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ABSTRACT:

Pedestrian tracking is a significant problem in autonomous driving. The majority of studies carries out tracking in the image

domain, which is not sufficient for many realistic applications like path planning, collision avoidance, and autonomous navigation.

In this study, we address pedestrian tracking using stereo images and tracking-by-detection. Our framework comes in three primary

phases: (1) people are detected in image space by the mask R-CNN detector and their positions in 3D-space are computed using

stereo information; (2) corresponding detections are assigned to each other across consecutive frames based on visual characteristics

and 3D geometry; and (3) the current positions of pedestrians are corrected using their previous states using an extended Kalman

filter. We use our tracking-to-confirm-detection method, in which detections are treated differently depending on their confidence

metrics. To obtain a high recall value while keeping a low number of false positives. While existing methods consider all target

trajectories have equal accuracy, we estimate a confidence value for each trajectory at every epoch. Thus, depending on their

confidence values, the targets can have different contributions to the whole tracking system. The performance of our approach is

evaluated using the Kitti benchmark dataset. It shows promising results comparable to those of other state-of-the-art methods.

1. INTRODUCTION

Image-based multiple objects tracking is a critical problem

in the fields of computer vision and robotics. Pedestrians

are one of the most relevant objects to be tracked, motivated

among others by the development of applications related

to autonomous driving and traffic safety. Tracking allows

vehicles not only to know where pedestrians appear, but also

to anticipate their moving directions and behaviors, which

are crucial factors for planning their driving paths and safe

navigation.

Despite recent advances, the performance of existing trackers

still needs to be improved significantly to close the gap

between human and machine perception performance, so

that computer systems can assist or fully replace human

efforts on practical tasks (Leal-Taixé et al., 2017). The

tracking-by-detection paradigm is used by most multi object

tracking systems (Henschel et al., 2018; Linder et al., 2016;

Yoon et al., 2015). This approach first detects target objects

in each image independently, then corresponding detections

are associated w.r.t. each other across frames. The recent

emergence of convolutional neural networks (CNNs) resulted

in many powerful detectors (He et al., 2017, 2016; Zhang et

al., 2016); however, they still have the problem of increasing

the number of false positives (FPs) together with the recall.

Hence, we aim at obtaining a high number of true positives

(TPs), but still keep FP at a low rate. We do so modifying

the association step of the tracking pipeline, which connects

results of consecutive frames: in this step, while employing

all detections of the current frame as input for the assignment,

we use solely highly accurately detected pedestrians to create a

new trajectories, a strategy called tracking-to-confirm-detection

(TCD). We also estimate a confidence value for each trajectory,

and we recover missed detections, e.g. due to occlusions,
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during tracking, by employing tracklet extrapolation. However,

while facilitating the increase of TP, the extrapolation can

accumulate more false alarms as well. To reduce this negative

side of the extrapolation, we keep tracked targets with high

confidence values longer in the system than the weak ones.

While several studies have focused on tracking interesting

objects in image space (Breitenstein et al., 2011; Fagot-Bouquet

et al., 2016; Kieritz et al., 2016; Leal-Taixé et al., 2017),

automobiles require 3D location and trajectory information

of pedestrians in object space. Using monocular image

sequences, it is challenging to predict and localize objects in

world coordinates due to the small baselines associated with

near real-time requirements. To overcome this problem, we

develop a tracking-by-detection approach using stereo images,

which makes it possible to estimate 3D positions of tracked

pedestrians. As the quality of the 3D information derived from

stereo images depends on the baseline, the distance from an

object to the stereo system and the quality of the matching

algorithm, we combine both 2D and 3D information to track

people more accurately. We also correct the velocity of

each pedestrian in object space based on its neighbors using

our motion model, in which we incorporate our trajectory

confidence value. In order to demonstrate the competitive

performance of our tracker, we conduct the experiments on the

Kitti tracking data set (Geiger et al., 2012). The results are

analyzed and compared with other state-of-the-art methods.

Our main contributions can be summarized as follows:

1. We introduce a framework to track pedestrians by

employing both 2D and 3D information. Stereo images are

used to model the scene and estimate pedestrian positions

in 3D object space. The appearances of pedestrians in

image space are utilized for detection and spatio-temporal

feature comparison.

ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume IV-2/W5, 2019 

ISPRS Geospatial Week 2019, 10–14 June 2019, Enschede, The Netherlands

This contribution has been peer-reviewed. The double-blind peer-review was conducted on the basis of the full paper. 

https://doi.org/10.5194/isprs-annals-IV-2-W5-53-2019 | © Authors 2019. CC BY 4.0 License.

 

53



#77

#101

Figure 1. An exemplary tracking results of our tracker.

The generated pedestrian trajectories are back-projected

to image space at two different epochs.

2. We suggest the TCD approach to obtain high recall and

small false alarm values of detections during tracking.

3. We propose considering detections and trajectories

differently, depending on their confidence values.

Additionally, we develop a motion model to correct the

estimated movements of tracked objects utilizing their

highly accurate neighbors.

The rest of this paper is organized as follows: in Section 2, we

discuss previous studies related to our research. We describe

the details of our tracking framework in Section 3. The

performance of our tracker is presented in Section 4, followed

by the conclusion in Section 5.

2. RELATED WORK

Multi-people tracking: Most of the modern trackers employ

the tracking-by-detection approach to continuously localize and

identify pedestrians in image sequences (Choi, 2015; Dehghan

et al., 2015; Henschel et al., 2018; Hong Yoon et al., 2016;

Klinger et al., 2017; Pirsiavash et al., 2011; Zamir et al., 2012).

This method usually comes in three phases: (1) pedestrians are

detected in each image; (2) detections in consecutive frames are

associated into consistent sets of trajectories; and (3) a filter step

is performed to smooth the trajectories based on their previous

states. The core of this approach is the data association step,

which is based primarily on visual and geometry cues.

In general, data association is carried out either as a local

(online) method or as a global association. For the online

approach, the pedestrians are linked across frames in a pairwise

fashion. Since only detections of two frames are considered,

this method is vulnerable to wrong detections (Breitenstein et

al., 2011; Choi, 2015; Fagot-Bouquet et al., 2016; Kieritz et al.,

2016; Lenz et al., 2015; Xiang et al., 2015). Global methods, on

the other hand, generate tracklets or complete trajectories from

a batch of frames or the whole image sequence. This enables

global properties of target objects to be taken into account

during the optimization. That is why most global matchers

usually outperform the local approaches (Berclaz et al., 2011;

Dehghan et al., 2015; Pirsiavash et al., 2011; Zamir et al.,

2012; Zhang et al., 2008). Nevertheless, requiring the entire

image sequence before performing tracking, global techniques

can only be used for offline cases. In applications where an

instant response is a significant demand, like for autonomous

driving or robot-human interaction, only online approaches are

appropriate.

While most of state-of-the-art methods execute tracking in 2D

image space and concentrate on correcting the assignments,

positions and moving directions of pedestrians in 3D object

space are essential prerequisites for vehicles to automatically

manage their motions. For this reason, several systems do

tracking based on stereo or RGB-D cameras or sensors based

on structured light. Although widely used for indoor tracking

studies (Jafari et al., 2014; Linder et al., 2016), RGB-D devices

are not appropriate for outdoor environment due to illumination

problems and complicated surfaces. Some publications (Mitzel

et al., 2010; Ošep et al., 2017; Schindler et al., 2010) proposed

using a stereo rig, mounted on a mobile platform to track

people on streets. The 3D geometric position of a pedestrian

is estimated by inspecting the detected bounding box or

intersecting the image space detection with the ground plane.

Estimating the foot positions of pedestrians on the ground plane

allows reducing pedestrians movement in 3D-space from three

dimensions to two dimensions, as they are supposed to walk on

the road.

Motivated by autonomous driving applications, we carry out

pedestrian tracking in 3D-space using stereo images and

follow the tracking-by-detection approach. We apply bipartite

matching to associate interesting objects in adjacent frames.

However, instead of using only information of two contiguous

epochs that might contain high uncertainties and errors, we

aggregate information from a certain number of previous

epochs to increase the accuracy of data association. In addition,

we compute confidence scores for the trajectories in each frame,

which can help to improve the matching and tracking precision.

