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Cones over pseudo-Riemannian manifolds and their holonomy

D.V.Alekseevsky∗, V.Cortés†, A. S.Galaev‡, T. Leistner†

Abstract

By a classical theorem of Gallot (1979), a Riemannian cone over a complete Rie-
mannian manifold is either flat or has irreducible holonomy. We consider metric cones
with reducible holonomy over pseudo-Riemannian manifolds. First we describe the
local structure of the base of the cone when the holonomy of the cone is decompos-
able. For instance, we find that the holonomy algebra of the base is always the full
pseudo-orthogonal Lie algebra. One of the global results is that a cone over a com-
pact and complete pseudo-Riemannian manifold is either flat or has indecomposable
holonomy. Then we analyse the case when the cone has indecomposable but reducible
holonomy, which means that it admits a parallel isotropic distribution. This analysis
is carried out, first in the case where the cone admits two complementary distribu-
tions and, second for Lorentzian cones. We show that the first case occurs precisely
when the local geometry of the base manifold is para-Sasakian and that of the cone
is para-Kählerian. For Lorentzian cones we get a complete description of the possible
(local) holonomy algebras in terms of the metric of the base manifold.
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1 Introduction

Let (M,g) be a (connected) pseudo-Riemannian manifold of signature

(p, q) = (−, · · · ,−,+, · · · ,+).

We denote by H the holonomy group of (M,g) and by h ⊂ so(V ) (V = TpM , p ∈ M) the
corresponding holonomy algebra.

We say that h is decomposable if V contains a proper non-degenerate h-invariant sub-
space. By Wu’s theorem [Wu64] this means that M is locally decomposed as a product
of two pseudo-Riemannian manifolds. In the opposite case h is called indecomposable. We
say that h is reducible if it preserves a (possibly degenerate) proper subspace of V .

The holonomy algebra h is of exactly one of the following types:

(i) decomposable,

(ii) reducible indecomposable or

(iii) irreducible.

Let (M̂ = R
+ × M, ĝ = dr2 + r2g) be the (space-like) metric cone over (M,g). We

denote by Ĥ the holonomy group of (M̂ , ĝ) and by ĥ ⊂ so(V̂ ) (V̂ = TpM̂ , p ∈ M̂ ) the
corresponding holonomy algebra. In the present article we shall describe the geometry of
the base (M,g) for each of the three possibilities (i-iii) for the holonomy algebra of the

cone M̂ .
Our first result describes the holonomy algebra and local structure of a manifold (M,g)

with decomposable holonomy ĥ of the cone.

Theorem 4.1. Let (M,g) be a pseudo-Riemannian manifold with decomposable holonomy

algebra ĥ of the cone M̂ . Then the manifold (M,g) has full holonomy algebra so(p, q),
where (p, q) is the signature of the metric g. Furthermore, there exists an open dense
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submanifold M ′ ⊂ M such that any point p ∈ M ′ has a neighborhood isometric to a
pseudo-Riemannian manifold of the form (a, b)×N1 ×N2 with the metric given either by

g = ds2 + cos2(s)g1 + sin2(s)g2 or g = −ds2 + cosh 2(s)g1 + sinh 2(s)g2,

where g1 and g2 are metrics on N1 and N2 respectively.

Let us recall the following fundamental theorem of Gallot which settles the problem
for Riemannian cones over complete Riemannian manifolds.

Theorem 1 (S. Gallot, [Gal79]). Let (M,g) be a complete Riemannian manifold of di-

mension ≥ 2 with decomposable holonomy algebra ĥ of the cone M̂ . Then (M,g) has
constant curvature 1 and the cone is flat. If, in addition, (M,g) is simply connected, then
it is equal to the standard sphere.

For pseudo-Riemannian manifolds (M,g) the completeness assumption yields only the
following generalisation of Gallot’s result:

Theorem 7.1. Let (M,g) be a complete pseudo-Riemannian manifold of dimension ≥ 2

with decomposable holonomy ĥ of the cone M̂ . Then there exists an open dense submanifold
M ′ ⊂ M such that each connected component of M ′ is isometric to a pseudo-Riemannian
manifold of the form

(1) a pseudo-Riemannian manifold M1 of constant sectional curvature 1 or

(2) a pseudo-Riemannian manifold M2 = R
+ × N1 × N2 with the metric

−ds2 + cosh 2(s)g1 + sinh 2(s)g2,

where (N1, g1) and (N2, g2) are pseudo-Riemannian manifolds and (N2, g2) has con-
stant sectional curvature −1 or dim N2 ≤ 1.

Moreover, the cone M̂2 is isometric to the open subset {r1 > r2} in the product
of the space-like cone (R+ × N1, dr2 + r2g1) over (N1, g1) and the time-like cone
(R+ × N2,−dr2 + r2g2) over (N2, g2).

For compact and complete pseudo-Riemannian manifolds (M,g) we are able to estab-
lish the same conclusion as in Theorem 1:

Theorem 6.1. Let (M,g) be a compact and complete pseudo-Riemannian manifold of

dimension ≥ 2 with decomposable holonomy group Ĥ of the cone M̂ . Then (M,g) has
constant curvature 1 and the cone is flat.

We remark that for indefinite pseudo-Riemannian manifolds compactness does not
imply completeness, see for example [O’N83, p. 193] for a geodesically incomplete Lorentz
metric on the 2-torus (the so-called Clifton-Pohl torus).
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Since there is no simply connected compact indefinite pseudo-Riemannian manifold of
constant curvature 1, we obtain the following corollary.

Corollary 1. If (M,g) is a simply connected compact and complete indefinite pseudo-

Riemannian manifold, then the holonomy algebra of the cone (M̂ , ĝ) is indecomposable.

Now we consider the case (ii) when the holonomy algebra ĥ of the cone M̂ is indecom-
posable but reducible. We completely analyse the situation in the following two cases:

(ii.a) ĥ preserves a decomposition TpM̂ = V ⊕ W (p ∈ M̂) into two complementary
subspaces V and W .

(ii.b) M̂ is Lorentzian.

In the case (ii.a) one can show that M̂ admits (locally) a para-Kähler structure, which
means that the holonomy algebra ĥ preserves two complementary isotropic subspaces.
The following theorem characterises para-Kählerian cones as cones over para-Sasakian
manifolds.

Theorem 8.1. Let (M,g) be a pseudo-Riemannian manifold. There is a one-to-one cor-
respondence between para-Sasakian structures (M,g, T ) on (M,g) and para-Kähler struc-

tures (M̂ , ĝ, Ĵ) on the cone (M̂ , ĝ). The correspondence is given by T 7→ Ĵ := ∇̂T .

Similarly, we have the following characterisation of the case when the cone M̂ ad-
mits (locally) a para-hyper-Kähler structure, which means that the holonomy algebra
ĥ preserves two complementary isotropic subspaces T± and a skew-symmetric complex
structure J such that JT+ = T−. In particular, it preserves the para-hyper-complex
structure (Ĵ1, Ĵ2, Ĵ3Ĵ1Ĵ2), where Ĵ1|T± = ±Id and Ĵ2 = J .

Theorem 8.2. Let (M,g) be a pseudo-Riemannian manifold. There is a one-to-one
correspondence between para-3-Sasakian structures (M,g, T1, T2, T3) on (M,g) and para-

hyper-Kähler structures (M̂ , ĝ, Ĵ1, Ĵ2, Ĵ3 = Ĵ1Ĵ2) on the cone (M̂ , ĝ). The correspondence
is given by Tα 7→ Ĵα := ∇̂Tα.

Finally, we consider the case (ii.b) when the cone is Lorentzian with indecomposable
reducible holonomy algebra.

Theorem 9.1. Let (M,g) be a Lorentzian manifold of signature (1, n− 1) or a negative

definite Riemannian manifold and (M̂ = R
+ × M, ĝ) the cone over M with Lorentzian

signature (1, n) or (n, 1) respectively. If the holonomy algebra ĥ of M̂ is indecomposable
reducible (i.e. preserves an isotropic line) then it annihilates a non-zero isotropic vector.

The next theorem treats the case of a Lorentzian cone M̂ over a negative definite
Riemannian manifold M .
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Theorem 9.1’. Let (M,g) be a negative definite Riemannian manifold and (M̂ , ĝ) the

cone over M equipped with the Lorentzian metric of signature (+,−, · · · ,−). If M̂ admits
a non-zero parallel isotropic vector field then M is locally isometric to a manifold of the
form

(M0 = (a, b) × N, g = −ds2 + e−2sgN ), (1.1)

where a ∈ R∪{−∞}, b ∈ R∪{+∞}, a < b and (N, gN ) is a negative definite Riemannian

manifold. Furthermore, if hol(M̂0) is indecomposable then

hol(M̂0, ĝ) ∼= hol(N, gN ) ⋉ R
dimN .

If the manifold (M,g) is complete then the isometry is global, (N, gN ) is complete and
(a, b) = R.

The last theorem treats a Lorentzian cone M̂ over Lorentzian manifold M .

Theorem 9.1”. Let (M,g) be a Lorentzian manifold and (M̂, ĝ) the cone over M

equipped with the Lorentzian metric. If M̂ admits a non-zero parallel isotropic vector field
then there exists an open dense submanifold M ′ ⊂ M such that any point of M ′ has a
neighborhood isometric to a manifold of the form (1.1), where (N, gN ) is a positive definite

Riemannian manifold. Furthermore, if hol(M̂0) is indecomposable then

hol(M̂0, ĝ) ∼= hol(N, gN ) ⋉ R
dimN .

If the manifold (M,g) is complete then each connected component of M ′ is isometric to a
manifold of the form (1.1), where (N, gN ) is a positive definite Riemannian manifold and
(a, b) = R.

Let us conclude this introduction with some brief remarks about applications of these.
The theorem of Gallot was used by C. Bär in the classification of Riemannian manifolds
admitting a real Killing spinor [Bär93]. In general, a pseudo-Riemannian manifold admits
a real/imaginary Killing spinors if and only if its space-like/time-like cone admits a parallel
spinor (details in [Boh03]). Hence, a strategy for studying manifolds with Killing spinors is
to study their cones with parallel spinors. Now, in order to classify manifolds with parallel
spinors the knowledge of their holonomy group is essential. In the Riemannian situation
Gallot’s result reduces the problem to irreducible holonomy groups of cones. With our
results this strategy becomes applicable to arbitrary signature.

Another applications in the same spirit — solutions to an overdetermined system of
PDE’s correspond to parallel sections for a certain connection — comes from conformal
geometry. Here, to a conformal class of a metric one can assign the so-called Tractor bundle
with Tractor connection. Parallel sections of this connection correspond to metrics in the
conformal class which are Einstein. For conformal classes which contain an Einstein metric
the holonomy of the conformal Tractor connection reduces to the Levi-Civita holonomy of
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the Fefferman-Graham ambient metric [FG85]. For conformal classes containing proper
Einstein metrics with positive/negative Einstein constant the ambient metric reduces to
the space-like/time-like cone over a metric in the conformal class [Leit05, Arm05, AL06].
Again, our results enable us to describe the holonomy of the conformal Tractor connection
by the holonomy of the cone.

To carry out the details of both applications lies beyond the scope of this paper and
will be subject to future research.

Acknowledgements. The authors thank the International Erwin Schrödinger Insti-
tute for Mathematical Physics in Vienna for the hospitality during the Special Research
Semester Geometry of Pseudo-Riemannian Manifolds with Applications in Physics.

2 Doubly warped products

Let (N1, g1) and (N2, g2) be two pseudo-Riemannian manifolds, ε = ±1 and f1, f2 two
nowhere vanishing smooth functions on an open interval I = (a, b) ⊂ R. The manifold
M = I × N1 × N2 with the metric

g = εds2 + f1(s)
2g1 + f2(s)

2g2 (2.1)

is called a doubly warped product. We will consider the coordinate vector field ∂0 = ∂s on
the interval I and vector fields X,X ′, . . . on N1 and Y, Y ′, . . . on N2 as vector fields on M .

Proposition 2.1. (i) The Levi-Civita connection ∇ of the pseudo-Riemannian mani-
fold (M,g) is given by:

∇∂0∂0 = 0

∇∂0X = ∇X∂0 =
f ′
1

f1
X

∇∂0Y = ∇Y ∂0 =
f ′
2

f2
Y

∇XX ′ = −ε
f ′
1

f1
g(X,X ′)∂0 + ∇1

XX ′

∇Y Y ′ = −ε
f ′
2

f2
g(Y, Y ′)∂0 + ∇2

Y Y ′

∇XY = ∇Y X = 0,

where ∇1 and ∇2 are the Levi-Civita connections of g1 and g2.

(ii) A curve I ∋ t 7→ (s(t), γ1(t), γ2(t)) ∈ I × N1 × N2 = M is a geodesic if and only if
it satisfies the equations:

s̈ = ε(f ′
1(s)f1(s)g1(γ̇1, γ̇1) + f ′

2(s)f2(s)g2(γ̇2, γ̇2))

∇i
γ̇i

γ̇i = −2
f ′

i

fi
ṡγ̇i, i = 1, 2.
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(iii) In terms of the arclength parameters u1, u2 of the curves γ1, γ2 in N1, N2 the
equations (ii) take the form:

s̈ = εε1f
′
1(s)f1(s)u̇1

2 + εε2f
′
2(s)f2(s)u̇2

2 (2.2)

üi = −2
f ′

i

fi
ṡu̇i, i = 1, 2. (2.3)

where εi = gi(
dγi

du
, dγi

du
) ∈ {±1, 0}.

