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CONEWISE LINEAR SYSTEMS: NON-ZENONESS AND
OBSERVABILITY∗

M. KANAT CAMLIBEL† , JONG-SHI PANG‡ , AND JINGLAI SHEN§

Abstract. Conewise linear systems are dynamical systems in which the state space is partitioned
into a finite number of nonoverlapping polyhedral cones on each of which the dynamics of the
system is described by a linear differential equation. This class of dynamical systems represents a
large number of piecewise linear systems, most notably, linear complementarity systems with the
P-property and their generalizations to affine variational systems, which have many applications in
engineering systems and dynamic optimization. The challenges of dealing with this type of hybrid
system are due to two major characteristics: mode switchings are triggered by state evolution,
and states are constrained in each mode. In this paper, we first establish the absence of Zeno
states in such a system. Based on this fundamental result, we then investigate and relate several
state observability notions: short-time and T -time (or finite-time) local/global observability. For
the short-time observability notions, constructive, finitely verifiable algebraic (both sufficient and
necessary) conditions are derived. Due to their long-time mode-transitional behavior, which is very
difficult to predict, only partial results are obtained for the T -time observable states. Nevertheless,
we completely resolve the T -time local observability for the bimodal conewise linear system, for
finite T , and provide numerical examples to illustrate the difficulty associated with the long-time
observability.
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1. Introduction. A conewise linear system (CLS) is a hybrid dynamical system
consisting of a finite number of linear ordinary differential equations (ODEs) that are
active on certain polyhedral cones which partition the whole Euclidean state space.
Each of these cones is called a mode of the system; transitions between modes occur
along a state trajectory. Many piecewise linear systems can be formulated as CLSs;
among these, linear complementarity systems (LCSs) [15, 6] are perhaps the most
prominent. Specifically, an LCS is defined by a linear time-invariant ODE containing
an algebraic variable that is required to be a solution to a finite-dimensional linear
complementarity problem (LCP). Collectively, these piecewise linear systems and their
generalizations, such as the differential variational inequalities (DVIs) [25], have found
a wide range of applications in nonsmooth mechanical systems, switched electrical
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networks and control systems, and dynamic optimization in operations research and
economics. See the two surveys [4, 31] and the recent papers [7, 8, 16, 17] as well as
the references therein.

As with all switched dynamical systems, a critical issue associated with a CLS is
whether infinitely many mode transitions exist in any finite time along a state trajec-
tory, i.e., the Zeno behavior of the CLS. Such an issue was studied in a different setting
for piecewise analytic systems in [5, 35] two decades ago. It has regained considerable
attention and received extensive treatment in the hybrid system literature in the past
few years, e.g., [19, 32, 37], due to its fundamental role in the study of numerical
simulations and basic system and control properties of hybrid systems. Adding to
the recent study of the Zeno issue [7] for complementarity systems, the paper [33]
introduces several important notions of non-Zenoness and non-Zeno states of an LCS
and establishes the “strong non-Zenoness” for an LCS with the P-property and the
“weak non-Zenoness” for a broader class of LCSs. The paper [24] further extends the
Zeno study to a nonlinear complementarity system (NCS) and to the DVI; it shows
the strong non-Zenoness for an NCS satisfying the strong regularity condition and
investigates certain system properties using these non-Zeno results.

Having its roots in the very early stages of modern control theory [20], observabil-
ity is a fundamental concept in systems and control. Roughly speaking, observability
refers to the ability of reconstructing the initial state from given output observations.
This notion is well understood for linear systems [10]. However, characterization of
observability of nonlinear systems (with control inputs) becomes a very hard problem.
For instance, one has to analyze many different observability concepts of nonlinear
systems, and only local sufficient conditions are available for small-time observability
[23]; see the algebraic approach for analytic systems [2]. Moreover, checking these
conditions can become a computationally untractable task [3].

The observability of hybrid systems has attracted growing attention in recent
years. Mode and state observability of discrete-time switched linear systems are stud-
ied in [1], under the assumption that mode sequences are arbitrary; linear algebraic
tests are provided, and the decidability is discussed. The paper [36] analyzes the ob-
servability of jump-linear systems and linear hybrid systems; necessary and sufficient
conditions in terms of algebraic tests are given. Several observability notions are pro-
posed for piecewise affine hybrid systems in [12]; sufficient conditions are obtained for
the observability test and are used for observer design. Other related results include
observability of Turing machines and its connection to hybrid systems [11]. For more
discussions on observability analysis and observer design, see the references cited in
the above-mentioned papers.

The present paper deals with the non-Zenoness and state observability of CLSs,
assuming a linear system output. Compared with the observability results in the lit-
erature, there are two unique characteristics of the CLS that make the observability
analysis challenging and different from the prior results: (i) mode switchings are trig-
gered by state evolution instead of being arbitrarily chosen; (ii) the state is restricted
to a cone in each mode. Due to the first property, the issues of well-posedness and
Zenoness of system solutions become nontrivial. The second property implies that
classical matrix rank conditions are insufficient to characterize observability proper-
ties. Moreover, a state trajectory is at best only once differentiable with respect to
time and is not differentiable with respect to the initial condition. These properties
necessitate the development of new tools to handle observability issues for this class
of nonsmooth systems.
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The organization of the paper is as follows. In section 2, we begin with the in-
troduction of the main object of the study, CLSs, and discuss certain fundamental
properties of the solutions. We then prove the non-Zenoness and piecewise analyticity
of such solutions in section 3. Various kinds of observability notions are investigated,
and the relation between them is discussed in section 4. It is shown that the lin-
ear dynamics, together with the conic state space partition, is instrumental in the
derivation of constructive necessary and sufficient conditions for certain observability
notions, particularly for short-time observability. Detailed investigation of T -time
local observability of bimodal CLSs is given in section 5. For the long-time observ-
ability, we present examples to demonstrate several interesting properties that make
this observability notion challenging to characterize, even for bimodal CLSs.

2. Conewise linear systems. Consider the ODE

ẋ = f(x),(2.1)

where x ∈ R
n and f : R

n → R
n is a piecewise affine (PA) function; i.e.,

(a) f is continuous, and
(b) a positive integer m and a family of affine functions {fi}mi=1 exist such that

f(x) ∈ {fi(x)}mi=1 for all x ∈ R
n.

We call systems of the form (2.1) piecewise affine systems. The representation (2.1)
describes the system at hand in an implicit way via the component functions {fi}mi=1.
Alternatively, a geometric representation of (2.1) can be obtained by invoking well-
known properties of PA functions (see, e.g., [14]). To elaborate on this, we recall that
a finite collection of polyhedra in R

n, denoted Ξ, is a polyhedral subdivision of R
n if

(a) the union of all polyhedra in Ξ is equal to R
n,

(b) each polyhedron in Ξ is of dimension n, and
(c) the intersection of any two polyhedra in Ξ is either empty or a common proper

face of both polyhedra.
For every PA function f , one can find a polyhedral subdivision of R

n and a finite
family of affine functions {gi} such that f coincides with one of the functions {gi}
on each polyhedron in Ξ [14, Proposition 4.2.1]. Let such a polyhedral subdivision
be given by Ξ = {Xi}mi=1, where each polyhedron Xi, called a piece of the system, is
described by a finite system of linear inequalities:

Xi = {x | Cix + di � 0 }(2.2)

for a certain matrix Ci ∈ R
mi×n and vector di ∈ R

mi ; also write gi(x) = Aix + bi for
some matrix Ai and vector bi. With these definitions, we can write the system (2.1)
in the equivalent form

ẋ = Aix + bi if x ∈ Xi.(2.3)

In this case, continuity of the function f is equivalent to the following implication:

x ∈ Xi ∩ Xj ⇒ Aix + bi = Ajx + bj .(2.4)

Since a PA function must be globally Lipschitz continuous (see, e.g., [14]), it follows
from well-known ODE theory that the PA system (2.1) must admit a unique solution,
which is denoted by x(t, ξ), that is continuously differentiable (i.e., C1) in time for any
initial state x(0) = ξ. Moreover, it was recently proved in [26] that for each t, x(t, ·)
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is a “semismooth” function on R
n, meaning that it is “B(ouligand)-differentiable”

(i.e., locally Lipschitz continuous and directionally differentiable) everywhere with
the directional derivative along a prescribed direction given as the unique solution of
a “first-order variational equation.”

Throughout this paper, we focus on a particular type of PA system obtained by
taking bi = di = 0 for all i in (2.2) and (2.3). In this case, the system takes the form

ẋ = Aix if x ∈ Xi ≡ {x | Cix � 0 }.(2.5)

The continuity requirement of the right-hand side of (2.5) reduces to

x ∈ Xi ∩ Xj ⇒ Aix = Ajx;(2.6)

i.e., Xi∩Xj ⊆ ker(Ai−Aj), where ker denotes the kernel of a matrix. Since the pieces
Xi are cones in this case, we call the system (2.5) a conewise linear system (CLS).
Without loss of generality, we assume throughout that each matrix Ci contains no
zero rows. Under this assumption, and by the fact that Xi is full dimensional, it
follows that for each index � = 1, . . . ,mi, there exists a vector x̂� ∈ Xi such that
(Cix̂

�)� > 0. Therefore, we must have

∅ �= intXi = {x | Cix > 0 },(2.7)

where int denotes the interior of a set. By property (c) of a polyhedral subdivision,
it follows that Xj ∩ intXi = ∅ for all i �= j.

Associated with the “forward-time” system (2.5) is a backward-time system that
allows us to obtain reverse-time results easily from a forward-time analysis. Specifi-
cally, for any given T > 0, define xr(t) ≡ x(T − t). We have xr(0) = x(T ) and

ẋr = Ãi x
r if xr ∈ Xi,(2.8)

where Ãi ≡ −Ai. Obviously, the latter system remains a CLS. The reverse-time
system can be used to derive backward-time results pertaining to the forward-time
trajectory. For instance suppose that x(t0, ξ) = x(t0, η) = z0 for some t0 > 0 and
some ξ and η in R

n. By considering the reverse-time trajectory starting at time t0
and going backwards in time until the initial time t = 0 and by using the uniqueness
of the solution to the reverse-time system given an initial condition, it follows that
ξ = xr(t0, z

0) = η. In words, this observation says that if two forward-time trajectories
starting at two initial conditions ξ and η ever intersect at some common future time,
then these two trajectories must in fact be identical at all times.

CLSs form a special class of linear hybrid systems (see, for instance, [22]). In
fact, they can be cast as hybrid automata for which

(a) the vector fields in each location are linear,
(b) the invariant sets are solid polyhedral cones,
(c) the guard sets are the boundaries of these cones, and
(d) the reset maps are all identity.

In what follows, we look at two specific examples of CLSs.
Example 2.1. Bimodal CLSs are the simplest CLSs with only 2 pieces; i.e., m = 2

and Ξ = {X1,X2}. We claim that any such system can be described by the ODE

ẋ = Ax + b max(0, cTx)(2.9)

for some n×n matrix A and n-vectors b and c. This is a nontrivial assertion; indeed,
we need to show that given (2.5) and (2.6), we can identify the matrix A and the two
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vectors b and c such that (2.9) is equivalent to the given bimodal CLS. The proof is
as follows. Since Ξ = {X1,X2} is a polyhedral division of R

n, it follows that

intX1 ∩ intX2 = ∅,(2.10)

X1 ∪ X2 = R
n.(2.11)

In view of (2.10), it follows from [34, Theorem 3.3.4] that there exists a hyperplane,
say H = {x ∈ R

n | cTx = 0}, such that X1 ⊆ H+ ≡ {x ∈ R
n | cTx � 0} and

X2 ⊆ H− ≡ {x ∈ R
n | cTx � 0}. We claim that X1 = H+. To see this, note that

( intH+ \ X1) ∩ X1 = ∅,(2.12)

( intH+ \ X1 ) ∩ X2 ⊆ intH+ ∩ H− = ∅.(2.13)

Then, (2.11) together with (2.12)–(2.13) implies that intH+ \ X1 = ∅, i.e., intH+ ⊆
X1. Since X1 is contained in H+ and it is a closed set, we get X1 = H+. In a similar
fashion, one can show that X2 = H−. Then, we get X1∩X2 = H+∩H− = H = ker(cT ).
Hence, we can write (2.5)–(2.6) as

ẋ =

{
A1x if cTx � 0,
A2x if cTx � 0,

(2.14)

where A1 and A2 satisfy cTx = 0 ⇒ A1x = A2x. Equivalently, A1 − A2 = bcT for
some n-vector b. Thus, (2.14) becomes (2.9) with A ≡ A2.

Example 2.2. A broad class of CLSs consists of the following linear cone comple-
mentarity system (LCCS):

ẋ = Ax + Bz,
C 
 z ⊥ Cx + Dz ∈ C∗,

(2.15)

where x ∈ R
n, z ∈ R

p, C is a polyhedral cone and C∗ is its dual (as in convex
analysis [27]), and a ⊥ b means aT b = 0. A wealth of examples, from various areas of
engineering as well as operations research, of these piecewise linear (hybrid) systems
can be found in [31, 30, 16]. For references on the analysis of the general LCCS,
we refer the reader to [8, 17, 7, 28, 29, 18]. A special case of interest emerges when
C = R

p
+; the resulting LCCS is called simply a linear complementarity system (LCS).

A fundamental subclass of the LCSs arises when all the principal minors of the matrix
D are positive. Such matrices are called P-matrices in the literature of mathematical
programming. The class of P-matrices is very broad (see [13]); in particular, it includes
the class of positive definite (not necessarily symmetric) matrices. Most importantly,
P-matrices play a fundamental role in the LCP, i.e., the problem of finding a p-vector
z satisfying

0 � z ⊥ q + Dz � 0(2.16)

for a given p-vector q and a p × p matrix D. We denote the latter problem by
LCP(q,D). It is well known that the LCP(q,D) admits a unique solution for all
q ∈ R

p if and only if D is a P-matrix; see [13, Theorem 3.3.7]. Moreover, for each q
there exists an index set α ⊆ {1, 2, . . . , p} with complement ᾱ such that

(a) −(Dαα)−1qα � 0 and qᾱ −Dᾱα(Dαα)−1qα � 0,
(b) the unique solution z of the LCP (q,D) is given by zα = −(Dαα)−1qα and

zᾱ = 0.
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This shows that the solution mapping q �→ z is a piecewise linear function on R
p.

Based on the above facts, we can rewrite the LCS (2.15) in the form of the CLS (2.5)
as follows:

ẋ = (A−B•α(Dαα)−1Cα•)x if

[
−D−1

αα 0
−Dᾱα(Dαα)−1 Iᾱᾱ

] [
Cα•
Cᾱ•

]
x � 0.