Motion model: To produce a reliable trajectory over time, the

state of a pedestrian predicted from its previous positions can be

exploited to correct its current state. For the prediction, various

motion models were proposed, in which the movement of a

person is influenced by other people nearby. Zhang and van der

Maaten (2013) suggested predicting the position of a pedestrian

by observing the movements of its neighbors. Similarly, also

applying a grouping model, Klinger et al. (2017) improved this

method by weighting the effect of each neighbor based on an

angular displacement of its moving directions compared to the

current person. Yoon et al. (2015) and Leal-Taixé et al. (2014)

proposed anticipating the states of a target based on the history

of all observed trajectories, where the movement of irrelevant

people, which might affect the results.

Adopting the explicit grouping approach, we perform

movement prediction of pedestrians and consider their

interactions with people nearby. However, different from

previous studies, the impact of a neighbor on a certain person

is determined by their spacial distance and moving direction

difference. In addition, while using neighbors with highly

accurate trajectories can improve the prediction reliability,

including those with low confidence values into the motion

model can lead to the accumulation of incorrect information.

Therefore, only trajectories with high confidence are considered

as candidates in our motion model.
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Figure 2. Pedestrian localization in 3D space by

intersecting the detection with the ground plane. The

stereo pair is embedded for the sake of clarity.

3. METHODOLOGY

Aiming at tracking pedestrians in 3D-space, our tracker

takes normalized stereo image pairs as input and estimates

trajectories of observed pedestrians in a common 3D coordinate

system with directions of axes as shown in Figure 2. Following

the tracking-by-detection technique, our framework consists

of three primary phases: detection and post-processing, data

association, and prediction and filtering. Figure 3 depicts an

overview of the processing chain of our tracking framework.

The details of each step are described in the subsequent

sections.

3.1 Detection and post-processing

Scene modeling: Given a calibrated stereo image pair,

the disparity map w.r.t the stereo rig is estimated using

the state-of-the-art dense matching approach presented

in (Yamaguchi et al., 2014). Afterward, a 3D point cloud P
is computed from the disparity map via stereo triangulation.

We assume that a scene primarily consists of vertical planar

objects, e.g. building facades and pedestrians, supported by

the horizontal ground plane (e.g. the road). We follow the

approach presented by Nguyen et al. (2018) to model the scene

(see Figure 4), generating the following pieced information:

• an obstacle mask Mo mainly corresponding to building

facades;

• an area of interest mask Min, indicating areas where

pedestrians can appear in the image;

• 3D ground plane (Ω) in object space.

Person detection and localization: We adopt the pre-trained

mask R-CNN method (He et al., 2017) to detect people in

images. For each detected object, mask R-CNN provides:

• the upper left corner, width, and height of a 2D bounding

box (BB): bb = {r, c, w, h}, which covers the area where

the object of interest exists in the input image;

• its confidence ̺ about the classified type of that object;

• a binary mask Mseg to separate foreground and

background in each BB.

Beside the high accuracy, the instance segmentation mask

Mseg is a big advantage of mask R-CNN. This mask simplifies

the estimation of the position and height of a target in object

space. All detections classified as humans and having a

confidence value ̺ larger than a threshold ǫ̺1 are considered

for post-processing.

To localize an object (pedestrian) in 3D, we project all 3D

points belonging to that object in Mseg to the ground plane (Ω)
and average them to obtain the foot point P F = [XF, Y F, ZF]
of the object. The positions of the foot point in images

M = [u, v, d] are estimated by back-projecting P F into

images, where u and v are image coordinates in the left

image and d is the disparity value. This procedure often

allows us to compute the 3D position and recover the entire

body of an observed object in the input image even if only

parts are visible (see Figure 5). The uncertainty σM =
[σu, σv, σd] of M is heuristically estimated. σu and σv are

fixed, and σd is determined based on the accuracy of matching

algorithm (Yamaguchi et al., 2014). The uncertainty of the

position in 3D σP is then computed through error propagation.