Corollary 2.1. (i) The submanifolds I ×Ni ⊂ M , i = 1, 2, are totally geodesic, as well
as their intersection I.

(ii) Any geodesic Γ ⊂ M is contained in a totally geodesic submanifold I ×Γ1×Γ2 ⊂ M ,
where Γi = prNi

(Γ) ⊂ Ni are geodesics in Ni, i = 1, 2.

Proposition 2.2. The curvature tensor of the doubly warped product (2.1) is given by:

R(∂0,X) = −ε
f ′′
1

f1
∂0 ∧ X

R(∂0, Y ) = −ε
f ′′
2

f2
∂0 ∧ Y

R(X,X ′) = −ε

(
f ′
1

f1

)2

X ∧ X ′ + R1(X,X ′)

R(Y, Y ′) = −ε

(
f ′
2

f2

)2

Y ∧ Y ′ + R2(Y, Y ′)

R(X,Y ) = −ε
f ′
1f

′
2

f1f2
X ∧ Y

Recall that a pseudo-Riemannian metric g has constant curvature κ if and only if its
curvature tensor has the form

R(X,Y ) = κX ∧ Y = κ(X ⊗ g(Y, ·) − Y ⊗ g(X, ·)).

Corollary 2.2. A doubly warped product (2.1) has constant curvature κ = −εc if and
only if the metrics g1 and g2 have constant curvature κ1, κ2 and the warping functions
satisfy the following system of equations:

f ′′
1

f1
= c if dim N1 > 0,

f ′′
2

f2
= c if dim N2 > 0,

f ′
1f

′
2

f1f2
= c, if dimN1 > 0 and dim N2 > 0,

7



(
f ′
1

f1

)2

− ε
κ1

f2
1

= c if dim N1 > 1,

(
f ′
2

f2

)2

− ε
κ2

f2
2

= c if dim N2 > 1.

Solving these equations we get the following corollary. We will denote by gk, g
′
k, g′′k pseudo-

Riemannian metrocs of constant curvature k ∈ {±1, 0}.
Corollary 2.3. Then the following doubly warped product metrics gk have constant cur-
vature k:

g−ε = εds2 + cosh2(s)g′−ε + sinh2(s)g′′ε
gε = εds2 + cos2(s)g′ε + sin2(s)g′′ε

g−ε = εds2 + e2sg′0
g0 = εds2 + s2g′ε + g′′0

g−ε = εds2 + cosh2(s)dt2 + sinh2(s)g′′ε
g−ε = εds2 + cosh2(s)g′−ε + sinh2(s)du2

gε = εds2 + cos2(s)dt2 + sin2(s)g′′ε
gε = εds2 + cos2(s)g′ε + sin2(s)du2

g0 = εds2 + s2dt2 + g′′0
g−ε = εds2 + sinh2(s)g′ε
g−ε = εds2 + cosh2(s)g′−ε

gε = εds2 + sin2(s)g′ε
g0 = εds2 + g′0

g−ε = εds2 ± cosh2(s)dt2 ± sinh2(s)du2

gε = εds2 ± cos2(s)dt2 ± sin2(s)du2

g−ε = εds2 ± sinh2(s)dt2

g−ε = εds2 ± cosh2(s)dt2

gε = εds2 ± sin2(s)dt2

Any doubly warped product of pseudo-Riemannian manifolds (N1, g1), (N2, g2) which has
constant curvature ±1 or 0 belongs to the above list up to a shift s 7→ s + s0 and rescaling

(f2
i , gi) 7→ (λ2

i f
2
i ,

1

λ2
i

gi).

Geometric realisation of doubly warped products of constant curvature

Now we give a realisation of the above doubly warped products in terms the pseudo-sphere
models of the spaces of constant curvature.
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The standard pseudo-spheres as models of spaces of curvature ±1

Let R
t,s = (Rt+s, 〈·, ·〉 −∑t

i=1 dx2
i +

∑t+s
i=t+1 dx2

i ) be the standard pseudo-Euclidian vector
space of signature (t, s). We denote by

St,s
+ := {x ∈ R

t,s+1|〈x, x〉 = +1}
St,s
− := {x ∈ R

t+1,s|〈x, x〉 = −1}

the two unit pseudo-spheres. The induced metric g± = g
S

t,s
±

of St,s
± has signature (t, s)

and constant curvature ±1. More precisely the curvature tensor is given by

R(X,Y )Z = ±(〈Y,Z〉X − 〈X,Z〉Y ).

Notice that S0,n
+ = Sn is the standard unit n-sphere, S0,n

− = Hn is hyperbolic n-space,

S1,n−1
+ = dSn is de Sitter n-space and S1,n−1 = AdSn is anti de Sitter n-space.

Flat space as cone over the pseudo-spheres

The domains
R

t,s
± := {x ∈ R

t,s| ± 〈x, x〉 > 0} ⊂ R
t,s

are isometrically identified via the map (r, x) 7→ rx with the space-like or time-like cone
over St,s−1

+ or St−1,s
− endowed with the metric ±dr2 +r2g±, respectively. In particular, the

space-like cone over a space of constant curvature 1 and the time-like cone over a space of
constant curvature −1 are flat.

Realisation of doubly warped products by double polar coordinates

Now we show that any splitting of a pseudo-Euclidian vector space as an orthogonal sum
of two pseudo-Euclidian subspaces induces local parametrisations of the pseudo-spheres.
Using these ’double polar’ parametrisations (more precisely, polar equidistant parametrisa-
tions [AVS93]) we will show that the spaces of constant curvature can be locally presented
as doubly warped products with trigonometric or hyperbolic warping functions over spaces
of appropriate constant curvature.

We consider the pseudo-spheres S+(V ) = St,s
+ ⊂ V = R

t,s+1 and S−(V ) = St,s
− ⊂

V = R
t+1,s. Any orthogonal decomposition V = V1 ⊕ V2 = {v = x + y|x ∈ V1, y ∈ V2},

〈·, ·〉 = 〈·, ·〉1 + 〈·, ·〉2 defines a diffeomorphism

(s, x̄, ȳ) 7→ x + y, x = cos(s)x̄, y = sin(s)ȳ, (2.4)

of (0, π
2 ) × Sε(V1) × Sε(V2) onto the (not necessarily connected) domain

D = {v = x + y ∈ Sε(V )|0 < ε〈x, x〉1 < 1}.
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Similarly the map

(s, x̄, ȳ) 7→ x + y, x = cosh(s)x̄, y sinh(s)ȳ, (2.5)

is a diffeomorphism of R
+ × Sε(V1) × S−ε(V2) onto the domain

D′ = {v = x + y ∈ Sε(V )|ε〈x, x〉1 > 1}.

Proposition 2.3. With respect to the diffeomorphisms (2.4) and (2.5) the metric gε of
Sε(V ) is given by

gε|D = εds2 + cos2(s)gSε(V1) + sin2(s)gSε(V2)

gε|D′ = −εds2 + cosh2(s)gSε(V1) + sinh2(s)gS−ε(V2).

Horospherical coordinates and corresponding warped products

Let (V, 〈·, ·〉) be an indefinite pseudo-Euclidian vector space, p, q ∈ V two isotropic vectors
such that 〈p, q〉 = 1 and W = span{p, q}⊥. Then

R
+×W ∋ (s, ξ) 7→ y = up+vq+x ∈ Sε(V ), u = ±1

2
e−s(ε−e2s〈ξ, ξ〉), v = ±2es, x = esξ

is a diffeomorphism onto the domain Sε(V ) ∩ {y ∈ V | ± v > 0}. In the coordinates
(s, ξ) the hypersurfaces s = const correspond to the hyperplane sections (horospheres)
{y ∈ Sε(V )|〈y, p〉 = ±es} and the curves ξ = ξ0 = const are geodesics perpendicular to
the horospheres. A direct calculation shows that:

Proposition 2.4. The induced metric of the pseudo-sphere Sε(V ) in horospherical coor-
dinates (s, ξ) is given by:

gε = εds2 + e2sg0,

where g0 = dξ2 is the induced pseudo-Euclidian metric on W .

Completeness of some doubly warped products

Proposition 2.5. Let (N1, g1), (N2, g2) be pseudo-Riemannian manifolds and (M = I ×
N1×N2, g = εds2+f1(s)

2g1+f2(s)
2g2) a doubly warped product with non-constant warping

functions as in Corollary 2.3. Then (M,g) is complete only in the following cases:

(i)
g = εds2 + cosh2(s)g1,

where I = R and g1 is complete, and

(ii)
g = εds2 + e2sg1

where I = R and εg1 is complete and positive definite.
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Proof. The system (2.2-2.3) has solutions ui = u0
i = const, s = at + b, which are complete

if and only if I = R. This excludes all the warping functions which have a zero. It remains
to check that the metric (i) is complete for any complete metric g1 and that (ii) is complete
only if εg1 is complete and positive definite. In fact, in both cases the squared velocity
l = g(γ̇, γ̇) is constant. In the second case, for instance, it is given by l = εṡ2 + ε1e

2su̇2,
u := u1, which yields ÿ = εly after the substitution y = es. The differential equation
ÿ = εly admits solutions which are positive on the real line if and only if εl > 0. The
positivity is necessary since y = es. This shows that g is positive or negative definite, i.e.
εg1 is positive definite. The other case is similar, see [Boh03], where the case of Lorentzian
signature is considered.

3 Examples of cones with reducible holonomy

Let ĝ = cdr2 + r2g be the cone metric on M̂ := R
+ × M , where (M,g) is a pseudo-

Riemannian manifold. Depending on the sign of the constant c the cone is called space-like
(c > 0) or time-like (c < 0). Later on we will assume, without restriction of generality,
that c = 1. In fact, as we allow g to be of any signature we can rescale ĝ by 1

c
∈ R

∗.

We denote by ∂r the radial vector field. The Levi-Civita connection of the cone (M̂, ĝ)
is given by

∇̂∂r
∂r = 0,

∇̂X∂r = 1
r
X,

∇̂XY = ∇XY − r
c
g(X,Y )∂r,





(3.1)

for all vector fields X,Y ∈ Γ(TM̂) orthogonal to ∂r. The curvature R̂ of the cone is given
by the following formulas including the curvature R of the base metric g:

∂r R̂ = 0,

R̂(X,Y )Z = R(X,Y )Z − 1
c
(g(Y,Z)X − g(X,Z)Y ) , or

R̂(X,Y,Z,U) = r2
(
R(X,Y,Z,U) − 1

c
(g(Y,Z)g(X,U) − g(X,Z)g(Y,U))

)
,





(3.2)

for X,Y,Z, U ∈ TM . This implies that if (M,g) is a space of constant curvature κ, i.e.

R(X,Y,Z,U) = κ (g(X,U)g(Y,Z) − g(X,Z)g(Y,U)) ,

the cone has the curvature r2
(
κ − 1

c

)
(g(X,U)g(Y,Z) − g(X,Z)g(Y,U)). In particular, if

κ = 1
c
, then the cone is flat, as it is the case for the c = 1 cone over the standard sphere

of radius 1 or the c = −1 cone over the hyperbolic space.
From now on we assume c = ±1. We denote by (M̂ = R

+ × M, ĝ = dr2 + r2g), the

space-like cone over (M,g) and by (M̂− = R
+ × M, ĝ− = −dr2 + r2g) the time-like cone.

Notice that the metric ĝ− of the time-like cone M̂− over (M,g) is obtained by multiplying
the metric dr2 − r2g of the space-like cone over (M,−g) by −1. Thus it is sufficient to
consider only space-like cones.
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We will now present some examples which illustrate that Gallot’s statement is not true
in arbitrary signature, and that the assumption of completeness is essential even in the
Riemannian situation.

Example 3.1. Let (F, gF ) be a complete pseudo-Riemannian manifold of dimension at
least 2 and which is not of constant curvature 1. Then the pseudo-Riemannian manifold

(M = R × F, g = −ds2 + cosh 2(s)gF )

is complete, the restricted holonomy group of the cone over (M,g) is non-trivial and admits
a non-degenerate invariant proper subspace.

Proof. The manifold (M,g) is complete by Proposition 2.5. The non-vanishing terms of
the Levi-Civita connection ∇ of (M,g) are given by

∇X∂s = tanh (s)X,
∇∂s

X = ∂sX + tanh (s)X,
∇XY = ∇F

XY + cosh (s)sinh (s)gF (X,Y )∂s,



 (3.3)

where X,Y ∈ TF are vector fields depending on the parameter s and ∇F is the Levi-Civita
connection of the manifold (F, gF ). Consider on M̂ the vector field X1 = cosh 2(s)∂r −
1
r
sinh (s)cosh (s)∂s. We have ĝ(X1,X1) = cosh 2(s) > 0. It is easy to check that the

distribution generated by the vector field X1 and by the distribution TF ⊂ TM̂ is parallel.
For the curvature tensor R of (M,g) we have

R(X,Y )Z = RF (X,Y )Z + tanh2(s) (gF (Y,Z)X − gF (X,Z)Y ) , (3.4)

where X,Y,Z, U ∈ TF and RF is the curvature tensor of (F, gF ). This shows that (M,g)
cannot have constant sectional curvature, unless F has constant curvature 1 (see Corollary

2.3). Thus the cone (M̂ , ĝ) is not flat.