(2.17)

There are generalizations of the LCP results to the linear cone complementarity
problem (LCCP), which can then be applied to the LCCS. In what follows, we discuss
one such generalization that does not require the LCCP to have a unique solution.
Let us denote by SOL(C, q,D) the solution set of the LCCP

C 
 z ⊥ q + Dz ∈ C∗.

It has been observed [9, 25] that the LCCS (2.15) has a unique C1 trajectory x(t)
for all initial conditions x(0) = x0 ∈ R

n if and only if BSOL(C, Cx,D) is a singleton
for all x ∈ R

n. If the latter singleton condition holds, then it follows that (2.15) is
equivalent to

ẋ = Ax + BSOL(C, Cx,D),(2.18)

where the right-hand side is a piecewise linear function of x on R
n. Thus (2.18) is a

CLS. A special case where BSOL(C, Cx,D) is a singleton for all x ∈ R
n occurs when

D is positive semidefinite (albeit not necessarily symmetric), CR
n ⊆ −DC + C∗, and

(C − C) ∩ ker(D + DT ) ⊆ kerB. The first two conditions imply that SOL(C, Cx,D)
is a nonempty polyhedron for all x ∈ R

n, and the last assumption ensures that
BSOL(C, Cx,D) is a singleton; see [14] for a proof of these facts.

Unlike the LCS with a P-matrix D, it is not straightforward to write down the
pieces of the system (2.18); nevertheless, this can be achieved by introducing multi-
pliers to the constraints defining the cone C, which we write as

C = { z |Gz � 0 }(2.19)

for some matrix G ∈ R
r×p. Letting λ ∈ R

r be the vector of multipliers corresponding
to the constraint Gz � 0, the complementarity condition C 
 z ⊥ Cx + Dz ∈ C∗ is
equivalent to

0 = Cx + Dz −GTλ and 0 � λ ⊥ Gz � 0.

The pieces of the CLS (2.18) can be identified as follows. Define for each index subset

α of {1, . . . , r}, with complement ᾱ, the polyhedral cone X̂α ⊂ R
n consisting of all

vectors x for which there exist (z, λα) such that

0 = Cx + Dz − (Gα• )Tλα,
λα � 0 = Gα•z, and λᾱ = 0 � Gᾱ•z.

While there may be multiple pairs (z, λα) satisfying the above linear inequality system

for a given x (which explains why X̂α is a polyhedral cone), the vector Bz is a constant
among all such pairs, as long as BSOL(C, Cx,D) is a singleton. Moreover, with some

linear algebraic manipulations, it can be deduced that Ax + BSOL(C, Cx,D) = Âαx

for some matrix Âα for all x ∈ X̂α. Notice that the family {X̂α} for α ranging over all
subsets of {1, . . . , r} may not form a polyhedral subdivision of R

r (for one thing, some
of them could overlap); nevertheless, they are enough to show that the right-hand side
of (2.18) is a piecewise linear function of x.
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2.1. Some structural properties. In this subsection, we establish some basic
structural properties of the CLS (2.5). First we review some well-known concepts. An
ordered tuple a ≡ (a1, . . . , ak) of real numbers is said to be lexicographically nonneg-
ative if either a = 0 or its first nonzero component is positive. In this case, we write
a � 0. If a is nonzero and lexicographically nonnegative, we say that a is lexicographi-
cally positive. In this case, we write a � 0. Sometimes, we also use the signs “�” and
“≺” with the obvious meanings. The set of lexicographically nonnegative k-tuples
forms a convex, albeit not closed, cone in R

k. A finite collection of n-dimensional
vectors (y1, y2, . . . , yk) for some positive integer k is said to be lexicographically non-
negative (positive), denoted (y1, y2, . . . , yk) � (�)0, if for each j = 1, . . . , n, the
k-dimensional tuple (y1

j , . . . , y
k
j ) is lexicographically nonnegative (positive).

For a given x0 ∈ R
n, the solution trajectory x(t, x0) of the CLS (2.5) does not

necessarily stay in the same piece as the initial state x0 for all sufficiently small
t > 0. To ensure the latter persistence property, we define the following sets: for all
i = 1, . . . ,m,

Yi ≡
{
x ∈ R

n
∣∣ (Cix,CiAix, . . . , CiA

n−1
i x

)
� 0

}
.(2.20)

Obviously, Yi is a convex, albeit not closed, cone in R
n; it bears a close connection

with the set Xi as described in the following result, whose proof is elementary and
thus omitted. In the result, we let cl denote the closure of a set.

Lemma 2.3. Assume that every matrix Ci has no zero rows. The following
statements hold for all i = 1, . . . ,m: (a) Yi ⊆ Xi; (b) intXi ⊆ Yi; (c) clYi = Xi; and
(d) Yi − Yi = Xi −Xi = R

n.
The next lemma characterizes the elements of the set Yi; it shows in particular

that the solution trajectory x(t, x0) stays in one piece, say Xi, for all t > 0 sufficiently
small if and only if x0 ∈ Yi.

Lemma 2.4. The three statements below are equivalent for any vector x0 ∈ R
n:

(a) x0 ∈ Yi;
(b) there exists a positive number ε such that x(t, x0) ∈ Xi for all t ∈ [0, ε];
(c) for some (equivalently, any) positive n-vector c = (c1, . . . , cn), there exists a

number μ0 > 0 such that
∑n−1

k=0 ck+1 μ
kAk

i x
0 ∈ Xi for all μ ∈ [0, μ0].

Proof. The equivalence of (a) and (b) is easy. We prove only the equivalence

of (a) and (c). Observe that (c) is equivalent to
∑n−1

k=0 ck+1 μ
k(CiA

k
i x

0)� � 0 for
each index � = 1, . . . ,mi and all μ ∈ [0, μ0]. Therefore, the positivity of c1, . . . , cn
and μ implies ((Cix

0)�, . . . , (CiA
n−1
i x0)�) � 0 for all indices � = 1, . . . ,mi. Hence

x0 ∈ Yi. Conversely, suppose (c) holds, but (a) does not. Then there exist an
index � ∈ {1, . . . ,mi} and an integer 0 ≤ k ≤ n − 1 such that (CiA

k
i x

0)� < 0 and

(CiA
j
ix

0)� = 0 for all j = 0, . . . , k − 1. Therefore, for sufficiently small μ > 0,∑n−1
k=0 ck+1μ

k(CiA
k
i x

0)� < 0. This contradicts (c).
In general, a given initial state x0 may be contained in multiple cones Xi and Yi.

This motivates the definition of the following index sets. Given ξ ∈ R
n, define

I(ξ) ≡ {i | ξ ∈ Xi} and J (ξ) ≡ {i | ξ ∈ Yi}.(2.21)

Basic relations between these sets are summarized in the following lemma.
Lemma 2.5. The following statements hold for any ξ ∈ R

n:
(a) a neighborhood N of ξ exists such that N ⊆

⋃
i∈I(ξ) Xi;

(b) J (ξ) ⊆ I(ξ);
(c) Aiξ = Ajξ if i, j ∈ I(ξ);
(d) Ak

i ξ = Ak
j ξ for all positive integers k if i, j ∈ J (ξ).

Proof. The proof is easy and omitted.
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With respect to the reverse-time system (2.8) where Ãi = −Ai, both sets

Y r
i ≡

{
x ∈ R

n | (Cix,CiÃix, . . . , CiÃ
n−1
i x ) � 0

}
and J r(ξ) ≡ { i | ξ ∈ Y r

i }

are not necessarily equal to the respective sets Yi and J (ξ) that are defined with
respect to the original forward-time system (2.5). Nevertheless, the forward-time
trajectory and the reverse-time trajectory are equal in any interval. In particular, if
i ∈ J r(x(t∗, ξ)), where t∗ > 0, then there exists ε > 0 such that Cix(t, ξ) � 0 for all
t ∈ [t∗ − ε, t∗].

3. Non-Zeno property of CLSs. In the hybrid systems literature, the occur-
rence of an infinite number of mode transitions within a finite time interval is called
the Zeno behavior with reference to the ancient Greek philosopher Zeno’s paradoxes.1

Our goal in this section is to show that the CLS does not exhibit such behavior. At
the end of the section, we will compare the main result specialized to the LCS with
those obtained in [33].

Definition 3.1. The PA system (2.1) is said to satisfy the (forward and back-
ward) non-Zeno property if for any x0 ∈ R

n and any t ′ ≥ 0, there exist ε± > 0 and
Xi± ∈ Ξ such that x(t, x0) ∈ Xi+ for all t ∈ [t ′, t ′ +ε+] (forward-time non-Zeno) and,
for t ′ > 0, x(t, x0) ∈ Xi− for all t ∈ [t ′ − ε−, t

′] (backward-time non-Zeno).
(Note: the backward-time non-Zeno property is not defined at the initial time

t ′ = 0; since the trajectory x(t, x0) is in principle defined only for t � 0, in the
backward-time non-Zeno property at the time t ′ > 0, the scalar ε− > 0 is taken to
be less than t ′.)

The following result shows that the backward non-Zeno property of the forward-
time CLS (2.5) is equivalent to the forward non-Zeno property of the reverse-time
CLS (2.8). It allows us to focus our attention on the forward non-Zeno property
subsequently.

Proposition 3.2. The system (2.5) has the backward non-Zeno property if and
only if the system (2.8) has the forward non-Zeno property.

Proof. Suppose that (2.5) has the backward non-Zeno property. Let x0 ∈ R
n and

t ′ � 0 be given. Consider the reverse-time trajectory x r(t, x0) beginning at x0 and
terminating at a state ξ0 ≡ x r(T, x0) at time T > t ′. We then have x r(t ′, x0) =
x(T − t ′, ξ0). It follows by the backward non-Zeno property of the forward CLS (2.5)
that an ε > 0 and an Xi− exist such that x(t, x0) ∈ Xi− for all t ∈ [T − t ′ − ε, T − t ′].

Hence x r(t̃, x0) = x(T − t̃, ξ0) ∈ Xi− for all t̃ ∈ [t ′, t ′ + ε]. Therefore, the system (2.8)
has the forward non-Zeno property. The converse can be proved similarly.

The next lemma is the first step in showing that the CLSs do not have the Zeno
behavior.

Lemma 3.3. The following three statements are equivalent.
(a) The CLS (2.5) satisfies the forward non-Zeno property.
(b) ∪m

i=1 Yi = R
n.

(c) For every ξ ∈ R
n, J (ξ) �= ∅.

Proof. Suppose (a) holds. Since for an arbitrary x0 ∈ R
n, there exist an ε > 0

and a piece Xi such that x(t, x0) ∈ Xi for all t ∈ [0, ε], we have x0 ∈ Yi by Lemma 2.4.
Thus R

n ⊆ ∪m
i=1Yi, which clearly yields (b). For the converse, let x0 ∈ R

n and t ′ � 0
be given. By (b), the vector ξ ≡ x(t ′, x0) belongs to some Yi+ . Hence Lemma 2.4
implies the existence of ε+ > 0 such that x(t, ξ) = x(t ′+t, x0) ∈ Xi+ for all t ∈ [0, ε+].
Thus (a) and (b) are equivalent. The equivalence of (b) and (c) is clear.

1The most well known of these four paradoxes dealing with counterintuitive aspects of space and
time is Achilles and the turtle.
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We need another technical lemma in order to prove the main result of this section.
Lemma 3.4. Let ξ ∈ R

n be arbitrary. For any polynomial p : R → R
n with

p(0) = ξ, there exists i ∈ I(ξ) such that p(μ) ∈ Xi for all sufficiently small μ > 0.
Proof. Let p(μ) be a polynomial satisfying p(0) = ξ. For each index i ∈ I(ξ),

there are only three possible cases:
(i) p(μ) ∈ Xi for all sufficiently small μ > 0;
(ii) p(μ) �∈ Xi for all sufficiently small μ > 0;
(iii) there exists an infinite sequence of positive scalars {μk} all distinct and con-

verging to zero as k ↑ ∞ such that, for all k = 1, 2, . . . , p(μ2k−1) ∈ Xi and
p(μ2k) �∈ Xi.

If the claim of the lemma does not hold, then for each index i ∈ I(ξ) either (ii) or
(iii) must hold. We claim that (iii) must hold at least for one i ∈ I(ξ) in this case.
To show this, it is enough to prove that (ii) cannot hold for all i ∈ I(ξ). Suppose, on
the contrary, that (ii) holds for all i ∈ I(ξ). Then, one gets p(μ) �∈ ∪i∈I(ξ)Xi for all
sufficiently small μ > 0. This, however, contradicts part (a) of Lemma 2.5. Therefore,
there exists i ∈ I(ξ) such that (iii) holds. Without loss of generality, we may assume
that the sequence {μk} is strictly decreasing. For each k, since p(μ2k) �∈ Xi, there
exists an index �k such that (Cip(μ2k))�k < 0. Since there are only finitely many such
indices �k, there exists an index �0 such that (Cip(μ2k))�0 < 0 for infinitely many
k’s. Without loss of generality, we may assume that (Cip(μ2k))�0 < 0 for all k. Since
(Cip(μ2k−1))�0 � 0, it follows that for all k, there exists μ̄k ∈ [μ2k−1, μ2k) such that
(Cip(μ̄k))�0 = 0. Since the μ̄k’s are all distinct (because the sequence {μk} is strictly
decreasing) and (Cip(μ))�0 is a polynomial in μ with finitely many roots, we have
(Cip(μ))�0 ≡ 0 for all μ. This is a contradiction.

With the help of the last two lemmas, we can now formally state and prove the
absence of Zeno behavior in the CLS.

