplane 
separating Y from the cone. D 

We remark that this proof does not remain valid for N(K, K). In fact, let K be 
the cone induced by the incidence vectors of perfect matchings of a graph G with m 
nodes (with "1" appended as a Oth entry). Then the separation problem for K can be 
solved in polynomial time. On the other hand, consider the matrix Y = ( Y;j), where 

{ 
1, 

Yu= -4(m+2)/m 2, 

if i = j or 

otherwise. 

i =0 or j =O, 

Then YE M(K, K) if and only if G is 3-edge-colorable, which is NP-complete 
to decide. We do not know if Theorem 1.6 extends to N(K, K), but suspect that it 
does not. 

Note, however, that if K is given by an explicit system of linear inequalities, then 
M(K, K) is described by a system of linear inequalities of polynomial size and so the 
separation problem for N(K, K) and N+(K, K) can be solved in polynomial time. In 
this case, we get a projection representation of N(K) and of N(K, K) from polyhedra 
with a polynomial number of facets. It should be remarked that this representation is 

canonical. 

1.d. Stronger cut operators. We could use stronger versions of this procedure to 
get convex sets smaller than N(K). 

One possibility is to consider N(K, K) instead of N(K)= N(K, Q). It is clear 
that N(K, K) s; N(K). Trivially, Theorem 1.4 and Lemma 1.3 remain valid if we 
replace N(K) by N(K, K). Unfortunately, it is not clear whether Theorem 1.6 also 
remains valid. The problem is that now we have to check whether YK* ~ K, and 
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unfortunately K* may have exponentially many, or even infinitely many, extreme rays. 

If K is given by a system of linear inequalities, then this is not a problem. So in this 

case we could consider the sequence N(K, K), N(N(K, K), K), etc. This shrinks 

down faster to K 0 than N'(K), as we shall see in the next section. 

The following strengthening of the projection step in the construction seems quite 

interesting. For ve!R"+ 1, let M(K)v={Yv: YeM(K)}. So N(K)=M(K)eo. Now 

define 

N(K) = nvEint(Q*) M(K)v. 

Note that the intersection can be written in the form 

N(K) = nuEQ· M(K)(eo+ u). 

It is easy to see that 

K 0 £ N(K) £ N(K). 

The following lemma gives a different characterization of N(K). 

LEMMA 1.7. x E N(K) if and only if for every w E IR"+ 1 and every u E Q* such that 

(e0 +u)wT E M(K)*, we have wTx6;0. 

In other words, N(K)* is generated by those vectors w for which there exists a 

v E int ( Q*) such that vw TE M(K)*. 

Proof (Necessity) Let xEN(K), wEIRn+1, and veint(Q*) such that vwTE 

M(K)*. Then in particular x can be written as x= Yv, where YE M(K). So wTx= 

wTYv= Y· (vwT)60. 

(Sufficiency) Assume that xeN(K). Then there exists a vEint(K*) such that 

xe M(K)v. Now M(K)v is a convex cone, and hence it can be separated from x by 

a hyperplane, i.e., there exists a vector w E IR"+ 1 such that w T x < 0 but w TYv 6 0 for 

all YE M(K). This latter condition means that vw TE M(K)*, i.e., the condition given 

in the lemma is violated. 0 
The cone N ( K) satisfies important constraints that the cones N ( K) and N +( K) 

do not. Let bE!Rn+i, and define Fh={xEIRn+J: bTx~O}. 

LEMMA 1.8. Assume that N(K n Fb) = {O}. Then -b E N(K)*. 

Proof If N(K n Fh) = {O}, then for every matrix YE M(K n Fh) we have Ye0 = 0. 
In particular, Y00 = 0 and hence Y = 0. So M(K n Fb) = {O}. Since clearly 

M(K n Fb)* = M(K)*+cone {bu T: u E Q*}, 

this implies that M(K)* +{bu T: u E Q*} = IR(n+llx<n+ii. So, in particular, we can write 

-be'[;=Z+buT with ZEM(K)* and ueQ*. Hence -b(e0 +u)TEM(K)*. By the 

previous lemma, this implies that -b E N(K)*. D 

We can use this lemma to derive a geometric condition on N(K) similar to 

Lemma 1.5. 

LEMMA 1.9. Let K £ Q be a convex cone and assume that e0 e K. Then 

N(K) £(Kn G1)+ ... +(Kn Gn)· 

In other words, if a T x 6 0 is valid for all of the faces K n G;, then it is also valid 

for N(K). 

Proof Let b =-a+ te0 , where t > 0. Consider the cone Kn Fb. By the definition 

of b, this cone does not meet any facet G; of Q in any nonzero vector. Hence by 

Lemma 1.3, N(K n Fb) is contained in every facet H; of Q, and hence N(K n Fb) £ 

cone(eo). But N(KnFb)£K and so N(KnFb)={O}. 

· Hence by Lemma 1.7, we get that -b =a - te0 E N(K)*. Since this holds for every 

t < o: and N ( K )* is closed, the lemma follows. 0 



CONES OF MATRICES AND SET-FUNCTIONS 175 

Applying this lemma to the cone in Fig. 1, we can see that we obtain K 0 in a 

single step. The next corollary of Lemma 1.9 implies that at least some of the Gomory

Chvatal cuts for K are satisfied by N(K). 
k 

COROLLARY 1.10. Let 1 ~ k ~ n and assume that I =l X; > 0 holds for every x EK. 
k A l 

Then L;=i X; ~ x0 holds for every x E N(K ). 

The proof consists of applying Lemma 1.9 to the projection of K on the first k + 1 
coordinates. 

Unfortunately, we do not know if Theorem 1.6 remains valid for N(K). Of course, 
the same type of projection can be defined starting with M+(K) or with M(K, K) 
instead of M(K), and properties analogous to those in Lemmas 1.8, 1.9 can be derived. 

2. Stable set polyhedra. We apply the results in the previous section to the stable 

set problem. To this end, we first survey some known methods and results on the facets 
of stable set polytopes. 

2.a. Facets of stable set polyhedra and perfect graphs. Let G = ( V, E) be a graph 
with no isolated nodes. Let a( G) denote the maximum size of any stable set of nodes 
in G. For each A<;; V, let xA E IR v denote its incidence vector. The stable set polytope 

of G is defined as 

STAB ( G) = conv {xA: A is stable}. 