Example 3.2. Let M be a manifold of the form R×N with the metric g = −(dt2+e−2tgN ),
where (N, gN ) is a pseudo-Riemannian manifold. Then

1. The light-like vector field e−t(∂r + 1
r
∂t) on the space-like cone M̂ is parallel.

2. If (N = N1 × N2, gN = g1 + g2) is a product of a flat pseudo-Riemannian man-

ifold (N1, g1) and of a non-flat pseudo-Riemannian manifold (N2, g2), then M̂ is
locally decomposable and not flat1. In fact, there is a parallel non-degenerate flat
distribution of dimension dimN1 on M̂ .

The manifold (M,g) in Example 3.2 is complete if and only gN is complete and positive
definite, see Proposition 2.5. Notice that g is the hyperbolic metric in horospherical
coordinates if (N, gN ) is Euclidian space.

1We learned this from Helga Baum
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Example 3.3. Let (M1, g1) and (M2, g2) be two pseudo-Riemannian manifolds. Then the
product of the cones

(M̂1 × M̂2 = (R+ × M1) × (R+ × M2), ĝ = (dr2
1 + r2

1g1) + (dr2
2 + r2

2g2))

is the space-like cone over the manifold

(M =
(
0,

π

2

)
× M1 × M2, g = ds2 + cos2(s)g1 + sin2(s)g2).

Proof. Consider the functions

r =
√

r2
1 + r2

2 ∈ R
+, s = arctg

(
r2

r1

)
∈

(
0,

π

2

)
.

Since r1, r2 > 0, the functions r and s give a diffeomorphism R
+×R

+ → R
+ ×

(
0, π

2

)
. For

M̂1 × M̂2 we get

M̂1 × M̂2
∼= R

+ ×
(
0,

π

2

)
× M1 × M2

and
ĝ1 + ĝ2 = dr2 + r2(ds2 + cos2(s)g1 + sin2(s)g2).

Suppose that the manifolds (M1, g1) and (M2, g2) are Riemannian. Then the manifold
(M,g) is Riemannian and incomplete. The cone over M is decomposable. Moreover, it is
not flat, unless the manifolds (M1, g1), (M2, g2) are of dimension less than 2 or of constant
curvature 1, see Corollary 2.3. Example 3.3 shows that the completeness assumption in
Theorems 1 and 6.1 is necessary.

Example 3.4. Let (M1, g1) and (M2, g2) be two pseudo-Riemannian manifolds. Then the
space-like cone over the manifold

(M = R
+ × M1 × M2, g = −ds2 + cosh 2(s)g1 + sinh 2(s)g2)

is isometric to the open subset Ω = {r1 > r2} in the product of the cones

(M̂1 × M̂2 = (R+ × M1) × (R+ × M2), ĝ1 + ĝ2
− = (dr2

1 + r2
1g1) + (−dr2

2 + r2
2g2)).

Proof. Consider the functions

r =
√

r2
1 − r2

2 ∈ R
+, s = artanh

(
r2

r1

)
∈ R

+.

The functions r and s give a diffeomorphism {(r1, r2) ∈ R
2|0 < r2 < r1} → R

+ × R
+. For

M̂1 × M̂2 we get
Ω ∼= R

+ × R
+ × M1 × M2
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and
ĝ1 + ĝ2

− = dr2 + r2(−ds2 + cosh 2(s)g1 + sinh 2(s)g2).

Example 3.5. Let (t, x1, . . . , xn, xn+1, . . . , x2n) be coordinates on R
2n+1. Consider the

metric g given by

g =




−1 0 ut

0 0 Ht

u H G




where

• u = (u1, . . . , un) is a diffeomorphism of R
n, depending on x1, . . . , xn,

• H = 1
2

(
∂

∂xj
(ui)

)n

i,j=1
its non-degenerate Jacobian, and

• G the symmetric matrix given by Gij = −uiuj.

Then the space-like cone over (R2n+1, g) is not flat but its holonomy representation decom-
poses into two totally isotropic invariant subspaces. For the proof of this see Proposition
8.3 in Section 8.

4 Local structure of decomposable cones

In this section we assume that the holonomy group of the cone (M̂, ĝ) is decomposable
and we give a local description of the manifold (M,g), independently of completeness.

Suppose that the holonomy group Holx of (M̂ , ĝ) at a point x ∈ M̂ is decomposable,

that is TxM̂ is a sum TxM̂ = (V1)x⊕(V2)x of two non-degenerate Holx-invariant orthogonal
subspaces. They define two parallel non-degenerate distributions V1 and V2. Denote by
X1 and X2 the projections of the vector field ∂r to the distributions V1 and V2 respectively.
We have

∂r = X1 + X2. (4.1)

We decompose the vectors X1 and X2 with respect to the decomposition TM̂ = TR
+ ⊕

TM ,
X1 = α∂r + X, X2 = (1 − α)∂r − X, (4.2)

where α is a function on M̂ and X is a vector field on M̂ tangent to M . We have

ĝ(X,X) = α − α2, ĝ(X1,X1) = α, ĝ(X2,X2) = 1 − α. (4.3)

Lemma 4.1. The open subset U = {x|α(x) 6= 0, 1} ⊂ M̂ is dense.
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Proof. Suppose that α = 1 on an open subspace V ⊂ M̂ . We claim that ∂r ∈ V1 on V .
Indeed, on V we have

X1 = ∂r + X, X2 = −X and ĝ(X,X) = 0.

We show that X = 0. Let Y2 ∈ V2. We have the decomposition Y2 = l∂r + Y, where l is a
function on M̂ and Y ∈ TM . It is

∇̂Y2X1 = ∇̂l∂r+Y (∂r + X) =
1

r
Y + ∇̂Y2X.

Note that Y = Y2 − lX1 + lX. Hence,

∇̂Y2X1 =
1

r
(Y2 − lX1 + lX) + ∇̂Y2X.

Since X, ∇̂Y2X,Y2 ∈ V2 and ∇̂Y2X1 ∈ V1, we see that

1

r
(Y2 + lX) + ∇̂Y2X = 0.

From ĝ(X,X) = 0 it follows that ĝ(∇̂Y2X,X) = 0. Thus we get ĝ(Y2,X) = 0 for all
Y2 ∈ V2. Since V2 is non-degenerate, we conclude that X = 0. Thus ∂r ∈ V1.

Let Y2 ∈ V2, then ∇̂Y2∂r = 1
r
Y2. Since the distribution V1 is parallel and ∂r ∈ V1, we

see that Y2 = 0 and V2 = 0. Contradiction.

We now consider the dense open submanifold U ⊂ M̂ . The vector fields X1, X2 and X
are nowhere isotropic on U . For i = 1, 2 let Ei ⊂ Vi be the subdistribution of Vi orthogonal
to Xi. Denote by L the distribution of lines on U generated by the vector field X. We get
on U the orthogonal decomposition

TM̂ = TR ⊕ L ⊕ E1 ⊕ E2.

Lemma 4.2. Let Y1 ∈ E1 and Y2 ∈ E2, then on U we have

1. Y1α = Y2α = ∂rα = 0.

2. ∇̂Y1X = 1−α
r

Y1, ∇̂Y2X = −α
r
Y2.

3. ∇̂∂rX = ∂rX + 1
r
X = 0.

4. ∇̂XX =
(

(1−α)2

r
− Xα

)
X1 +

(
α2

r
− Xα

)
X2.

Proof. Using (4.2), we have

∇̂Y1X1 = (Y1α)∂r + α
r
Y1 + ∇Y1X,

∇̂Y1X2 = −(Y1α)∂r + 1−α
r

Y1 −∇Y1X.

Since Y1 ∈ E1 ⊂ V1 and the distributions V1, V2 are parallel, projecting these equations
onto V2 and adding them yields ∇̂Y1X2 = 0. Then, from the second equation, we see that
Y1α = 0 and ∇̂Y1X = ∇Y1X = 1−α

r
Y1. The other claims can be proved similarly.
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Since ∂rα = 0, the function α is a function on M . Note that U = R
+ × U1, where

U1 = {x ∈ M |α(x) 6= 0, 1} ⊂ M.

Claim 3 of Lemma 4.2 shows that X = 1
r
X̃, where X̃ is a vector field on the manifold M .

Hence the distributions L and E = E1 ⊕E2 do not depend on r and can be considered as
distributions on M . Claim 2 of Lemma 4.2 shows that the distributions E1 and E2 also
do not depend on r. We get on U1 the orthogonal decompositions

TM = L ⊕ E, E = E1 ⊕ E2.

Lemma 4.3. The function α satisfies on U1 the following differential equation

X̃α = 2(α − α2).

Proof. From

r2∇̂XX = ∇̂X̃X̃ = ∇X̃X̃ − rg(X̃, X̃)∂r = ∇X̃X̃ − r(α − α2)∂r

and Claim 4 of Lemma 4.2 we conclude that ∇X̃X̃ ∈ TM is a linear combination of X1

and X2 and hence proportional to X = (1 − α)X1 − αX2. This implies

(2α − 1)

(
Xα − 2

r
(α − α2)

)
= 0.

If α = 1
2 , then ∇̂XX = 1

4r
∂r and ∇X̃X̃ = r

2∂r. The last equality is impossible.

Corollary 4.1. On M we have

X̃ =
1

2
grad(α).

Lemma 4.3 implies that if t is a coordinate on M corresponding to the vector field X̃, then

α(t) =
e2t

e2t + c
,

where c is a constant.
From Lemmas 4.2 and 4.3 it follows that

∇̂XX = −α − α2

r
∂r +

1 − 2α

r
X.

On the subset U1 ⊂ M we get the following

∇X̃X̃ = (1 − 2α)X̃, ∇Y1X̃ = (1 − α)Y1, ∇Y2X̃ = −αY2, (4.4)

for any Y1 ∈ Γ(E1) and Y2 ∈ Γ(E2).
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Theorem 4.1. Let (M,g) be a pseudo-Riemannian manifold. If the holonomy group of
the metric cone over (M,g) admits a non-degenerate invariant subspace, then hol(M,g) =
so(p, q), where (p, q) is the signature of the metric g.

Proof. Since the distributions V1 and V2 are parallel, for any Y1 ∈ V1 and Y2 ∈ V2 we have
R̂(Y1, Y2) = 0. From (3.2) it follows that R̂(X,Y2) = R̂(X,Y1) = 0. Hence, R(X̃, Y ) =
X̃ ∧ Y for all vector fields Y on M . By Lemma 4.1, there exists y ∈ M such that
gy(X̃, X̃) 6= 0. The holonomy algebra of the manifold M at the point y contains the
subspace X̃y ∧ TyM . Since gy(X̃, X̃) 6= 0, this vector subspace generates the whole Lie
algebra so(TyM,gy).

Theorem 4.2. Let (M,g) be a pseudo-Riemannian manifold and (M̂ = R
+ × M, ĝ =

dr2 + r2g) the cone over M . Suppose that the holonomy group of (M̂, ĝ) admits a non-
degenerate proper invariant subspace. Then there exists a dense open submanifold U1 ⊂ M
such that each point x ∈ U1 has an open neighborhood W ⊂ U1 that satisfies one of the
following conditions

(1.) For W we have a decomposition

W = (a, b) × N1 × N2, (a, b) ⊂
(
0,

π

2

)

and for the metric g|W we have

g|W = ds2 + cos2(s)g1 + sin2(s)g2,

where (N1, g1) and (N2, g2) are pseudo-Riemannian manifolds;

Moreover, any point (r, x) ∈ R
+ × W ⊂ M̂ has a neighborhood of the form

((a1, b1) × N1) × ((a2, b2) × N2), (a1, b1), (a2, b2) ⊂ R
+

with the metric
(dt21 + t21g1) + (dt22 + t22g2).

(2.) For W we have a decomposition

W = (a, b) × N1 × N2, (a, b) ⊂ R
+

and for the metric g|W we have

g|W = −ds2 + cosh 2(s)g1 + sinh 2(s)g2,

where (N1, g1) and (N2, g2) are pseudo-Riemannian manifolds.

Moreover, any point (r, x) ∈ R
+ × W ⊂ M̂ has a neighborhood of the form

((a1, b1) × N1) × ((a2, b2) × N2), (a1, b1), (a2, b2) ⊂ R
+

with the metric
(dt21 + t21g1) + (−dt22 + t22g2).
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Proof. We need the following

Lemma 4.4. (i) The distributions E1, E2, E = E1 ⊕E2 ⊂ TM defined on U1 ⊂ M are
involutive and the distributions E1 ⊕ L,E2 ⊕ L ⊂ TM are parallel on U1.

(ii) Let x ∈ U1 and Mx ⊂ U1 the maximal connected integral submanifold of the distri-
bution E. Then the distributions E1|Mx , E2|Mx ⊂ TMx = E|Mx are parallel.

Proof. (i) On U ⊂ M̂ , the distribution Ei = Vi ∩ TM is the intersection of two involutive
distributions and hence involutive, for i = 1, 2. The corresponding distributions E1, E2 of
U1 ⊂ M are therefore involutive. The involutivity of E follows from Corollary 4.1. Next
we prove that Ei ⊕ L is involutive. The formulas (4.4) show that ∇Ei

X̃ = Ei. Now we
check that ∇Y1Y

′
1 ∈ Γ(E1 ⊕L) for all Y1, Y

′
1 ∈ Γ(E1). Calculating the scalar product with

Y2 ∈ Γ(E2) we get

g(∇Y1Y
′
1 , Y2) = −g(Y ′

1 ,∇Y1Y2) = −g(Y ′
1 , ∇̂Y1Y2) = 0,

since the distribution V2 is parallel.
(ii) The fact that Ei ⊕ L ⊂ TM is parallel implies that Ei ⊂ TMx is parallel.

