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Abstract— With the rapid development of convolutional neural
networks (CNNSs), significant progress has been achieved in
semantic segmentation. Despite the great success, such deep
learning approaches require large scale real-world datasets with
pixel-level annotations. However, considering that pixel-level
labeling of semantics is extremely laborious, many researchers
turn to utilize synthetic data with free annotations. But due
to the clear domain gap, the segmentation model trained with
the synthetic images tends to perform poorly on the real-world
datasets. Unsupervised domain adaptation (UDA) for semantic
segmentation recently gains an increasing research attention,
which aims at alleviating the domain discrepancy. Existing meth-
ods in this scope either simply align features or the outputs across
the source and target domains or have to deal with the complex
image processing and post-processing problems. In this work,
we propose a novel multi-level UDA model named Confidence-
and-Refinement Adaptation Model (CRAM), which contains a
confidence-aware entropy alignment (CEA) module and a style
feature alignment (SFA) module. Through CEA, the adaptation is
done locally via adversarial learning in the output space, making
the segmentation model pay attention to the high-confident
predictions. Furthermore, to enhance the model transfer in the
shallow feature space, the SFA module is applied to minimize the
appearance gap across domains. Experiments on two challenging
UDA benchmarks “GTAS-to-Cityscapes” and “SYNTHIA-to-
Cityscapes” demonstrate the effectiveness of CRAM. We achieve
comparable performance with the existing state-of-the-art works
with advantages in simplicity and convergence speed.

Index Terms— Semantic segmentation, unsupervised domain
adaptation, style feature alignment, confidence-aware entropy
alignment.
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I. INTRODUCTION

EMANTIC segmentation, a fundamental task of

autonomous-driving, aims to assign each pixel a class
label, e.g., building, road, vegetation or pedestrian. Recently,
the development of convolutional neural networks (CNNs)
has pushed the state-of-art in the field of semantic
segmentation [1]. However, most supervised deep learning
approaches [2]-[6] crucially rely on sufficient real-world
images with fine segmentation annotations, which are usually
expensive and labor intensive. Considering the trivial data
collection/annotation procedure, some researchers [7]-[11]
treat large-scale synthetic datasets [12]—[14] with annotations
as alternative training signals to train a segmentation model.
Despite the availability of high-quality semantic labelings
for synthetic datasets, the clear domain discrepancy between
synthetic (source) and real (target) images always brings about
a sharp drop in the performance of an excellent segmentation
model. Thus, to deal with such serious problem, researchers
have strived to study the methods of unsupervised domain
adaptation (UDA) for semantic segmentation.

Several recent works [15]-[18] employ image-to-image
translation, narrowing the appearance gap between domains.
One approach yields style transfer, which always goes through
the tedious post-processing and makes the segmentation model
unable to perform one-stage training. To reduce the appearance
gap, adversarial mechanism is also applied. However, the
training of adversarial networks is complex and unstable.
Despite the effectiveness in bridging the domain gap in the
appearance level, the above methods ignore rich structural
information in the output space, thus neglecting the strong
semantic similarities between the source and target domains.

Among some other approaches, [19]-[21] address the adap-
tation of semantic segmentation networks by making the
distribution of high-dimensional features or final outputs close
to each other between source and target images via adversarial
mechanism. However, these methods perform adaptation in
the high-dimensional feature/output level. As a consequence,
those shallower features, which contain abundant texture infor-
mation, can not be adapted well.

The third method is self-training(ST) [15], [22], which uses
pseudo-labels to further fine-tune the segmentation model.
This method usually focuses on how to choose the output of
the target domain with higher confidence as the pseudo label.
Therefore, it cannot guarantee one-step end-to-end training,
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and the process of generating pseudo-labels is relatively cum-
bersome. It can be exploited as an aid for other methods to
further improve the performance.

Considering the above problems of existing UDA meth-
ods, in this paper, we propose a multi-level adaptation
strategy named Confidence-and-Refinement Adaptation Model
(CRAM), in which the adaptation is done in both structured
output and shallower feature space. As shown in Figure 1,
CRAM includes two components: 1) the confidence-aware
entropy alignment (CEA) module; 2) the style feature align-
ment (SFA) module. With the two components, the domain gap
between the two domains is not only reduced at the appearance
level, but also at the deep output level.

With the CEA module, the gap between synthetic (source)
and real-world (target) data can be narrowed in the output
space. Explicitly, we align the distribution of entropy of predic-
tions between source and target images for two reasons. First,
this module adapts the pixel-wise structured outputs across
domains, which are rich in the spatial and local information.
Secondly, with the assistance of entropy minimization, the
segmentation model will avoid generating low-confident pre-
dictions for the target domains. The entropy-based algorithm
is essentially relevant with self-training (ST) method for the
model fine-tuning. Unlike the prior works [9], [23], a novel
confidence-aware entropy (CE) is proposed, so the segmenta-
tion model is forced to pay more attention to the high-confident
(low-entropy) predictions. As a result, the UDA method for
segmentation based on the modified entropy, when optimized
with adversarial learning, converges faster and achieves a
better performance on the target domain.

Our SFA module mitigates the appearance gap between syn-
thetic and real images in the shallower feature level, inspired
by [24]. In detail, a style feature (SF) is introduced, which is
the Gram matrix of the immediate feature of the segmentation
model. To reduce the domain gap in the appearance level,
our method simply minimizes the distance of the style feature
between source and target domains. Therefore, through simply
aligning the style features across two domains, we further close
the appearance gap between source and target images in the
feature level. Compared to the general UDA methods based on
style transfer, our SFA module requires less memory overhead
and achieves competitive performance in an one-stage end-to-
end way.

Thus, compared with other UDA methods for semantic
segmentation, our UDA approach CRAM enjoys two main
advantages from a practical perspective. The first is its sim-
plicity. It is precisely to address the adaptation of seman-
tic segmentation networks that cumbersome pipelines, i.e.,
involving image-to-image adaptation, feature alignment, model
fine-tuning with pseudo labels, have evolved. In our work,
neither CEA nor SFA adds significant overhead to the segmen-
tation network. The second is the fast convergence speed. With
the multi-level adaptation mechanism, our network requires
fewer training iterations to achieve the best results than the
baseline model, which will be shown in the experiments.

The main contributions of this work are as follows:

(1) We propose a novel multi-level UDA model for semantic
segmentation named Confidence-and-Refinement Adaptation
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Fig. 1.  Schematic of the proposed CRAM model. It contains two UDA
modules. First, with the adaptation in the output space, the confidence-aware
entropy alignment (CEA) module guides the segmentation model to generate
high-confident model. Second, the style feature alignment (SFA) module aims
to minimize the appearance gap across domains.

Model (CRAM). Different from the common UDA methods,
we conduct the adaptation in both structured output and
shallower feature space. With the help of the multi-level
adaptation strategy, the segmentation network trained with the
annotated source data can yield promising generalization on
the target domain.