We assume that points in the mask Mseg and have smallest v

value are head points of a detected object. Employ those head

points in images and the point cloud P , we also estimate the

head position of interesting objects in 3D: PH = [XH, Y H, ZH],
which we use together with the foot point position to compute

the object heights: height = Y H − Y F.

Mask R-CNN is only based on image visual information to

detect persons and thus yields a number of false alarms. These

can partly be detected and eliminated by utilizing additional 3D

properties as follows:

• Pedestrian heights (height) are limited in a certain range.

• Pedestrians must appear in the area of interest: bb = bb ∩
Min.

• A pedestrian should not completely lie inside obstacle

mask: bb 6= bb ∩Mo.

Detected objects that do not satisfy these three constraints are

not further considered in the tracking phase.

3.2 Data association

System setup: Let D = {D1,t, ..., Dn,t} and T =
{τ1,t, ..., τm,t} be n observations and m target trajectories

at time t, respectively. Each observation Di,t includes its

positions of the foot point in both the stereo images M =
[u, v, d] and 3D-space P = [X,Y, Z], the corresponding

uncertainties, the detection confidence ̺, and the 2D bounding

box bb:

Di,t = {M,σM , P, σP , bb, ̺} . (1)

The trajectories τj,t = {Sj,k, ..., Sj,t−1} contain the state

history of a tracked person up to epoch (t− 1), in which a state

Sj,k = [X,Y, Z, vx, vz]
T consists of 3D position and velocity.

The uncertainty ΣSS of a state is estimated by the extended

Kalman filter (see Equation (9)). In the 3D coordinate system,

pedestrians are assumed to move on the ground plane, so there

is no movement in Y direction.

A trajectory target is considered to be deactivated if it is not

assigned to any observation and becomes activate again if

there is a detection assignment in the future. Positions of a

deactivated target are still predicted for a number of epochs until

that target is completely deleted in the tracking system.
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Figure 4. Scene modeling. Using stereo information, we generate three different areas in the image space including

obstacle, ground plane and area of interest.

(a) (b)

Figure 5. The detected 2D bounding box (a) is corrected

using the back-projected foot point from 3D (b).

We optimize the problem of assigning detections in D to targets

in T using a binary integer program described as follows:

{

maximize cTw

subject to (Ac)k ≤ 1, k = 0, ..., (n+m)
, (2)

where c = {cji , ..., c
m
n } is an indicator vector. For c

j
i = 1 the

detection Di ∈ D and trajectory τj ∈ T are associated with

each other, otherwise c
j
i = 0; The association weight w

j
i ∈

w = {wj
i , ..., w

m
n } describes how likely Di and τj belong to

one and the same person; A is a (n+m)× (nm) design matrix

and has the effect that one detection is assigned to at most one

trajectory and vice versa.

Association weight: This weight describes the likelihood that

an observation is assigned to a target, which is primarily

explained by its visual ΓA and spatial distance ΓG similarity.

Beside that, a high confidence detection is preferred to be

allocated to existing trajectories over one with low confidence.

In the same manner, a trajectory with a high confidence ϑτj,t

is more likely to continue to be observed in the current frame.

Our association weight is computed as follows:

w
j
i = ρΓG(Di,t, τj,t)+θΓA(Di,t, τj,t)+ν̺Di,t +ιϑτj,t , (3)

where ρ, θ, ν, and ι are parameters used to define the impact of

each criterion on the association weight value. The component

ΓG , ΓA, and ϑτj,t are defined in the following paragraphs.

Geometry similarity: this value is related to the 3D spatial

distance of an object and its potential target. Let S+

j,t is a

predicted state of τj,t at an epoch t, which is estimated by the

Kalman filter (see Equation (7)). We compute the Mahalanobis

distance in 3D space between the predicted position at t of

τj,t and the position of Di,t as their geometry affinity and this

distance is mapped to a value in the range of from 0 to 1 by an

exponential function to obtain the criteria ΓG :

φG(Di,t, τj,t) = (S+

j,t − PDi,t)
TΣ+

SS,t(S
+

j,t − PDi,t)

ΓG(Di,t, τj,t) = e
φG(Di,t,τj,t)

−εG

, (4)

where εG is a free parameter and Σ+

SS,t is the predicted variance

of S+

j,t (see Equation (7)). In the above calculations, we only

use position entries [X,Y, Z] of S+

j,t while the velocity elements

are disregarded.