Theorem 3.5. The CLS (2.5) has the non-Zeno property; i.e., ∪m
i=1Yi = R

n =
∪m
i=1Y r

i .
Proof. In view of Proposition 3.2, it suffices to show that any CLS has the forward

non-Zeno property. In turn, by Lemma 3.3, it is enough to show that ∪m
i=1Yi = R

n.
Take any ξ ∈ R

n. Set η0 = ξ and I0 = I(ξ). The continuity implies that Aiη0 = Ajη0

for all i, j ∈ I0. Define

I1 ≡ {i ∈ I0 | η0 + μη1 ∈ Xi ∀ sufficiently small μ > 0},

where η1 ≡ Aiη0 for any i ∈ I0. Lemma 3.4 guarantees that I1 �= ∅. Note that

Ai(η0 + μη1) = Aj(η0 + μη1)(3.1)

for all i, j ∈ I1 and for all sufficiently small μ > 0. Since I1 ⊆ I0, (3.1) implies that
Aiη1 = Ajη1 for all i, j ∈ I1. Define

I2 ≡ {i ∈ I0 | η0 + μη1 + μ2η2 ∈ Xi ∀ sufficiently small μ > 0},

where η2 ≡ Aiη1 for any i ∈ I1. Again, Lemma 3.4 guarantees that this set is
nonempty. We claim that I2 ⊆ I1. To see this, let i ∈ I2. We need to show that
Ci(η0 +μη1) � 0 for all μ > 0 sufficiently small. Since i ∈ I2, we must have Ciη0 � 0.
If � is an index such that (Ciη0)� = 0, then we must have (Ciη1)� � 0. Hence the claim
holds. Therefore, for all i, j ∈ I2, we have Ai(η0 +μη1 +μ2η2) = Aj(η0 +μη1 +μ2η2)
for all μ > 0 sufficiently small. Since I2 ⊆ I1, we deduce Aiη2 = Ajη2. Next, define

I3 ≡ {i ∈ I0 | η0 + μη1 + μ2η2 + μ3η3 ∈ Xi ∀ sufficiently small μ > 0},
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where η3 ≡ Aiη2 for any i ∈ I2. In a similar fashion, we can show that I3 ⊆ I2 and
Aiη3 = Ajη3 for all i, j ∈ I3. Continuing this process, we can eventually define In−1,
which is nonempty and is contained in In−2 ⊆ · · · ⊆ I1 ⊆ I0. We claim that i ∈ In−1

implies that ξ ∈ Yi. To see this, note that

η0 + μη1 + · · · + μn−1ηn−1 = ξ + μAiξ + · · · + μn−1An−1
i ξ

for any i ∈ In−1 because of the nested inclusions of the index sets Ij for j =

0, 1, . . . , n − 1. Hence, i ∈ In−1 implies that
∑n−1

k=0 μ
kAk

i ξ ∈ Xi for all μ > 0 suf-
ficiently small; thus condition (c) of Lemma 2.4 is satisfied with c being the vector of
all ones. Consequently, ξ ∈ Yi.

The non-Zeno property is closely related to the boundedness of the number of
“mode transitions” defined as follows.

Definition 3.6. Let x(t, x0) be a solution trajectory of the CLS (2.5) over a time
interval [0, T ], T > 0, and let t∗ ∈ (0, T ). We say that t∗ is not a switching time if
there exist i ∈ {1, . . . ,m} and ε > 0 such that x(t, x0) ∈ Xi for all t ∈ [t∗ − ε, t∗ + ε];
otherwise, we say that t∗ is a switching time, and that the CLS has a mode transition
or mode switching at t∗.

With this definition, we easily obtain the following result from the non-Zeno
property of the CLS. The proof is by a compactness argument and resembles that of
Proposition 8 in [33].

Theorem 3.7. Let x(t, x0) be a solution trajectory of the CLS (2.5) on an open
time interval containing [0, T ]. Then there is a finite number of switching times in
[0, T ]. Hence, any such trajectory x(•, x0) is a continuous, piecewise analytic function
on [0, T ].

Proof. See the cited proposition for a proof of the assertion about switching times.
To prove the piecewise analyticity assertion, it suffices to note that if x(t, x0) ∈ Xj for
some j and all t in a subinterval [ ti−1, ti ], where ti−1 and ti are any two consecutive
switching times, then x(t, x0) = eAj(t−ti−1)x(ti−1, x

0) for all t in this subinterval.
Hence x(t, x0) is an analytic function for t ∈ (ti−1, ti). Since there are finitely many
such subintervals, the piecewise analyticity of x(•, x0) follows.

For the bimodal system (2.9), we can say more; see Proposition 5.3. For now, we
specialize Theorem 3.7 to the CLS (2.18), obtaining the following corollary.

Corollary 3.8. Let C be given by (2.19). Assume that BSOL(C, Cx,D) is a
singleton for all x ∈ R

n. For every x0 ∈ R
n and T > 0, there exist a pair of functions

(z, λ) : [0, T ] �→ C × R
r
+ with Bz(t) being continuous, a partition

0 = t0 < t1 < · · · < tN−1 < tN = T(3.2)

of the interval [0, T ], and index subsets αj ⊆ {1, . . . , r} each with complement ᾱj for
j = 1, . . . , N , such that on each subinterval [tj , tj+1], the triple (x(t, x0), z(t), λ(t))
satisfies the linear differential algebraic equation

ẋ(t, x0) = Ax(t, x0) + Bz(t),

0 = Cx(t, x0) + Dz(t) −GTλ(t),

0 = Gαj•z(t) and λᾱj
(t) = 0.

It is interesting to compare the above corollary with the non-Zenoness results in
[33], which address only the LCS:

ẋ = Ax + Bz and 0 � z ⊥ Cx + Dz � 0.
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There are some obvious similarities and subtle differences that are worth noting. The
most obvious similarity is that all the results assert the finite number of switch times
of some kind. The major difference lies in the treatment of the algebraic variable z.
In Corollary 3.8, which is based on a hybrid system approach, z is treated implicitly;
whereas in the treatment of [33], which originates from the P-matrix case and focuses
on the fundamental triple of index sets

α(t) ≡ { j | zj(t) > 0 = (Cx(t, x0) + Dz(t) )j },
β(t) ≡ { j | zj(t) = 0 = (Cx(t, x0) + Dz(t) )j },
γ(t) ≡ { j | zj(t) = 0 < (Cx(t, x0) + Dz(t) )j },

(3.3)

the switch times are defined with regard to a given trajectory z(t). As a result of
this difference in the points of view, the former corollary asserts the existence of a
trajectory z(t) satisfying the specified switching property; in contrast, the results in
[33] start with a fixed but arbitrary trajectory z(t) and establish the finite number of
switch times for the pair (x(t, x0), z(t)). The latter treatment has a price associated
with it, namely, a restriction placed on the triple (B,C,D); such a restriction is not
needed here. In the special case where D is a P-matrix (thus the trajectory z(t)
is unique), Theorem 9 in [33] is stronger than Corollary 3.8 here (for the LCS) in
that the former asserts the constancy of the triple of index sets (α(t), β(t), γ(t)) on
the subintervals, whereas the latter pays no attention to the degenerate index set
β(t). As it is well known from finite-dimensional complementarity theory [14], the
elements of β(t) are most critical when one is interested in the sensitivity analysis of
the system subject to parameter perturbations. The detailed exploration of this issue
in a dynamic setting is beyond the scope of the present paper.

Not surprisingly, we can also establish the constancy of index sets for the CLS
(2.5) similar to that for the P-matrix case of the LCS. We first establish the following
proposition that pertains to an individual state.

Proposition 3.9. Let x(t, x0) be a solution trajectory of the CLS (2.5) over a
time interval [0, T ]. The following two statements hold.

(a) For every t∗ ∈ [0, T ), there exists ε+ > 0 such that J (x(t, x0)) = J (x(t∗, x
0))

for all t ∈ [t∗, t∗ + ε+].
(b) For every t∗ ∈ (0, T ], there exists ε− > 0 such that J (x(t, x0)) = J r(x(t∗, x

0))
for all t ∈ [t∗ − ε−, t∗).

Proof. We prove only statement (a); the proof of (b) is similar. Write ξ ≡
x(t∗, x

0). For each i ∈ J (ξ), Lemma 2.4 implies that there exist εi > 0 and Xi ∈ Ξ
such that x(t, x0) ∈ Xi for all t ∈ [t∗, t∗ + εi]. Hence x(t, x0) ∈ Yi or, equivalently, i ∈
J (x(t, x0)) for all t ∈ [t∗, t∗ + εi/2]. By letting ε+ ≡ min1�i�|J (ξ)| εi/2, where |J (ξ)|
denotes the cardinality of the set J (ξ), it follows that J (ξ) ⊆ J (x(t, x0)) for all t ∈
[t∗, t∗+ε+]. Conversely, consider an index j �∈ J (ξ). If (Cjξ, CjAiξ, . . . , CjA

n−1
i ξ) � 0

for some i ∈ J (ξ), then Cjx(t, x0) = Cje
Ai(t−t∗)ξ � 0 for all t � t∗ sufficiently near t∗.

Hence j ∈ J (ξ), which is a contradiction. Thus, (Cjξ, CjAiξ, . . . , CjA
n−1
i ξ) �� 0 for

all i ∈ J (ξ). Hence, an index �i exists such that (Cjξ, CjAiξ, . . . , CjA
n−1
i ξ)�i ≺ 0. By

the non-Zenoness property, ξ ∈ Yi0 for some i0 ∈ J (ξ), which implies that x(t, x0) =
eAi0 (t−t∗)ξ for all t > t∗ sufficiently near t∗. Hence Cjx(t, x0) = Cje

Ai0 (t−t∗)ξ for
all such t. Since the tuple (Cjξ, CjAi0ξ, . . . , CjA

n−1
i0

ξ)�i0 is nonzero and its first

nonzero component is negative, it follows that (Cjx(t, x0))�i0 < 0 for all t > t∗
sufficiently near t∗. Hence j �∈ J (x(t, x0)) for all such t. Consequently, we must have
J (ξ) ⊇ J (x(t, x0)), and thus J (ξ) = J (x(t, x0)), for all t ∈ [t∗, t∗ + ε+], provided
that ε+ > 0 is further restricted if necessary.
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Extending the above proposition to a compact interval and using the reverse-time
trajectory (2.8), we have the following result.

Corollary 3.10. Let x(t, x0) be a solution trajectory of the CLS (2.5) on an
open time interval containing [0, T ]. There exists a partition (3.2) of the interval [0, T ]
such that for every i = 0, 1, . . . , N − 1, J (x(t, x0)) is a constant for all t ∈ [ti, ti+1).

Proof. By Proposition 3.9, we deduce that for every t ∈ [0, T ], there exists
εt > 0 such that J (x(t ′, x0)) = J (x(t, x0)) for every t ′ ∈ [t, t+ εt] and J (x(t̃, x0)) =
J r(x(t, x0)) for every t̃ ∈ [t− εt, t). We can now employ the same covering argument
as in [33, Proposition 8] to complete the proof of the corollary.

Switching times can also be expressed in terms of forward-time and backward-time
index sets shown as follows.

Proposition 3.11. Let x(t, x0) be a solution trajectory of the CLS (2.5). Then
a time t∗ > 0 is a switching time if and only if J (x(t∗, x

0)) ∩ J r(x(t∗, x
0)) = ∅.

Proof. “Sufficiency.” Suppose J (x(t∗, x
0)) ∩ J r(x(t∗, x

0)) = ∅ but t∗ is not a
switching time. Then by Definition 3.6, there exist i ∈ {1, . . . ,m} and ε > 0 such that
x(t, x0) ∈ Xi for all t ∈ [t∗ − ε, t∗ + ε]. This implies that x(t∗, x

0) ∈ Yi ∩Y r
i by taking

derivatives of the forward-time trajectory at t∗ and of the reverse-time trajectory at
t∗, respectively. Thus i ∈ J (x(t∗, x

0))∩J r(x(t∗, x
0)). This results in a contradiction.

“Necessity.” Suppose t∗ is a switching time but J (x(t∗, x
0))∩J r(x(t∗, x

0)) �= ∅.
Let i ∈ J (x(t∗, x

0)) ∩ J r(x(t∗, x
0)). Then x(t∗, x

0) ∈ Yi ∩ Y r
i . By Lemma 2.4 and

the reverse-time argument, we deduce the existence of ε > 0 such that x(t, x0) ∈ Xi

for all t ∈ [t∗ − ε, t∗ + ε]. This contradicts the assumption that t∗ is a switching
time.

One interesting observation about the CLS (2.5) is that a state trajectory may
have boundary crossing, i.e., crossing a boundary of one cone and entering another
cone, at a nonswitching time in the sense of Definition 3.6. We illustrate this obser-
vation by the following example.

Example 3.12. Consider a 3-dimensional CLS with the polyhedral subdivision:

X1 = R− × R
2, X2 = R+ × R × R+, X3 = R+ × R × R−,

where R± denote the nonnegative and nonpositive rays on the real line, respectively,
and

A1 = A2 = A3 = A =

⎡⎣1 0 0
0 0 0
0 1 0

⎤⎦ .
It is easy to show that for any x0 ∈ R

3, x(t, x0) = eAtx0 =
(
x0

1 e
t, x0

2, x
0
3 +x0

2t
)

for all

t. Now consider x0 =
(
0, 1,−1

)
. Thus x(t, x0) =

(
0, 1, t − 1

)
. Hence, x(t, x0) ∈ X1

for all t and x(t, x0) ∈ X2 for all t � 1, but x(t, x0) �∈ X2 for all t < 1. Consequently,
t∗ = 1 is not a switching time, but x(t, x0) crosses the boundary of X2 and X3 at
t∗ = 1.

We further illustrate this property via the index sets. Recall from Proposition 3.9
that for any given t∗, the index set J (x(t, x0)) remains constant for all t sufficiently
close to t∗, both in the forward-time direction and in the backward-time direction.
Note that the two constant index sets J (x(t∗, x

0)) and J r(x(t∗, x
0)) may not be

equal in general. In fact, expressing in terms of these index sets for this example,
we have J r(x(1, x0)) = {1, 3} and J (x(1, x0)) = {1, 2}. Notice that J r(x(1, x0)) ∩
J (x(1, x0)) = { 1 }, but J r(x(1, x0)) �= J (x(1, x0)).
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The following proposition, however, shows that the LCS with the P-property,
which is a special class of CLSs discussed previously, does not have the problem shown
above and therefore exhibits relatively “simpler” switching behavior than general
CLSs.

Proposition 3.13. Consider the LCS (2.17) with the P-property. If, for any
t∗ > 0, J (x(t∗, x

0)) ∩ J r(x(t∗, x
0)) is nonempty, then J (x(t∗, x

0)) = J r(x(t∗, x
0)).