So the vertices of STAB ( G) are just the 0-1 solutions of the system of linear inequalities 

( 1) X; ~ 0 for each i E V, 

and 

(2) X;+x;~l foreachijEE. 

In general, STAB ( G) is much smaller than the solution set of ( 1 ), (2), which we 

denote by FRAC ( G) ("fractional stable sets"). In fact, they are equal if and only if 

the graph is bipartite. The polytope FRAC ( G) has many nice properties; what we 

will need is that its vertices are half-integral vectors. 

There are several classes of inequalities that are satisfied by STAB ( G) but not 

necessarily by FRAC ( G). Let us mention some of the most important classes. The 
clique constraints strengthen the class (2): for each clique B, we have 

(3) 

Graphs for which (1) and (3) are sufficient to describe STAB ( G) are called perfect. 

It was shown by Gri:itschel, Lovasz, and Schrijver [12] that the weighted stable set 

problem can be solved in polynomial time for these graphs. 

The odd hole constraints express the nonbipartiteness of the graph: if C induces 
a chordless odd cycle in G, then 

(4) 

Of course, the same inequality holds if C has chords; but in this case it easily follows 

from other odd hole constraints and edge constraints. Nevertheless, it will be convenient 

that, if we apply an odd hole constraint, we do not have to check whether the circuit 

in question is chordless. 
Graphs for which (1), (2), and (4) are sufficient to describe STAB (G) are called 

t-perfect. Graphs for which (1), (3), and (4) are sufficient are called h-perfect. It was 

shown by Grotschel, Lovasz, and Schrijver [13] that the weighted stable set problem 

can be solved in polynomial time for h-perfect (and hence also for t-perfect) graphs. 
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The odd antihole constraints are defined by sets D that induce a chordless odd 

cycle in the complement of G: 

(5) L X;~2. 
iED 

We shall see that the weighted stable set problem can be solved in polynomial time 

for all graphs for which (1)-(5) are enough to describe STAB ( G) (and for many more 

graphs). 
All constraints (2)-(5) are special cases of the rank constraints: let U £ V induce 

a subgraph Gu, then 

(6) L X;~a(Gu). 
ieU 

Of course, many of these constraints are inessential. To specify some that are essential, 

let us call a graph Ga-critical if it has no isolated nodes and a( G-e) >a( G) for 

every edge e. Chvatal [9] showed that if G is a connected a-critical graph then the 

rank constraint 

L X;~a(G) 
ieV(G) 

defines a facet of STAB ( G). 

(Of course, in this generality, rank constraints are ill behaved: given any one of 

them, we have no polynomial time procedure to verify that it is indeed a rank constraint, 

since we have no polynomial time algorithm to compute the stability number of the 
graph on the right-hand side. For the special classes of rank constraints introduced 

above, however, it is easy to verify that a given inequality belongs to them.) 

Finally, we remark that not all facets of the stable set polytope are determined 

by rank constraints. For example, let U induce an odd wheel in G, with center u0 E U. 

Then the constraint 

1u1-2 1u1-2 
I x;+---x""~--

ie U\{u0 } 2 2 

is called a wheel constraint. If, e.g., V( G) = U, then the wheel constraint induces a 

facet of the stable set polytope. 

Another class of nonrank constraints of a rather different character are orthogonal

ity constraints, introduced by Grotschel, Lovasz, and Schrijver [12]. Let us associate 

with each vertex i E V, a vector V; E !Rn, so that lvd = 1 and nonadjacent vertices corre

spond to orthogonal vectors. Let c E !Rn with lei= 1. Then 

I (crv;) 2x; ;;ii 1 
ieV 

is valid for STAB (G).The solution set of these constraints (together with the nonnega
tivity constraints) is denoted by TH ( G). It is easy to show that 

STAB (G) £TH (G) £ FRAC (G). 

In fact, STAB (G) satisfies all the clique constraints. Note that there are infinitely 

many orthogonality constraints for a given graph, and TH ( G) is in general nonpolyhe

dral (it is polyhedral if and only if the graph is perfect). The advantage of TH ( G) is 

that every linear objective function can be optimized over it in polynomial time. The 
algorithm involves convex optimization in the space of matrices, and was the main 

motivation for our studies in the previous section. We shall see that these techniques 
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give substantially better approximations of STAB ( G) over which one can still optimize 
in polynomial time. 

2.b. The" N" operator. To apply the results in the previous chapter, we homogen

ize the problem by introducing a new variable x0 and consider STAB (G) as a subset 

of the hyperplane H 0 defined by x0 = 1. We denote by St ( G) the cone spanned by the 
vectors 

(;A) E iR VU{Ol, 

where A is a stable set. We get STAB ( G) by intersecting ST ( G) with the hyperplane 

Xo = 1. Similarly, let FR ( G) denote the cone spanned by the vectors (!), where 
x E FRAC ( G). Then FR( G) is determined by the constraints 

xi ~ 0 for each i E V, 

and 

xi + xj ;a x 0 for each ij E E. 

Since it is often easier to work in the original n-dimensional space (without 
homogenization), we shall use the notation N(FRAC ( G)) = N(FR ( G)) n H 0 , and 

similarly for N+, N, etc. We shall also abbreviate N(FRAC (G)) by N(G), etc. Since 

FRAC ( G) is defined by an explicit linear program, one can solve the separation 

problem for it in polynomial time. We shall say briefly that the polytope is polynomial 

time separable. By Theorem 1.6, we obtain the following. 

THEOREM 2.1. For each.fixed r ~ 0, N~( G), as well as N'( G), are polynomial time 

separable. 

It should be remarked that, in most cases, if we use N'( G) as a relaxation of 

STAB ( G), then it does not really matter whether the separation subroutine returns 
hyperplanes separating the given xll. N'(G) from N'(G) or only from STAB (G). 

Hence it is seldom relevant to have a separation subroutine for a given relaxation, say, 
N'( G); one could use just as well a separation subroutine for any other convex body 
containing STAB (G) and contained in N'(G) (such as, e.g., N~(G)). Hence the 

polynomial time separability of N~( G) is substantially deeper than the polynomial 

time separability of N'( G) (even though it does not imply it directly). 