Appearance similarity: The appearance similarity accounts

for the resemblance between two objects in image space in

terms of texture, color, shape, etc. Beside the geometric

similarity, this is a significant cue to distinguish between

different persons. The visual properties of a detection are

represented by a feature vector f , extracted by TriNet (Hermans

et al., 2017). At time t, the feature vector of a trajectory τj,t is

the average of its appearance vectors from a certain number of

previous epochs, which can account for visual properties of a

trajectory within a temporal window. The appearance similarity
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ΓA between Di,t and τj is computed as:

φA(Di,t, τj,t) = ‖fτj,t − fDi,t‖L2

ΓA(Di,t, τj,t) = e
φA(Di,t,τj,t)

−εA

, (5)

where εA is a free parameter.

Trajectory confidence: We define a confidence value ϑ to

represent the accuracy and reliability of a trajectory at a specific

epoch. While the accuracy accounts for the possibility of a

trajectory to be generated from TP detections of an identical

person, the reliability describes how long the trajectory already

exists in the system as an active one. These cues are combined

to estimate ϑ as follows:

ϑτj,t =
1

k + 1

t
∑

l=t−k

(α̺τj,l +βwτj,l)+ γ min(1,
aτj,t

ǫa
) , (6)

where k is the number of epochs in the past before t; ̺τj,l is the

detection confidence of the observation assigned to τj at l with

association weightwτj,l ; aτj,t is the number of active states that

τj has until t, which is normalized by a threshold ǫa; and α, β,

and γ are weight parameters, which define the contribution of

each cue on the trajectory confidence value.

Association gate: Since people walk with limited speed, the

covered distance in a small amount of time cannot exceed a

threshold. Exploiting this property, we generate two geometric

gates, which indicate whether a detection can be assigned to

a target or not. While the first gate constrains the distance in

3D space between a detected pedestrian and a trajectory, the

second gate restricts their overlap area in image space. These

gates help to reduce both the complication of the optimization

problem and inconsistent assignments.

Tracking-confirm-detection: Since detected pedestrian results

are noisy, using a single detection confidence threshold (DCT)

is usually hard to achieve high recall and low false alarm at

the same time. Therefore, in our tracking-confirm-detection

(TCD) approach, we use two predefined DCTs: a low ǫ̺1
and a high ǫ̺2. All detections with a confidence value larger

than ǫ̺1 are considered during assignment optimization. The

reason for this is because a trajectory can be used to confirm

the presence of a TP detection nearby even its confidence value

is very low. However, when a new trajectory is created, there

is no additional evidence to confirm its correctness other than

its detection confidence. Hence, at a specific epoch, a detection

which is not assigned to any existing target initializes a new

trajectory if its confidence value is larger than ǫ̺2.

3.3 Prediction and filtering

As a trajectory evolves over time, pedestrian states consisting of

positions and velocities close in time are correlated. Therefore,

the state of the trajectory at a specific epoch can be predicted

from its previous states. This predicted state is employed to

correct the current measurement using an extended Kalman

filter (Gelb, 1974) as follows:

• Let St = [Xt, Yt, Zt, vX,t, vZ,t]
T , ΣSS,t be the state

and covariance matrix of a target trajectory Tj at t. Its

predicted state S+

t+1 in the next epoch is calculated through

the transition matrix ψ.

• State prediction:

S
+

t+1 = ψSt

Σ+

SS,t+1 = ψΣSS,tψ
T +Qpn

ψ =











1 0 0 ∆t 0
0 1 0 0 0
0 0 1 0 ∆t
0 0 0 1 0
0 0 0 0 1











, (7)

where ∆t is the time interval between two epochs andQpn

is the process noise.

• Measurement model F : is used to map a predicted state

S+

t+1 into a 2D position in image spaceM+

t+1 = [u, v, d]T :

M
+

t+1 = F (S+

t+1) + VF , (8)

where VF is the measurement noise.