In other words, if t∗ is not a switching time, then J (x(t∗, x
0)) = J r(x(t∗, x

0)).
Proof. It is shown in [33] that the LCS satisfying the P-property possesses the

strong non-Zenoness at each state; i.e., for any t∗, there exist εt > 0 and two triples
of index sets, (α+, β+, γ+) and (α−, β−, γ−), such that(

α(t), β(t), γ(t)
)

= (α−, β−, γ−) ∀ t ∈ [t∗ − εt, t∗),(
α(t), β(t), γ(t)

)
= (α+, β+, γ+) ∀ t ∈ (t∗, t∗ + εt],

where the index triple (α, β, γ) is defined in (3.3) for the associated LCP. For no-
tational convenience, we denote each complementary cone in (2.17) by Xδ = {x ∈
R

n | Cδ x � 0}, where

Cδ ≡
[

−D−1
δδ 0

−Dδ̄δ(Dδδ)
−1 Iδ̄δ̄

][
Cδ•

Cδ̄•

]
and δ is a subset of {1, . . . ,m}. By the uniqueness of the solution of the LCS, it is
clear that for all t ∈ [t∗ − εt, t∗), x(t, x0) is only in the cones Xδ’s with δ = α− ∪ β1

−
and δ̄ = γ− ∪

(
β− \ β1

−
)
, where β1

− is a subset of β−. Hence,

J r(x(t∗, x
0)) = { δ = α− ∪ β1

− | β1
− ⊆ β− }.(3.4)

Similarly, we have

J (x(t∗, x
0)) = { δ = α+ ∪ β1

+ | β1
+ ⊆ β+ }.(3.5)

Let δi ∈ J (x(t∗, x
0)) ∩ J r(x(t∗, x

0)) with Xδi = {x ∈ R
n | Cδi x � 0} and ẋ = Aδix

being the corresponding cone and dynamics, respectively. By the time-continuity
of the state trajectory, it is easy to verify that there exists an ε′ > 0 such that
x(t, x0) ∈ Xδi for all t ∈ [ t∗ − ε ′, t∗ + ε ′ ]. Letting ξ∗ = x(t∗, x

0), we have(
(Cδiξ

∗)α− , (Cδi(−Aδi)ξ
∗)α− , . . . , (Cδi(−Aδi)

n−1ξ∗)α−

)
� 0,(

(Cδiξ
∗)β− , (Cδi(−Aδi)ξ

∗)β− , . . . , (Cδi(−Aδi)
n−1ξ∗)β−

)
= 0,(

(Cδiξ
∗)γ− , (Cδi(−Aδi)ξ

∗)γ− , . . . , (Cδi(−Aδi)
n−1ξ∗)γ−

)
� 0,

which further implies that(
(Cδiξ

∗)α− , (Cδi(Aδi)ξ
∗)α− , . . . , (Cδi(Aδi)

n−1ξ∗)α−

)
�= 0,(

(Cδiξ
∗)β− , (Cδi(Aδi)ξ

∗)β− , . . . , (Cδi(Aδi)
n−1ξ∗)β−

)
= 0,(

(Cδiξ
∗)γ− , (Cδi(Aδi)ξ

∗)γ− , . . . , (Cδi(Aδi)
n−1ξ∗)γ−

)
�= 0.

The second equality shows that β+ ⊇ β−, and the first and third inequalities show
that β+ ⊆ β−. Hence β+ = β−. Moreover, we deduce from δi ∈ J (x(t∗, x

0)) that(
(Cδiξ

∗)α− , (Cδi(Aδi)ξ
∗)α− , . . . , (Cδi(Aδi)

n−1ξ∗)α−

)
� 0,(

(Cδiξ
∗)γ− , (Cδi(Aδi)ξ

∗)γ− , . . . , (Cδi(Aδi)
n−1ξ∗)γ−

)
� 0.
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Thus, by the uniqueness of the solution pair
(
x(t), z(t)

)
at each t, we deduce

that there is an ε+ > 0 such that zα−(t) > 0 and (Cx(t) + Dz(t))γ− > 0 for all
t ∈ (t∗, t∗ + ε+]. This suggests α− ⊆ α+ and γ− ⊆ γ+. Since zβ−(t) = zβ+(t) =(
Cx(t)+Dz(t)

)
β−

=
(
Cx(t)+Dz(t)

)
β+

= 0 for all t ∈ [t∗, t∗+ε+], we must have α+ ≡
α− and γ+ ≡ γ−. By (3.4) and (3.5), we conclude that J (x(t∗, x

0)) = J r(x(t∗, x
0)).

The second statement thus easily follows from Proposition 3.11.

4. Observability of CLSs. In this section, we treat another fundamental prop-
erty of the CLS, namely, observability with respect to a linear output. In the recent
paper [24], we have treated this property rather extensively for the LCS (2.15); the
treatment herein extends the previous analysis in several major ways. One, we deal
with a general conewise linear system; two, Theorem 4.5 when specialized to the LCS
closes a gap that was unresolved in [24]; three, we also treat other observability notions
in detail. To be fair to [24], the approach used there is based on a general result for
a nonlinear ODE with a nondifferentiable right-hand side and is applicable to nonlin-
ear systems such as the nonlinear complementarity system; in contrast, the approach
used below takes full advantage of the (piecewise) linear structure of the CLS. Most
importantly, the notion of lexicographic ordering that has played a fundamental role
in [24] remains the key to the present extended treatment.

Throughout the rest of this paper, let H ∈ R
r×n be a given matrix that induces

the linear output Hx(t, ξ) associated with the solution trajectory x(t, ξ) of (2.5).
With respect to this matrix H, we formally introduce the observability concepts (see
Definitions 4.2 and 4.3) to be analyzed subsequently, all of which are based on the
following indistinguishability definition, which is classical in systems theory.

Definition 4.1. We say that a pair of states (ξ, η) ∈ R
n+n is

• short-time indistinguishable if ε > 0 exists such that Hx(t, ξ) = Hx(t, η) for
all t ∈ [0, ε];

• T -time indistinguishable for a given T > 0 if Hx(t, ξ) = Hx(t, η) for all
t ∈ [0, T ];

• long-time indistinguishable if Hx(t, ξ) = Hx(t, η) for all t � 0.
Clearly, long-time indistinguishability ⇒ T -time indistinguishability ⇒ short-time
indistinguishability for any pair of states.

Definition 4.2. We say that a state ξ ∈ R
n is

• short-time locally observable if there exists a neighborhood N of ξ such that
no pair (ξ, η) with η ∈ N \ {ξ} is short-time indistinguishable;

• short-time globally observable if there exists no state η �= ξ such that the pair
(ξ, η) is short-time indistinguishable;

• T -time locally observable for a given T > 0 if there exists a neighborhood N
of ξ such that no pair (ξ, η) with η ∈ N \ {ξ} is T -time indistinguishable;

• T -time globally observable for a given T > 0 if there exists no state η �= ξ
such that the pair (ξ, η) is T -time indistinguishable;

• long-time locally observable if there exists a neighborhood N of ξ such that
no pair (ξ, η) with η ∈ N \ {ξ} is long-time indistinguishable;

• long-time globally observable if there exists no state η �= ξ such that the pair
(ξ, η) is long-time indistinguishable.

Clearly, the following implications hold for any state ξ ∈ R
n:

short-time global observability ⇒ short-time local observability
⇓ ⇓

T -time global observability ⇒ T -time local observability
⇓ ⇓

long-time global observability ⇒ long-time local observability.
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The above definitions pertain to individual states. At the system level, we have
the following concepts. For simplicity, we define only the short-time version of the
concepts.

Definition 4.3. The CLS (2.5) is said to be
• short-time locally observable if all states are short-time locally observable.
• short-time globally observable if all states are short-time globally observable.

Recall that for a given pair of matrices M ∈ R
n×n and N ∈ R

m×n, the un-
observable space of (N,M), denoted O(N,M), is the set of vectors ξ ∈ R

n such
that NM jξ = 0 for all j = 0, 1, 2, . . . . By the well-known Cayley–Hamilton theo-
rem in linear algebra, it follows that ξ ∈ O(N,M) if and only if NM jξ = 0 for all
j = 0, 1, 2, . . . , n − 1. Elements of the space O(N,M) are said to be unobservable
with respect to the pair (N,M). If O(N,M) consists only of the zero vector, then
(N,M) is called an observable pair. We remark that a vector ξ ∈ O(H,A) if and
only if for every t∗ � 0, a scalar ε∗ > 0 exists such that HeA(t−t∗)x(t∗, ξ) = 0 for all
t ∈ [t∗, t∗ + ε∗]. More generally, for any two vectors u and v, any scalar ε > 0, and
two square matrices A and B,{
HeA(t−t∗)u = HeB(t−t∗)v ∀t ∈ [t∗, t∗ + ε]

}
⇔
[
HAku = HBkv ∀k = 0, . . . , n− 1

]
.

This follows easily by differentiating the expression involving the exponential functions
and then substituting t = t∗. This equivalence allows one to check the left-hand
condition, which involves a continuum of times t, by a finite set of linear equations.

4.1. Short-time observability. We begin our investigation of various observ-
ability properties with the discussion of state short-time observability.

Theorem 4.4. A state ξ is short-time globally observable for the CLS (2.5) if
and only if there exists no triple (η, i, j) satisfying η �= ξ, i ∈ J (η), j ∈ J (ξ), and(

η

ξ

)
∈ O

([
H −H

]
,

[
Ai 0

0 Aj

])
.(4.1)

Proof. Suppose one such triple (η, i, j) exists. From Lemma 2.4, we know that
there exists a positive number ε such that x(t, η) and x(t, ξ) lie in the cones Xi and Xj

for all t ∈ [0, ε], respectively. Therefore, x(t, η) = exp(Ait)η and x(t, ξ) = exp(Ajt)ξ
on the same interval. This, together with (4.1), implies that Hx(t, ξ) = Hx(t, η) for
all t ∈ [0, ε]. Hence, the pair (ξ, η) is short-time indistinguishable. Consequently, ξ is
not short-time globally observable. Conversely, suppose that ξ is short-time globally
unobservable. There must exist a state η �= ξ such that the pair (ξ, η) is short-
time indistinguishable, i.e., Hx(t, ξ) = Hx(t, η) on an interval [0, ε′] for some ε′ > 0.
Let η ∈ Yi and ξ ∈ Yj for some i, j ∈ {1, . . . ,m}. By Lemma 2.4, there exists a
positive number ε such that H exp(Ait)η = H exp(Ajt)ξ on the interval [0, ε]. Taking
derivatives and evaluating at t = 0 show that the membership (4.1) holds. This leads
to a contradiction.

Toward the characterization of short-time local observability, we define, for each
i = 1, . . . ,m and each subset L of {1, . . . ,mi},

Yi,L ≡
{
x
∣∣ ((Cix)�, (CiAix)�, . . . , (CiA

n−1
i x)�

)
� 0, ∀ � ∈ L

}
⊇ Yi.

The equality Yi,L = Yi holds when L = {1, . . . ,mi}; by convention, we let Yi,∅ =
R

n. To obtain a local version of Theorem 4.4, we need to define several index sets
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associated with a given state ξ ∈ R
n. The first one is

K(ξ) ≡
{
i ∈ I(ξ)

∣∣ ( ξ
ξ

)
∈ O

([
H −H

]
,

[
Ai 0
0 Aj

])
for some j ∈ J (ξ)

}
=
{
i ∈ I(ξ)

∣∣ ∃ j ∈ J (ξ) such that HAk
i ξ = HAk

j ξ ∀ k � 0
}
.

By part (d) of Lemma 2.5 and the above definition, the following inclusions are clear:

J (ξ) ⊆ K(ξ) ⊆ I(ξ) ∀ ξ ∈ R
n.

As it turns out (see Theorem 4.5), the pieces Xi for i �∈ K(ξ) play no role in the
short-time local observability of ξ. Indeed, the set K(ξ) is the key to a complete
characterization of the short-time local observability of ξ; this set was not discovered
in [24] for the LCS.

For each i ∈ I(ξ), define the index set Ii0(ξ) ≡ {� | (Ciξ)� = 0} ⊆ {1, . . . ,mi}.
Note that if Ii0(ξ) = ∅ (a case which we call nondegenerate), we must have ξ ∈ intXi

by (2.7), which implies I(ξ) = J (ξ) = K(ξ) = {i}. If J (ξ) is a proper subset of K(ξ),
we define, for each i ∈ K(ξ) \ J (ξ),

ϑi(ξ) ≡ { �
∣∣ ((Ciξ)�, (CiAiξ)�, . . . , (CiA

n−1
i ξ )�

)
≺ 0 },

which must be nonempty. Since K(ξ) ⊆ I(ξ), we have Ciξ � 0 for all i ∈ K(ξ) \J (ξ),
which implies (Ciξ)ϑi(ξ) = 0; thus ϑi(ξ) ⊆ Ii0(ξ). For each � ∈ ϑi(ξ), we let μi

� be the

first nonnegative integer k such that (CiA
k
i ξ)� < 0. We must have 1 ≤ μi

� ≤ n− 1 for
all � ∈ ϑi(ξ). Let ϑi(ξ) be the complement of ϑi(ξ) in {1, . . . ,mi}. Clearly,

ξ ∈ Yi,ϑi(ξ)
=
{
x
∣∣ ((Cix)�, (CiAix)�, . . . , (CiA

n−1
i x)�

)
� 0 ∀ � ∈ ϑi(ξ)

}
.

Finally, we define

Ỹi,ϑi(ξ) ≡
{
x
∣∣ ((Cix)�, (CiAix)�, . . . , (CiA

μi
�−1

i x)�
)
� 0 ∀ � ∈ ϑi(ξ)

}
for each i ∈ K(ξ) \ J (ξ). Note that 0 �∈ Ỹi,ϑi(ξ). Moreover, it is easy to see that the
following implication holds:

η ∈ Ỹi,ϑi(ξ) ⇔ ξ + τη ∈ Yi,ϑi(ξ) ∀ τ > 0 sufficiently small.(4.2)

With the above preparation, we are ready to establish a necessary and sufficient
condition for a given state of the CLS (2.5) to be short-time locally observable.

Theorem 4.5. A state ξ is short-time locally observable for the CLS (2.5) if and
only if

O(H,Ai) ∩ (Yi,Ii0(ξ) − ξ ) = { 0 } ∀ i ∈ J (ξ),

O(H,Ai) ∩ Ỹi,ϑi(ξ) ∩ (Yi,ϑi(ξ)
− ξ ) = ∅ ∀ i ∈ K(ξ) \ J (ξ).

(4.3)

Proof. “Sufficiency.” Suppose that the state ξ is not short-time locally observable.
Since ∪m

i=1Yi = R
n, by Lemma 2.5(a), there exist an index i ∈ I(ξ) and a sequence

{ξν} converging to ξ such that ξ �= ξν ∈ Yi and the pair (ξ, ξν) is short-time indis-
tinguishable for all ν. We claim that, for all ν sufficiently large, the nonzero vector
ην ≡ ξν − ξ violates one of the two conditions in (4.3). Let j ∈ J (ξ) such that ξ ∈ Yj .
By the proof of Theorem 4.4, we deduce that, for all ν,(

ξν

ξ

)
∈ O

([
H −H

]
,

[
Ai 0
0 Aj

])
.