In the rest of this section we study the question of how much this theorem gives 

us: which graphs satisfy N~( G) =STAB ( G) for small values of r, and more generally, 

which of the known constraints are satisfied by N( G), N+( G), etc. With a little abuse 

of terminology, we shall not distinguish between the original and homogenized versions 

of clique, odd hole, etc., constraints. 
It is a useful observation that if Y = (yi) E M(FR ( G)), then Yu= 0 whenever 

ij E E ( G). In fact, the constraint xi + xj ;a 1 must be satisfied by Yeio and so Yii + Yji ;a Yo; = 

Yii by nonnegativity. This implies Yu= 0. 
Let a T x ;a b be any inequality valid for STAB ( G). Let W ~ V and let aw E IR w 

be the restriction of a to W. For every vE V, if arx;ab is valid for STAB(G), 

then aLvx;ab is valid for STAB(G-v) and a~-r<v>-vx;ab-av is valid for 
STAB ( G - f( v) - v). Let us say that these inequalities arise from a 7 x ;a b by the deletion 

and contraction of node v, respectively. Note that if aTx;a bis an inequality such that 
for some v, both the deletion and contraction of v yield inequalities valid for the 
corresponding graphs, then a T x ;a b is valid for G. 

Let K be any convex body containing STAB (G) and contained in FRAC (G). 

Now Lemma 1.3 implies the following lemma. 
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LEMMA 2.2. If a T x ~ b is an inequality such that for some v E V, both the deletion 

and contraction of v give an inequality valid for K, then a T x ~ b is valid for N ( K). 

This lemma enables us to characterize completely the constraints obtained in one 

step (not using positive semidefiniteness). 

THEOREM 2.3. The polytope N( G) is exactly the solution set of the nonnegativity, 

edge, and odd hole constraints. 

Proof (1) It is obvious that N( G) satisfies the nonnegativity and edge constraints. 

Consider an odd hole constraint LE c X; ~HI Cl -1). Then for any i E C, both the 
contraction and deletion of i result in an inequality trivially valid for FRAC ( G). 

Hence the odd hole constraint is valid for N(G) by Lemma 2.2. 

(2) Conversely, assume that x E IR v satisfies the nonnegativity, edge, and odd hole 

constraints. We want to show that there exists a nonnegative symmetric matrix Y = 
( ) ll"b(n+l)x(n+I) h th t f 11 1 < • < 1 d Yu E IN sue a Yw = y;; = X; or a = 1 = n, Yoo = , an 

for all i, j, k E V such that ij EE (the lower bound comes from the condition that 

Yfk E FR ( G); the upper, from the condition that Yek E FR ( G) ). Note that the constraint 

has to hold in particular when i = k; then the upper bound implies that Yu = 0, while 

the lower bound is automatically satisfied. 

The constraints on the y's are of a special form: they involve only two variables. 

We can therefore use the following (folklore) lemma, which gives a criterion for the 

solvability of such a system, more combinatorial than the Farkas lemma. 

LEMMA 2.4. Let H = ( W, F) be a graph and let two values 0 ~ a(ij) ~ b( ij) be 

associated with each edge of H. Let U ~ W also be given. Then the linear system 

a(ij)~y; +Yi~ b(ij) (ijeF), 

Y;~O (iE W), 

y;=O (ie V) 

has no solution if and only if there exists a sequence of (not necessarily distinct) vertices 

v0 , v1, • • • , vP such that V; and V;+ 1 are adjacent (the sequence is a walk), and one of 

the following holds: 

(a) p is odd and b(v0 v1)-a(v1 v2 )+b(v2 v3 )-· • ·+b(vp_ 1vp)<O; 

(b) p is even, v0 =VP, and b(v0 v1 ) - a(v 1 v2)+ b( v2v3)- • • • - a(vp- 1 vp) < O; 

(c) p is even, vPe U, and b(v0 v 1)-a(v1v2 )+b(v2 v3)-· • ·-a(vp- 1vp)<O; 

(d) p is odd, v0 , VpE U, and -a(v0 v1)+b(v1v2)-a(v2v3)-· • ·-a(vp_ 1vp)<O. 

In our case, we have as W the set of all pairs {i, j} (if; j), U is the subset consisting 
of the edges of G, two pairs, {i,j} and {k, /},are adjacent in H if and only if i = k and 

jeeE(G), and a(ij,jk)=x;+xi+xk-1, b(ij,jk)=xi. We want to verify that if x 

satisfies all the odd hole constraints, then none of the walks of types (a)-(d) in the 

lemma above can occur. Let us ignore, for a while, how the walk ends. The vertices 

of the walk in H correspond to pairs ij; the edges in the walk correspond to triples 

(ijk) such that ik EE. Let us call this edge the bracing edge of the triple. We have to 

add up alternately xi and 1 - X; - xi - xk; call the triple positive and negative accordingly. 

Let w be a vertex of G that is not an element of the first and last pair v0 and vP. 

Then following the walk, w may become an element of a v;, stay an element for a 

while, and then cease to be; this may be repeated, say, f( w) times. It is then easy to 

see that the total contribution of the variable xw to the sum is -f( w )xw. 



CONES OF MATRICES AND SET-FUNCTIONS 179 

It is easy to settle case (b) now. Then any v; can be considered first, and so the 
above counting applies to each vertex (unless all pairs V; share a vertex of G, which 
is a trivial case). So the sum 

p 
b(voV1) - a( V1 V2) + b( V2V3)- . .. - a( Vp-1Vp)=2- ~ f( w)x.,... 

But note that every vertex w occurs in exactly 2f( w) bracing edges. If we add up the 
edge constraints for all bracing edges, we get p - 'L, 2f( w )xw ;;.; 0, which shows that 
(b) cannot occur. 

Cases (a) and (c) take only a little care around the end of the walk, and are left 
to the reader. Let us show how case (d) can be settled, which is the only case in which 
the odd hole constraints are needed. 