(2) To realize the multi-level adaptation mechanism, our
model is comprised of two key adaptation modules: a
confidence-aware entropy alignment (CEA) module and a
style feature alignment (SFA) module. First, with the adver-
sarial training, the CEA module aligns confidence-aware
entropy (CE) of predictions between source and target images.
Different from the common entropy, the proposed CE forces
the segmentation network to put emphasis on the high-
confidence predictions. Second, the SFA module directly min-
imizes the distance of the style feature between two domains.
In this module, the introduced style feature represents the style
of input images. It is a simple yet efficient approach to reduce
cross-domain discrepancy in the appearance level.

(3) With advantages in simplicity and convergence
speed, our methods can achieve comparable performance
with other state-of-the-art methods on major cross-domain
benchmark datasets such as “GTAS5-to-Cityscapes” and
“SYNTHIA-to-Cityscapes”.

In the rest of the paper, we begin by discussing different
methods for UDA in semantic segmentation (section II).
We then describe the architecture of our domain adaptation
model CRAM (section III). Finally, we analyze the results of
experiments and ablation studies (section IV).

II. RELATED WORK
A. Semantic Segmentation

As a fundamental component of a powerful computer
vision system, semantic segmentation has received extensive
research attention. Over the past few years, with the significant
progress of deep learning and CNNs, great advances have
been reported for semantic segmentation. FCN [4], the first
segmentation network that successfully generated pixel-level
predictions, invents the decoder-encoder architecture. Later,
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SegNet [2] and DeepLab [25]-[27] are proposed based on
CNNs, mostly following the pipeline similar to FCN. However,
the encoder-decoder based FCN architecture fails to obtain
full-image contextual information, which limits the model’s
ability to yield more precise predictions.

In order to tackle the above drawback, the idea of exploiting
the global context has been considered several times already
in the literature. For instance, PSPNet [28] utilizes global
features to capture long-range dependencies. Afterwards, [29]
invents an efficient context scheme which focuses on the
necessary object information. CCNet [30] proposes a novel
criss-cross attention module that can better capture contextual
information. Different from the dominating encoder-decoder
based FCN architecture, alternative approaches also exploit
the transformer framework for a powerful segmentation model,
such as SETR [31] and SegFormer [32]. Additionally, to fur-
ther boost the segmentation accuracy, it is also a more efficient
and effective way to embed a novel CNN building block in
a mature architecture, one example being the Asymmetric
Convolution Block [33]

However, to match the capacity of these advanced networks,
large scale datasets with pixel-level annotations are required
during training phase. Meanwhile, the pixel-wise labeling of
semantics is labor intensive and cost expensive [34]-[36].
The difficulty in segmentation data collection shapes two
main families of solutions. One is weakly-supervised seman-
tic segmentation [27], [37]-[39], [39]-[41] which utilizes
image-level labels instead of the pixel-level annotations. The
other one trains the segmentation model with synthetic data,
of which ground-truth semantics can be obtained freely. But
due to domain mismatch between synthetic and real images,
the latter method always leads to a decrease in the perfor-
mance of the model on the real-world dataset. Therefore, this
has intensified the interest in unsupervised domain adapta-
tion (UDA) for semantic segmentation [42]-[44], which will
be discussed below.

B. Unsupervised Domain Adaptation

The goal of unsupervised domain adaptation is to enable
deep stereo methods generalize well to new domains. UDA
is of particular significance since it addresses the problem
of expensive labeling efforts in collecting annotation of the
real-world (target) datasets. Therefore, it sets an innovative
and promising research direction for many tasks, such as
classification, stereo matching and semantic segmentation.

In this work, we show particular interest in the task of
UDA for semantic segmentation. Therefore, we only focus on
the UDA methods for segmentation here. UDA for semantic
segmentation aims to adapt the segmentation model trained
on synthetic (source) data with free annotations to the unla-
beled real-world (target) datasets. With the UDA methods,
the performance of trained segmentation model will not drop
dramatically in the target domain despite the presence of
domain shift.

In the context of semantic segmentation, current UDA
techniques [43], [45]-[47] have pursued three main directions
to bridge the domain gap.

The first employs style transfer [16] or adversarial mech-
anism [15], [48] to transfer images across domains, thus
narrowing the appearance gap between domains. However,
when using style transfer, the approach has to deal with the
troublesome image processing and post-processing problems.
With this method alone, the trained model has not yet guar-
anteed a good generalization to target data without auxiliary
operations. In addition, training of adversarial networks is
complicated. By contrast, to bridge the appearance gap, the
style feature alignment module proposed in our paper simply
minimizes the distance of the style feature between source
and target domains, with advantages in terms of the ease of
training

The second family considers matching the distributions of
representations [49]-[52] or of the final outputs [21], [53]
for either source or target domains. These methods aim at
globally aligning deep representations across two domains.
This algorithm towards domain adaptation is realized by virtue
of adversarial training. In our work, we choose to match the
entropy of predictions across domains in that the structured
outputs contain rich semantic information which is shared
across domains.

Others resort to self-training (ST) [15], [22], [54], aiming
to finetune the model with the pseudo labels, which is chosen
from high-confident predictions of target data. However, the
selection of pseudo labels is a challenging task. In our work,
the performance of entropy minimization applied in the CEA
module is equal to that of ST [9]. Moreover, without gen-
erating pseudo-label, our method is both speed and memory
efficient, adding no extra workload.

The three mainstream methods mentioned above prefer to
adapt domains at either the image level, the intermediate
feature level or the output level. Differently, a recent work [55]
performs domain adaptation in affinity space, which benefits
from the affinity relationship between adjacent pixels.

In addition, some researchers study the methods of adapt-
ing the semantic segmentation model learnt on the labeled
daytime dataset to unlabeled nighttime dataset. Based on
generative adversarial networks, [56] performs an image-to-
image translation to minimize the appearance gap between
domains. DANNet [57] is the first adaptation framework
that can perform one-stage training for nighttime semantic
segmentation.

Recently, the centroid-aware methods [47], [54], [58], [59]
have been garnering additional interest in the area of domain
adaptive Semantic Segmentation. For the fine-grained fea-
ture alignment, these methods focus on reducing the dis-
tance between the corresponding classes of two domains.
In addition, there are also many effective solutions for
domain adaptation, e.g., Knowledge Distillation [54], [60] and
Mixing [59], [61]. The proposal of these methods leads to
considerable progress on major open benchmark datasets. One
example is the recent work BAPA-Net [59]. By integrating
both prototype alignment [11] and mixed sampling [61],
BAPA-Net sets a new global state-of-the-art over all exist-
ing UDA methods for semantic segmentation. However, the
training process of these novel methods is prone to be
time-consuming and requires much computational resources.
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In contrast, our method enables one-step end-to-end learning
and enjoys the advantages of speed and efficiency. In the
future work, we will strive to seek the solutions to maintain
the balance between accuracy and efficiency in the area of
cross-domain semantic segmentation.

C. Entropy Minimization

In [62], entropy minimization (EM) was first proposed for
the task of semi-supervised learning. In the field of clustering,
it has been shown to be an effective method in [63], [64].

In recent years, EM has been widely applied in many UDA
tasks.