• Update: let Mt+1 be the position of a pedestrian which

is assigned to τj at (t + 1). The updated state St+1 and

covariance matrix ΣSS,t+1 are then determined as follows:

St+1 = S
+

t+1 +K(Mt+1 − F (S+

t+1))

ΣSS,t+1 = Σ+

SS,t+1 −KJFΣ
+

SS,t+1

JF =





−f

Z
0 fX

Z2 0 0

0 −f

Z

fY

Z2 0 0

0 0 −fb

Z2 0 0





, (9)

where K is Kalman gain matrix; JF is Jacobian matrix of

F w.r.t the state parameters; and f and b are focal length

and baseline of the stereo rig.

Motion model: As people usually smoothly maintain their

movements over a short period of time, the velocity of a person

can be estimated from a window of k past states:

vx,t =

∑t

l=t−k
(Xl+1 −Xl)

k∆t
. (10)

The same computation is applied for vz,t.

The movement of a pedestrian is usually affected by the

behavior of its neighbors. These effects are considered in the

motion model to anticipate movements of observed objects in

the next epoch. In our model, we define neighbors as persons

whose spatial distances are small and moving directions are

similar. However, during tracking, some trajectories are not

consistent because of wrong assignment or generation from FP

detections. Including these incorrect neighbors into the motion

model can lead to wrong results. To mitigate this problem,

only trajectories with high confidence values are considered as

neighbors in our motion model. Let {vi, ..., vM}, {τi, ..., τM}
be velocities and trajectories of all tracked persons at a certain

epoch, respectively. The velocity vi of each target is predicted

as follows:

vi = (
∑

i=1...M

ω(τi, τj))
−1

∑

i=1...M

ω(τi, τj)vj

ω(τi, τj) = cos(ϕij)e
−

disij
ǫdis Iϕij<ǫϕ,disij<ǫdis,ϑTj

≥ǫϑ

, (11)

where ϕij and disij are angular displacement and spatial

distance between two trajectories τi and τj ; I is the indicator
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Figure 6. 2D bounding box prediction and correction. The

corrected box (green) tightly covers the deactivated target

object (gray).

function. ǫϕ, ǫdis, and ǫϑ are threshold parameters, which are

used to defined neighbors of τj .

3.4 Trajectory extrapolation

During tracking, some pedestrians cannot be detected because

of occlusion or visual challenges. Their trajectories are

deactivated for a certain amount of epochs. Once a target is

deactivated, its position in 3D spaces are still inferred based on

its velocity. We then back-project the 3D position into image

space to obtain predicted 2D position in the following epochs.

Though this extrapolation helps to recover missing detections,

it also increases the number of FP if the continuation of the

trajectory is generated from incorrect detections. To address

this issue, we estimate the number of epochs ǫd that a trajectory

can stay in deactivated state before being completely deleted

based on the trajectory confidence using the following equation:

ǫd,τj,t = ϑ
2
Tj,t

a , (12)

where a is a constant value.

Let S+

t+1 and I+t+1 be predicted positions in object and image

space of a deactivated trajectory at (t + 1). The inferred BB

bb+t+1 is determined by moving its previous BB bbt to a new

position such that I+t+1 lies in the middle of the bottom edge of

bb+t+1 (see Figure 6). We then check whether the predicted BB

contains the tracked pedestrian based on its percentage of pixels

that have 3D positions similar to S+

t+1. If most of the 3D points

in bb+t+1 lie further away from the camera than the 3D predicted

position S+

t+1, we assume that there is no object in bb+t+1. In the

case of a large portion of 3D points nearer to camera than S+

t+1,

we assume the object is occluded.

Once the presence of an object in a predicted BB is confirmed,

we adjust it by first enlarging the BB and finding all pixels in

the extended BB that can belong to that object. The predicted

BB is adjusted to cover all those points as shown in Figure 6.