Consider again the bracing edges of the triples, but now, count the pairs v0 and 
vP (which are edges of G) as bracing edges. Again, it is easy to see that the total sum 
in question is ( p + 1 )/2- l: f( w )x"" where each w is contained in exactly 2f( w) bracing 
edges. Unfortunately, we now have p + 2 bracing edges, so adding up the edge con
straints for them would not yield the nonnegativity of the sum. But observe that the 
multiset of bracing edges (we count an edge that is bracing in more than one triple 
with multiplicity) forms an Eulerian graph, and is, therefore, the union of circuits. 
Since the total number of bracing edges, p + 2, is odd, at least one of these circuits is 
odd. Add up the odd hole constraint for this circuit and the edge constraint, divided 
by two, for each of the remaining bracing edges. We get that L f( w)x ... ~ (p + 1)/2, 
which shows that (d) cannot occur. D 

COROLLARY 2.5. If G is I-perfect, then STAB ( G) is the projection of a polytope 
whose number offacets is polynomial inn. Moreover, this representation is canonical. D 

This corollary generalizes a result of Barahona and Mahjoub [5] that constructs 
a projection representation for series-parallel graphs. It could also be derived in an 
alternative way. The separation problem for the odd cycle inequalities can be reduced 
to n shortest path problems (see [ 13]). Following this construction, one can see that 
a vector x is in the stable set polytope of a t-perfect graph if and only if n potential 
functions exist in an auxiliary graph. This yields a representation of STAB ( G) as the 
projection of a polytope with O(n 2 ) facets. (We are grateful to the referee for this 
remark.) 

2.c. The repeated "N" operator. Next, we prove a theorem which describes a 
large class of inequalities valid for N'( G) for a given r. The result is not as complete 
as in the case r = 1, but it does show that the number of constraints obtainable grows 
very quickly with r. 

Let a r x ~ b be any inequality valid for STAB ( G). By Theorem 1.4, there exists 
an r;;.; 0 such that a r x ~ b is valid for N' ( G). Let the N-index of the inequality be 
defined as the least r for which this is true. We can define (and will study later) the 
N+-index analogously. Note that in each version, the index of an inequality depends 
only on the sub graph induced by those nodes having a nonzero coefficient. In particular, 
if these nodes induce a bipartite graph, then the inequality has N-index 0. We can 
define the N-index of a graph as the largest N-index of the facets of STAB (G).The 
N-index of G is O if and only if G is bipartite; the N-index of G is 1 if and only if 
G is I-perfect. Lemma 2.2 implies the following corollary (using the obvious fact that 
the N-index of an induced subgraph is never larger than the N-index of the whole 
graph). 

COROLLARY 2.6. Jffor some node v, G- v has N-index k, then G has N-index at 

most k+ 1. D 
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The following lemma about the iteration of the operator N will be useful in 

estimating the N-index of a constraint. 
LEMMA 2.7. l/(k+2)1E Nk(G) (kiii=;;O). 

Proof We use induction on k. The case k = 0 is trivial. Consider the matrix 
y = (yii) E IR< vu{o} )x( vu{o} l defined by 

{
1 if i = j = 0, 

yii= 1/(k+l), if i=O and j>O or i>O and j=O or i=j>O, 

0, otherwise. 

Then YE M(Nk- 1(FR ( G))), since 

and 

Ye; =-1- (e0 + e;) EST ( G) s;: Nk- 1(FR ( G)) 
k+2 

k+I 1 k+l( 1 ) k-i Yf;=--e0 + I --ei;;2-- e0+-- I: ei EN (FR(G)), 
k+2 j-,<0,i k+2 k+2 k+ljEV 

and so by the monotonicity of Nk- 1(FR ( G)), Yf; E Nk- 1(FR ( G)). Hence the first 
column of Y is in Nk(FR ( G)), and thus 1/ (k + 2)1 E Nk( G). 0 

From these two facts, we can derive some useful bounds on the N-index of a graph. 
COROLLARY 2.8. Let G be a graph with n nodes and at least one edge. Assume that 

G has stability number a ( G) =a and N-index k. Then 

n 
--2;;2k;;2n-a-1. 
a 

Proof The upper bound follows from Corollary 2.6, applying it repeatedly to all 
but one nodes outside a maximum stable set. To show the lower bound, assume that 
k < ( n/ a) - 2. Then the vector ( 1/ ( k + 2) )I does not satisfy the constraint L; X; ;;2 a and 
so it does not belong to STAB (G).Since it belongs to Nk( G) by Lemma 2.7, it follows 
that Nk(G)rfSTAB(G)-a contradiction. 0 

It follows in particular that the N-index of a complete graph on t vertices is t - 2. 
The N-index of an odd hole is 1, as an odd whole is a !-perfect graph. The N-index 
of an odd antihole with 2k+ 1 nodes is k; more generally, we have the following 
corollary. 

COROLLARY 2.9. The N-index of a perfect graph G is w( G) - 2. The N-index of a 

critically imperfect graph G is w( G)-1. 

Next we study the index of a single inequality. Let a 7 x ;;2 b be any constraint 
valid for STAB(G) (aEZ~,bEZ+). Define the defect of this inequality as 2x 
max {a T -b: x E FRAC ( G)}. The factor 2 in front guarantees that this is an integer. 
In the special case when we consider the constraint L; X; ;;2 a( G) for an a-critical graph 
G, the defect is just the Gallai class number of the graph (see Lovasz and Plummer 
[18] for a discussion of a-critical graphs, in particular of the Gallai class number). 

Given a constraint, its defect can be computed in polynomial time, since optimizing 
over FRAC ( G) is an explicit linear program. The defect of a constraint is particularly 
easy to compute if the constraint defines a facet of STAB ( G). This is shown by the 
following lemma, which states a property of facets of STAB ( G) of independent interest. 

LEMMA 2.10. Let L a;X; ;;2 b define a facet of STAB ( G), different from those 

determined by the nonnegativity and edge constraints. Then every vector v maximizing 
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a T x over FRAC ( G) has vi = 4 whenever a;> 0. In particular, 

max {a Tx: xE FRAC (G)} =1 I a; 

and the defect of the inequality is L; ai - 2b. 

181 

Proof Let v be any vertex of FRAC ( G) maximizing a 7 x. It suffices to prove that 
vi t6 1 whenever ai > O; this will imply that the vector (!, · · · , D T also maximizes a 7 x, 

and to achieve the same objective value, v must have v; = ~ whenever a;> 0. 

Let U = { i E V: V; = 1} and assume, by way of contradiction, that a ( U) > 0. Clearly 
U is a stable set. If we choose v so that U is minimal (but of course nonempty), then 
a;> 0 for every i E U. Let f( U) denote the set of neighbors of U. Let X be any stable 
set in G whose incidence vector xx is a vertex on the facet of STAB ( G) determined 
by a 7 x =b. 