Now we return to the Examples 3.3 and 3.4.
In Example 3.3 we have

V1 = TM̂1, V2 = TM̂2, E1 = TM1, E2 = TM2,

X1 = cos(s)∂r1 , X2 = sin(s)∂r2 , α = cos2(s), X = −1

r
sin(s) cos(s)∂s.

Note that 0 < α < 1.
In Example 3.4 we have

V1 = TM̂1, V2 = TM̂2
−
, E1 = TM1, E2 = TM2,

X1 = cosh (s)∂r1 , X2 = sinh (s)∂r2 , α = cosh 2(s), X = −1

r
sinh (s)cosh (s)∂s.

Note that α > 1.

Let x ∈ U1. we have two cases: (1.) 0 < α(x) < 1; (2.) α(x) < 0 or α(x) > 1.
Case (1.) Suppose that 0 < α(x) < 1. Then 0 < α < 1 on some open subset W ⊂ U1

containing the point x. Thus g(X̃, X̃)ĝ(X,X) = α − α2 > 0 on W . Recall that X̃ is
a gradient vector field, see Corollary 4.1. Hence we can assume that W has the form
(a, b) × N , where (a, b) ⊂ R and N is the level set of the function α. Note also that
the level sets of the function α are integral submanifolds of the involutive distribution E.
Since X̃ is orthogonal to E and Z(g(X̃, X̃)) = 0 for all Z ∈ E, the metric g|W can be
written as

g|W = ds2 + gN ,
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where gN is a family of pseudo-Riemannian metrics on N depending on the parameter s.

We can assume that ∂s = − X̃√
g(X̃,X̃)

.

By Lemma 4.4 and the Wu theorem, the manifold W is locally a product of two
pseudo-Riemannian manifolds. For Y1, Z1 ∈ E1 and Y2, Z2 ∈ E2 in virtue of Lemma 4.2
we have

(LX̃g)(Y1, Z1) = 2(1−α)g(Y1, Z1), (LX̃g)(Y1, Y2) = 0, (LX̃g)(Y2, Z2) = −2αg(Y2, Z2).

This means that the one-parameter group of local diffeomorphisms of W generated by the
vector field X̃ preserves the Wu decomposition of the manifolds W . Hence the manifold
(N, g|N ) can be locally decomposed into a direct product of two manifolds N1 and N2

which are integral manifolds of the distributions E1 and E2 such that

gN = h1 + h2,

where hi, i = 1, 2 is a metric on Ni which depends on s.
From Lemmas 4.2,4.3 it follows that the function α depends only on s and satisfies the

following differential equation

∂sα = −2
√

α − α2.

Hence,
α = cos2(s + c1),

where c1 is a constant. We can assume that c1 = 0. Since on W we have 0 < α < 1 and
∂sα < 0, we see that (a, b) ⊂

(
0, π

2

)
.

Let Y1, Z1 ∈ E1 be vector fields on W such that [Y1, ∂s] = [Z1, ∂s] = 0. From (4.4)

it follows that ∇Y1∂s = −
√

α−α2

α
Y1. The Koszul formula implies that 2g(∇Y1∂s, Z1) =

∂sg(Y1, Z1). Thus we have

−2tan (s)g(Y1, Z1) = ∂sg(Y1, Z1).

This means that
h1 = cos2(s)g1,

where g1 does not depend on s. Similarly,

h2 = sin2(s)g2,

where g2 does not depend on s.
For the cone over W we get

R
+ × W = R

+ × (a, b) × N1 × N2

and
ĝ|R+×W = dr2 + r2(ds2 + cos2(s)g1 + sin2(s)g2).
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Consider the functions t1 = r cos(s), t2 = r sin(s). They define a diffeomorphism from
R

+ × (a, b) onto a subset V ⊂ R
+ × R

+.

Let (r, y) ∈ R
+ × W ⊂ M̂ , then there exist a subset (a1, b1) × (a2, b2) ⊂ V, where

(a1, b1), (a2, b2) ⊂ R
+ and r ∈ (a1, b1).

On the subset
((a1, b1) × N1) × ((a2, b2) × N2) ⊂ R

+ × W

the metric ĝ has the form
(dt21 + t21g1) + (dt22 + t22g2).

Case (2.) Suppose that α(x) > 1. Now ∂s = − X̃√
α2−α

and the function α satisfies

∂sα = 2
√

α2 − α.

Hence,
α = cosh 2(s + c1).

Again we can assume c1 = 0 and from ∂sα > 0 we get (a, b) ⊂ R
+. For the metric g|W on

W = (a, b) × N1 × N2 we have

g|W = −ds2 + gN = −ds2 + cosh 2(s)g1 + sinh 2(s)g2.

The case α(x) < 0 is equivalent to the case α(x) > 1 by interchanging the roles of V1

and V2, which interchanges α with 1 − α and X with −X. Theorem 4.2 is proved.

5 Geodesics of cones

Using Proposition 2.1, we now calculate the geodesics on the cone. Suppose Γ(t) =

(r(t), γ(t)) is a geodesic on the cone (M̂, ĝ), where γ(t) is a curve on (M,g). Suppose we
have the initial conditions

Γ(0) = (r, x) and Γ̇(0) = (ρ, v),

for some x ∈ M, v ∈ TxM .
Then r(t) and γ(t) satisfy

0 = r̈(t) − r(t)g (γ̇(t), γ̇(t)) , (5.1)

0 = 2 ṙ(t)γ̇(t) + r(t)∇γ̇(t)γ̇(t). (5.2)

Now one makes the following ansatz. Suppose that γ is given as a reparametrisation of a
geodesic β : R → M of g:

γ(t) = β(f(t))
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where β is a geodesic of g with initial condition

β(0) = x and β̇(0) = v 6= 0,

implying the initial conditions for f :

f(0) = 0 and ḟ(0) = 1.

As γ̇(t) = ḟ(t)·β̇(f(t)), g (γ̇(t), γ̇(t)) = ḟ(t)2g
(
β̇(f(t)), β̇(f(t))

)
and ∇γ̇(t)γ̇(t) = f̈(t)β̇(f(t)),

we get from (5.1) and (5.2)

0 = r̈(t) − r(t)ḟ(t)2g (v, v) , (5.3)

0 = 2 ṙ(t)ḟ(t) + r(t)f̈(t) (5.4)

with initial conditions

r(0) = r , f(0) = 0 ,

ṙ(0) = ρ , ḟ(0) = 1.

The solution to these equations is straightforward by distinguishing several cases.
From now on we assume that ρ 6= 0 and v 6= 0 and consider the remaining cases for v

being light-like, space-like, or time-like.
1.) v is light-like, g(v, v) = 0, i.e. β is a light-like geodesic. Then the equations

become

0 = r̈(t),

0 = 2 ρḟ(t) + (ρt + r)f̈(t),

i.e. r(t) = ρt + r on the one hand, and f(t) = rt
ρt+r

on the other. This implies that f and
thus Γ is defined for t ∈ [0,− r

ρ
) if ρ < 0, and for t ≥ 0 otherwise.

2.) v is not light-like, g(v, v) 6= 0, i.e. β is a space-like or time-like geodesic. Then
we set g(β̇(t), β̇(t)) = g(v, v) =: ±L2 with L > 0. The equations (5.3) and (5.4) become

0 = r̈(t) ∓ r(t)ḟ(t)2L2,

0 = 2 ṙ(t)ḟ(t) + r(t)f̈(t).

The solutions of these equations are the following

r±(t) =
√

(ρt + r)2 ± L2r2t2,

f±(t) =
1

L
arctan±

(
Lrt

ρt + r

)
,

in which we have introduced the notation arctan+ := arctan and arctan− := artanh.
Obviously r+ is defined for all t ∈ R whereas f+ is defined for t ∈ [0,− r

ρ
) if ρ < 0, and

for t ≥ 0 otherwise. The functions r− and f− are defined on an interval [0, T ), where T
is the first positive zero of the polynomial ((Lr − ρ)t − r)((L + rρ)t + r) or T = ∞ if
the polynomial has no positive zero. More explicitly, T = r

Lr−ρ
if ρ < Lr and T = ∞ if

Lr ≤ ρ.
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6 Cones over compact complete manifolds

Here we generalise the proof of Gallot [Gal79] for metric cones over compact and geodesi-
cally complete pseudo-Riemannian manifolds. We obtain the following result.

Theorem 6.1. Let (M,g) be a compact and complete pseudo-Riemannian manifold of

dimension ≥ 2 with decomposable holonomy group Ĥ of the cone M̂ . Then (M,g) has
constant curvature 1 and the cone is flat.

Proof. In the Riemannian case, the values of the function α defined in 4.2 are trivially
restricted to the interval [0, 1], since α = ĝ(X1,X1) ≥ 0 and 1 − α = ĝ(X2,X2) ≥ 0. We
shall now establish the same result for compact complete pseudo-Riemannian manifolds
(M,g). Example 3.1 shows that completeness does not suffice.

Lemma 6.1. Under the assumptions of Theorem 6.1, the function α on M satisfies 0 ≤
α ≤ 1.

Proof. On the open dense subset U1 ⊂ M we define the vector field

X̂ =
X̃√

|g(X̃, X̃)|
=

X̃√
|α2 − α|

.

From (4.4) and Lemma 4.3 it follows that ∇
X̂

X̂ = 0, i.e. X̂ is a geodesic vector field.
Let x ∈ M and suppose that α(x) < 0. Denote by Ux ⊂ U1 the connected component

of the set U1 containing the point x. Since M is complete, we have a geodesic γ(s) such
that γ(0) = x and γ̇(s) = X̂(γ(s)) if γ(s) ∈ Ux. From Lemma 4.3 it follows that

γ̇(s)α = X̂(γ(s))α = −2
√

α2 − α

for all s such that γ(s) ∈ Ux. Hence along the curve {γ(s)|γ(s) ∈ Ūx} we have

α(s) =
(e−2s + c1)

2

4e−2sc1
,

where c1 is a constant. Since α(γ(0)) < 0, we see that c1 < 0. If c1 ≤ −1, then for all
s > 0 we have γ(s) ∈ Ux and α(γ(s)) tends to −∞ as s tends to +∞. If c1 > −1, then
for all s < 0 we have γ(s) ∈ Ux and α(γ(s)) tends to −∞ as s tends to −∞. Since M is
compact, we get a contradiction. The case α(x) > 1 is similar.

Now we can prove the theorem completely analogously to Gallot by verifying the same
lemmas as in his proof.

Lemma 6.2. Let Γ(t) = (r(t), γ(t)) be a geodesic in (M̂, ĝ). Then the vector field along
Γ defined by

H(t) := r(Γ(t))∂r(Γ(t)) − tΓ̇(t)

is parallel along Γ(t).
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Proof. The lemma follows directly from (3.1):

∇̂Γ̇(t)H(t) = ∇̂Γ̇(t)

(
r(t)∂r − tΓ̇(t)

)

= ṙ(t)∂r + r(t)∇̂Γ̇(t)∂r − Γ̇(t) − t ∇̂Γ̇(t)Γ̇(t)
︸ ︷︷ ︸

=0

= ṙ(t)∂r + r(t) ∇̂γ̇(t)∂r︸ ︷︷ ︸
= 1

r(t)
γ̇(t)

− Γ̇(t)︸︷︷︸
=ṙ(t)∂r+γ̇(t)

= 0,

where r(t) := r(Γ(t)).

For each point q ∈ M̂ we denote by M̂1
q and M̂2

q the integral manifolds of the distributions

V1 and V2 passing through the point q. For i = 1, 2 we define the following subsets of M̂ :

Ci :=
{
p ∈ M̂ | ∂r(p) ∈ Vi

}
.

Then we can prove the following lemma.

Lemma 6.3. Let p1 ∈ C1 (respectively, p2 ∈ C2). Then M̂2
p1

(respectively, M̂1
p2

) is totally
geodesic and flat.

Proof. The leaves of the foliations induced by V1 and V2 are totally geodesic, since both
distributions are parallel. It suffices to show that M̂1

p2
is flat.

Consider a geodesic Γ of M̂1
p2

starting at p2 = (r, x). Then the vector field along this

geodesic H(t) defined as in Lemma 6.2 is parallel. We have H(0) = r∂r ∈ V2 and Γ̇(0) ∈ V1

which implies

H(t) = r(t)∂r − t Γ̇(t) ∈ (V2)Γ(t) and

Γ̇(t) ∈ (V1)Γ(t),

as the distributions Vi are invariant under parallel transport. Since ∂r R̂ = 0, we have

R̂(., .)H(t) = −t R̂(., .)Γ̇(t).

Since R̂(., .) are elements of the holonomy algebra leaving V1 and V2 invariant this implies
that

R̂(., .)Γ̇(t) = 0.

From this we see that the Jacobi fields along Γ are those of a flat manifold, which implies
that M̂1

p2
is flat.
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Recall that we have a dense open subset U = {x ∈ M̂ |α(x) 6= 0, 1} ⊂ M̂.

Lemma 6.4. Any point p ∈ U has a flat neighbourhood.