In the field of classification, [65] introduces EM for domain
adaptation. Reference [66] invents a hyper-parameter valida-
tion approach such that the minimization of the domain gap
and the supervised classification based on the source domain
can reach an optimal balance. In [67], for the classification
task, the UDA method proposes a novel domain alignment
layer with which the domain gap is bridged. EM is also applied
in [67] to promote classification models with high confident
predictions of target domain. In order to promote the transfer-
ability of representations, Adversarial Entropy Optimization
(AEOQ) [68] not only minimizes the entropy of the distribution
from the source or target domain, but also maximizes the
entropy of the combined distribution of source domain and
target domain.

For semantic segmentation task, entropy is a form of
weighted self-information, it contains rich structural informa-
tion. AdvEnt [9] is the first UDA approach that successfully
applied EM for model transfer. To realize EM, [9] proposes
two different UDA approach. The first is direct entropy mini-
mization. It calculates the entropy loss of the input image by
summing the entropy of each pixel-level prediction. Then the
segmentation model is optimized with the entropy loss through
gradient descent. However, through direct EM, the structural
dependence between local semantics is ignored. To tackle this
issue, the second UDA method adopts adversarial mechanism
to conduct adaptation in the self-information space. To con-
clude, AdvEnt introduces a combination of generative and
adversarial techniques through multiple losses for the task
of UDA. Similar to AdvEnt, [23] also conducts adversarial
learning in the entropy space. Inspired by Smoothness train-
ing, [69] presents a novel neutral cross-entropy loss to tackle
the over-sharpness of EM and the bias toward easy samples.

Motivated by [9], [23], for the goal of alleviating the
domain shift, our CEA module applies adversarial technique to
generate similar distributions in the weighted self-information
space for either source or target images. Differently, we pro-
pose a novel confidence-aware entropy based on a new target
distribution, which can better help the segmentation model
take advantage of high-confident predictions.

The entropy applied in the previous work is the normalized
Shannon entropy, and the value of each entropy is only related
to the distribution of the associated pixel. However, directly
perform adaptation in the entropy space may bring about
bias toward easy samples. Thus we choose to modify the
normal entropy via contrastively strengthening the distribution,
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i.e., enhancing the contrast among the pixel-wise entropy to
emphasize the most salient area. Moreover, when minimizing
the adversarial loss during training, the gradient is allowed to
diffuse to the whole image.

III. CONFIDENCE-AND-REFINEMENT
ADAPTATION MODEL

Let {Zs} denote a set of images ¢ R#*W>3 from source
domain S with the corresponding pixel-level C-class labels
Vs c (1,0)F*V: in the meantime, let {Z7} denote a
set of unlabeled images from target domain 7. Our work
focuses on addressing the challenging UDA task, aiming at
forcing the segmentation model F trained on {Zg} to perform
well on {Zr}.

For the purpose, we propose a multi-level cross-domain
semantic segmentation model CRAM containing two domain
adaptation modules: (1) confidence-aware entropy align-
ment (CEA) for structured output adaptation; (2) style feature
alignment (SFA) for global style adaptation. In order to con-
struct our model, we modify and extend the existing seman-
tic segmentation architecture, such as DeepLab-v2. Figure 2
depicts our architecture. In the remainder of this section, the
illustration of each component will be given in detail.

A. Confidence-Aware Entropy Alignment

Through the CEA module, the domain shift between
synthetic and real images is reducing, thereby promoting
pixel-wise adaptation for semantic segmentation in the output
space.

1) Preliminary: For the source domain, take a sample Ig
from {Zs} as an input, the segmentation model F produces a
“soft-segmentation map” Ps = F(Is) € R*W*C Note that
Ps(h’w) = Ps(h’w’c) provides the prediction of pixel (4, w)
as a discrete distribufion over C classes. Then the entropy map
Eg can be computed through the soft-segmentation prediction
(See [4] for a detailed definition):

h h h
E{” = =" P 1og PO (1)
c

Similarly, the C-dimensional “soft-segmentation map” of
the target sample I7 can be written as: Pr = F(I7) €

RH*WxC The corresponding entropy E7 can also be derived
according to [4]:

h h h
EY) = =37 pt 9 1og PO, )
c

As to the source domain, given the semantic annotation
Ys € REXWXC model F can be trained directly with the
cross-entropy loss:

Lseq (Is, Ys) = — ZZ Ys(h,w,c) log Pgh,w,C),

haw ¢

3)

where [Ys(h’w’c)] represents the semantic label at pixel (%, w)

c
in the form of a one hot C-dimensional vector.
Since the entropy, one type of weighted self-information,
indicates the confidence of predictions, one effective approach
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Fig. 2. Overview of our domain adaptation model CRAM for semantic segmentation. The blue arrow indicates the source domain, while the pink arrow
represents the target domain. It contains two critic modules: the confidence-aware entropy alignment module(CEA) and the style feature alignment module(SFA).
CEA addresses the domain gap in the structured output space while SFA further minimizes the appearance gap across domains in the shallower feature space.
The blue arrow indicates the forward path of the source domain, and the pink arrow indicates the path of the target domain.

to alleviate the domain discrepancy is entropy minimization,
through which the segmentation model F is forced to pro-
duce high-confidence (low-entropy) predictions on the target
domain. In practice, the entropy minimization (EM) has been
successfully applied in the UDA methods. For the particular
task of semantic segmentation, [9] and [23] tackle with the
pixel-level domain adaptation task in the output space with the
EM technique. In detail, both methods develop an adversarial
training framework, for the propose of forcing the entropy
distribution of the target image similar to that of the source
image.

Thus, it inspires us to perform entropy minimization via
adversarial mechanism to address the UDA task for two
reasons. First, it is observed that the pixel-level output of the
segmentation model is rich in spatial and local information.
Therefore, by aligning the distributions of entropy of target
and source domains via adversarial learning, the domain gap
is bridged in the output space under the constraint of structural
consistency. Second, through adaptation in the weighted self-
information space, the segmentation model is more likely to
produce high-confident predictions on target images.

2) Ours: In the context of semantic segmentation, the
normalized Shannon entropy E is widely used. For clustering,
another form of entropy is proposed by [70] to improve cluster
purity. With a novel target distribution introduced, the model
can pay more attention to high-confident data points.

Motivated by this, we argue that the new entropy could be
useful when applied on domain adaptation for segmentation

task. To this end, unlike the prior works, a novel confidence-
aware entropy (CE) of the target image is proposed in the CEA
module and can be deﬁned as:

(h, w) (h,w,c) (h,w,c)
c E log P , 4
T log(C) o7 T @

where Qr is an aux111ary target distribution derived from Pr.
Explicitly, QT 029 s obtained through normalizing the

square of P(h ©:€) by frequency per segmentation and can be
written as:

(PEoY 1,
o (PEOY g

where fo =2, , (h ©:) are soft-segmentation frequencies.
Similarly, the conﬁdence—aware entropy of the source
domain is defined as:

(h,w) _ (h,w,c) (h,w,c)
C E log P , 6
N log(C) Oy 0g g (6)

Q(h w c)

5)

where the calculation of Q(Sh’w’c) can refer to that of Q(Th’w’c) .