Consider the set Y = U U (X\f( U) ). Clearly, Y is stable and a( Y) = 

a(X) +a( U\X) - a(f( U) n X). So, by the optimality of X, we have 

a( U\X) ~ a(f( U) n X). 

On the other hand, consider the vector w E IR v defined by 

{ 

1, if i E Un X, 

W; = 0, if i E f( U)\X, 

t otherwise. 

Then WE FRAC (G) and a 7w;;; a 7 v+!a(f( U) n X)-~a( U\X);;; a 7 v. By the optimal
ity of v, we must have equality, and so a( U\X) = a(f( U) n X). But this means that 
xx satisfies the linear equation 

L a;X; =a( U). 
iEVUr(Ui 

So this linear equation is satisfied by every vertex of the facet determined by a T x = b. 
The only way this can happen is that it is the equation a 7 x = b itself. But then a Tv = b 

and so a Tv ~ b also defines a facet of FRAC ( G), which was excluded. 0 
We need some further, related lemmas about stable set polytopes. These may be 

viewed as weighted versions of results on graphs with the so-called Konig property; 
see [18, § 6.3]. 

LEMMA 2.11. Let a E IR~ and assume that 

max {a Tx: x E STAB (G)} < max {a Tx: x E FRAC (G)}. 

Let E' be the set of those edges ij for which y; + yj = 1 holds for every vector y E FRAC ( G) 
maximizing a Tx. Then ( V, E') is nonbipartite. 

Proof. Suppose that ( V, E') is bipartite. Let z be a vector in the relative interior 
of the face F of FRAC ( G) maximizing a 7x. Then clearly 

EI = { ij E E : Z; + Zj = 1} 

and 

F = {xE FRAC (G): x;+xj = 1 for all i}E £}. 

Let ( U, W) be a bipartition of ( V, E'). In every connected component of ( V, E'), Z;;;; 1 
on at least one col or class and hence we may choose ( U, W) so that zi;;; ! for all 
i E W. Then, W is a stable set in the whole graph G. Hence it follows that 
x w E F. This implies that max {a Tx: x E STAB ( G)} = max {a 7x: x E FRAC ( G)}-a 

contradiction. 0 
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LEMMA 2.12. As in the previous lemma, let a E ~~ and assume that 

max {a Tx: x E STAB ( G)} < max {a Tx: x E FRAC ( G)}. 

Then there exists an i E V such that every vector y E FRAC ( G) maximizing a T x has Yi=!. 
Proof Let E' be as before. Then by Lemma 2.11, there exists an odd circuit C in 

G such that E ( C) s; E'. If y is any vector in FRAC ( G) maximizing a T x, then by the 
definition of E', y;+yi=l for every edge ijEE(C), and hence yi=! for every iE 
V( C). 0 

Now we can state and prove our theorem, which shows the connection between 
defect and the N-index. 

THEOREM 2.13. Let a T x ~ b be an inequality with integer coefficients valid for 

STAB ( G) with defect r and N-index k. Then 

r 
-<k<r b= =. 

Proof (Upper bound) We use induction on r. If r = 0 we have nothing to prove, 
so suppose that r> 0. Then Lemma 2.12 can be applied and we get that there is a 
vertex i such that every vector y optimizing arx over FRAC (G) has y; =!.Note that 
trivially a;> 0. 

We claim that both the contraction and deletion of i result in constraints with 
smaller defect. In fact, let y be a vertex of FRAC ( G) maximizing a~-; x. If y also 
maximizes a T x, then Yi = ! and hence 

2(a~-iy-b) = 2(aTy-b)-a; <2(a Ty-b) = r. 

On the other hand, if y does not maximize a T x, then 

2(a ~-iy-b) ~2(a Ty-b) <2 · max {a Tx-b: x E FRAC ( G)} = r. 

The assertion follows similarly for the contraction. Hence by the induction hypothesis, 
the contraction and deletion of i yield constraints valid for Nr-i ( G ). It follows by 
Lemma 2.2 that a T x ~ b is valid for Nr ( G). 

(Lower bound) By Lemma 2.7, (1/(k+2))1ENk(G), and so aTx~b must be 
valid for (1/(k+2))1. So (1/(k+2))a TI~ band hence 

arl r 
k"?:.---2=-. 

- b b 
0 

It follows from our discussions that for an odd antihole constraint, the lower 
bound is tight. On the other hand, it is not difficult to check that for a rank constraint 
defined by an a-critical subgraph that arises from KP by subdividing an edge by an 
even number of nodes, the upper bound is tight. 

We would like to mention that Ceria [7] proved that N(FRAC ( G), FRAC ( G)) 
also satisfies, among others, the K4 -constraints. We do not study the operator 
K >---'; N ( K, K) here in detail, but a thorough comparison of its strength with N and 
N+ would be very interesting. 

A class of graphs interesting from the point of view of stable sets is the class of 
line-graphs: the stable set problem for these graphs is equivalent to the matching 
problem. In particular, it is polynomial time solvable and Edmonds's description of 
the matching polytope [10] provides a "nice" system of linear inequalities describing 
the stable set polytope of such graphs. The N-index of line-graphs is unbounded; this 
follows, e.g., by Corollary 2.8. This also follows from Yannakakis's result [26] men
tioned in the Introduction, since bounded N-index would yield a representation of 
the matching polytope as a projection of a polytope with a polynomial number of 
facets. We do not know whether or not the Nvindex of line-graphs remains bounded. 
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2.d. The "N+" operator. Now we turn to the study of the operator N+ for 

stable set polytopes. We do not have as general results for the operator N+ as for the 

operator N, but we will be able to show that many constraints are satisfied even for 

very small r. 

Lemma 1.5 implies the following lemma. 

LEMMA 2.14. If a 7 x-;;£ b is an inequality valid for STAB ( G) such that for all v E V 

with a positive coefficient the contraction of v gives an inequality with Nvindex at most 

r, then a T x-;;£ b has N+-index at most r+ 1. 

The clique, odd hole, odd wheel, and odd antihole constraints have the property 

that, contracting any node with a positive coefficient, we get an inequality in which 

the nodes with positive coefficients induce a bipartite subgraph. Hence, we have the 

following corollary. 