CLS: NON-ZENONESS AND OBSERVABILITY 1785

By taking the limit ν → ∞, we get(
ξ
ξ

)
∈ O

([
H −H

]
,

[
Ai 0
0 Aj

])
.

Thus, i must belong to K(ξ). This implies that, for all nonnegative integers k,
HAk

i ξ
ν = HAk

j ξ = HAk
i ξ; thus ην belongs to O(H,Ai). Since ξ �= ξν ∈ Yi ⊆ Yi,Ii0(ξ),

we see that the first condition in (4.3) is violated if i ∈ J (ξ). Now suppose i belongs
to K(ξ)\J (ξ). To see that this contradicts the second condition in (4.3), it remains to

verify that ην ∈ Ỹi,ϑi(ξ) and ξν ∈ Yi,ϑi(ξ)
. The latter membership is obvious because

ξν ∈ Yi for all ν. To prove the former membership, suppose that an index �̄ ∈ ϑi(ξ)

exists satisfying ((Ciη
ν)�̄, (CiAiη

ν)�̄, . . . , (CiA
μi
�̄−1

i ην)�̄) � 0, where μi
�̄
is the first non-

negative integer k such that (CiA
k
i ξ)�̄ < 0 defined before. Since ((Ciξ)�̄, (CiAiξ)�̄, . . . ,

(CiA
μi
�̄−1

i ξ)�̄) = 0, we deduce that ((Ciξ
ν)�̄, (CiAiξ

ν)�̄, . . . , (CiA
μi
�̄−1

i ξν)�̄) � 0. Hence

(CiA
k
i ξ

ν)�̄ = 0 for all k = 0, 1, . . . , μi
�̄
− 1. But since (CiA

μi
�̄

i ξ)�̄ < 0, which implies

(CiA
μi
�̄

i ξν)�̄ < 0 for all ν sufficiently large, it follows that ((Ciξ
ν)�̄, (CiAiξ

ν)�̄, . . . ,

(CiA
μi
�̄

i ξν)�̄) ≺ 0, which contradicts ξν ∈ Yi.
“Necessity.” We show in what follows that the violation of either one of the

two conditions in (4.3) leads to a contradiction to short-time local observability of
ξ. Suppose that there exist an index i ∈ J (ξ) and a nonzero vector η ∈ O(H,Ai) ∩
(Yi,Ii0(ξ) − ξ). We have η + ξ ∈ Yi,Ii0(ξ). Since ξ ∈ Yi ⊆ Yi,Ii0(ξ) and Yi,Ii0(ξ) is
convex, it follows that ξ + τη ∈ Yi,Ii0(ξ) for all τ ∈ [0, 1]. Thus, for each such τ , there
exists ετ > 0 such that (Cie

Ait[ξ + τη])Ii0(ξ) ≥ 0 for all t ∈ [0, ετ ]. Since (Ciξ)j > 0
for all j ∈ {1, . . . ,mi} \ Ii0(ξ), it follows that (Cie

Ait[ξ + τη])j ≥ 0 for all such j and
all (t, τ) > 0 sufficiently small. Consequently, for every τ > 0 sufficiently small, there
exists ετ > 0 such that x(t, ξ+τη) = eAit[ξ+τη] for all t ∈ [0, ετ ]. Since η ∈ O(H,Ai),
we deduce Hx(t, ξ + τη) = Hx(t, ξ) for all such pairs (τ, t). Hence the pair (ξ + τη, ξ)
is short-time indistinguishable, contradicting the short-time local observability of ξ.

Next, suppose that a nonzero vector η ∈ O(H,Ai)∩ Ỹi,ϑi(ξ) ∩ (Yi,ϑi(ξ)
− ξ) exists

for some i ∈ K(ξ) \ J (ξ). By (4.2), we deduce that ξ + τη ∈ Yi,ϑi(ξ) for all τ > 0
sufficiently small. Moreover, since ξ + η ∈ Yi,ϑi(ξ)

and ξ ∈ Yi,ϑi(ξ)
, it follows that

ξ + τη ∈ Yi,ϑi(ξ)
for all τ ∈ [0, 1]. Consequently, ξ + τη ∈ Yi for all τ > 0 sufficiently

small. We can now apply the same argument as before to deduce a contradiction to
the short-time local observability of ξ.

The next result is an immediate corollary of Theorem 4.5 that pertains to a
nondegenerate state ξ ∈ intXi for some i. No proof is needed.

Corollary 4.6. A nondegenerate state ξ ∈ intXi is short-time locally observable
for the CLS (2.5) if and only if O(H,Ai) = {0}.

We apply Theorem 4.5 to the bimodal CLS (2.9) with the two pieces X1 =
{x|cTx � 0} and X2 = {x|cTx � 0}, and the two matrices A1 = A + bcT and
A2 = A. Let ξ ∈ R

n be arbitrary. The cases where cT ξ > 0 and cT ξ < 0 are cov-
ered by Corollary 4.6. We focus on the case where cT ξ = 0. In this case, we have
I(ξ) = {1, 2}, I10(ξ) = {1}, I20(ξ) = {2},

Y1,I10(ξ) =
{
x | ( cTx, cT (A + bcT )x, . . . , cT (A + bcT )n−1x ) � 0

}
= Y1

and

Y2,I20(ξ) = {x|(cTx, cTAx, . . . , cTAn−1x) � 0} = Y2.
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The tuple Y (ξ) ≡ ( cT ξ, cTAξ, . . . , cTAn−1ξ ) plays a central role in the following
corollary of Theorem 4.5.

Corollary 4.7. The following statements hold for the bimodal CLS (2.9).
(a) If Y (ξ) � 0, then ξ is short-time locally observable if and only if O(H,A +

bcT ) = {0}.
(b) If Y (ξ) ≺ 0, then ξ is short-time locally observable if and only if O(H,A) =

{0}.
(c) If Y (ξ) = 0, then ξ is short-time locally observable if and only if O(H,A +

bcT ) = {0} and O(H,A) = {0}.
Proof. It suffices to consider the case where cT ξ = 0. We prove (a) only as the

proofs of (b) and (c) are similar. Suppose Y (ξ) � 0, which implies J (ξ) = {1} and
ξ �∈ O(cT , A). It can be verified by the definition of Y1,I10(ξ) that, for any η ∈ R

n,
either ξ+τη ∈ Y1,I10(ξ) for all τ > 0 sufficiently small or ξ−τη ∈ Y1,I10(ξ) for all τ > 0
sufficiently small. Hence, for any linear subspace S of R

n, S ∩ (Y1,I10(ξ) − ξ) = {0} if
and only if S = {0}. From this observation, it follows that the first condition in (4.3)
is equivalent to

O(H,A + bcT ) ∩ (Y1,I10(ξ) − ξ ) = { 0 } ⇔ O(H,A + bcT ) = { 0 }.(4.4)

There are two subcases to consider: (i) b �∈ O(H,A) and (ii) b ∈ O(H,A). In subcase
(i), it is easy to show, using ξ �∈ O(cT , A), that there must exist a positive integer k
such that H(A + bcT )kξ �= HAkξ. This means that K(ξ) = J (ξ) = {1}. In subcase
(ii), we have H(A + bcT )kv = HAkv for all nonnegative integers k and all v ∈ R

n;
thus O(H,A + bcT ) = O(H,A), which further implies K(ξ) = {1, 2} and ϑ2(ξ) = ∅.
In both subcases, assertion (a) follows readily from Theorem 4.5 using (4.4), and

O(H,A) ∩ Ỹ2,ϑ2(ξ) = O(H,A) \ {0}.
Corollary 4.7 recovers Proposition 19 in [24], which was obtained by specializing a

theory for nonsmooth systems that in turn was based on a differential approach. The
purpose of including the above proof of Corollary 4.7 is to illustrate the application of
Theorem 4.5 in the case of a bimodal CLS. The corollary also identifies the key vector
Y (ξ) that was not explicitly employed in [24]. It follows from this corollary that if
both O(H,A) �= {0} and O(H,A + bcT ) �= {0}, then the bimodal CLS (2.9) has no
short-time locally observable state; see Theorem 4.9 below for a general result.

We can employ the state short-time local/global observability characterizations
to deduce some corresponding system short-time local/global observability results.
The first such result pertains to short-time global observability and requires no proof.

Theorem 4.8. The CLS (2.5) is short-time globally observable if and only if

O

([
H −H

]
,

[
Ai 0
0 Aj

]) ⋂
(Yi × Yj ) ⊆ { ( ξ, ξ ) | ξ ∈ R

n }(4.5)

for all i and j.
It turns out that the characterization of system short-time local observability is

quite simple, involving only linear subspace conditions that are easily verifiable.
Theorem 4.9. The CLS (2.5) is short-time locally observable if and only if

O(H,Ai) = {0}, i ∈ { 1, . . . ,m }.(4.6)

Proof. The sufficiency is clear. For the necessity, let ξ be an arbitrary interior
point of the cone Xi for each i = 1, . . . ,m. For such a vector, we have J (ξ) = I(ξ) =
K(ξ) = {i} and Yi,Ii0(ξ) = R

n. The necessity of (4.6) now follows readily.
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4.2. Finite verification. The characterizations of short-time observation beg
the question of whether the necessary and sufficient conditions in Theorems 4.4, 4.5,
and 4.8 can be verified by a finite procedure (it is obvious for Theorem 4.9). Note that
we are not concerned about the computational complexity of the procedure, knowing
that any such procedure is very likely to be exponential in the case of the LCS. We
begin with the first condition in (4.3).

For each i ∈ J (ξ) and each � ∈ Ii0(ξ) for a given ξ ∈ R
n, let μi

� be the observability
degree of the pair ((Ci)�•, Ai) at ξ (i.e., μi

� is the first positive integer k such that
(Ci)�•A

k
i ξ > 0); we set μi

� = n if (Ci)�•A
k
i ξ = 0 for all k. We claim that for each

i ∈ J (ξ),

O(H,Ai) ∩ (Yi,Ii0(ξ) − ξ) = {0} ⇔ O(H,Ai)
⋂⎛⎝ ⋂

�∈Ii0(ξ)

Y�
i,Ii0(ξ)

⎞⎠ = {0},(4.7)

where Y�
i,L ≡

{
v|((Ci)�•v, (Ci)�•Aiv, . . . , (Ci)�•A

μi
�−1

i v) � 0
}

for any L ⊆ {1, . . . ,mi}
and each � ∈ L. The claim (4.7) is a direct consequence of the first statement of
the following lemma; the second statement of the lemma is used in the subsequent
development (see Proposition 5.10).

Lemma 4.10. Let L ⊆ {1, . . . ,mi}, ξ ∈ Yi,L, and � ∈ L. It holds that
(a) v ∈ ∩ �∈LY�

i,L ⇔ ξ + τv ∈ Yi,L for all τ > 0 sufficiently small;

(b) for any v ∈ ∩�∈LY�
i,L, there exist τ0 > 0 and ε0 > 0 (possibly dependent on

τ0) such that
(
Cie

Ait[ξ + τv]
)
L � 0 for all (t, τ) ∈ [0, ε0] × (0, τ0].

Proof. The first statement is obvious, following from an argument similar to (4.2).
We next show the second statement. Consider the case where the vector v is nonzero
and μi

� < n for all �; the other cases can easily be shown in a similar fashion. For
each � ∈ L, v ∈

⋂
�∈L Y�

i,L implies that there exists an integer 0 � k � μ�
i − 1 such

that (CiA
k
i v)� > 0 and (CiA

j
iv)� = 0 for all j = 0, . . . , k − 1. Hence,

(
Cie

Ait[ξ + τv]
)
�
= τ

μi
�−1∑
s=k

(CiA
s
iv)�

s!
ts +

∞∑
j=μi

�

(CiA
j
i [ξ + τv])�
j!

tj .

The first summation is positive for all τ > 0 and t > 0 sufficiently small, and since

(CiA
μi
�

i ξ)� > 0, it follows that for some positive ε� and τ�, the second summation

∞∑
j=μi

�

(CiA
j
i [ξ + τv])�
j!

tj = tμ
i
�

{
(CiA

μi
�

i ξ)�
j!

+ O(t) + τ

[
(CiA

μi
�

i v)�
j!

+ O(t)

]}
� 0

for all (t, τ) ∈ [0, ε�]×(0, τ�]. Hence,
(
Cie

Ait[ξ+τv]
)
�
� 0 for all (t, τ) ∈ [0, ε�]×(0, τ�].

Finally, letting ε0 = min�∈L ε� and τ0 = min�∈L τ�, we obtain the desired result.
As explained in [24] in the context of the “semi-unobservable cones,” checking

the right-hand condition in (4.7) can be accomplished by solving finitely many linear
programs; hence so can the first condition in (4.3). Indeed, a vector v belongs to
Y�
i,Ii0(ξ)

if and only if either (Ci)�•A
k
i v = 0 for all k ∈ {0, 1, . . . , μi

� − 1} or there

exists k ′ ∈ {0, 1, . . . , μi
� − 1} such that (Ci)�•A

k
i v = 0 for all k ∈ {0, 1, . . . , k ′ − 1}

and (Ci)�•A
k ′

i v > 0. Hence, one can easily formulate finitely many linear inequality
systems to determine if the right-hand condition in (4.7) holds. A similar procedure
can be applied to check the conditions (4.1), (4.5), and the second condition in (4.3).
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4.3. T -time and long-time observability. It has been pointed out at the
beginning of section 4 that if a state ξ = x(0, ξ) is short-time locally observable, then
ξ is T -time locally observable for all T > 0, including T = ∞. The following result
extends this observation to the case where a certain state x(t, ξ) along the nominal
solution trajectory is short-time locally observable for some t ∈ (0, T ).

Proposition 4.11. Let 0 < T � ∞ and ξ ∈ R
n be given. If for some t0 in [0, T ),

the state x(t0, ξ) is short-time locally observable, then ξ is T -time locally observable.
Proof. The short-time local observability of the state x0 ≡ x(t0, ξ) means that

there exists a neighborhood Ñ of x0 such that for all x̃ ∈ Ñ ,

[Hx(t, x0) = Hx(t, x̃) ∀ t � 0 sufficiently small ] ⇒ x0 = x̃.

Since the CLS is an ODE with a globally Lipschitz continuous right-hand side, there
is a constant L > 0 such that ‖x(t, ξ)− x(t, ξ ′)‖ � eLt‖ξ − ξ ′‖ for all t > 0. Hence, a

neighborhood N0 of ξ exists such that x(t0, ξ
′) ∈ Ñ for all ξ ′ ∈ N0. Let ξ ′ ∈ N0 be

such that Hx(t, ξ) = Hx(t, ξ ′) for all t ∈ [0, T ]. Hence, we have, for all τ ∈ [0, T − t0],

Hx(τ, x0) = Hx(τ, x(t0, ξ)) = Hx(t0 + τ, ξ) = Hx(t0 + τ, ξ ′) = Hx(τ, x(t0, ξ
′)).