It is worth noting that the proposed CE is quite different
from the entropy used in clustering. First, for clustering, the
soft assignments are computed by means of the Student’s
t-distribution as approximate probability estimates. In contrast,
we directly treat the outputs of the segmentation model as soft
assignments. Furthermore, the clustering task applies the target
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Common entropy Confidence-aware entropy

Fig. 3. Visualization of different entropy maps of semantic outputs.
Compared with the common entropy applied in the existing UDA methods,
that is, the normalized Shannon Entropy, the proposed CE strengthens
semantic outputs. For example, for the same output, CE puts emphasis on
the predictions of the main objects, such as the cars and the road. In addition,
the entropy maps contain a lot of noise. In contrast, the visual result of CE
is clearer.

distribution to calculate the KL divergence, and minimizes
the KL divergence to make the soft assignment close to the
target distribution. However, our method utilizes the target
distribution to modify the normalized Shannon Entropy which
is rigorously related to the cross entropy. As far as we know,
we are first to apply the modified entropy in the UDA task for
semantic segmentation successfully.

The visualization results of the basic entropy and the
proposed confidence-aware entropy are illustrated in Figure 3.
Compared with the common entropy applied in the prior UDA
methods, the proposed CE really strengthens semantic outputs.
For example, for the same output, CE puts emphasis on the
predictions of the main objects, such as the cars and the road.
In addition, the entropy maps contain a lot of noise. In contrast,
the visual result of CE is clearer. To conclude, CE can better
capture the main information of the semantic outputs.

In practice, when the adaptation is done in the modified
entropy space, our UDA method can yield more precise seg-
mentation on the target domain than the model with common
entropy, with speed efficient. This is may due to several
properties of Q. First, through raising the original distribution
P"®) to the second power distribution, the segmentation
predictions are strengthened, forcing the segmentation model
to shift to the high-confident predictions. Furthermore, the nor-
malized distribution can prevent larger segmentation categories
deforming the hidden feature space. Also, the modified entropy
adds no significant overhead to the UDA model for semantic
segmentation.

To conduct adversarial adaptation, CE is fed to the discrim-
inator D. The cross-entropy loss L is applied to train D and
as follows,

La(C) = —(Z log (D(CT)(h,w,O))

h,w

+ log (D(C)® D). (7)
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While for the segmentation model, the adversarial loss Lagy
can be defined as:

Laar(Cr) = =3 log (D(C)*V) ®)

h,w

Thus the total loss for training segmentation model through
the CEA module is defined as:

LcEa = Eseg (s, Ys) + Wadv Ladv (Cr), 9)

where wg,q, is the weighting factor of the adversarial
term Luqp.

B. Style Feature Alignment

To further enhance the segmentation model transfer, the
SAE module is proposed to minimize the appearance gap in
low-level feature level.

1) Preliminary: Let V. C RP*WX¢ denote the represen-
tation of the input image. Through the flatten operation,
we can first transform the matrix V into Vi C R**¢, where
s = H x W. The Gram matrix can be obtained by calculating
the inner product of V| and its transpose matrix.

According to [71], a somewhat obvious, yet significant
observation is that the Gram matrix includes the correlations
of multi-layer representations, thus helping capture texture
information. In [71], the Gram matrix is utilized to transfer
the style of the original image to the white noise image.

Motivated by this, we construct a style feature (SF) through
computing the Gram matrix of the low-level representations,
which serves as a representation of the image style. When
adaptation is conducted in the style feature space, the style of
source images is successfully transferred onto target images.

2) Ours: To perform the style adaptation, we directly mini-
mize the distance between the style features of source images
and that of target images. On one hand, adaptation in the style
feature space contributes to minimization of the appearance
gap across domains. On the other hand, this UDA strategy
can be treated as a form of style transfer. Compared with
the traditional UDA methods which perform image-to-image
translation, aligning the style features across domains is a
simple yet effective approach to reduce the data bias globally.

With reference to the form of Gram matrix, the style
feature S computed by the low-level feature F is defined as:

glw) _ Z y k) (w,k) (10)
k

Through inner product between the different feature maps,
the style features can capture the texture information of the
input image.

Let SIS denote the style feature in layer / with the corre-
sponding immediate feature V! € RM>*Mi of a source image.
Similarly, let SIT denote the style feature in layer / on the
source domain.

To carry out domain adaptation, we minimize the
mean-squared distance between the style features of two
domains. The style loss in layer [ is:

1
L, (S5, Sp) = —5—=da(S5, S7)%,

11
4N M} (i
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where d>(A, B) = \/Z?:l > (ai — bij)’. Therefore, the
total style loss is formulated as follows:

L
Lyy = D wiLly (S5, S7), (12)
=0

with w; as weighting factors of the influence of layer / on the
total style loss.

In experiments, for style transfer, features of both layer2
and layer3 are selected to compute the style features. For
the purpose of style transfer in multi-level feature space, the
feature correlations of multiple layers are included in the SFA
module. By including the multi-scale representation of the
input image, the SFA module can match source and target
distributions in terms of multi-level texture information. The
selection of features applied for the style features will be
explained in our ablation study detailedly (section IV).

Differ from [71] that treats the whole white noise image as
an optimization object, the style loss in our work is designed
to guide the training of the segmentation model. In [71], the
Gram matrix is introduced to induce the style of the iterable
white noise image to be consistent with that of the given
picture. While in our network, style features are used to guide
the training of the segmentation network.

Furthermore, these UDA methods based on style transfer
always depend on adversarial mechanism. On the contrary,
our method simply minimizes the distance of the style feature
between source and target domains so that the segmentation
model can be trained in an one-stage end-to-end way. For
one thing, our method avoids the troublesome training of
adversarial networks which is complex and unstable. For
another, the SFA module adds no significant overhead to the
already designed network.

C. Confidence-and-Refinement Adaptation for Semantic
Segmentation

The architecture of CRAM is illustrated in Figure 2.
It contains two UDA modules for semantic segmentation.
Firstly, for adapting structured output space, the CEA module
forces the segmentation model to pay more attention to high-
confident predictions. Secondly, in order to further enhance the
adaptation, the SFA module closes the appearance gap between
synthetic and real images in the shallower feature level.

In our work, we utilize ResNet-101 [79] and VGG-16 [80]
as the backbone network of semantic segmentation.

In the forward path, the source image Ig and the target
image Ir are fed into the segmentation model F. Then the
output Pg and Pr are generated.

For CEA, on VGG-16, we only utilize the feature at layer5
as the output P. Similar to the settings in [9], on ResNet-101,
the feature from layer4 is also chosen to perform the adapta-
tion. With P, CE can be further calculated. This multi-level
adversarial mechanism takes advantage of richer information,
both spatially and locally.

At the same time, in the SFA module, the representations
extracted from layer2 and layer3 from the source and target
domains are utilized to compute the style features SIS and SIT.