COROLLARY 2.15. Clique, odd hole, odd wheel, and odd antihole constraints have 

N+-index 1. 

Hence all h-perfect (in particular all perfect and !-perfect) graphs have N+-index 

at most 1. We can also formulate the following recursive upper bound on the N +-index 

of a graph. 

COROLLARY 2.16. If G-f(v)-v has N+-index at most r for every vE V, then G 

has Nvindex at most r+ 1. 

Next, we consider the orthogonality constraints. To this end, consider the cone 

Mm of (VU {O}) x (VU {O}) matrices Y = (yij) satisfying the following constraints: 

(i) Y is symmetric; 

(ii) Y;; = y;o for every i E V; 

(iii') Yu= 0 for every ij EE; 

(iv) Y is positive semidefinite. 

As remarked, (iii') is a relaxation of (iii) in the definition of M+(FR (G)). Hence 

M+(FR ( G)).:; Mm. 

LEMMA2.17. TH(G)={Ye0 : YEMm,e 1fYe0 =1}. 

Proof Let x ETH ( G). Then, by the results of Grotschel, Lovasz, and Schrijver 

[ 13], x can be written in the form X; = ( v;; V; ) 2, where the V; (i E V) form an orthonormal 

representation of the complement of G and v0 is some vector of unit length. Set x0 = 1 

and define Yu = v T vi ~. Then it is easy to verify that YE Mm and Ye 0 = x. 

The converse inclusion follows by a similar direct construction. D 

This representation of TH ( G) is not a special case of the matrix cuts introduced 

in§ I (though it is clearly related). In§ 3 we will see that, in fact, TH (G) is in a sense 

more fundamental than the relaxations of STAB ( G) constructed in § 1. Right now we 

can infer the following. 

CoROLLAR Y 2.18. Orthogonality constraints have N +-index 1. 

We conclude with an upper bound on the Nvindex of a single inequality. Since 

a ( G - r( v) - v) <a( G), Lemma 2.14 gives, by induction, Corollary 2.19. 

COROLLARY 2.19. If a 1x-;;£ b is an inequality valid for STAB ( G) such that the 

nodes with positive coefficient induce a graph with independence number r, then a Tx-;;£ b 

has Nvindex at most r. In particular, a Tx-;;£ b has index at most b. 

Let us turn to the algorithm aspects of these results. Theorem 2.1 implies the 

following corollary. 

CoROLLAB.Y 2.20. The maximum weight stable set problem is polynomial time 

solvable for graphs with bounded N+-index. 

Note that even for small values of r, quite a few graphs have N+-index at most 

r. Collecting previous results, we obtain Corollary 2.21. 

CoROLLAR y 2.21. For any fixed r ~ 0, if STAB ( G) can be defined by constraints 

a T x-;;£ b such that either the defect of the constraint is at most r or the support contains 
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no stable set larger than r, then the maximum weight stable set problem is polynomial 

time solvable for G. 

3. Cones of set-functions. Vectors in IR 5 are just functions defined on the one
element subsets of a set S; the symmetric matrices in the previous sections can be 
considered as functions defined on unordered pairs. We show that if we consider 
set-functions, i.e., functions defined on all subsets of S, then some of the previous 
considerations become more general and sometimes even simpler. 

In fact, most of the results extend to a general finite lattice in the place of the 
boolean algebra, and we present them in this generality for the sake of possible other 

applications. 

3.a. Preliminaries: Vectors on lattices. Let us start with some general facts about 
functions defined on lattices. Given a lattice L, we associate with it the matrix Z =(tu), 
called the zeta-matrix of the lattice, defined by 

{
1, if i~j, 

tij = 0, otherwise. 

For j E L, let tj denote the jth column of the zeta matrix, i.e., let 

(j(i) =tu· 

If we order the rows and columns of Z compatibly with the partial ordering defined 
by the lattice, it will be upper triangular with 1 's in its main diagonal. Hence it is 
invertible, and its inverse M = z- 1 is an integral matrix of the same shape. This inverse 
is a very important matrix, called the Mobius matrix of the lattice. Let 

M = (µ.( i, j) )i,jE.51'. 

The function µ. is called the Mobius function of the lattice. From the discussion above, 
we see thatµ. ( i, i) = 1 for all i E 2, andµ.( i, j) = 0 for all i,j E 2 such that i 1'.j. Moreover, 
the definition of M implies that for every pair of elements a ;:;; b of the lattice, 

and 

a~~~b µ.(a, i) = g: ~t:e;:;se; 

if a= b, 

otherwise. 

Either one of these identities provides a recursive procedure to compute the Mobius 
function. It is easy to see from this procedure that the value of the Mobius function 
µ. ( i, j), where i ;;;j, depends only on the internal structure of the interval [ i, j]. Also 
note the symmetry in these two identities. This implies that ifµ.* denotes the Mobius 
function of the lattice turned upside down, then 

µ. *(i, j) = µ.(j, i). 

For j EL, let µ.j denote the jth column of the Mobius matrix, i.e., let 

µ.j(i) = µ.ij. 

We denote by µ.j the jth row of the Mobius matrix, and by µ.[i,j] the restriction of µi 

to the interval [ i, j], i.e., the vector defined by 

.. (k) = {µ(i, k), 
µ[•,J] 0 

' 

if k ;;;j, 

otherwise. 
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The Mobius function of a lattice generalizes the Mi:ibius function in number 
theory, and it can be used to formulate an inversion formula extending the Mobius 
inversion in number theory. Let g E IRL be a function defined on the lattice. The zeta 
matrix can be used to express its lower and upper summation function: 

(ZTg)(i) =I g(j), 
j~i 

and 

(Zg)(i) = L g(j). 
j"?J;i 

Given (say) f = Zg, we can recover g uniquely by 

g(i) = (Mf)(i) = 2: µ,(i, J)f(j). 
j~i 

The function g is called the upper Mobius inverse of f. The lower Mobius inverse 1s 
defined analogously. 

There is a further simple but important formula relating a function to its inverse. 
Given a function f E IRL, we associate with it the matrix W1 = (wu), where 

wiJ =f(i v j). 

We also consider the diagonal matrix D 1 with (D1 );; = f(i). Then it is not difficult to 
prove the following identity (Lindstrom [15], Wilf [24]). 