Therefore, it follows that x0 = x(t0, ξ) = x(t0, ξ
′). Hence by considering the reverse-

time system (2.8) starting at x0 and noting that both ξ and ξ ′ are states on this
reverse-time trajectory at time t0, we easily obtain ξ = ξ ′.

Proposition 4.11 can be used to show, via the example below, that T -time local
observability of a state does not imply short-time local observability of the given state.

Example 4.12. Consider the LCS(A,B,C,D) with the P-property where

A =

[
λ1 0
0 λ2

]
, B =

[
0 b12
0 0

]
, C =

[
1 0
1 1

]
, D =

[
1 −1
1 1

]
, H =

[
h1 0

]
with λ2 > λ1 > 0, and both b12 and h1 nonzero. As shown in (2.17), the LCS is in
the form of the CLS with four pieces:

X1 = {x ∈ R
2 | x1 ≥ 0, x1 + x2 ≥ 0}, X2 = {x ∈ R

2 | x1 ≤ 0, x2 ≥ 0},

X3 = {x ∈ R
2 | 2x1 + x2 ≤ 0, x2 ≤ 0}, X4 = {x ∈ R

2 | 2x1 + x2 ≥ 0, x1 + x2 ≤ 0},

which correspond to α = ∅, α = {1}, α = {1, 2}, α = {2} in (2.17), respectively, and
their respective state matrices are

A1 = A2 =

[
λ1 0
0 λ2

]
, A3 =

[
λ1 − 1

2 b12
0 λ2

]
, A4 =

[
λ1 −b12
0 λ2

]
.

Moreover, O(H,Ai) = span{(0, 1)} for i = 1, 2 and O(H,Ai) = {0} for i = 3, 4.
Consider ξ = (ξ1, ξ2) with ξ1 > 0 > ξ2 and ξ1 + ξ2 > 0. Since ξ ∈ intX1 and
O(H,A1) �= {0}, Corollary 4.6 implies that ξ is not short-time locally observable.
However, it can be seen that t1 > 0 exists such that x(t, ξ) ∈ intX4 for all t > t1
sufficiently close to t1. Hence, the condition O(H,A4) = {0} implies the short-time
local observability at x̂ = x(t∗, ξ) for some t∗ > t1. Consequently, ξ is T -time locally
observable for any T ∈ (t1,∞] by Proposition 4.11.

In light of Proposition 4.11, the challenge in establishing the T -time local observ-
ability of a given state ξ ∈ R

n occurs when none of the states x(t, ξ) for t ∈ [0, T ) is
short-time locally observable. In general, this is a rather difficult case to analyze fully,
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due to the mode switchings along the nominal state trajectory x(t, ξ) and perturbed
state trajectories in the interval [0, T ]. Our approach to dealing with this challenge is
to invoke a result in [24] that pertains to an ODE with a B-differentiable right-hand
side, which includes the CLS (2.5) as a special case. In what follows, after present-
ing a slight improvement of this result, we identify a class of initial states for which
necessary and sufficient conditions for T -time local observability can be derived; see
Proposition 4.13.

As mentioned in section 2, the solution map ξ �→ x(t, ξ) is B-differentiable for all
fixed t � 0; in particular, the directional derivative

x ′
ξ(t, ξ; η) ≡ lim

τ↓0

x(t, ξ + τη) − x(t, ξ)

τ

of x(t, ·) at ξ ∈ R
n along any direction η ∈ R

n exists and satisfies a certain first-order
time-dependent variational ODE. In terms of such a derivative, define the set

Z ξ
T ≡

{
v ∈ R

n |Hx ′
ξ(t, ξ; v) = 0 ∀ t ∈ [ 0, T ]

}
,

which is a closed, albeit not necessarily convex, cone. It was proved in [24, Theorem 10]

that Z ξ
T = {0} is a sufficient condition for the T -time local observability of ξ.

We next derive an improvement of the above result via the introduction of the
set Ω ξ

T consisting of all T -time indistinguishable states from ξ. Thus η ∈ Ω ξ
T if and

only if Hx(t, ξ) = Hx(t, η) for all t ∈ [0, T ]. Clearly, ξ ∈ Ω ξ
T . As such we can speak

of the feasible cone, denoted F(Ω ξ
T , ξ), and the tangent cone, denoted T (Ω ξ

T , ξ), of

Ω ξ
T at ξ. Specifically, v is an element of the former cone if a τ̄ > 0 exists such that

Hx(t, ξ + τv) = Hx(t, ξ) for all (t, τ) ∈ [0, T ] × [0, τ̄ ]; w is an element of the latter

cone if a sequence of vectors {ηk} ⊂ Ω ξ
T converging to ξ and a sequence of positive

scalars {τk} converging to zero exist such that w = limk→∞
ηk−ξ
τk

. We have

F(Ω ξ
T , ξ) ⊆ T (Ω ξ

T , ξ) ⊆ Z ξ
T .(4.8)

Indeed, the first inclusion holds with Ω ξ
T replaced by any set containing ξ; the second

inclusion holds by the approximation

Hx(t, η) = Hx(t, ξ) + Hx ′
ξ(t, ξ; η − ξ) + ot(‖ η − ξ ‖),(4.9)

where the error function ot(τ) satisfies limτ↓0
ot(τ)
τ = 0. In turn, (4.9) is the conse-

quence of the B-differentiability of the solution map x(t, ·). We have the following
result.

Proposition 4.13. Let 0 < T � ∞ and ξ ∈ R
n be given. The following

implications hold for the solution trajectory x(t, ξ) of the CLS (2.5):

T (Ω ξ
T , ξ) = {0} ⇒ ξ is T -time locally observable ⇒ F(Ω ξ

T , ξ) = {0}.(4.10)

Hence, the following two statements are equivalent.
(a) F(Ω ξ

T , ξ) = T (Ω ξ
T , ξ) and ξ is T -time locally observable.

(b) F(Ω ξ
T , ξ) = T (Ω ξ

T , ξ) = {0}.
Proof. Based on the same proof as in [24, Theorem 10], the first implication in

(4.10) follows from (4.9). The equivalence of the two statements (a) and (b) is ob-
vious.



1790 M. K. CAMLIBEL, J.-S. PANG, AND J. SHEN

Admittedly, the condition F(Ω ξ
T , ξ) = T (Ω ξ

T , ξ), while simple, is practically not

easy to verify, due to the difficulty of complete characterization of the set Ω ξ
T , except

in special cases; see Theorem 5.6 and Corollary 5.7. Thus, rather than investigating
this condition in its full generality, we devote section 5 to a detailed study of the
bimodal CLS (2.9).

Before ending the discussion on the general CLS, we state the following sufficient
condition for a state to be long-time locally observable.

Corollary 4.14. Suppose that there exists T ∈ (0,∞) such that T (Ω ξ
T , ξ) = {0};

then ξ is long-time locally observable for the CLS (2.5).

Proof. This is obvious because Ω ξ
∞ ⊆ Ω ξ

T for any finite T > 0. Thus the assump-

tion implies T (Ω ξ
∞, ξ) = {0} which holds because T (Ω ξ

∞, ξ) = {0} ⊆ T (Ω ξ
T , ξ) = {0}.

The long-time local observability of ξ now follows from Proposition 4.13.

5. Bimodal CLSs. Currently, the results for T -time and long-time observability
of a general CLS are limited to those in subsection 4.3. Further results, in particu-
lar, complete characterizations and finite verifications, appear difficult. Nevertheless,
much more can be obtained for the bimodal CLS (2.9), whose detailed analysis is the
subject of this section that is divided into several subsections. As we will see, even
this simplified case is not easy to analyze, and some unsolved issues remain.

5.1. T -time local observability. For the analysis to be of interest, we make
the blanket assumption throughout this section that b �= 0 and do not repeat the
assumption. We begin by giving two necessary conditions for the bimodal system
(2.9) to have a T -time locally observable state for any T ∈ [0,∞]. The first condition
(a) is a minor variant of Proposition 13 in [24] specialized to the bimodal CLS. A
proof of this part can be found in the reference.

Proposition 5.1. For the bimodal system (2.9) to have a T -time locally observ-
able state, for any T ∈ [0,∞], it is necessary that (a) O(H,A) ∩O(cT , A) = {0} and
(b) b �∈ O(H,A).

Proof. We prove only (b). Assume that 0 �= b ∈ O(H,A). By induction, it can be
shown that HAk = H(A+bcT )k for all nonnegative k. (Indeed, assume that this holds
for some i; we have HAi+1 = H(A + bcT )iA = H(A + bcT )i+1 −HAibcT = H(A +
bcT )i+1, completing the inductive step.) Hence, O(H,A) = O(H,A + bcT ). Thus

HeAtξ = He(A+bcT )tξ for all t � 0 and all ξ ∈ R
n, which implies Hx(t, ξ) = HeAtξ

for all t � 0 and all ξ ∈ R
n. Since 0 �= b ∈ O(H,A) = O(H,A+ bcT ), we can similarly

deduce HeAtξ = HeAt(ξ + τb) = He(A+bcT )t(ξ + τb) for all t � 0, all ξ ∈ R
n, and

all τ ∈ R. Consequently, Hx(t, ξ) = Hx(t, ξ + τb) for all such triples (t, ξ, τ). Since
b �= 0, no state ξ can be T -time globally/locally observable.

It is useful to record a corollary of the above proposition, which becomes yet
another necessary condition for (2.9) to have a T -time locally observable state.

Proposition 5.2. Under conditions (a) and (b) of Proposition 5.1, it holds that
O(H,A) ∩O(H,A + bcT ) = {0}. Conversely, if the latter holds, then b �∈ O(H,A).

Proof. Assume by way of contradiction that 0 �= v ∈ O(H,A) ∩ O(H,A + bcT ).
Then v �∈ O(cT , A) by (a). Hence, a first nonnegative integer � exists such that
cTA�v �= 0. Similarly, since b �∈ O(H,A), we have the first nonnegative integer k
satisfying HAkb �= 0. By expanding (A + bcT )k+�+1, it can easily be verified that
H(A + bcT )k+�+1v = (HAkb)(cTA�v) �= 0 by the choice of k and �. This contradicts
v ∈ O(H,A + bcT ). The second assertion of the proposition can be easily argued
as follows. If b ∈ O(H,A), then by the proof of Proposition 5.1, we have 0 �= b ∈
O(H,A) = O(H,A) ∩O(H,A + bcT ).
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We next establish two basic properties of a solution trajectory to the bimodal
system (2.9). Stated in Proposition 5.3, the first property pertains to an individual
trajectory x(t, ξ); the second property pertains to perturbed trajectories x(t, η) where
the initial condition η is sufficiently close to ξ.

Proposition 5.3. If x(t, ξ) is a solution of the bimodal CLS (2.9) such that
cTx(t, ξ) is not identically zero on the interval [0, T ] with T ∈ (0,∞), then a partition
(3.2) of the interval [0, T ] exists such that cTx(t, ξ) does not have a zero, and thus
is persistently positive or negative, in each of the open subintervals (ti−1, ti) for all
i = 1, . . . , N . Moreover, for every positive ε < 1

2 min1�i�N (ti − ti−1), there exists a
neighborhood N of ξ such that for any η ∈ N , min1�i�N mint∈[ti−1+ε,ti−ε]

(
cTx(t, ξ)

)(
cTx(t, η)

)
> 0.

Proof. By the partition in Theorem 3.7, we deduce the existence of finitely many
time instants ti for i = 1, . . . , N with t0 = 0 and tN = T such that cTx(t, ξ) =
cT eAi(t−ti−1)x(ti−1, ξ) for all t ∈ [ti−1, ti], where Ai is either A or A + bcT . Since
the right-hand function is analytic on the real line, it has finitely many zeros in
the compact subinterval [ti−1, ti], unless the function is identically zero. In the
latter case, cTx(t, ξ) is identically zero on [ti−1, ti], which implies that x(ti−1, ξ) ∈
O(cT , Ai) = O(cT , A). Proceeding forward and backward in time, we can establish
that ξ ∈ O(cT , A) so that cTx(t, ξ) is identically zero on the entire interval [0, T ], con-
tradicting the assumption. Thus, by refining the partition (3.2) of the interval [0, T ]
if necessary, we readily obtained the desired conclusions of the proposition.

Noticing that the right-hand side of the bimodal ODE (2.9) is the sum of a linear
function and the max function whose directional derivative is trivial to write down,
we can invoke the results in [26] to obtain the directional derivative x ′

ξ(t, ξ; η) of the
solution function x(t, ·) at a vector ξ ∈ R

n along a direction η ∈ R
n. To describe this

derivative succinctly, consider the function gξ : [0, T ] × R
n → R

n defined by

gξ(t, y) ≡

⎧⎨⎩
Ay if cTx(t, ξ) < 0,
Ay + bmax(0, cT y) if cTx(t, ξ) = 0,
(A + bcT )y if cTx(t, ξ) > 0

and the time-dependent ODE

ẏ(t) = gξ(t, y), y(0) = η.(5.1)

Note that the function gξ(t, y) is only piecewise continuous in t. In fact, by Propo-
sition 5.3, if cTx(t, ξ) is not identically zero on the interval [0, T ], where T ∈ [0,∞),
there exists a partition (3.2) of the interval [0, T ] such that cTx(t, ξ) has no zero in
(ti−1, ti) and cTx(t, ξ) = 0 for all t ∈ {t1, . . . , tN−1}. The case where cTx(t, ξ) is
identically equal to zero can be made to be part of this treatment by taking N = 0
(the vacuous partition). Note that the case where cTx(t, ξ) does not change sign,
but can have (isolated) zeros, in [0, T ] is clearly permitted. We call the subinterval
(ti−1, ti) positive (negative) if cTx(t, ξ) is positive (negative, respectively) throughout
(ti−1, ti). Note that this terminology refers to the given trajectory x(t, ξ). In terms
of the partition (3.2), we can write

gξ(t, y) ≡

⎧⎨⎩
Ay if t is in a negative subinterval (ti−1, ti),
Ay + bmax(0, cT y) if t ∈ { t1, . . . , tN−1 },
(A + bcT )y if t is in a positive subinterval (ti−1, ti),

which shows that gξ(t, y) is in general discontinuous at the times ti, i = 1, . . . , N − 1.
By Theorem 3.2 in [21], the time-varying ODE (5.1) has a unique solution, which we
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denote yξ(t; η), for every initial η that is continuous on [0, T ]; moreover, by Theorem 7
in [26], this unique solution is equal to x ′

ξ(t, ξ; η). Therefore, we obtain

x ′
ξ(t, ξ; η) =

{
eA(t−ti)x ′

ξ(ti−1, ξ; η) if t is in a negative subinterval (ti−1, ti),

e(A+bcT )(t−ti)x ′
ξ(ti−1, ξ; η) if t is in a positive subinterval (ti−1, ti).