Our CRAM enables one-stage end-to-end training. Consid-
ering the above two adaptation modules, the total loss for
training the segmentation model F is:

ﬁtotal = £CEA + j«ﬁsty, (13)

where 4 is the weight employed to balance the losses of two
domain adaptation modules. During the training phase, for
each training batch, Cr is first passed to the discriminator D.
Now we can compute the total loss Lo to optimize F with
the parameter of the discriminator fixed. Afterwards, we fix
the parameter of the segmentation network, and forward Cg
to optimize the discriminator D with Equation (7). Cr is also
passed to the discriminator D for training. The whole training
process is shown in Alg. 1.

Algorithm 1 The Training Scheme of the Proposed Method
Require:
Input: training images and labels (Is, Ys, IT), the number
of training iteration 7
1: Initialize the parameters of the segmentation model F with
the pretrained model on ImageNet [81];

2: Randomly initialize the parameters of discriminators D, set

t=0;

3:forallt <T do

4: Randomly choose a batch of target images, a batch of
source images and their corresponding labels;

5:  Fix the parameters of the segmentation model F, train
the two discriminator networks D with Eq 7. (// Training
the Discriminator Networks in the CEA module);

6: Fix the parameters of the two discriminator networks in
CEA, train the segmentation model F with the segmenta-
tion loss as shown in Eq 3. (// Training the segmentation
model with the supervised segmentation loss);

7:  Train the segmentation model F with the adversarial loss
in Eq 8. (// Training the Segmentation model with CEA);

8: Train the segmentation model F with the style loss in
Eq 12. (// Training the Segmentation model with SFA);

9 t=t+1;

10: end for

Ensure:
Output: Fr

It is worth noting that we did not construct two corre-
sponding segmentation networks for the source and target
domains. For each batch, the source image and the target
image are passed into the same segmentation network. Dur-
ing the inference phase, this segmentation network directly
processes the input image and outputs the corresponding
semantic prediction.

1V. EXPERIMENTS
A. Experimental Setup

1) Datasets: In our experiments, we treat the synthetic
datasets including GTAV [12] and SYNTHIA [13] as source
domains and the real-world dataset Cityscapes [82] as the
target domain.
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TABLE I
RESULTS OF ADAPTING GTAS TO CITYSCAPES. THE 19 CLASS MIOU (%) IS USED AS THE EVALUATION
MATRIC OF SEMANTIC SEGMENTATION PERFORMANCE
T £ 2 5 % 2 z 5 5 & » I o3 - % 5 2 3% 32

Backbone  Method e 3 = ER g 2 F ¥ B £ 2 B 3 g Z E 2 B mou
Without adaptation [19] 758 168 772 125 210 255 30.1 201 813 246 703 538 264 499 172 259 65 253 360 36.6
DAKD [60] 89.1 448 742 200 114 221 192 118 736 296 599 436 76 791 181 221 82 65 14 338
KDN (72] 80.6 27.6 752 21.8 120 162 161 81 773 309 739 406 26 768 241 314 00 140 24 332
AdaptSegNet [21] 889 261 80.1 222 219 276 342 211 831 315 762 561 282 8.1 271 350 20 263 286 420
CyCADA [8] 867 356 80.1 198 175 380 39.0 415 827 279 736 649 190 650 120 286 45 311 420 427
MinEnt [9] 825 234 726 175 219 298 330 214 830 304 758 588 286 794 329 273 00 299 437 417
AdvEnt [9] 877 207 808 205 245 311 334 188 826 273 745 588 274 831 285 366 79 306 297 424

ResNetl0l  CLAN [73] 870 27.1 796 273 233 283 355 242 836 274 742 586 280 762 331 367 67 319 314 432
SWD [74] 92.0 464 824 248 240 351 334 342 836 304 809 569 219 820 244 287 61 250 336 445
FDA [16] 90.0 405 794 253 267 306 319 293 794 288 765 564 275 817 277 451 170 238 296 446
Intra [23] 90.2 358 822 253 241 286 303 218 848 373 805 579 272 857 355 492 00 287 350 453
BDL [15] 902 468 843 317 290 321 389 316 844 413 801 582 300 833 283 437 19 268 386 474
Ours 91.7 186 90.0 333 231 270 323 27. 830 254 79.0 584 284 877 195 523 91 282 308 445
Ours(+ST) 90.7 367 817 268 259 274 347 227 856 40. 803 597 318 918 340 567 41 310 376 473
Ours(+BDL) 90.7 459 845 347 292 319 376 331 844 426 852 581 325 830 347 501 44 295 307 48.6
Without adaptation [19] 704 324 621 149 54 109 142 27 792 213 646 441 42 704 80 73 00 35 00 271
CDA [75] 729 300 749 121 132 153 168 141 793 145 755 357 100 621 206 190 00 193 120 314
CyCADA [8] 835 383 764 206 165 222 262 219 804 287 657 494 42 746 160 266 20 80 00 348
Adapt-SegMap [21] 862 250 781 205 180 175 172 97 796 292 694 439 38 776 273 318 00 112 05 340
MinEnt [9] 856 173 753 304 177 189 178 77 779 225 619 413 85 802 189 129 00 130 05 320
AdvEnt [9] 88.5 306 782 276 175 172 140 7.0 812 303 688 438 93 794 198 138 24 70 07 335

VGG16 CBST [22] 842 414 719 155 181 308 254 92 776 152 296 493 60 780 40 45 03 104 116 307
CRST(MRKLD) [76] 817 461 702 107 112 304 269 158 754 183 248 486 109 778 29 133 L1 107 314 320
FDA[16] 856 337 800 275 183 256 275 224 812 295 737 509 213 813 227 280 223 152 247 406
Intra [23] 89.4 330 780 257 146 159 125 68 812 307 701 445 85 788 208 201 00 76 06 341
BDL [15] 89.2 409 812 291 192 142 290 196 837 359 807 547 233 827 258 280 23 257 199 413
Ours 888 336 778 316 206 196 186 86 798 314 741 482 32 804 269 289 144 24 05 362
Ours(+ST) 89.4 330 780 257 146 159 125 68 812 307 701 445 85 788 208 291 00 7.6 06 341
Ours(+BDL) 89.1 420 812 289 231 139 293 170 836 366 8L7 562 255 819 260 320 02 268 197 418

o GTAS [12] contains 24,966 synthesized images extracted
from the 3D computer game Grand Theft Auto V
based on the urban scenery of Los Angeles city.
The pixel-accurate semantic annotations are gener-
ated automatically. Each image has a resolution of
1914 x 1052 pixels. During the training phase, we use
the 19 common categories with the Cityscapes dateset to
evaluate the performance.

e SYNTHIA [13] refers to the SYNTHIA-RAND-
CITYSCAPES set. It is a synthetic dataset composed
of 9,400 images based on rendering and corresponding
ground-truth semantic labels. Each image has a resolution
of 1280 x 960 pixels. During the training time, we con-
sider the 16 common categories with the Cityscapes
dataset to evaluate the performance.