LEMMA 3.1. If g is the upper Mobius inverse off, then wf = ZDgZT. 

For more on Mobius functions, see Rota [21], Lovasz [17, Chap. 2], or Stanley 
[23, Chap. 3]. 

A function f E IRL will be called strongly decreasing if Mf?;. 0. Since f = Z(Mf), 

this is equivalent to saying that f is a nonnegative linear combination of the columns 
of Z, i.e., of the vectors ?j· So strongly decreasing functions form a convex cone 
H = H(L), which is generated by the vectors ?< j EL. Also by definition, the polar 
cone H* is generated by the rows of M, i.e., by the vectors J-lj· 

Let us mention that the vector J-l[;,n is also in H* for every i ~j. This is straightfor
ward to check by calculating the inner product of J-l(i,jJ with the generators (j of H. It 
is easy to see that strongly decreasing functions are nonnegative, monotone decreasing, 
and supermodular, i.e., they satisfy 

f(i V j) + f( i Aj) ?;_f(i) + f(j). 

Lemma 3.1 implies Corollary 3.2. 
COROLLARY 3.2. A function f is strongly decreasing if and only if wJ is positive 

semidefinite. 

It follows, in particular, that/ is strongly decreasing if and only if for every x E IRL, 

x Tw1:X = I f(i v J) ?;. o. 

It is, in fact, worthwhile to mention the following identity, following immediately from 

Lemma 3.1. Let f, x E IRL and let g = Mf and y = Zx. Then 

xTW1x= I g(i)y(i)2• 

iEL 

In particular, if f is strongly decreasing, then 

(1) xTWfx?;_g(O)x(0)2. 
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Remark. Let L== 25 , and letf E IRL such thatf(0) == 1. Thenf is strongly decreasing 

if and only if there exist random events A, (s ES) such that for every X c;; S, 

Prob c ~ X A,) == f(X). 

(If this is the case, (Mf)(X) is the probability of the atom Ilsex A, ITses-x A •. ) In 
particular, we obtain from (1) that for any A EIRL with A(O) = 1, 

X~YAxAyProbCe:UY A,)~ProbC~s xi)· 
This is a combinatorial version of the Selberg sieve in number theory (see [17, Chap. 

2]). Inequality (1) can be viewed as Selberg's sieve for general lattices; see Wilson [25). 

The lattice structure also induces a "multiplication," which leads to the semigroup 

algebra of the semigroup (L, v ). Given a, b E IRL, we define the vector a v b E IRL by 

(a v b)(k) = L a(i)b(j). 
ivj=k 

In particular, 

(and the rest of the definition is obtained by distributivity). It is straightforward to see 

that this operation is commutative, associative, and distributive with respect to the 
vector addition, and has unit element e0 (where 0 is the zero element of the lattice). 

This semigroup algebra has a very simple structure: elementary calculations show that 

(2) 

and hence the semigroup algebra is isomorphic to the direct product of ILi copies of 

IR. It also follows from (2) that a vector a has an inverse in this algebra if and only if 
(ZT a)(k) ;e 0 for all k. 

Another identity which will be useful is the following: 

(3) 

Using this, we can express the fact that a vector c is strongly decreasing as follows: 

(ava)Tc~O foreveryaelRL. 

In particular it follows that H* is generated by the vectors a v a, a e IRL. Comparing 
this with our previous characterization, it follows that the vectors µ,j must be of the 

form a v a. In fact, /Lj v µ,j == µj; more generally, the vectors /L[;,n are also idempotent. 
Using (2) it is easy to see that the idempotents are exactly the vectors of the form 

L;er µ;,where I c;; L. Moreover, the "v" product of any two vectors µ,; is zero. 

3.b. Optimization in lattices. Given a subset F c;; L, we denote by cone ( F) the 

convex cone spanned by the vectors ~;' i E F. Since these vectors are extreme rays of 

H, and all extreme rays of H are linearly independent, it is, in principle, trivial to 
describe F by linear inequalities. It is determined by the system 

(4) 
r {==O, if ie F, 

J..l-j x > .. 
=0, If IE F. 
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But since cone (F) is generally not full-dimensional, it may have many other minimal 

descriptions. For example, in the case when F is an order ideal (i.e., x E F, y ~ x imply 
y E F), cone (F) could be described by 

(5) xeH, x(i) = 0 for all i e F. 

Hence 

(6) cone (F)* ={a e IRL: (Zr a)(k) ~ 0 for all k E F}. 

Our main concern will be to describe the projection of cone (F) on the subspace 

spanned by a few "small" elements in the lattice. Let I be the set of these "interesting" 
lattice elements. We consider IR 1 as the subspace of IRL spanned by the elements of I. 

For any convex cone k £ H, let K 1 denote the intersection of K with IR 1 and let K/ I 

denote the projection of K onto IR 1• Then (K*) 1 £ K* is the set of linear inequalities 

valid for K involving only variables corresponding to elements of I. Also, (K*) / is 
the polar of K/ I with respect to the linear space IR 1• 

For example, in the case when L = 25 , where S is an n-element set, we can take 
I as the set of all singletons and 0. If we project cone (F) on this subspace, and 

intersect the projection with the hyperplane x0 = 1, then we recover the polyhedron 

usually associated with F (namely, the convex hull of incidence vectors of members 

of F). Note that the projection itself is just the homogenization introduced in § 1. The 

cone Q considered in § 1 is just H /I. 

From these considerations we can infer the following theorem, due (in a slightly 
different form) to Sherali and Adams [22]. 

THEOREM 3.3. If g; £ 25 then conv {xA: A e ;Ji} is the projection of the following 

cone to singleton sets: 

µJx~O (j E ;Ji), µJx=O (j e ;Ji). 

The ( n ~ 1) x ( n + 1) matrices Y used in § 1 can be viewed in this framework in 

two different ways. First, they can be viewed as portions of the vector x e IR25 determined 

by the entries indexed by 0, singletons, and pairs; the linear constraints on M(K) 

used in § 1 are only the constraints we can derive in a natural way from the constraints 

involving just the first n + 1 variables. 
Second, the matrices Y also occur as principal minors of the corresponding (huge) 

matrix wx. So the positive semidefiniteness constraint for M+(K) is just a relaxation 

of the condition that for x e H, wx is positive semidefinite. (It is interesting to observe 

that while by Corollary 3.2, the positive semidefiniteness of wx is a polyhedral 

condition, this relaxation of it is not.) 
Let us discuss the case of the stable set polytope. We have a graph G = ( V, E) 

and we take S = V, L = 25. Let F consist of the stable sets of G. Then cone (F) £ IRL 

is defined by the constraints 

x e H, xij = 0 for every ij e E. 