From this expression, we deduce that x(t, ξ)+x ′
ξ(t, ξ; η−ξ) = yξ(t; η) for all t ∈ [0, T ].

This equality remains valid if cTx(t, ξ) is identically equal to zero on the entire interval
[0, T ]. Note that yξ(t; η) �= x(t, η) in general. As proved in Proposition 5.5 below,
these two functions will coincide if the states ξ and η are T -time mode consistent with
respect to the bimodal CLS (2.9) as defined below.

Definition 5.4. Two states ξ and η are said to be mode consistent on an interval
I with respect to the bimodal CLS (2.9) if (cTx(t, ξ))(cTx(t, η)) � 0 for all times t ∈ I.
If I = [0, T ], we say that ξ and η are T -time mode consistent.

According to Proposition 5.3, η is mode consistent with ξ on the subintervals
[ti−1+ε, ti−ε] for all i = 1, . . . , N , provided that η is sufficiently near ξ. The difficulty
with analyzing the perturbed trajectory x(t, η) lies in the subintervals (ti − ε, ti + ε)
which are ε-neighborhoods of the critical times ti. Due to its importance, we introduce
the notation Mξ

T to denote the set of all states that are T -time mode consistent with

ξ. The next result asserts that M ξ
T ∩ Ω ξ

T = M ξ
T ∩ ( ξ + Z ξ

T ).
Proposition 5.5. Two T -time mode consistent states ξ and η of the bimodal

CLS (2.9) are T -time indistinguishable if and only if Hx ′
ξ(t, ξ; η − ξ) = 0 for all

t ∈ [0, T ].
Proof. Under the mode consistency assumption, we have x(t, η) = x(t, ξ) +

x ′
ξ(t, ξ; η − ξ) for all t ∈ [0, T ]. The desired equivalence follows readily.

Based on Propositions 5.1 and 5.5, the following result pertains to a special class
of initial states ξ such that the trajectory x(t, ξ) remains on the boundary of the two
pieces at all times.

Theorem 5.6. Suppose cTx(t, ξ) = 0 for all t ∈ [0, T ] with 0 < T � ∞. The
following six statements are equivalent.

(a) ξ is T -time globally observable for the bimodal CLS (2.9).

(b) Z ξ
T = {0}.

(c) Hx(t, η) = 0 for all t ∈ [0, T ] implies η = 0; i.e., the zero state is T -time
globally (or locally) observable.

(d) F(Ω ξ
T , ξ) = T (Ω ξ

T , ξ) = {0}.
(e) ξ is T -time locally observable.
(f) O(H,A) ∩O(H,A + bcT ) = {0},

O(H,A) ∩
{
v | cT eAtv � 0 ∀ t ∈ [0, T ]

}
= {0},

O(H,A + bcT ) ∩
{
v | cT e(A+bcT )tv � 0 ∀ t ∈ [0, T ]

}
= {0}.

(5.2)

Proof. Under the assumption, all states are T -time mode consistent with ξ.
Therefore, the equivalence of (a) and (b) follows from Proposition 5.5. Moreover,
x ′
ξ(t, ξ; η) = x(t, η) for all t ∈ [0, T ]. Therefore, (b) and (c) are equivalent. State-

ment (b) clearly implies (d) by (4.8); (d) implies (e) by Proposition 4.13. Finally,

we show that (e) implies (b). Suppose (e) holds, but Z ξ
T has a nonzero vector v.

Then Hx ′
ξ(t, ξ; v) = 0 for all t ∈ [0, T ]. Let η ≡ ξ + τv, where τ > 0 is chosen so

that η falls in the neighborhood of ξ where its T -time local observability holds. Since
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Hx ′
ξ(t, ξ; η − ξ) = 0 for all t ∈ [0, T ], Proposition 5.5 implies that η is T -time indis-

tinguishable from ξ. By the T -time local observability of ξ, we deduce that η − ξ,
and thus v is equal to zero, which is a contradiction. Hence (b) holds. The first five
statements of the corollary are thus equivalent.

Suppose that any one of the five equivalent statements (a)–(e) holds. By Propo-
sitions 5.1 and 5.2, O(H,A) ∩ O(H,A + bcT ) = {0}. Moreover, if either condition in
(5.2) does not hold, then we have a nonzero vector v belonging to the left-hand set
of one of these two expressions. It follows that Hx(t, v) = 0 for all t ∈ [0, T ], which
contradicts (c). Conversely, suppose that (f) holds. It suffices to show that any state
η such that Hx(t, η) = 0 for all t ∈ [0, T ] must satisfy cTx(t, η) � 0 for all t ∈ [0, T ] or
cTx(t, η) � 0 for all t ∈ [0, T ]; i.e., cTx(t, η) remains in one piece over [0, T ]. Suppose
the claim does not hold. Then there is a switching time t∗ ∈ (0, T ). This means that
δ > 0 exists such that cTx(t, η) is of one nonzero sign in (t∗ − δ, t∗) and of a different
nonzero sign in (t∗, t∗ + δ). This implies in particular that x(t, η) �= 0 for all t � 0.
Without loss of generality, we may assume that cTx(t, η) > 0 for all t ∈ (t∗ − δ, t∗)
and cTx(t, η) < 0 for all t ∈ (t∗, t∗ + δ). Hence, the indistinguishability condition
Hx(t, η) = 0 for all t ∈ [0, T ] yields x(t∗, η) ∈ O(H,A + bcT ) ∩ O(H,A), which is a
contradiction because x(t∗, η) �= 0.

It is interesting to note that conditions (c) and (f) are independent of the state ξ.
Clearly, elements of the set {v | cT eAtv � 0 ∀ t ∈ [0, T ]} are vectors v in the half-plane
X2 = {v | cT v � 0} such that a trajectory, when initiated at v, remains in the same
half-plane. Thus the first condition in (5.2) stipulates that the zero vector is the only
such vector that also lies in the unobservable space of the pair (H,A), which is the
mode to which the trajectory in question belongs. A similar interpretation applies to
the second condition. A local version of Theorem 5.6 is as follows.

Corollary 5.7. Suppose that all states sufficiently near ξ are T -time mode
consistent with ξ. The following statements are equivalent.

(a) ξ is T -time locally observable for the bimodal CLS (2.9).

(b) Z ξ
T = {0}.

(c) F(Ω ξ
T , ξ) = T (Ω ξ

T , ξ) = {0}.
Proof. (a) ⇒ (b). This basically follows the same proof as in the previous proof.

Suppose Hx ′
ξ(t, ξ; v) = 0 for all t ∈ [0, T ]. Let η ≡ ξ + τv, where τ > 0 is chosen

so that η is T -time mode consistent with ξ and that η falls in the neighborhood of ξ
where its T -time local observability holds. Proposition 5.5 implies that η is T -time
indistinguishable from ξ. By the T -time local observability of ξ, we then have v = 0.
The implications (b) ⇒ (c) ⇒ (a) require no proof.

The condition that cTx(t, ξ) = 0 for all t ∈ [0, T ] with 0 < T � ∞ in Theorem 5.6
is equivalent to ξ ∈ O(cT , A), which is further equivalent to x(t, ξ) ∈ O(cT , A) for
all t ∈ [0, T ]. The T -time (local or global) observability of such a state is completely

resolved by the corollary. Note that for a state ξ ∈ O(cT , A), the set M ξ
T = R

n. The
next result treats the case where ξ �∈ O(cT , A); the key condition in this result is the
generalization of condition (c) in Theorem 5.6 to condition (b) in the theorem below.

Theorem 5.8. Suppose that ξ �∈ O(cT , A). The two conditions,
(a) O(H,A) ∩O(H,A + bcT ) = {0},
(b) a neighborhood N of ξ exists such that M ξ

T ∩ ( ξ + Z ξ
T ) ∩N = {ξ},

are necessary for ξ to be T -time locally observable for the bimodal CLS (2.9) for any
T ∈ (0,∞], and sufficient for any T ∈ (0,∞).

We first establish a lemma that is the key to the proof of the sufficiency part of
Theorem 5.8.
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Lemma 5.9. If ξ �∈ O(cT , A), then, under condition (a) in Theorem 5.8, for every

finite T > 0, there exists a neighborhood N0 of ξ such that Ω ξ
T ∩N0 ⊆ M ξ

T .

Proof. Since ξ �∈ O(cT , A), it follows that x(t, ξ) �∈ O(cT , A) for all t � 0. Fur-
thermore, by Proposition 5.2, b �∈ O(H,A). Consequently, for each t � 0, there exists
an integer �t � 0 such that HA�tx(t, ξ) �= H(A + bcT )�tx(t, ξ). We claim that a

neighborhood Ñ of ξ exists such that for every t ∈ [0, T ] and every η ∈ Ñ , an integer
� ∈ {0, 1, . . . , n− 1} exists such that

HA�x(t, ξ) �= H(A + bcT )�x(t, η) and HA�x(t, η) �= H(A + bcT )�x(t, ξ).

Indeed, if no such neighborhood exists, then there exist a sequence of vectors {ηk} con-
verging to ξ and a sequence of times {tk} ⊂ [0, T ] such that for each � ∈ {0, 1, . . . , n−
1}, either HA�x(tk, ξ) = H(A+bcT )�x(tk, η

k) or HA�x(tk, η
k) = H(A+bcT )�x(tk, ξ).

The sequence {tk} accumulates to some time t∗ in [0, T ]; for any such time, we must
have HA�x(t∗, ξ) = H(A + bcT )�x(t∗, ξ) for all nonnegative integers �. This contra-
diction establishes the claim.

Let ti, i = 1, . . . , N be finitely many time instants in [0, T ] described in Propo-

sition 5.3 such that cTx(ti, ξ) = 0. Let ε be a positive scalar and N̂ be a neigh-

borhood of ξ such that every η ∈ N̂ is mode consistent with ξ on all the subin-
tervals [ti−1 + ε, ti − ε] for all i = 1, . . . , N ; the existence of ε and N̂ is due to

Proposition 5.3. Let N0 ≡ Ñ ∩ N̂ , where Ñ is established above. By way of con-
tradiction, suppose that there exists a sequence of vectors {ηk} ∈ N0 converging to
ξ such that each ηk is T -time indistinguishable from but not T -time mode consis-
tent with ξ. Hence, there exists t̃k ∈ (tik − ε, tik + ε) for some ik ∈ {1, . . . , N − 1}
or t̃k ∈ [0, ε) or t̃k ∈ (T − ε, T ] such that (cTx(t̃k, ξ))(c

Tx(t̃k, η
k)) < 0 for every

k. We may assume without loss of generality that t̃k ∈ [0, T ) is such that for some

δk > 0, cTx(t, ξ) > 0 and cTx(t, ηk) < 0 for all t ∈ ( t̃k, t̃k + δk ) (if t̃k = T , we con-
sider the interval ( t̃k − δk, t̃k ) and use the reverse-time argument). Hence, we have

x(t, ξ) = e(A+bcT )(t−t̃k)x(t̃k, ξ) and x(t, η) = eA(t−t̃k)x(t̃k, η
k) for all such t. Thus

He(A+bcT )(t−t̃k)x(t̃k, ξ) = HeA(t−t̃k)x(t̃k, η
k) for all t ∈ (t̃k, t̃k + δk), which yields

H(A + bcT )�x(t̃k, ξ) = HA�x(t̃k, η
k) for all nonnegative integers �. But this contra-

dicts the claim established above because ηk ∈ Ñ .
Proof of Theorem 5.8. Suppose that ξ is T -time locally observable for T ∈ [0,∞].

By Propositions 5.1 and 5.2, condition (a) is necessary. To prove (b), choose a neigh-

borhood N of ξ so that Ω ξ
T ∩N = {ξ}. Since M ξ

T ∩ ( ξ+Z ξ
T ) = Ω ξ

T by Proposition 5.5,
we have

M ξ
T ∩ ( ξ + Z ξ

T ) ∩ N = M ξ
T ∩ Ω ξ

T ∩ N = { ξ }.

Conversely, let T < ∞. Assume that (a) and (b) hold and let N be the neighborhood

of ξ described in (b). By Lemma 5.9, a neighborhood N0 of ξ exists such that Ω ξ
T ∩

N0 ⊆ M ξ
T . So, by (b),

Ω ξ
T ∩N ∩N0 ⊆ Ω ξ

T ∩M ξ
T ∩N ∩N0 = (ξ + Z ξ

T ) ∩M ξ
T ∩N ∩N0 = {ξ}.

Hence ξ is T -time observable within the neighborhood N ∩N0.
It is important to note that the sufficient part of Theorem 5.8 requires T to be

finite. We will discuss more about the case where T = ∞ in subsection 5.3.
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5.2. More on mode consistency. From condition (b) in Theorem 5.8, the im-
portant role of mode consistency in T -time local observability is amply evident. In
what follows, we discuss this condition in greater detail. Specifically, our goal is to
generalize the two conditions in (5.2) to the case where ξ �∈ O(cT , A). As it turns out,
such a generalization is not trivial because we need to deal with various mode tran-
sitions, which necessitate the introduction of the “mode-transition matrices” Φ n

ξ (t)
associated with the nominal trajectory x(t, ξ).

Recall that Proposition 5.3 implies the existence of a partition of the finite interval
[0, T ], where T ∈ (0,∞), such that cTx(t, ξ) is persistently positive or negative in
(ti−1, ti) for all i = 1, . . . , N . In other words, cTx(t, ξ) = 0 only at ti’s. For each i,
define

(ci, Si) ≡
{

(−cT , A) if (ti, ti+1) is a negative subinterval,

(cT , A + bcT ) if (ti, ti+1) is a positive subinterval,
i = 0, . . . , N − 1,

and Y(Si) ≡
{
x
∣∣ ( cix, ciSix, . . . , c

iSn−1
i x

)
� 0

}
. The nominal state trajectory

on [0, T ] can be written as x(t, ξ) = Φ n
ξ (t)ξ, where

Φ n
ξ (t) ≡

⎧⎪⎨⎪⎩
the identity matrix for t = 0,

eSk(t−tk)

k∏
i=1

eSi−1(ti−ti−1) for t ∈ [tk, tk+1], k = 0, . . . , N − 1,

is a mode-transition matrix. It is clear that Φ n
ξ (t) is invertible for all t.