Proof. Fix a point p ∈ U . Note that for i = 1, 2 we have Ci ∩ U = ∅.
Consider the geodesic Γ(t) starting at p and satisfying the initial condition Γ̇(0) =

−r(p)X1(p). Let H(t) be the vector field along Γ as in Lemma 6.2. We claim that if
the geodesic Γ(t) exists for t = 1, then Γ(1) ∈ C2. Indeed, suppose that Γ(t) exists

for t = 1. Denote by τ : TpM̂ → TΓ(1)M̂ the parallel displacement along Γ(t). Since

H(1) = r(Γ(1))∂r(Γ(1))− Γ̇(1), we have r(Γ(1))∂r(Γ(1)) = H(1)+ Γ̇(1). From Lemma 6.2
and the fact that Γ(t) is a geodesic it follows that

r(Γ(1))∂r(Γ(1)) = τ(H(0))+τ(Γ̇(0)) = τ(r(p)∂r(p)−r(p)X1(p)) = r(p)τ(X2(p)) ∈ V2(Γ(1)).

This shows that Γ(1) ∈ C2.
Now we prove that the geodesic Γ(t) exists for t = 1. We can apply the results of

the previous section. In the notations of the previous section we have v = −r(p)X(p)
and ρ = −r(p)α(p). Since 0 < α(p) < 1, we have 0 < L2 = g(v, v) = α(p) − α2(p) and
r − |ρ| > 0. Then the function r(t) defining the geodesic Γ(t) is defined on R. The other
defining function f(t) is given by

f(t) =
1

L
arctan

Lr(p)t

ρt + r(p)
=

1

L
arctan

Lt

1 − α(p)t
.

We see that f is defined for t ∈ [0, 1] as α(p) < 1. Thus the geodesic Γ(t) is defined for
t ∈ [0, 1].

Since the integral manifolds of the distribution V1 are totally geodesic and Γ̇(0) ∈ V1(p),

we have M̂1
p = M̂1

Γ(1). From Lemma 6.3 it follows that M̂1
p is flat. Similarly we show that

M̂2
p is also flat. Hence, any point p has a flat neighbourhood.

From Lemma 6.4 it follows that the dense subset U ⊂ M̂ is flat. Thus M̂ is flat and
(M,g) has constant sectional curvature 1. This finishes the proof of Theorem 6.1.

Corollary 2. If (M,g) is a simply connected compact and complete indefinite pseudo-

Riemannian manifold. Then the holonomy algebra of the cone (M̂ , ĝ) is indecomposable.

Proof. This follows from the fact that simply connected indefinite pseudo-Riemannian
manifolds of constant curvature are never compact.
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7 Cones over complete manifolds

Theorem 7.1. Let (M,g) be a complete pseudo-Riemannian manifold of dimension ≥ 2

with decomposable holonomy ĥ of the cone M̂ . Then there exists an open dense submanifold
M ′ ⊂ M such that each connected component of M ′ is isometric to a pseudo-Riemannian
manifold of the form

(1) a pseudo-Riemannian manifold M1 of constant sectional curvature 1 or

(2) a pseudo-Riemannian manifold M2 = R
+ × N1 × N2 with the metric

−ds2 + cosh 2(s)g1 + sinh 2(s)g2,

where (N1, g1) and (N2, g2) are pseudo-Riemannian manifolds and (N2, g2) has con-
stant sectional curvature −1 or dim N2 ≤ 1.

Moreover, the cone M̂2 is isometric to the open subset {r1 > r2} in the product
of the space-like cone (R+ × N1, dr2 + r2g1) over (N1, g1) and the time-like cone
(R+ × N2,−dr2 + r2g2) over (N2, g2).

Proof. By going over to the universal covering, if necessary, we can assume that (M,g)

is simply connected. Then M̂ is simply connected and decomposable. Let ∪i∈IWi = U1

be the representation of the open subset U1 ⊂ M as the union of disjoint connected open
subsets. For each Wi we have two possibilities: (1.) 0 < α < 1 on Wi; (2.) α < 0 or α > 1
on Wi. Consider these two cases.

(1.) Suppose that 0 < α < 1 on Wi. Similarly to the proof of Theorem 6.1 we can
show that the cone over Wi is flat.

(2.) Suppose that α > 1 on Wi. As in the proof of Lemma 6.1 we can show that
α(Wi) = (1,+∞). To proceed we need the following statement which is a generalisation
of an argument used in the proof of Theorem 27 in [Boh03].

Proposition 7.1. Let (M,g) be a connected pseudo-Riemannian manifold and α ∈ C∞(M)
with gradient Z such that g(Z,Z) 6= 0 and Z = (f ◦ α) · X for a vector field X such that
g(X,X) = h ◦ α, where f and h are smooth functions on the open interval Im α. If the
flow φ of X satisifies the following condition,

(∗) For all c ∈ Im α exists an open interval Ic such that for all p ∈ Fc := α−1(c) the
interval Ic is the maximal intervall on which the flow t 7→ φt(p) is defined,

then M is diffeomorphic to the product of the image of the function α and a level set of
α. In particular, if the manifold (M,g) is geodesically complete and the vector field X is
a geodesic vector field, then M is diffeomorphic to Im(α) × level set.

Proof. First we notice that 0 6= g(Z,Z) = (f2 ·h) ◦α. As M is connected, we may assume
that g(Z,Z) > 0 and thus h > 0. As the sign of f plays no role in what follows we also
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assume that f > 0. Furthermore, α satisfies the following differential equation on M ,

X(α) =
1

f ◦ α
Z(α) = (f ◦ α)g(X,X) = (f · h) ◦ α. (7.1)

Let φ : Fc × Ic → M , (p, t) 7→ φt(p) be the flow of the vector field X. The proof is now
based on the observation that if p and q are in the same level set of α, then

α(φt(p)) = α(φs(q)) ⇐⇒ t = s (7.2)

for all t, s ∈ R. To verify this, for each p ∈ Fc we consider the real function

ϕc : Ic ∋ t 7→ α(φt(p)) ∈ Im α

which satisfies the ordinary differential equation

ϕ′
c(t) = dαφt(p)(X(φt(p)) = f(ϕc(t)) · h(ϕc(t)) > 0. (7.3)

Hence, for each p ∈ Fc the function ϕc(t) = α(φt(p)) is subject to the ordinary differential
equation (7.3) with the same initial condition ϕc(0) = α (φ0(p)) = α (φ0(q)) = c. Unique-
ness of the solution implies that α (φt(p)) = α ((φt(q)) for all t and all q ∈ Fc. This proves
(⇐=) of (7.2), and shows that ϕc does not depend on the starting point p ∈ Fc. Having
this, (7.3) also shows that ϕc is strictly monotone, and thus injective which gives (=⇒) of
(7.2).

(7.2) shows that the flow φ of X sends one level set Fc of α to another one Fd, i.e.
α(φt(p)) = α(φt(q)) for all t ∈ Ic and p, q in the same level set Fc.

Next, we show that two level sets that are joint by an integral curve of X are diffeo-
morphic. In fact, if p ∈ Fc and q = φt(p), φt is a local diffeomorphism between Fc and Fd.
(=⇒) of (7.2) implies that φt|fc

is injective. To verify that it is surjective we notice that
φ−t|Fd

is also an injective local diffeomorphism. Hence, φ−t ◦φt = idFc , which implies that
φt : Fc → Fd is a global diffeomorphism.

Finally, we show that for two level sets there is at least one flow line connecting them.
To this end, we set φ(Fc) := {φt(p) | p ∈ Fc, t ∈ Ic} and write

M =
⋃

c∈Im α

φ(Fc).

We have seen that, if Fc and Fd are connected by an integral curve, then they are diffeo-
morphic under φt. But the maximality of Ic and Id implies that φ(Fc) = φ(Fd). If, on the
other hand, Fc and Fd are not joined by an integral curve then, by maximality of Ic and
Id, a common point of φ(Fc) and φ(Fd) would lie on an integral curve joining Fc and Fd,
i.e. φ(Fc) ∩ φ(Fd) = ∅. In the latter case M can be written as disjoint union of open sets
φ(Fc) which is not possible as M was supposed to be connected.

Hence, each integral curve meets each level set once, they are all diffeomorphic, i.e. M
is diffeomorphic to Ic ×Fc. But this implies that M is diffeomorphic to (Im α)×F where
F is a level set of α.
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Resuming the proof of the theorem we notice that the vector field X̂ = X̃√
α2−α

is

geodesic and proportional to the gradient of α. Since (M,g) is complete and X̂ is geodesic
its integral curves are defined for all t. As in the proof of Proposition 7.1 one shows
that level sets are mapped onto level sets under the flow of X̂ . This shows that (∗) in
Proposition 7.1 is satisfied for the vector field X̂ |Wi

∈ Γ(TWi) on the manifold Wi: for Fc

the interval Ic is limited by the real number a for which φa(Fc) ⊂ F1. Hence, we can apply
Proposition 7.1 to the manifolds Wi and the vector field X̂|Wi

∈ Γ(TWi). Combining the
result with the proof of Case (2.) from Theorem 4.2 yields a decomposition

Wi = R
+ × N1 × N2.

For the metric g|Wi
we obtain that

g|Wi
= −ds2 + cosh 2(s)g1 + sinh 2(s)g2,

where (N1, g1) and (N2, g2) are pseudo-Riemannian manifolds. The fact that the cone

(Ŵi, ĝ|Wi
) is isometric to an open subset of the product of a space-like cone over (N1, g1)

and of a time-like cone over (N2, g2) is shown by Example 3.4.
By a variation of the proof of Theorem 6.1 we will show now that the time-like cone

over the manifold (N2, g2) is flat and we will explain why it is not the case for the manifold
(N1, g1).

Fix a point p ∈ Wi. Consider the geodesics Γ1(t) and Γ2(t) starting at p and satisfying
the initial conditions Γ̇1(0) = −r(p)X1(p) and Γ̇2(0) = −r(p)X2(p).

Now we prove that the geodesic Γ2(t) exists for t = 1 and the geodesic Γ1(t) does not
exist for t = 1. We can apply the results of section 5. For Γ1 we have v1 = −r(p)X(p)
and ρ1 = −r(p)α(p); for Γ2 we have v2 = r(p)X(p) and ρ2 = r(p)(α(p) − 1).

From Section 5 it follows that the functions r1(t) and f1(t) defining the geodesic Γ1(t)

are defined on the interval

[
0, 1√

α2(p)−α(p)+α(p)

)
⊂ [0, 1). The functions r2(t) and f2(t)

defining the geodesic Γ2(t) are defined on the interval

[
0, 1√

α2(p)−α(p)−α(p)+1

)
⊃ [0, 1].

Thus the geodesic Γ2(t) is defined for t ∈ [0, 1] and the geodesic Γ1(t) is not defined
for all t ∈ [0, 1].

As in the proof of Theorem 6.1 we get that the manifold M̂2
p is flat. This means that

the induced connection on the distribution V2|Wi
is flat and the time-like cone over the

manifold (N2, g2) is flat, i.e. (N2, g2) has constant sectional curvature −1 or dim N2 ≤ 1.
Note that as in Example 3.1 it can be α > 1 on M , then C2 = ∅ and the induced

connection on V1 need not be flat.
The case α|Wi

< 0 is similar, with the roles of V1 and V2 interchanged.
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8 Para-Kähler cones

Para-Kähler cones and para-Sasakian manifolds

Now we consider the case where the holonomy algebra ĥ of the space-like cone M̂ over
(M,g) is indecomposable and preserves a decomposition TpM̂ = V ⊕W (p ∈ M̂) into two
complementary (necessarily degenerate) subspaces V and W . The next lemma2 reduces
the problem to the case V = V ⊥, W = W⊥.

Lemma 1 (cf. Thm. 14.4 [Kra07]). Let E be a pseudo-Euclidian vector space and h ⊂
so(E) an indecomposable Lie subalgebra. It E admits a non-trivial h-invariant decompo-
sition E = V ⊕ W then it admits an h-invariant decomposition E = V ′ ⊕ W ′ into a sum
of totally isotropic subspaces.

By the lemma, we can assume that V,W are totally isotropic of the same dimension,
which implies that the metric has neutral signature. In this section we use a similar
approach as in the previous sections but with different structures coming up. These
structures are related to a para-complex structure, and to a para-Sasakian structure. We
recall the basic definitions given in [CMMS04] and [CLS06].

Definition 8.1. 1. Let V be a real finite dimensional vector space. A para-complex
structure on V is an endomorphism J ∈ End(V ), such that J2 = Id and the two
eigenspaces V ± := ker(Id ∓ J) of J have the same dimension. The pair (V, J) is
called a para-complex vector space.

2. Let V be a distribution on a manifold M . An almost para-complex structure on
V is a field J ∈ Γ(EndV) of paracomplex structures in V. It is called integrable
or paracomplex structure on V if the eigen-distributions V± := ker(Id ∓ J) are
involutive.

3. A manifold M endowed with a para-complex structure on TM is called a para-
complex manifold.

Similar to the complex case, the integrability of J is equivalent to the vanishing of the
Nijenhuis tensor NJ defined by

NJ(X,Y ) := J ([JX, Y ] + [X,JY ]) − [X,Y ] − [JX, JY ], X, Y ∈ ΓV. (8.1)

Definition 8.2. 1. Let (V, J) be a para-complex vector space equipped with a scalar
product g. (V, J, g) is called para-hermitian vector space if J is an anti-isometry for
g, i.e.

J∗g := g(J., J.) = −g. (8.2)

2communicated to us by Lionel Bérard Bergery
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2. A (almost) para-hermitian manifold (M,J, g) is an (almost) para-complex manifold
(M,J) endowed with a pseudo-Riemannian metric g such that J∗g = −g. The
two-form ω := g(J, ) = −g(, J) is called the para-Kähler form of (M,J, g).