We can relax the first constraint by stipulating that the upper left (n + 1) x (n + 1) 

submatrix W~ of wx is positive semidefinite. Then these submatrices form exactly the 

cone Mrn as introduced in § 2. As we have seen, the projection of this cone to IR 1, 

intersected with the hyperplane x0 = 1, gives the body TH ( G). 

Note that the "supermodularity" constraints xij - xi - xi + x0 ~ 0 are linear con
straints valid for H, and involve only the variables indexed by sets with cardinality at 
most 2, but they do not follow from the positive semidefiniteness of W~. Using these 

inequalities we obtain from xii = 0 the constraint xi ~ xi ~ x0 for every edge ij E E. 
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Returning to our general setting, we are going to interpret the operators N, N+, 

and Nin this general setting, using the group algebra. In order to describe the projection 

of cone (F) on IR 1, we want to generate linear constraints valid for cone (F) such that 

only the coefficients corresponding to elements of I are nonzero. To this end, we use 

the semigroup algebra to combine constraints to yield new constraints for cone (F). 

(This may temporarily yield constraints having some further nonzero coefficients, which 

we can eliminate afterwards.) 

We have already seen that a v a E cone (F)* for every a. From (2) and (6) we can 

read off the following further rules: 

(a) If a, b E cone (F)*, then a v b E cone (F)*. 

(b) If a E int (cone (F)*) and a v b E cone (F)*, then b E cone (F)*. 

In rule (b ), we can replace the condition that a E int (cone (F)*) by the perhaps 

more manageable condition that a = e0 + c with c E cone ( F) *. In fact, e0 E 

int (cone (F)*) and hence for every c E cone (F)*, e0 + c E int (cone ( F)*). Conversely, 

if a E int (cone ( F)*), then for a sufficiently small t > 0, a - te0 E cone ( F)*. Set c == 

(a-e0 )/t, then c+e0 Econe(F)* and (c+e0)vb=(avb)/tEcone(F)*, and hence 

b E cone (F)*. 

If Z Ta> 0, then rule (b) follows from rule (a). In fact, let c(k) = 1/ (ZT a)(k), and 

d =MT c. Then d is the inverse of a, that is, d v a= e0 , and (ZT d)(k) = c(k) > 0 for 

all k, so d E cone (F)*. Hence 

b =(a v b) v d Econe (F)*, 

by rule (a). 

For two cones K 1, K2 s; IRL, we denote by K 1 v K 2 the cone spanned by all vectors 

u 1 v u2 , where u; EK;. (The set of all vectors arising in this way is not convex in general.) 

This operation generalizes the construction of N(K1 , K 2), N+(Ki. K 2 ), and N(K) in 

the following sense. 

PROPOSITION 3.4. Let L == 2s, I, the set consisting of 0, and the singleton subsets of 

S, and let K i, K 2 <;:;; H /I be two convex cones. Then 

(i) N(Ki.K2)*=((Kf)1v(K!)1)1; 

(ii) N+(Ki. K 2)* = ((Ki) v (K!) 1 +IR1 v ~ 1 ) 1 • 

Proof of (i). First, we assume that wE((Kf) 1 v (Kf) 1 ) 1 • Then we can write 

w =I, a, v b,, where a, E (Ki) 1 and b, E (K!) 1• Let x E N(Ki, K2 ); then we can write 

x = Ye 0 with Y = (yii EM (K 1 , K 2 ) ). Define the vector y E IRL by 

Then we have 

{

xk. if k EI, 

y(k)= yij, if k={y,j}, 

0, else. 

wTx = wTy =I (a, v b,)Ty =I a'{Yb, :?;0. 
t t 

This proves that w E N(Ki. K2 )*. 

Second, assume that w E N(KI> K2 )*. Then we can write 

wecf =I a,b"{ +I A;eJ;T +A, 
t i=l 

where a, E Kf, b, E Kf, A; E ~' and A is a skew symmetric matrix. Now it is easy to 
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check that 

w =I (a, v b,), 
t 

and so w E ((Kf)r v (Knr )r. 

The proof of part (ii) is analogous. D 

Next we show that the construction of N is, in fact, a special case of the application 
of rule (b). 

LEMMA 3.5. Let L = 25, I, the set consisting of 0, and the singleton subsets of S, 
and let K s; H /I, a convex cone. Then 

N(K)* ={a E IR 1 : 3b E int (K*)r such that a v b E (K*) 1 v ( Q*) 1 }. 

The proof is analogous to that of Proposition 3.3, and is omitted. 
We can use the formula in Proposition 3.4 to formulate a stronger version of the 

repetition of the operator N. Note that 

N 2 (K)* = [[(K*)1 v (Q*)1]1 v (Q*)1]1 £. [(K*)1 v (Q*)1 v (Q*)dr, 

and similarly, if we denote ( Q*) 1 v · · · v ( Q*) 1 (r factors) by Q,, then 

N'(K)* £. [(K*)1 V Or]J. 

Now it is easy to see that the cone Or is spanned by the vectors /.L[i.j] where i s;j and 
UI ~ r. For fixed r, this is a polynomial number of vectors. Let N'(K) denote the polar 
cone of [(K*)r v 0r] 1 in the linear space IR 1. Then N'(K)s; N'(K). 

For the case of boolean algebras (and in a quite different form), the sequence 
N'(K) of relaxations of K 0 was introduced by Sherali and Adams [22], who also 
showed that Nn(K) = K 0

• 

It is easy to see that if K is polynomial time separable, then so is N'(K) for 
every fixed r: to check whether x E N'(K ), it suffices to check whether there exist 
vectors a [ Ul E ( K *) / for every i and j with i r;;;. j and In I ~ r such that a = L;,j a [ ;,n v /.L[ ;.n E 

IR 1 and a Tx < 0. This is easily done in polynomial time using the ellipsoid method. 
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