4. EXPERIMENTS AND RESULTS

General goal and dataset: We evaluate the performance of

our tracker on the Kitti object tracking benchmark (Geiger

et al., 2012). As the ground truth is not provided for the

testing data set, we use five different image sequences of the

training set to evaluate the effectiveness of sub-components

in our framework, namely sequences 13, 15, 16, 17, and

19. To compare the performance of our approach with other

state-of-the-art trackers: NOMT (Choi, 2015), RMOT (Yoon et

al., 2015), SCEA (Hong Yoon et al., 2016), and CIWT (Ošep

Parameter Description Value

ǫ̺1 detection confidence threshold low 0.25
ǫ̺2 detection confidence threshold high 0.85

ǫa
number of active states used to
access trajectory confidence

20

ǫα angular displacement threshold π
3

ǫdis distance threshold of two neighbors 2m
ǫϑ trajectory confidence threshold 0.8
A deactivate states constance 10

α, β, γ weight parameters in Equation (6) 0.5, 0.2, 0.3
ρ, θ, ν, ι weight parameters in Equation (3) 0.1, 0.6, 0.1, 0.2

Table 1. Setting of parameters of our tracking system.

Detections Recall ↑ FP ↓ Precision ↑

mask R-CNN
low DCT ǫ̺ = 0.25 67.94 51.79 56.74

mask R-CNN
high DCT ǫ̺ = 0.85 64.06 15.06 80.96

Ours
ǫ̺1 = 0.25, ǫ̺2 = 0.85 75.74 19.6 79.44

Table 2. The comparison of detection results.

et al., 2017). We perform the tracking on the test data set. The

evaluation is carried out by the Kitti team.

Evaluation metrics: The performance of our tracker is

analyzed using the CLEAR MOT metrics (Bernardin and

Stiefelhagen, 2008). The tracking accuracy MOTA is computed

from three types of errors: false negative (FN), FP, and Id

switch (IDs). The localization error MOTP is measured by

the intersection over union between tracked objects and ground

truth bounding boxes in image space. We compute 3D-MOTP

to assess the estimated positions of tracked pedestrians in 3D

object space as well. In addition, we also utilize four additional

metrics including the percentage of most tracked (MT) and

most lost (ML) trajectories, the number of Id switches (IDs)

and fragmentation (FR) to compare our method against the

state-of-the-art (Li et al., 2009).

Parameters setting: The thresholds and weight parameters

used in our equations are determined heuristically and applied

for all image sequences. Their values are listed in Table 1.

Detection results: Unlike the conventional approach, which

uses only one fixed threshold for selecting TP detections, in

our TCD method, we use both low (ǫ̺1 = 0.25) and high

(ǫ̺2 = 0.85) DCTs. Table 2 shows the comparison of

our detection results with those of two single-threshold mask

R-CNN computations. It is evident that even with a very low

DCT ǫ̺ = 0.25, the mask R-CNN just obtains 67.94 % recall,

while our approach which combine both the TCD and trajectory

extrapolation methods can improve it to 75.74 %. Moreover,

while increasing the recall value, our tracker also keeps the

number of FPs at a comparably low rate of 19.6 %, resulting

in a high precision of 79.44, which is very similar to the value

of mask R-CNN with a very high DCT ǫ̺ = 0.85, and much

better than mark R-CNN with a low DCT.

Moreover, the MOTA value may actually be even higher

because a number of the Kitti reference bounding boxes are

not very accurately placed: they do not cover the appearance of

pedestrians in the images as tightly as our tracker (see Figure 7).

Therefore, in order to get a better insight on the performance of

our method, we evaluate the results of our tracker in 3D space

with difference intersection over union thresholds as illustrated

in Figure 8. With a IoU decreased from 0.5 to 0.4, the MOTA

and MT values are improved significantly, while 3D-MOTP

with one meter threshold stays nearly constant. Therefore,
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Figure 7. Examples of inaccurate references of the Kitti

data (green boxes). Our detections (red boxes) cover the

pedestrians better.

MOTA MT ML
0

20

40

60

80

100

P
e
rc

e
n
t

IoU = 0.5

IoU = 0.4

MOTP3D-

Figure 8. Performance of our tracker in 3D object space

with different IoU thresholds.

in our tracking system, pedestrian trajectories can be well

estimated even with a lower IoU than 0.5 as defined by the

Kitti benchmark. This is because either some of references are

not precise or 3D accurate localization does not require a very

accurate detection, which needs to cover the entire interesting

object.