3. A para-Kähler manifold (M,J, g) is a para-hermitian manifold (M,J, g) such that J
is parallel with respect to the Levi-Civita-connection ∇ of g.

As in the complex case, the condition ∇J is equivalent to NJ = 0 and dω = 0. In
contrary to the complex case, a 2n–dimensional para-hermitian manifold has to be of
neutral signature (n, n). Note that eigen-distributions V± of J are totally isotropic and
auto-orthogonal, i.e. (V±)⊥ = V±. For a para-Kähler manifold the condition ∇J = 0
means that the ±1-eigen-distributions V± are parallel. We get

Proposition 8.1. A pseudo-Riemannian manifold (M,g) is a para-Kähler manifold if and
only if the holonomy group preserves a decomposition of the tangent space into a direct
sum of two totally isotropic subspaces.

In the following we will show that metric cones with para-Kähler structure are precisely
cones over para-Sasakian manifolds.

Definition 8.3. A para-Sasakian manifold is a pseudo-Riemannian manifold (M,g) of
signature (n + 1, n), where n + 1 is the number of time-like dimensions, endowed with
a time-like geodesic unit Killing vector field T such that ∇T defines an integrable para-
complex structure J = ∇T |E : E → E on E = T⊥. The pair (g, T ) is called a para-
Sasakian structure.

Note that the eigen-distributions E± of J = ∇T |E are totally isotropic and J is an
anti-isometry of g|E . Indeed, using the condition that T is a Killing field for X± and Y±
in Γ(E±), we get

0 = (LT g)(X±, Y±) = g(∇X±T, Y±) + g(∇Y±T,X±) = 2g(X±, Y±). (8.3)

A para-Sasakian manifold carries several other structures. First of all it has contact
structure given by the contact form θ := g(T, .). Indeed, for dθ we get that

dθ(X+,X−) = −g(T, [X+,X−]) = 2g(X+,X−), (8.4)

with X± ∈ Γ(E±). Since E± are dual to each other, this implies that θ ∧ dθn 6= 0, hence
θ is a contact form. The Reeb vector field of this contact structure is T , because

dθ(T,X) = −g(T, [T,X]) = −g(T,∇T X −∇XT ) = 0. (8.5)

It also admits a para-CR structure (see for example [AMT05]), which is defined on a
(2n + 1)-dimensional manifold M as an n-dimensional subbundle E of TM together with
a para-complex structure J on E. For a para-Sasakian manifold this para-CR structure
is given by the one-form θ. From (8.4) and from the assumption that E± are involutive
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we see that the Levi-form Lθ ∈ Γ(S2E) of this para-CR structure, defined by Lθ(X,Y ) :=
dθ|E(X,JY ), is given by the metric,

Lθ(X,Y ) = dθ(X,JY ) = −2g(X,Y ) (8.6)

and is thus non-degenerate. Hence for a para-Sasakian manifold, the metric g can be
expressed in terms of the contact form θ and its Levi form:

g = −θ2 − 1

2
Lθ. (8.7)

This is in analogy to strictly pseudo-convex pseudo-Hermitian structures (see for example
[Bau99b] and [Bau99a]). Although the definition of a para-Sasakian structure seems rather
weak, it entails the following properties.

Lemma 8.1. Let (M,g, T ) be a para-Sasakian manifold with E = T⊥ and eigen-distributions
E±. Then:

1. E± are auto-parallel and NJ |E± = ∇J |E± = 0.

2. For X± ∈ Γ(E±) it holds that ∇X−X+ = −g(X+,X−)T mod E+ and
∇X+X− = g(X+,X−)T mod E−.

3. For X± ∈ Γ(E±) it holds [T,X±] ⊂ Γ(E±).

Proof. 1. Let X± and Y± be in E±. (8.3) implies that

g(∇X±Y±, T ) = −g(X±, Y±) = 0,

which ensures that ∇X±Y± ∈ E. Now, E± are integrable, which implies on the one
hand the relation for NJ , and gives on the other hand, using the Koszul formula, that
g(∇X±Y±, Z±) = 0 for all Z± ∈ E±. Hence, E± are auto-parallel, which yields the relation
for ∇J .

2. First of all we have that

g(∇X−X+, T ) = −g(X+,∇X−T ) = g(X+,X−).

Next we show that ∇X−X+ is orthogonal to E+. In the following equations g(Y −
i , Y +

j ) =
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δij and the lower indices +,−, 0 denote the corresponding component in E± and RT :

2g(∇Y −
i

Y +
j , Y +

k )
Koszul

= g
(
[Y −

i , Y +
j ], Y +

k

)
+ g

(
[Y +

k , Y +
j ], Y −

i

)
+ g

(
[Y +

k , Y −
i ], Y +

j

)

= g
(
[Y −

i , Y +
j ]−, Y +

k

)
+ g

(
[Y +

k , Y +
j ], Y −

i

)
+ g

(
[Y +

k , Y −
i ]−, Y +

j

)

(8.4)
= −1

2
g
(
T,

[
Y +

k , [Y −
i , Y +

j ]−
]
+

[
[Y +

k , Y +
j ], Y −

i

]
+

[
Y +

j , [Y +
k , Y −

i ]−
])

= −1

2
g
(
T,

[
Y +

k , [Y −
i , Y +

j ]−
]
+

[
Y −

i , [Y +
j , Y +

k ],
]
+

[
Y +

j , [Y +
k , Y −

i ]−
])

= −1

2
g
(
T,

[
Y +

k , [Y −
i , Y +

j ]
]
+

[
Y −

i , [Y +
j , Y +

k ],
]
+

[
Y +

j , [Y +
k , Y −

i ]
]

︸ ︷︷ ︸
=0 Jacobi identity

)

+
1

2
g
(
T,

[
Y +

k , [Y −
i , Y +

j ]+
]

︸ ︷︷ ︸
∈E+

+
[
Y +

j , [Y +
k , Y −

i ]+
]

︸ ︷︷ ︸
∈E+

)

︸ ︷︷ ︸
=0

+
1

2
g
(
T,

[
Y +

k , [Y −
i , Y +

j ]0
]
+

[
Y +

j , [Y +
k , Y −

i ]0
])

= −1

2
g
(
T,

[
Y +

k , g(T, [Y −
i , Y +

j ])
︸ ︷︷ ︸

=−2δij

T
]
+

[
Y +

j , g(T, [Y +
k , Y −

i ])︸ ︷︷ ︸
=2δik

T
])

= g
(
T, δij

[
Y +

k , T
]
− δik

[
Y +

j , T
])

= 0

This implies that ∇X−X+ ∈ RT ⊕ E+, which proves the second statement.
The last point follows from the general fact:

If T is a Killing vector field, and θ = g(T, .), then LT∇θ = 0. (8.8)

Indeed, the Killing equation for T is equivalent to ∇θ = 1
2dθ ∈ Ω2M . This implies for

arbitrary tangent vectors X and Y using the skew symmetry of ∇θ that

0 =
1

2
ddθ(T,X, Y )

= T (∇θ(X,Y )) − X (∇θ(T, Y )) + Y (∇θ(T,X))

−∇θ([T,X], Y ) + ∇θ([T, Y ],X) −∇θ([X,Y ], T )

= (LT∇θ) (X,Y ) − X (∇θ(T, Y )) + Y (∇θ(T,X)) −∇θ([X,Y ], T )

= (LT∇θ) (X,Y ) − X (θ(∇Y T )) + Y (θ(∇XT )) + θ(∇[X,Y ]T )

= (LT∇θ) (X,Y ) − θ(R(X,Y )T )

= (LT∇θ) (X,Y ).

This can easily be applied to our situation, where we have that

∇θ = g(J., .).
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For X± ∈ E± and Y ∈ TM , (8.8) implies that

0 = (LT∇θ)(X±, Y )

= T (g(JX±, Y )) − g(J([T,X±]), Y ) − g(JX±, [T, Y ])

= ± (LT g)(X±, Y )︸ ︷︷ ︸
=0

±g([T,X±], Y ) − g(J([T,X±]), Y ),

which gives [T,X±] ∈ E±.

Using these properties we obtain a description of para-Sasakian manifolds which might
look more familiar.

Proposition 8.2. (M,g, T ) is a para-Sasakian manifold if and only if (M,g) is a pseudo-
Riemannian manifold of signature (n+1, n) and T a time-like geodesic unit Killing vector
field, such that the endomorphism φ := ∇T ∈ Γ(End(TM)) satisfies:

φ2 = id + g(., T )T (8.9)

(∇Uφ)(V ) = −g(U, V )T + g(V, T )U, ∀U, V ∈ TM (8.10)

Proof. First, let (M,g) be a pseudo-Riemannian manifold of signature (n + 1, n) with a
time-like geodesic unit Killing vector field T satisfying (8.9) and (8.10). The fact that T is
geodesic means that φT = 0 and implies that φ preserves E := T⊥. Putting J := φ|E , the
equation (8.9) shows that J2 = idE , i.e. φ is a skew-symmetric involution and therefore
a para-complex structure. Finally (8.10) ensures that J = φ|E is integrable because
∇J |E± = 0.

For the converse statement we assume that (M,g, T ) is a para-Sasakian manifold.
Setting φ := ∇T we get φ2|E = J2 = id and φ2(T ) = 0 which gives (8.9). We have
to check (8.10): For U = V = T both sides of (8.10) are zero. For U = X ∈ T⊥ and
V = T the right hand side is given by g(T, T )X = −X, but also the left hand side which
is (∇Xφ)(T ) = −φ(∇XT ) = −φ2(X) = −X. For U = T and V = X± ∈ E± the right
hand side vanishes, and the left hand side as well because of [T,E±] ⊂ E±:

(∇T φ)(X±) = ∇TJX± − J(∇T X±)

= ±[T,X±] + X± − J([T,X±]) − J2(X±)

= ±[T,X±] − J([T,X±]) = 0.

For U and V both in E± both sides vanish because of the integrability of the para-complex
structure. For U = X+ ∈ E+ and V = X− ∈ E− the right hand side of (8.10) is equal to
−g(X+,X−)T and the left hand side is given by

(∇X+φ)X− = −∇X+X− − φ(∇X+X−) = −g(X+,X−)T

because of the second point of the lemma.
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Now we can formulate the main theorem of this section.

Theorem 8.1. Let (M,g) be a pseudo-Riemannian manifold. There is a one-to-one cor-
respondence between para-Sasakian structures (M,g, T ) on (M,g) and para-Kähler struc-

tures (M̂ , ĝ, Ĵ) on the cone (M̂ , ĝ). The correspondence is given by T 7→ Ĵ := ∇̂T .

Proof. First assume that (M,g, T ) is a para-Sasakian manifold with para-complex struc-
ture J = ∇T on E := T⊥, which splits into eigen-distributions E±. The para-complex
structure on the metric cone (M̂, ĝ) is defined by

Ĵ := ∇̂T.

Because of the formula for the covariant derivative of the cone, Ĵ is given by

Ĵ(∂r) = ∇̂∂r
T = 1

r
T

Ĵ(T ) = ∇̂T T = ∇T T − rg(T, T )∂r = r∂r

Ĵ(X) = ∇̂XT = ∇XT − rg(X,T )∂r = J(X), X ∈ E,

which implies that Ĵ is an almost para-complex structure, and also an almost para-
hermitian structure with respect to the cone metric ĝ. The eigen-distributions of Ĵ are
given by

V ± = R(r∂r ± T ) ⊕ E±.

They are involutive because the distributions E± are involutive and

[r∂r ± T,X±] = ± [T,X±] ∈ E±

for X± ∈ Γ(E±). Hence, ∇̂T defines a para-Kähler structure on the cone.

Now assume that the cone (M̂, ĝ) over (M,g) is a para-Kähler manifold with para-
complex structure Ĵ . We consider the decomposition TM = V + ⊕ V − into the totally
isotropic eigen-distributions of Ĵ . Then the radial vector field decomposes as follows,

∂r = ρ∂r + X︸ ︷︷ ︸
:=X+∈V +

+ (1 − ρ)∂r − X︸ ︷︷ ︸
:=X−∈V −

, (8.11)

where X ∈ Γ(M̂) is a global vector field tangent to M . This vector field defines a para-
Sasakian structure. First of all, we prove

Lemma 8.2. The vector field 2rX = Ĵ(r∂r) on M̂ is tangent to M and r-independent.

Its restriction to the submanifold M ∼= {1} × M ⊂ R
+ × M = M̂ defines is a time-like

geodesic unit vector field T on (M,g).
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Proof. As V + and V − are totally isotropic, we get for X defined in (8.11)

0 = ρ2 + r2g(X,X) = (1 − ρ)2 + r2g(X,X).

This implies ρ = 1
2 and g(X,X) = − 1

4r2 . By the holonomy invariance of the distributions
V ±, stated in Proposition 8.1, we get

V + ∋ ∇̂∂r

(
1

2
∂r + X

)
= ∇̂∂r

X

and similar

V − ∋ ∇̂∂r

(
1

2
∂r − X

)
= −∇̂∂r

X,

which implies ∇̂∂r
X = 0. Hence, [∂r,X] = −1

r
X, and thus X = 1

2r
T where T is a vector

field on M with g(T, T ) = −1. It follows that T is a geodesic vector field because:

V ± ∋ ∇̂T (r∂r ± T ) = T ± (∇T T + r∂r) = ± (r∂r ± T )︸ ︷︷ ︸
=2rX±∈V ±

±∇TT,

i.e. ∇TT ∈ V + ∩V m = {0}.