« Cityscapes [82] is a real-world dataset collected from
50 cities in Germany which includes 5000 annotated
images with fine annotations. In our experiment, follow-
ing the prior works, we take 2,975 images as the training
set and 500 images as the validation set. During the
training phase, the semantic labels are excluded and not
used. Each image has a resolution of 2048 x 1024 pixels.
In the “GTAS-to-Cityscapes” benchmark, the 19 class
mloU (%) is used as the evaluation matric of seman-
tic segmentation performance. In the “SYNTHIA-to-
Cityscapes” benchmark, we introduce the 16 class mloU
(%) as the evaluation matric. We also choose 13 common
classes between SYNTHIA and CITYSCAPES as our
valid labels, following the same evaluation protocol as
other works [16].

2) Network Architecture: In CRAM, DeepLab-v2 [25]
with ResNet-101 [79] and VGG-16 [80] serve as the
segmentation model F. These models are pretrained on
ImageNet [81].

For the CEA module, similar to [9], to improve the adap-
tation, we conduct the multi-level adversarial strategy on
ResNet-101. In detail, features from both Conv4 and Conv5
are chosen as the outputs. While on VGG-16, we directly
utilize single-level adaptation. For the discriminators, we adopt
the architecture from the previous work [9], [21]. The
confident-aware entropy of the outputs are passed into five
4 x 4 convolution layers with stride 2. Channel numbers of
these convolution layers are 64,128, 256, 512, 1. Except for
the last layer, a leaky ReLLU parameterized by 0.2 is added
after each convolutional layer to further process features.

3) Training: The architecture of our model is implemented
with the PyTorch library [83]. The segmentation model F is
trained using the SGD method with momentum 0.9. The initial
learning rate is 2.5 x 10™*. To optimize the discriminators
D, we apply Adam [84] optimizer (f; = 0.9, f» = 0.99)
with learning rate 1 x 10™*. For the learning rate schedule,
we adopt the polynomial policy according to [9] for both F
and D. During training, images were resized to the resolution
of 1024 x 512. The batch size is set to 1 on a single NVIDIA
1080TI GPU with 11 GB memory. We select the best model
for validation within 120,000 training iterations. The entire
training process takes approximately 42 hours.

In all experiments, we set wqq4, = 0.001 in Equation (9),
w; = 0.5 in Equation (12), and A = 0.1 in Equation (13).

4) Evaluation Matric: In our experiments, class mloU (%)
is used as the evaluation matric to measure the performance
of semantic segmentation, which is defined as:

mIoU:(l/n)Znii/ Znij+znji_nii , (14)
i j J

where n is the number of classes. n;; is the number of pixels
of class i that are judged to be class j.
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Ground truth maps

Ryl

Fig. 4. Qualitative results in the GTAS5-to-Cityscapes set-up.

B. Results

1) GTA5-to-Cityscapes: As shown in Table I, our method
achieves competitive performance with state-of-the-art UDA
methods [9], [76] on both VGG-16 and ResNet-101-based
networks. With the ResNet-101 based model, our method
significantly beats the accuracy of the basic segmentation
model without adaptation by 7.9 absolute percentage points.
And on VGG-16 based CNNs, the improvement is more,
i.e., +9.1 %. This phenomenon reveals that our two domain
adaptation modules play an important role in minimizing the
domain gap.

Compared with the method [9], [21], domain adaptation
methods in the feature space, our method can obtain better
results.

Compared with the UDA models [16] based on style trans-
fer, our method can obtain similar performance. However,
these methods always need complex image processing and
fine-tuning with self-training. In contrast, our method is more
effective yet considerably simpler. These UDA methods [15],
[23] apply pseudo labels to obtain competitive performance.
We modify and extend the architecture of these methods with
our proposed UDA modules. As demonstrated in Table I,
the modified networks, which correspond to ours(+ST) and
ours(+BDL), yield more precise segmentations than the orig-
inal methods [15], [23]. This further verifies the adaptability
and effectiveness of our UDA approach. The proposed two
UDA modules can be directly applied to the framework of
existing UDA methods to further enhance the generalization
of the segmentation model. In addition, with the assistance
of self-training based methods [15], [23], the performance of
our approaches has been further improved. One exception is
that when using VGG as the backbone, the mloU obtained
trough combining our method with [23] is 34.1%, which is
lower than the result of our method without self-training,
which is 36.2%. This may be due to the instability of [23].
In the self-training phase, [23] first divides the target dataset
into two types of data: hard data and easy data. Then it realizes

Without adaptation

Advent

the intra-domain adaptation by adapting the segmentation
model from easy data to hard data. However, the division
of the target dataset depends on the training model in the
previous stage. In addition, only high-confidence pseudo-labels
are selected for easy data, so that some categories may be
ignored and not participate in the self-training stage.

Qualitative results of our ResNet-101-based method are
presented in Figure 4. Compared with the segmentation model
without adaptation, our model yields better semantic predic-
tions. It can be observed that without adaptation, the segmen-
tation quality is always noisy on the target domain due to the
domain gap. In contrast, our predictions are more precise. For
example, for small objects such as traffic signs and edge of the
road, our predictions are clearer. This shows that our method
can address the severe domain mismatch effectively. Further,
compared with AdvEnt which utilizes the normalized entropy,
our method can also obtain better results. Compared with
the common entropy, the modified entropy proposed in our
paper better addresses the adaptation of semantic segmentation
neural networks.

From the perspective of convergence speed, as presented in
Figure 7, the loss of our ResNet-101-based model converges
faster compared with other UDA methods for semantic seg-
mentation. This proves that our network can achieve a faster
convergence speed, especially when compared with the UDA
method using common entropy.