Furthermore, Figure 9 shows that the localization in 3D object

space achieves best results when the distances between tracked

objects and camera fall in the range 5–15 m. This is also the

critical distance for vehicles to stop when reactions are required.

Tracking results: The tracking performance of our approach

(CAT) and other state-of-the-art methods on the Kitti test

data set are presented in Table 31. It can be observed that

our method shows comparable results to NOMT in most of

the metrics, except for the number of ID switch. This is

probably because NOMT uses additional optical flow features

in the data association step and solves the assignment problem

with a temporal window, while we just employ appearance

and geometry properties to link detections in two consecutive

frames. Compared to CIWT, RMOT, and SCEA, our method

demonstrates remarkable improvements in MOTA, MT, and

ML. This is mainly because we used different detection

methods. In addition, our TCD and extrapolation with

confidence awareness approaches enable the achievement of

high recall together with high precision of detection, which

strongly affects the MOTA value. In Table 3, it is obvious that

SCEA has a MT number larger than ours, which means that

the number of different pedestrians are tracked by our tracker is

much higher. This is an important reason why they can achieve

such a low number of ID switch and FR compare to us.

5. CONCLUSION

Pedestrian tracking still remains a highly challenging problem,

mainly due to noisy detection results and crowded scenes

1www.cvlibs.net/datasets/kitti/eval_tracking.php
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Figure 9. The histogram of 3D-MOTP w.r.t the distance

between tracked pedestrians and the stereo rig.

Tracker MOTA ↑ MOTP ↑ MT ↑ ML ↓ IDs ↓ FR ↓

CAT (ours) 52.35 71.57 34.36 23.71 206 804
NOMT 57.67 72.17 34.36 19.24 108 799
RMOT 43.77 71.02 19.59 41.24 153 748
SCEA 43.91 71.86 16.15 43.30 56 641
CIWT 43.37 71.14 13.75 34.71 112 901

Table 3. Evaluation results on the Kitti data set of our

tracking method CAT and other state-of-the-art methods.

with many occlusions. With the goal of improving the

tracking results, we proposed a framework to track pedestrian

in 3D object space with the awareness of both, detection and

trajectory confidence values. Moreover, employing the power

of existing CNNs in different stages of our tracker is also an

important factor to achieve better tracking performance.

The evaluation results on the Kitti dataset demonstrate that our

tracking approach is at least comparable to the state-of-the-art

methods. We can obtain both high recall and precision results,

which leads to a noticeable increase of MOTA (52.35 %), MT

(30.36 %), and ML (23.71 %). Additionally, our tracker can

also localize pedestrians in 3D object space precisely (within 1

meter) even in cases where just a portion of the target object can

be observed.

In future work we will further investigate the values of weight

parameters in Equation (5) and Equation (6) to evaluate their

influence on the performance of our tracker. In addition, the

relations of all tracked objects are more or less maintained

during consecutive epochs. Therefore, tracking pedestrians

with the consideration of neighbours as constraints when

solving the association and localization problems can help to

improve the tracking accuracy. Finally, our framework can be

extended to track pedestrians and other objects from multiple

viewpoints in the context of collaborative autonomous cars.
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Henschel, R., Leal-Taixé, L., Cremers, D. and Rosenhahn, B.,
2018. Fusion of head and full-body detectors for multi-object
tracking. In: IEEE/CVF Conference on Computer Vision and
Pattern Recognition Workshops (CVPRW), pp. 1540–1550.

Hermans, A., Beyer, L. and Leibe, B., 2017. In defense
of the triplet loss for person re-identification. arXiv preprint
arXiv:1703.07737.

Hong Yoon, J., Lee, C.-R., Yang, M.-H. and Yoon, K.-J.,
2016. Online multi-object tracking via structural constraint
event aggregation. In: IEEE Conference on Computer Vision
and Pattern Recognition (CVPR 2016), pp. 1392–1400.

Jafari, O. H., Mitzel, D. and Leibe, B., 2014. Real-time
rgb-d based people detection and tracking for mobile robots
and head-worn cameras. In: IEEE International Conference
on Robotics and Automation (ICRA 2014), pp. 5636–5643.
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