Hence, the vector fields X±, defined in (8.11) are given by

X± =
1

2

(
∂r ±

1

r
T

)

for T a time-like geodesic unit vector field on M . We consider now the orthogonal com-
plement of X∓ in V ±.

Lemma 8.3. Let E± := {Y ∈ V ± | ĝ(Y,X∓) = 0} ⊂ V ± be the orthogonal complement
of X∓ in V ±. Then E± are tangential to M , orthogonal to T , totally isotropic, and
E := E+ ⊕ E− is the orthogonal complement of T in TM .

Proof. As V + is totally isotropic any U = a∂r + Y ∈ E+ (Y ∈ TM) is orthogonal to X+

and X−, which is equivalent to 0 = a± rg(Y, T ). Hence, a = g(Y, T ) = 0. The same holds
for U ∈ E−. Both are totally isotropic with respect to g as V ± are totally isotropic with
respect to ĝ.

This gives the following decomposition of the tangent bundle into three non-degenerate
distributions

TM̂ = R · ∂r ⊕⊥
R · T ⊕⊥ (

E+ ⊕ E−)
,

where E+ and E− are totally isotropic.
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Lemma 8.4. The vector field T satisfies ∇̂T |E± = ±id.

Proof. The holonomy invariance of V ± implies that

∇̂X± : TM̂ → V±.

But the formulae for ∇̂ imply that

∇̂X±|TM =
1

2r

(
idTM ± ∇̂T

)
.

Applying this to E± gives that ∇̂T leaves E+ and E− invariant. Hence, ∇̂X± is zero on
E∓, and thus ∇̂T |E∓ = ∓id.

As T is a vector field on M , its orthogonal complement E does not depend on the
radial coordinate r and defines a distributions on M. The same holds for E± because ∇̂T
is an endomorphism on E which does not depend on r and is given as ±id on E±, which
are also denoted by E and E±. Thus, ∇T |E± = ∇̂T |E± = ±id defines an almost para-
complex structure J on E = T⊥ ⊂ TM . As its eigen-spaces E± are totally isotropic, J is
an anti-isometry, g(J., J.) = −g. This implies that T is a Killing vector field:

Lemma 8.5. T is a Killing vector field on M .

Proof. (LT g) (U, V ) = g(JU, V ) + g(JV,U) = 0, because J is an anti-isometry.

Lemma 8.6. E+ and E− are involutive.

Proof. For Y+ and Z+ in E+ by the holonomy invariance of V +, it is [Y+, Z+] ∈ V +.
Hence, it suffices to show that [Y+, Z+] ⊥ X−. But this is true because ∇̂X−|E+ = 0 (see
the proof of Lemma 8.4):

ĝ([Y+, Z+],X−) = −ĝ(Z+, ∇̂Y+X−) + ĝ(Y+, ∇̂Z+X−) = 0.

We get the same for E−.

Summarising we get that T is a geodesic, time-like unit Killing vector field, and ∇T is an
integrable para-complex structure on T⊥. Hence, (M,g, T ) is a para-Sasakian manifold.
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Examples of para-Sasakian manifolds

Now we construct a family of para-Sasakian manifolds (M,g, T ) of positive non constant
curvature which implies that the associated cone M̂ is not flat. We will describe (g, T ) in
terms of coordinates.
Let (M,g, T ) be a para-Sasaki manifold. Consider a filtration of TM by integrable dis-
tributions E+ ⊂ R · T ⊕ E ⊂ TM . The Frobenius Theorem implies existence of local
coordinates on M adapted to this filtration and a hypersurface which contains the leaves
of E+ and is transversal to T . We choose local coordinates on this hypersurface adapted
to E+. Since T is a Killing vector field, its flow can be used to extend these coordinates
to coordinates (t, x1, . . . , xn, xn+1, . . . , x2n) on some open subset U ⊂ M such that

∂

∂t
= T |U and

∂

∂xi
∈ Γ(E+|U ).

Obviously, ith respect to these coordinates the metric g is given by the matrix of the form



−1 0 ut

0 0 Ht

u H G


 .

Here u = (u1, . . . , un) ∈ C∞(U, Rn), H a non-degenerate matrix of real functions on U
and G a symmetric matrix of real functions on U . We choose a basis Y −

i of of vector fields
on E− which such that

0 = g(T, Y −
i ),

δij = g(
∂

∂xi
, Y −

j ), and

0 = g(Y −
i , Y −

j ),

First of all, these orthogonality relations imply that

Y −
i :=

(
H ijuj

)
· T + bij

∂

∂xj
+ H ij ∂

∂xj+n

where H ij is the inverse matrix to Hij and

bij + bji = −H ik (ukul + Gkl) Hjl. (8.12)

As T is a Killing vector field and Y −
i ∈ Γ(E−), we get that [T, Y −

i ] = 0 which implies
that H, u, and b do not depend on t. Now we consider the condition (8.6) which can be
written as g|E = −1

2Lθ or

−2δij = g([
∂

∂xi
, Y −

j ], T )

= − ∂

∂xi
(Hjkuk) +

∂

∂xi
(Hjk)uk

= −Hjk ∂

∂xi
(uk).
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It implies

Hij =
1

2

∂

∂xj
(ui). (8.13)

Then we evaluate the condition that ∇T acts as −id on E−. Note that the inverse
matrix of the metric is given by




−1 vt 0

v F H−1

0 (Ht)−1 0


 ,

where v = H−1u and Fij = bij + bji. We calculate

∇Y −
i

T = bij
∂

∂xj
+ H ij∇ ∂

∂xj+n

T

= −viT + −H ij ∂

∂xj+n

+

(
bij − Fji +

1

2
H ikHjl

(
T (Gkl) +

∂

∂xk+n

(ul) −
∂

∂xl+n

(uk)

))
∂

∂xj
.

Hence, ∇Y −
i

T = −Y −
i is equivalent to

2bij = Fji −
1

2
H ikHjl

(
T (Gkl) +

∂

∂xk+n
(ul) −

∂

∂xl+n
(uk)

)
.

which gives

2(bij + bji) = 2Fji − H ikHjlT (Gkl).

This implies that also G does not depend on t, but together with (8.12) it also gives a
formula for bij, namely

bij = −1

2
H ikHjl

(
ukul + Gkl +

1

2

(
∂

∂xk+n

(ul) −
∂

∂xl+n

(uk)

))
. (8.14)

Finally, we evaluate the integrability of E− := span(Y −
i )ni=1. We write this condition as

∇[Y −
i ,Y −

j ]T = −[Y −
i , Y −

j ]

and obtain after a lengthy but straightforward calculation that this is equivalent to

0 = Λij

[
biq

(
∂

∂xq
(bjp) − Hlrbrp

∂

∂xq
(Hjl)

)
+ H iq

(
∂

∂xq+n
(bjp) − Hlrbrp

∂

∂xq+n
(Hjl)

)]
,
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in which Λij denotes the skew symmetrization with respect to the indices i and j. Although
we do not find the general solution of this equation we will construct solutions with bij ≡ 0.
We make the following ansatz. We assume that

∂

∂xi+n
(uj) = 0, and set

Gij := −ui · uj .

This implies that bij = 0 which gives that Y −
i = H ij

(
uj · T + ∂

∂xj+n

)
with Hij = 1

2∂jui,

and ensures that E− = span(Y −
i ) is the (−1)-eigen-space of ∇T and integrable. In fact,

we get for the Levi-Civita connection of this metric:

∇T T = 0

∇T∂i = ∂i

∇T ∂i+n = −uiT − ∂i+n, i.e. ∇T Y −
i = −Y −

i

∇∂i
∂j = Hkl∂i(Hlj)∂k

∇∂i+n
∂j+n = 2uiujT + ui∂j+n + uj∂i+n

∇∂i
∂j+n = −HijT − uj∂i,

which implies

∇∂i
Y −

j = δijT + Hkl∂i(H
jk)Y −

l

∇∂i+n
Y −

j = uiY
−
j

∇
Y −

i
Y −

j = 0

Now we check that the curvature of the metric is not constant. Calculating the curvature
and denoting Y +

i by ∂i, we get

R(T, Y ±
i ) :

{
T 7→ Y ±

i

Y ∓
i 7→ T

R(Y ±
i , Y ±

j ) : Y ∓
k 7→ δjkY

±
i − δikY

±
j

R(Y ±
i , Y ∓

j ) :

{
Yk± 7→ −δjkY

±
i − 2δijY

±
k

Yk∓ 7→ δikY
∓
i + 2δijY

∓
k

and the remaining terms being zero. The last terms show that (M,g) does not have
constant sectional curvature. This can also be seen by calculating the derivatives of the
curvature which are zero apart from one term:

(∇∂i
R) (T, Y −

j , ∂k, Y
−
l ) = −

(
R(∂i, Y

−
j , ∂k, Y

−
l )

︸ ︷︷ ︸
=−δkjδil−2δijδkl

+ R(T, Y −
j , ∂k, δilT )

︸ ︷︷ ︸
=−δilδkj

)

= 2 (δkjδil + δijδkl) .
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Hence, (M,g) is not locally symmetric. Note that the curvature R of this metric is of the
form

R = R1 − 2ω ⊗ J,

where R1 is the curvature of a space of constant curvature, J the para-complex structure
and w = g(., J.) is the para-Kähler form. Altogether we have proven:

Proposition 8.3. Let (t, x1, . . . , xn, xn+1, . . . , x2n) be coordinates on R
2n+1 and consider

the metric g given by

g =




−1 0 ut

0 0 Ht

u H G




in which

• u = (u1, . . . , un) is a diffeomorphism of R
n, depending on x1, . . . , xn,

• H = 1
2

(
∂

∂xj
(ui)

)n

i,j=1
is its non-degenerate Jacobian, and

• G is the symmetric matrix given by Gij = −uiuj ,

i.e.

g = −dt2 +
n∑

i=1

uidxidt +
1

2

n∑

i,j=1

∂

∂xj
(ui)dxidxj+n −

n∑

i,j=1

uiujdxi+ndxj+n. (8.15)

Then the manifold (R2n+1, g) is para-Sasakian, not locally symmetric, and its curvature is
given by the following formulas

R|T⊥×T⊥×T⊥ =
(
R1(J., J.) − 2ω ⊗ J

)
|T⊥×T⊥×T⊥ , and

R(T, .) = R1(T, .),

where R1 is the curvature tensor of a space of constant curvature 1 in dimension 2n + 1,
J the para-complex structure and w = g(J., .) is the para-Kähler form. In particular, the
space-like cone over (R2n+1, g) is para-Kähler and non-flat, i.e. its holonomy representa-
tion is non-trivial and decomposes into two totally isotropic invariant subspaces.

Remark 8.1. 1. It is obvious that the Abelian group R
n+1 acts isometrically on (R2n+1, g)

via

R
n+1 ∋ (c, c1, . . . , cn) :




t
xi

xi+n


 7→




t + c
xi + ci

xi+n




As these isometries also fix the para-Sasaki vector field T = ∂
∂t

, they are automor-
phisms of the para-Sasaki structure (g, T ). Hence, we can consider a lattice Γ ⊂ R

n+1
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and compactify (R2n+1, g) along these directions in order to obtain a para-Sasakian
structure on

R
2n+1/Γ = T n+1 × R

n,

where T n+1 denotes the (n + 1)-torus. We do not know under which conditions
on the ui’s there are more automorphisms, and if one can find enough in order to
compactify the manifold by this method.

2. The manifolds obtained in this way are curvature homogeneous.

More examples of para-Kähler cones are given in [CLS06] by conical special para-
Kähler manifolds defined by a holomorphic prepotential of homogeneity 2. Further results
on the holonomy of para-Kähler manifolds can be found in [BBI97].

Para-3-Sasakian manifolds and para-hyper-Kähler cones

Now we study the case when the holonomy algebra ĥ of the cone M̂ preserves two com-
plementary isotropic subspaces T± and a skew-symmetric complex structure J such that
JT+ = T−. Let us provide the definitions needed to formulate a result analogous to
Theorem 8.1 in this case.

Definition 8.4. 1. Let V be a real finite dimensional vector space. A para-hyper-
complex structure on V is a triple (J1, J2, J3 = J1J2), where (J1, J2) is a pair of
anticommuting para-complex structures on V .

2. Let M be a smooth manifold and V be a distribution on M . An almost para-hyper-
complex structure on V is a triple Jα ∈ Γ(EndV), α = 1, 2, 3, such that, for all
p ∈ M , (J1, J2, J3)p is a para-hyper-complex structure on Vp. It is called integrable
if the Jα are integrable.

3. A para-hyper-Kähler manifold is a pseudo-Riemannian manifold (M,g) endowed with
a parallel para-hyper-complex structure (J1, J2, J3) consisting of skew-symmetric
endomorphisms Jα ∈ Γ(End TM).

4. A para-3-Sasakian manifold is a pseudo-Riemannian manifold (M,g) of signature
(n + 1, n) endowed with three orthogonal unit Killing vector fields (T1, T2, T3) such
that

(i) the vector fields T1, T2 are time-like and define para-Sasakian structures (g, T1),
(g, T2), see Definition 8.3,

(ii) T3 is space-like and defines a (pseudo-)Sasakian structure (g, T3),

(iii) ∇T2T1 = T3,

(iv) the vector fields satisfy the following sl2(R) commutation relations:

[T1, T2] = −2T3, [T1, T3] = −2T2, [T2, T3] = 2T1 and
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(v) the tensors ∇Tα define a para-hyper-complex structure on E := span{T1, T2, T3}⊥.
(Here we are using that the conditions (ii-iii) imply ∇ETα ⊂ E.)