2) SYNTHIA-to-Cityscapes: We present in Table II the
segmentation performance on the benchmark “SYNTHIA-to-
Cityscapes” for both ResNet101 and VGG16. Compared with
“GTAS5-to-Cityscapes”, the cross-domain set-up “SYNTHIA-
to-Cityscapes” has larger domain gap. The results for 13 and
16 categories are both listed. As shown in Table II, with
the worse domain discrepancy, our method still gets 8.2 %
improvement with ResNetl01 and 15.8% improvement with
VGG-16 compared with the segmentation model without
adaptation. Compared with other competitive domain adapta-
tion methods, our method achieves comparable performance.
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Fig. 5. Qualitative segmentation results of different network setting on the Cityscapes dataset.
TABLE II
RESULTS OF ADAPTING SYNTHIA TO CITYSCAPES. THE 16/13 CLASS MIOU (%) Is USED AS THE EVALUATION
MATRIC OF SEMANTIC SEGMENTATION PERFORMANCE
s ¢ 2 = % 3 =z = = E 5 R
8 -~ —_ s > “ @ P
Backbone Method § 2 % § n“i g e % ES % §_ E 5 2 E 3 mloU  mloU*
Without adaptation [19] 556 238 746 92 02 244 61 121 748 790 553 191 39.6 233 137 250 335 386
KDN [72] 521 209 651 18 015 150 07 30 719 768 297 80 491 1.0 328 1228 256 303
AdaptSegNet [21] 775 335 786 54 05 223 28 83 791 827 411 163 694 295 147 279 368 432
MinEnt [9] 735 292 771 77 02 270 7.1 114 767 821 572 213 694 292 129 279 381 44.2
AdvEnt [9] 903 519 781 19 03 129 1.1 51 788 841 468 132 782 283 35 276 376 451
SIBAN [77] 825 240 794 - - - 165 127 792 828 583 180 793 253 176 259 - 463
ResNetl01  AdaptPatch [78] 824 380 786 87 06 260 39 1L1 755 846 535 216 7l4 326 193 317 400 465
FDA [16] 793 350 732 - - - 199 240 617 826 614 311 839 408 384 511 - 52.5
Intra [23] 843 377 795 53 04 249 92 84 800 841 572 230 780 381 203 365 417 489
BDL [15] 60 467 803 - - - 141 116 792 813 541 279 737 422 257 453 - 514
Ours 884 485 767 93 06 189 172 146 778 823 417 161 743 306 109 300 400 468
Ours(+ST) 920 538 807 20 01 210 09 65 812 846 516 202 826 389 229 424 426 506
Ours(+BDL) 876 461 8.0 100 04 336 214 149 812 852 572 264 830 333 240 4638 45.8 53.0
Without adaptation [19]  11.5  19.6 308 - - - 0.1 117 423 687 512 38 540 32 02 06 - 229
AdaptSegNet [21] 728 379 681 31 03 216 06 85 763 780 404 115 640 202 46 159 327 384
MinEnt [9] 378 182 658 20 00 155 00 00 76 739 457 113 666 133 15 131 275 325
AdvEnt [9] 679 294 719 63 03 199 06 26 749 749 354 96 678 214 41 155 314 366
CDA [75] 574 231 747 05 06 14 53 43 778 737 45 11 448 212 19 203 297 350
CBST [22] 757 323 702 35 00 286 14 90 798 656 529 137 658 91 15 364 341 39.5
VGG16 CRST(MRKLD) [76] 751 335 708 56 00 287 20 97 789 725 517 116 634 73 14 386 344 397
FDA [16] 842 351 780 61 044 270 85 221 772 796 555 199 748 249 143 407 350 405
Intra [23] 815 329 724 09 02 200 00 15 769 788 449 185 739 184 46 173 339 401
BDL [15] 720 303 745 01 03 246 102 252 805 800 547 232 727 240 75 449 332 390
Ours 731 280 744 40 01 223 00 24 760 742 445 166 685 185 48 227 331 387
Ours(+ST) 780 310 749 29 0 224 00 16 760 750 466 163 717 167 33 250 338 397
Ours(+BDL) 795 334 792 12 05 283 00 129 817 806 460 187 762 226 95 43.2 38.7 45.5
When integrated with the self-training based UDA meth- the model which performs adaptation in the CE space with

ods [15], [23], the performance of our methods can be
further improved. Additionally, our method also encourages
these UDA approaches to promote the adaptation of semantic
segmentation model from source domain to target domain,
which validates the adaptability of the proposed modules on
the SYNTHIA-to-Cityscapes benchmark.

C. Ablation Study

1) Baselines: We treat AdaptSegNet [21] as the baseline
model, which directly aligns the outputs of the segmentation
across domains via adversarial mechanism. Based on Adapt-
SegNet, we also conduct an experiment on two UDA bench-
marks which aims to align the result of the entropy of outputs,
which corresponds to Ours(w.EA) in Table III and Table IV.
Besides, in the above two tables, Ours(w.CEA) refers to

adversarial training, and Ours(w.SFA) represents the baseline
model with the SFA module added.

As presented in Table III and IV, compared with the baseline
model, both CEA and SFA lead to the improved performance.
On one hand, only with the CEA module, our method beats
the accuracy of Ours(w.EA) in most settings. Compared with
the common entropy, the proposed CE can better tackle the
severe domain mismatch. Although in Table IV, the accuracy
of Ours(w.EA) is higher than that of Ours(w.CEA) when
ResNet is taken as the backbone, it takes much more time for
the former to achieve the best performance. In the practical
perspective, after the same 8000th iterations, the accuracy of
Ours(w.EA) is 28.3%, which is much lower than our accuracy,
which reaches 42.9%. This further validates that CEA can
make the segmentation model converge faster. On the other
hand, for the SFA module, our method significantly beats the
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TABLE III
RESULTS OF ADAPTING GTAS TO CITYSCAPES. THE 19 CLASS MIOU (%) IS USED AS THE EVALUATION MATRIC
OF SEMANTIC SEGMENTATION PERFORMANCE
s ¥ P = 8 s = = £ g 5 % s 303
3 3 5 & E 2 5 5 - 3 B
Backbone  Method § 2 % g 8 2 e Z ES E %4 2 b= 51 E B £ g 2 mloU  best iter.
Baseline 889 261 801 222 219 276 342 211 831 315 762 561 282 821 271 350 20 263 286 420 96,000
Ours(wEA) 879 20.1 808 278 233 301 315 229 89 319 758 574 262 807 258 435 12 255 328 425 114,000
ResNetl0l ~ Ours(w.CEA) 91.6 188 889 269 254 293 333 215 830 245 764 592 270 863 168 446 79 269 264 429 58,000
Ours(w.SFA)  87.8 205 819 269 222 288 325 244 826 282 771 580 288 845 312 443 91 319 341 439 80,000
Ours 917 186 900 333 231 270 323 271 830 254 790 584 284 877 195 523 91 282 308 445 70,000
Baseline 870 283 774 302 191 203 165 75 7901 225 662 393 83 793 197 171 00 129 25 333 62,000
Ours(w.EA) 885 306 782 276 175 172 140 70 812 303 688 438 93 794 198 138 24 70 07 335 56,000
VGG16 Ours(w.CEA) 859 272 778 241 197 152 163 86 793 314 733 482 32 791 267 289 00 125 05 346 20000
Ours(w.SFA)  87.6 27.0 765 248 190 165 196 74 800 279 708 450 52 802 231 148 24 89 05 345 72,000
Ours 888 336 778 31.6 206 196 186 86 798 314 741 482 32 804 269 289 144 24 05 362 88,000
TABLE IV

THE RESULTS OF ABLATION STUDY ON THE NETWORK ARCHITECTURE. IN ORDER TO DETERMINE THE NUMBER OF ITERATIONS IN WHICH THE MODEL
PERFORMS BEST DURING TRAINING, WE ADOPT THE METHOD SIMILAR TO [23]. EXPLICITLY, THE NUMBER OF ITERATIONS IS SET TO 120000,
AND THE MODEL ARE SAVED EVERY 2000 ITERATIONS. THE BEST MODEL IS SELECTED AMONG THESE SAVED MODELS