Proposition 5.10. Let T ∈ (0,∞). If ξ �∈ O(H,A), then Theorem 5.8(b) is
equivalent to the following: with x̂i = Φ n

ξ (ti)ξ for i = 0, . . . , N , and S−1 = SN ≡ 0,

N⋂
i=0

{[
Φ n

ξ (ti)
]−1[

O(H,Si) ∩
(
Y(Si) − x̂i

)
∩O(H,−Si−1) ∩

(
Y(−Si−1) − x̂i

)]}
= {0}.

Proof. Suppose that Theorem 5.8(b) does not hold. Then for any neighbor-

hood N of ξ, there is η ∈ N other than ξ such that η ∈ M ξ
T ∩ (ξ + Z ξ

T ). Hence,
by Proposition 5.5, it follows that ξ and η are T -time mode consistent states and
Hx ′

ξ(t, ξ; η − ξ) = 0 for all t ∈ [0, T ]. This implies that x(t, η) = Φ n
ξ (t)η and

Hx ′
ξ(t, ξ; η − ξ) = HΦ n

ξ (t)[η − ξ] = 0 on [0, T ]. Let v = η − ξ. The mode consistency
condition further implies that for all i = 1, . . . , N ,

Φ n
ξ (ti)η = Φ n

ξ (ti)[v + ξ] = Φ n
ξ (ti)v + x̂i ∈ Y(Si).

Similarly, Φ n
ξ (ti)η = Φ n

ξ (ti)v + x̂i ∈ Y(−Si−1). Moreover, for any t ∈ (ti, ti+1) and

i = 0, . . . , N −1, HΦ n
ξ (t)v = HeSi(t−ti)Φ n

ξ (ti)v. Hence, HΦ n
ξ (t)v = 0 for all t ∈ [0, T ]

implies that Φ n
ξ (ti)v ∈ O(H,Si). Using the reverse-time argument, one can also

deduce Φ n
ξ (ti)v ∈ O(H,−Si−1). Consequently, we have

0 �= v ∈
N⋂
i=1

{[
Φn

ξ (ti)
]−1[

O(H,Si) ∩
(
Y(Si) − x̂i

)
∩O(H,−Si−1) ∩

(
Y(−Si−1) − x̂i

)]}
,

which is a contradiction.
Conversely, suppose Theorem 5.8(b) holds, but there is a nonzero vector v belong-

ing to the above intersection. We therefore have Φ n
ξ (ti)[ξ+v] ∈ Y(Si)∩Y(−Si−1) for
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all i = 0, . . . , N−1. Since Φ n
ξ (ti)ξ ∈ Y(Si)∩Y(−Si−1), it is clear that Φ n

ξ (ti)[ξ+κv] ∈
Y(Si) ∩ Y(−Si−1) for all 0 � κ � 1, following the same argument in the proof
of Theorem 4.5. For each i, we can apply the second statement of Lemma 4.10
to obtain two positive pairs (εi+, τi+) and (εi−, τi−) such that cieSi(t−ti)Φ n

ξ (ti)[ξ +

κv] � 0 for all (t, κ) ∈ [ti, ti + εi+] × (0, τi+] and cieSi−1(ti−t)Φ n
ξ (ti)[ξ + κv] �

0 for all (t, κ) ∈ [ti − εi−, ti] × (0, τi−]. Define ε ′ = min1�i�N εi± and
τ ′ = min1�i�N τi±. As a result, for all t ∈ ∪1�i�N [ti − ε ′, ti + ε ′] and all
0 � κ � τ ′, (

cTx(t, ξ)
) (

cTx(t, ξ + κv)
)

� 0.(5.3)

By Proposition 5.3, a neighborhood N of ξ and a positive number τ0 � τ ′ exist
such that ξ + κv ∈ N for all κ ∈ [0, τ0] and that

(
cTx(t, ξ)

)(
cTx(t, ξ + κv)

)
> 0

for all t ∈ ∪1�i�N [ti−1 + ε ′, ti − ε ′]. Since (5.3) also holds for 0 � κ � τ0, we

have
(
cTx(t, ξ)

)(
cTx(t, ξ + κ v)

)
� 0 for all t ∈ [0, T ] and 0 � κ � τ0. Hence

(ξ, ξ + κ v) are two T -time mode consistence states for all 0 � κ � τ0. Thus, for all
0 � κ � τ0, Hx(t, ξ + κv) = HΦ n

ξ (t)[ξ + κv] = HΦ n
ξ (t)ξ + κHΦ n

ξ (t)v. Notice that for

any t ∈ [ti, ti+1], we have HΦ n
ξ (t)v = HeSi(t−ti)Φ n

ξ (ti)v. Since Φ n
ξ (ti)v ∈ O(H,Si) ∩

O(H,−Si), HeSi(t−ti)Φ n
ξ (ti)v ≡ 0 for all t ∈ [ti, ti+1] and all i = 0, . . . , N − 1.

Consequently, HΦ n
ξ (t)v ≡ 0 on [0, T ]. This suggests that (ξ, ξ + κ v) are two T -time

indistinguishable states for all 0 � κ � τ0. By Proposition 5.5, v ∈ Zξ
T and thus

(ξ + κv) ∈ Mξ
T ∩ (ξ + Zξ

T ) ∩ N for all 0 � κ � τ0. As a result, for any small

neighborhood of V ⊆ N , (ξ + κv) ∈ Mξ
T ∩ (ξ + Zξ

T ) ∩ V for some 0 < κ � τ0. This
contradicts Theorem 5.8(b).

5.3. Long-time observability. The finiteness of T is needed to ensure the
applicability of Lemma 5.9 in the proof of the sufficiency part of Theorem 5.8. In
what follows, we establish the long-time (i.e., T = ∞) local observability of ξ for
the bimodal CLS (2.9) under various conditions, one of which postulates that the
trajectory x(t, ξ) has a switching time t∗ > 0; this is a time for which δ > 0 exists
such that cTx(t, ξ) is of one nonzero sign in (t∗ − δ, t∗) and of a different nonzero sign
in (t∗, t∗ + δ). Note that any trajectory x(t, ξ) such that cTx(t, ξ) changes sign at
least once must have a switching time, provided that ξ �∈ O(cT , A).

Proposition 5.11. Any of the conditions (a), (b), and (c) below is sufficient for
ξ to be long-time locally observable for the bimodal system (2.9):

(a) O(H,A) = {0} and there exists t∗ � 0 such that cTx(t∗, ξ) < 0;
(b) O(H,A + bcT ) = {0} and there exists t∗ � 0 such that cTx(t∗, ξ) > 0;
(c) O(H,A) ∩ O(H,A + bcT ) = {0} and the trajectory x(t, ξ) has a switching

time.
Proof. Under condition (a) or (b), the state x(t∗, ξ) is short-time, and thus long-

time, locally observable, by Corollary 4.7 and Proposition 4.11. To prove the same
under condition (c), we assume without loss of generality that for some δ > 0, cTx(t, ξ)
is positive on [t∗−δ, t∗) and negative on (t∗, t∗+δ]. Localizing the proof of Lemma 5.9
to the compact interval T∗ ≡ [t∗−δ, t∗+δ] and using the time invariance of the bimodal
system, we deduce the existence of a neighborhood N of ξ such that any state η ∈ N
that is indistinguishable from ξ in the interval T∗ must be mode consistent with ξ on
the same interval. Suppose that ξ is not long-time locally observable. There exists a
sequence of vectors {ηk} ⊂ Ω ξ

∞ converging to ξ such that ηk �= ξ for all k. It follows
that for k sufficiently large, ηk must be mode consistent with ξ on the interval T∗.
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Hence we have

He(A+bcT )(t−t∗+δ)x(t∗ − δ, ξ) = He(A+bcT )(t−t∗+δ)x(t∗ − δ, ηk) ∀ [ t∗ − δ, t∗ ),

HeA(t−t∗)x(t∗, ξ) = HeA(t−t∗)x(t∗, η
k) ∀ ( t∗, t∗ + δ ].

It follows that x(t∗, ξ)−x(t∗, η
k) ∈ O(H,A+bcT )∩O(H,A). Hence x(t∗, ξ) = x(t∗, η

k),
which yields ξ = ηk, a contradiction!

We close this section by presenting numerical examples to illustrate several counter-
intuitive properties of the long-time observability of an initial state ξ as well as the
states along the trajectory x(t, ξ). These examples also demonstrate the difficulties of
designing constructive tests for long-time observability. The first example shows that
in order for ξ to be long-time locally observable, it is possible that no state on the
trajectory x(t, ξ) is short-time observable. This example strengthens Example 4.12
which concerns mainly properties of the initial state.

Example 5.12. Consider a bimodal system in R
3 with

A =

⎡⎣ λ1 0 0
0 λ2 0
0 0 λ3

⎤⎦, b =

⎛⎝ b1
0
0

⎞⎠, c =

⎛⎝ c1
c2
c3

⎞⎠, and H =
[
h1 h2 0

]
,

where λ3 > λ2 > λ1 > 0, b1 �= 0, c1c2c3 �= 0, h1h2 �= 0,

λ2 λ3 (λ3 − λ2 ) + λ1 λ2 (λ2 − λ1 ) + λ3 λ1 (λ1 − λ3 ) �= 0,(5.4)

and h2(λ1 − λ2 + b1c1) = h1b1c2. Straightforward computations show that

O(H,A) = span {(0, 0, 1)} and O(H,A + bcT ) = span{(h2,−h1, 0)}.

Notice that O(H,A) ∩ O(H,A + bcT ) = {0}. Since both of the above two sub-
spaces contain nonzero states, it follows from Corollary 4.7 that the bimodal CLS
has no short-time local observable states. However, the condition (5.4) ensures that
O(cT , A) = {0}. Hence for any ξ �= 0, the trajectory cTx(t, ξ) can have only isolated
zeros. Pick an initial state ξ such that cT ξ < 0 but c3ξ3 > 0. Then cTx(t, ξ) < 0 for
all t � 0 sufficiently small, but cTx(t, ξ) must eventually become positive. Thus the
trajectory x(t, ξ) must have a switching time. By Proposition 5.11, such an initial
state must be long-time locally observable.

The next example shows that the long-time local observability of a state does not
imply its long-time global observability.

Example 5.13. Consider a bimodal system in R
2 with

A =

[
λ 0
0 λ− b2c2

]
, b =

(
0
b2

)
, c =

(
c1
c2

)
, and H =

[
1 1

]
,

where λ > 0, b2 �= 0, c1c2 < 0, and b2c2 > 0. It is clear that O(H,A) = {0}. Choose
ξ = (ξ1, 0) with c1ξ1 < 0. Hence, cT eAtξ = eλtc1ξ1 � c1ξ1 < 0 for all t ≥ 0, implying
that x(t, ξ) = eAtξ = (eλtξ1, 0) for all t � 0. Hence such a ξ is short-time, and thus
long-time locally observable. Yet, ξ is not long-time globally observable because by

considering η = (0, ξ1), we have cT η = c2ξ1 > 0. Since cT e(A+bcT )tη = eλtc2ξ1 >
0, implying that x(t, η) = (0, eλtξ1) for all t � 0. Thus, ξ and η are long-time
indistinguishable. Hence ξ is not long-time globally observable.
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Our last example shows that for a state to be long-time locally observable, it is
not necessary for this state and any future state along the nominal trajectory to be
T -time locally observable for any finite T � 0. In other words, even if an initial state
(and any future state along the nominal trajectory) is not T -time locally observable
for any finite T � 0, it is still possible that the CLS is long-time locally observable at
the initial state.

Example 5.14. Consider a bimodal system in R
3 with

A =

⎡⎣ λ 0 0
0 α ω
0 −ω α

⎤⎦, b =

⎛⎝ b1
0
0

⎞⎠, c =

⎛⎝ c1
c2
0

⎞⎠, and H =
[

1 0 0
]
,

where λ < 0, α > 0, ω > 0, b1 �= 0, and c1 and c2 are both nonzero. Let ξ = (ξ1, 0, 0)
with c1ξ1 < 0. It follows that x(t, ξ) = (eλtξ1, 0, 0) and cTx(t, ξ) = eλtc1ξ1 < 0 for
all t � 0. Let vI = (0, 1, 0) and vR = (0, 0, 1). It is easy to see that O(H,A) =
span{vI , vR} and O(H,A + bcT ) = {0}. Note that any η ∈ O(H,A) with ‖η‖2 = 1
can be written as η(φ) = vI sinφ + vR cosφ for some φ ∈ [0, 2π) and that

eAtη(φ) = eαt
[
(−vI sinφ + vR cosφ) sin(ωt) + (vR sinφ + vI cosφ) cos(ωt)

]
.

Moreover, any initial state that is indistinguishable over the time interval when the
corresponding state trajectory is in the mode characterized by A must be of the form
ξ + τη(φ) for some τ ∈ R and φ ∈ [0, 2π). Hence, for any given T � 0, there is a
τ
T
> 0 such that for all (t, τ, φ) ∈ [0, T ] × [−τ

T
, τ

T
] × [0, 2π),

cTx(t, ξ + τη(φ)) = c1ξ1e
λt + τc2e

αt
[
− sinφ sin(ωt) + cosφ cos(ωt)

]
= c1ξ1e

λt + τc2e
αt cos(ωt + φ) < 0.

Note that Hx(t, ξ) = Hx(t, ξ + τη(φ)) for all such triples (t, τ, φ). Hence, ξ is not
T -time locally observable. The same argument applies to any future state along the
nominal trajectory. However, notice that no matter how small |τ | > 0 is and what
φ ∈ [0, 2π) is, cTx(t, ξ + τη(φ)) will become positive in some finite time. Hence,
x(t, ξ + τη(φ)) will switch to the mode characterized by (A + bcT ) at some t∗ > 0;
i.e., cTx(t∗, ξ + τη(φ)) = 0 but cTx(t, ξ + τη(φ)) > 0 for all t > t∗ sufficiently close
to t∗. Let x̃ = x(t∗, ξ + τη(φ)). Note that 0 �= x̃ �∈ O(cT , A), which implies that
H(A+bcT )�x̃ �= HA�x(t∗, ξ) for some nonnegative integer �. We have x(t, ξ+τη(φ)) =

e(A+bcT )(t−t∗)x̃ for all t > t∗ sufficiently close to t∗. By the proof of Lemma 5.9,
Hx(t, ξ) ≡ Hx(t, ξ + τη(φ)) for all t � 0 only when τ = 0. This establishes that ξ is
long-time locally observable.
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