The assumption that ĥ preserves two complementary isotropic subspaces T± ⊂ TpM̂

and a skew-symmetric complex structure J ∈ EndTpM̂ with JT+ = T− can be now re-

formulated by saying that M̂ locally admits a para-hyper-Kähler structure (ĝ, Ĵ1, Ĵ2, Ĵ3 =
Ĵ1Ĵ2), where Ĵ1|T± = ±Id and (Ĵ3)p = J . The corresponding geometry of the base
manifold (M,g) is para-3-Sasakian:

Theorem 8.2. Let (M,g) be a pseudo-Riemannian manifold. There is a one-to-one
correspondence between para-3-Sasakian structures (M,g, T1, T2, T3) on (M,g) and para-

hyper-Kähler structures (M̂ , ĝ, Ĵ1, Ĵ2, Ĵ3 = Ĵ1Ĵ2) on the cone (M̂ , ĝ). The correspondence
is given by Tα 7→ Ĵα := ∇̂Tα.

Proof. By Theorem 8.1 the para-Sasakian structures (g, T1) and (g, T2) induce two para-

Kähler structures (ĝ, Ĵ1) and (ĝ, Ĵ2) on the space-like cone (M̂, ĝ). Similarly, the pseudo-

Sasakian structure (g, T3) induces a pseudo-Kähler structure (ĝ, Ĵ3) on M̂ . It suffices
to show that Ĵ1Ĵ2 = −Ĵ2Ĵ1 = Ĵ3. We recall that the vector fields Tα (considered as

vector fields on M̂) are related to T0 := r∂r by Tα = ĴαT0. Using Ĵα = ∇̂Tα, we show
that the conditions (iii-iv) in Definition 8.4 imply that the structures Ĵα preserve the
four-dimensional distribution

H := span{Ti|i = 0, 1, 2, 3}

and act as the standard para-hyper-complex structure on H. In fact, first it is clear that
Ĵα acts in the standard way on the plane Pα spanned by T0 and Tα. Second the relations
(iii-iv) easily imply that Ĵα preserves the plane P ′

α = P⊥
α ∩H. Since Ĵ2

α = ±Id, the action

of Ĵα on P ′
α is completely determined by:

Ĵ1T2 = ∇̂T2T1 = ∇T2T1
(iii)
= T3

Ĵ2T1 = ∇T1T2
(iv)
= −2T3 + ∇T2T1 = −T3

Ĵ3T1 = ∇T1T3
(iv)
= −2T2 + ∇T3T1 = −2T2 − g(∇T3T1, T2)T2

= −2T2 + g(T3,∇T2T1)T2 − T2.

This shows that the endomorphisms Ĵα act as the standard para-hyper-complex structure
on H. Finally, the condition (v) in Definition 8.4 shows that the Ĵα act also as a para-
hyper-complex structure on E = H⊥.

9 Lorentzian cones

Theorem 9.1. 1. Let (M,g) be a Lorentzian manifold of signature (+, · · · ,+,−) or a

negative definite Riemannian manifold and (M̂ = R
+ × M, ĝ) the cone over M
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equipped with the Lorentzian metric ĝ = dr2 + r2g (of signature (+, · · · ,+,−)

or (+,−, · · · ,−)). Suppose that the cone (M̂ , ĝ) admits a parallel distribution of

isotropic lines. If M is simply connected, then (M̂, ĝ) admits a non-zero parallel
light-like vector field.

2. Let (M,g) be a negative definite Riemannian manifold and (M̂, ĝ) the cone over M
equipped with the Lorentzian metric of signature (+,−, · · · ,−). Suppose that the

cone (M̂ , ĝ) admits a non-zero parallel light-like vector field, then each point x ∈ M
has a neighbourhood of the form

M0 = (a, b) × N, a ∈ R ∪ {−∞}, b ∈ R ∪ {+∞}, a < b,

and for the metric g|M0 we have

g|M0 = −ds2 + e−2sgN ,

where (N, gN ) is a negative definite Riemannian manifold. If the holonomy algebra

hol(M̂0, ĝ|M0) of the manifold (M̂0, ĝ|M0) is indecomposable, then

hol(M̂0, ĝ|M0)
∼= hol(N, gN ) ⋉ R

dimN .

If the manifold (M,g) is complete, then M0 = M , (a, b) = R and (N, gN ) is complete.

3. Let (M,g) be a Lorentzian manifold and (M̂, ĝ) the cone over M equipped with the

Lorentzian metric. Suppose that the cone (M̂, ĝ) admits a non-zero parallel light-like
vector field, then there exist disjoint open subspaces {Wi}i∈I ⊂ M such that the open
subspace ∪i∈IWi ⊂ M is dense. Any point x of each Wi has an open neighbourhood
of the form

Ui = (a, b) × N ⊂ Wi, a ∈ R ∪ {−∞}, b ∈ R ∪ {+∞}, a < b,

and for the metric g|Ui
we have

g|Ui
= −ds2 + e−2sgN ,

where (N, gN ) is a Riemannian manifold. If the holonomy algebra hol(Ûi, ĝ|Ui
) of

the manifold (Ûi, ĝ|Ui
) is indecomposable, then

hol(Ûi, ĝ|Ui
) ∼= hol(N, gN ) ⋉ R

dimN .

If the manifold (M,g) is complete, then (a, b) = R and Ui = Wi.

Proof. 1. Suppose that (M̂ , ĝ) admits a parallel distribution of isotropic lines. Then

there exists on M̂ a nowhere vanishing recurrent light-like vector field p1. We have the
decomposition

p1 = α∂r + Z,
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where α is a function on M̂ and Z ∈ TM ⊂ TM̂ . Consider the open subset U = {x ∈
M̂ |α(x) 6= 0}. We claim that the subset U is dense in M̂ . Indeed, suppose that α = 0 on

an open subset V ⊂ M̂ , then p1 = Z on V . Let Y ∈ TM . We have

∇̂Y p1 = ∇̂Y Z = ∇Y Z − rg(Y,Z)∂r.

Since p1 is recurrent,
∇̂Y p1 = β(Y )p1 = β(Y )Z,

where β is a 1-form on M̂ . Hence, g(Y,Z) = 0 on V for all Y ∈ TM . Thus, Z = 0 and
p1 = 0 on V .

Let y ∈ U . We have R̂y(X,Y )∂r = 0 for all X,Y ∈ TM̂ . Hence, R̂y(X,Y )p1 =

R̂y(X,Y )Z. On the other hand, R̂y(X,Y ) takes values in the holonomy algebra holy and

holy preserves the line Rp1y. Hence, R̂y(X,Y )p1y = C(X,Y )p1y = C(X,Y )(α∂r + Z)y,

where C(X,Y ) ∈ R. Thus, C(X,Y ) = 0 and R̂(X,Y )Z = 0 on U . Since U ⊂ M̂ is dense,

R̂(X,Y )Z = 0 on M̂ and R̂(X,Y )p1 = 0 on M̂ .
Let x ∈ U and let px = p1x. Consider any curve γ(t), t ∈ [a, b] such that γ(a) = x and

denote by τγ : TxM̂ → Tγ(b)M̂ the parallel displacement along γ. For any X,Y ∈ Tγ(b)M̂
we have

R̂(X,Y )τγ(px) = R̂(X,Y )(cp1γ(b)) = 0,

where c ∈ R. From this and the Ambrose-Singer theorem it follows that holx annihilates
the vector px. Since M̂ = R

+ × M is simply connected, we get a parallel light-like vector
field p on M̂ . Claim 1 of the theorem is proved.

Now suppose that we have a light-like parallel vector field p on M̂ . Consider the
decomposition

p = α∂r + Z,

where α is a function on M̂ and Z ∈ TM ⊂ TM̂ . Note that

ĝ(Z,Z) = −α2, (9.1)

and Z is nowhere vanishing. As above we can prove that the open subset U = {x ∈
M̂ |α(x) 6= 0} is dense in M̂ .

Lemma 9.1. Let Y ∈ TM ⊂ TM̂ . We have

1. ∂rα = 0, Y α = rg(Y,Z).

2. ∇̂Y Z = −α
r
Y .

3. ∇̂∂rZ = ∂rZ + 1
r
Z = 0, i.e. Z = 1

r
Z̃, where Z̃ is a vector field on M .

4. Z̃α = −α2.
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Proof. Claims 1-3 follow from the fact that ∇̂p = 0. Claim 4 follows from (9.1) and Claim
1 of the lemma.

From Claim 1 of Lemma 9.1 it follows that α can be considered as a function on M
and α is constant in the directions orthogonal to the vector field Z̃.

Let x ∈ M , α(x) 6= 0 and let γ(t) be the curve of the vector field Z̃ passing through
the point x. From Claim 1 of Lemma 9.1 it follows that along γ(t) we have

α =
1

t + c
,

where c ∈ R is a constant.
2. Suppose that (M,g) is a negative definite Riemannian manifold. In this case the

vector field Z̃ is nowhere light-like. From Lemma 9.1 it follows that the gradient of the
function α is equal to the vector field Z̃. Hence each point x ∈ M has an open neighbor-
hood M0 diffeomorphic to the product (a, b)×N , where N is a manifold diffeomorphic to
the level sets of the function α|M0 . Note also that the level sets of the function α|M0 are
orthogonal to the vector field Z̃. Consequently the metric g|M0 must have the following
form

g = −ds2 + g1,

where g1 is a family depending on the parameter s of Riemannian metrics on the level sets
of the function α|M0 , and

∂s =
Z̃

α
.

From Lemma 9.1 it follows that the function α|M0 satisfies the following differential
equation

∂sα = −α.

Hence,
α(s) = c1e

−s,

where c1 ∈ R is a constant. Changing s, we can assume that c1 = ±1. Both cases are
similar and we suppose that c1 = 1. Note that (a, b) = − ln(inf α|M0 , sup α|M0).

Let Y1, Y2 ∈ TM be vector fields orthogonal to Z̃ and such that [Y1, ∂s] = [Y2, ∂s] = 0.
From Lemma 9.1 it follows that ∇Y1∂s = −Y1. From the Koszul formula it follows that
2g(∇Y1∂s, Y2) = ∂sg(Y1, Y2). Thus we have

−2g1(Y1, Y2) = ∂sg1(Y1, Y2).

This means that
g1 = e−2sgN ,

where the metric gN does not depend on s.
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Thus we get the decompositions

M̂0 = R
+ × (a, b) × N

and
ĝ|M0 = dr2 + r2(−ds2 + e−2sgN ).

Define the manifold
M1 = R

+ × R × N

and extend the metric ĝ|M0 to the metric g1 on M1.
Consider the diffeomorphism

R
+ × R

+ → R
+ × R

given by

(x, y) 7→
(√

2xy, ln

√
2x

y

)
.

The inverse diffeomorphism has the form

(r, s) 7→
(r

2
es, re−s

)
.

We have
∂x = e−s∂r + e−s

r
∂s,

∂y = es

2 ∂r − es

2r
∂s.

We get the decomposition
M1 = R

+ × R
+ × N,

and the metric g1 has the form

g1 = 2dxdy + y2gN .

Obviously there exist two intervals (a1, b1), (a2, b2) ⊂ R
+ such that 1 ∈ (a2, b2) and for

M2 = (a1, b1) × (a2, b2) × N we have M2 ⊂ M̂0 ⊂ M1. Let g2 = ĝ|M2 .
Applying Theorem 4.2 in [Lei06] to the Lorentzian situation it follows that

hol(M1, g1) = hol(M2, g2) ∼= hol(N, gN ) ⋉ R
dimN ,

where hol(N, gN ) is the holonomy algebra of the Riemannian manifold (N, gN ). Thus,

hol(M̂0, ĝ|M0)
∼= hol(N, gN ) ⋉ R

dimN .
If the manifold (M,g) is complete, then the global decomposition follows from Propo-

sition 7.1. From Proposition 2.5 it follows that (a, b) = R and that (N, gN ) is complete.
Claim 2 of the theorem is proved.

3. Suppose that (M,g) is a Lorentzian manifold. Consider the open subset U1 = {x ∈
M |α(x) 6= 0} ⊂ M . Obviously, U1 is dense in M . Let ∪i∈IWi = U1 be the representation
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of the open subset U1 ⊂ M as a union of disjoint connected open subsets. At each x ∈ Wi

we have gx(Z̃, Z̃) 6= 0. Hence for each Wi we can use that arguments of the proof of Claim
2 of the theorem.

Suppose that (M,g) is complete. As in proof of Claim 2 of the theorem we can show

that Ui = Wi for each i ∈ I. From Claim 2 of Lemma 9.1 it follows that the vector field Z̃
α

is a geodesic vector field on U1. Let x ∈ U1 and let γ(s) be the geodesic such that γ(0) = x

and γ̇(s) = Z̃(γ(s))
α(γ(s)) if γ(s) ∈ U1. Along the set {γ(s)|γ(s) ∈ U1} we have α(γ(s)) = e−s.

Hence, γ(s) is defined for all s ∈ R, γ(R) ⊂ U1 and α(γ(R)) = R
+, i.e. (a, b) = R.
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