* = _—
B ~ E X 3 % = = g 2 3 S g
3 E 5 = =] = < = > & 3 = ] >
Base Model ~ Method g 2 = ER g = 5 B % 2 E B H g 3 mloU  mloU*  best iter.
Baseline 715 335 786 54 05 223 2.8 8.3 79.1 827 41.1 163 694 295 147 279 36.8 432 48,000
Ours(w.EA) 7712 332 778 51 04 247 4.1 10.1 785 819 472 193 733 286 102 350 379 443 10,2000
ResNet101 Ours(w.CEA) 695 296 733 23 0.1 267 131 11.8 780 789 464 202 580 3l1.1 7.0 401 36.6 429 8,000
Ours(w.SFA) 884 485 767 21 02 189 1.0 50 778 823 417 161 743 306 109 30.0 37.8 449 94,000
Ours 9.5 519 802 27 01 231 22 7.3 80.0 846 487 158 798 326 166 324 40.5 479 100,000
Baseline 728 379 681 31 03 216 0.6 8.5 763 780 404 115 64.0 202 46 15.9 32.7 38.4 86,000
Ours(w.EA) 538 209 715 41 0.1 21.0 00 64 757 769 405 154 68.1 20.1 5.1 21.0 31.3 36.6 84,000
VGG16 Ours(w.CEA) 521 212 694 20 05 226 04 94 776 79.0 432 137 678 176 58 24.0 31.6 37.0 26,000
Ours(w.SFA) 773 294 739 03 02 232 00 14 758 736 454 172 650 16.8 3.0 18.1 325 38.2 20,000
Ours 73.1 280 744 40 01 223 0.0 2.4 760 742 445 166 68,5 185 4.8 22.7 33.1 38.7 38,000
a4 445 0.4 T T T
435 s — AdaptsegNet
—~ 43 )
= s SPX 03544 AdvEnt
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Fig. 6. The results of ablation study for hyper-parameters. (a) presents the 104
result of the experiment on w;. Since we only select two layers (Conv2 and 0.1 L L L L L
Conv3), we choose the proportion of the style loss in the Conv2 layer to the 0 2 4 6 8 10 12

total style loss as w1, treated as the abscissa of (a). So the corresponding
weighting factor of Conv3 is: wy = 1 — wq. (b) refers to the study on A.

accuracy of AdaptSegNet. This proves the effectiveness of
using style features for model transfer. In contrast with CEA,
SFA contributes more to the improvement of the model.

The qualitative results is shown in Figure 5. It is clear that
both domain adaptation modules contribute to the improve-
ment of segmentation quality. Compared with CEA, SFA
yields better performance, which is consistent with the con-
clusion from Table IV and III above. Notably, with CEA, the
model also captures the information of some small objects
such as the car steering wheel, which is neglected by other
models.

In addition, our models both obtain better results than
the baseline models whether the backbone is Resnet-101 or
VGG16. Our two domain adaptation modules can operate on
different segmentation models.

2) Hyper-Parameters: In the following experiments, per-
formance of the models is presented in Figure 6. We select
the ResNetlOl based CNN as the basic segmentation
network.

iter

Fig. 7. Compared with other UDA methods in convergence speed. Obviously,
the loss of our ResNet-101-based model converges faster compared with other
UDA methods for semantic segmentation.

For CEA, following the prior works, we set w,4, = 0.001 in
Equation (9). Next, we describe how to choose w; of layer [
for the style loss. The value of 1 is arbitrarily set to 107%.
First, features of layer4 and layerS are chosen to compute
the style feature. However, when optimizing the segmentation
model with the total loss, loss divergence appears. This could
be caused by conflicts of CEA and SFA when both modules
perform adaptation in the output space. Then, we select the
intermediate layers layer2 and layer3, which contain rich
texture information.

As presented in Figure 6, when w; = 0.5 and wy = 0.5,
the segmentation performance mloU can reach 43.53%, which
is the best performance. This phenomenon reveals that setting
the style loss of layer2 equal to that of layer3 is the optimal
choice.

When fixing w; = 0.5, the performance of CRAM excels at
4 = 0.1, which demonstrates that loss of CEA set ten times to
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that of SFA can reach the best balance. In the Cityscapes val-
idation dateset, the segmentation accuracy mIOU is 44.30%.

V. CONCLUSION AND FUTURE WORK

In this paper, we propose a Confidence-and-Refinement
adaptation model (CRAM) to deal with the UDA task for
semantic segmentation. In CRAM, we conduct a multi-level
adaptation strategy for model transfer. Specifically, two simple
yet effective UDA modules are designed. First, the CFA model
conducts adaptation in the structured output space, making
the segmentation model put emphasis on the high-confident
model. Second, the SFA module enhances the adaptation
through aligning the style features across domains to mini-
mize the appearance gap. Both domain adaptation modules
contribute to the improvement of segmentation quality, which
be treated as transferable modules applied to other UDA
approaches. Furthermore, our model achieves promising seg-
mentation performance on two challenging “synthetic-2-real”
benchmarks, which demonstrates the effectiveness of the pro-
posed UDA modules.

Despite the effectiveness of our method, there are still some
technical limitations to the algorithm. We observe that the
proposed confidence-aware entropy module does not always
succeed in the UDA task for semantic segmentation. As pre-
sented in Table IV, the method using the common entropy
yields better segmentation performance on ‘“synthetic-2-real”
benchmark when resnet101 is taken as the backbone. Probably
the limiting factor of the proposed CEA module is the ini-
tialization mechanism. Through introducing the second power
distribution in the target distribution Q, the segmentation
model can focus on the high-confident predictions. However,
dependence on the initialized model is also strengthened in
that the target distribution is calculated with the segmentation
output. Without a proper initialization model, in the case of
unsupervised training, the performance of the model tend to
be unstable. In the paper, the segmentation model is pretrained
on ImageNet [81]. However, the characteristics of ImageNet
are quite different from that of the datasets used in the UDA
task for segmentation. It is likely that future improvement of
the initialization strategy will increase the performance of the
CEA module.

Although the feature adaptation-based methods can promote
the adaptation of semantic segmentation model, they can
not guarantee that the fine-grained feature alignment can be
conducted in a class-wise manner. Recently, the centroid-aware
methods [47], [54], [58], [59] have gained popularity in the
area of domain adaptive Semantic Segmentation. For the
convenience of separating different categories in the target
domain, these UDA approaches turn to reduce the distance
between the corresponding classes of two domains. Thus it
could be possible to boost the performance of our model with
the assistance of the centroid-aware techniques. We hope that
the model can be encouraged to align features at a fine-grained
level through introducing the centroid-aware techniques.

In the field of UDA for semantic segmentation, pseudo
labels are always exploited to guide the retraining of the
network. However, for most self-training methods, the gen-
erated pseudo labels are inevitably noisy. Recent work [54] is

IEEE TRANSACTIONS ON INTELLIGENT TRANSPORTATION SYSTEMS

committed to online correction of the false pseudo labels by
means of the prototypical strategy, which is proven effective.
Apart from the self-training methods applied in this paper,
it may be a good choice to facilitate our framework with the
novel self-supervised learning strategy.

In addition to the centroid-aware methods, there are also
many trivial solutions for domain adaptation, e.g., Knowledge
Distillation [54], [60] and Mixing [59], [61]. These popular
methods indeed boost the performance to a record high, yet the
training process is prone to be time-consuming and requires
much computational resources, making unsupervised domain
adaptation impractical in industrialized scenarios. In light of
the key role of semantic segmentation in autonomous driving,
a new UDA solution is urgently needed, which can yield
unprecedented state-of-the-art performance both in accuracy
and efficiency. This also formulates an innovative and promis-
ing research direction for our future work.
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