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Abstract Simultaneous confidence intervals, or confidence bands, provide an intuitive

description of the variability of a time series. Given a set of N time series of length M ,

we consider the problem of finding a confidence band that contains a (1 − α)-fraction

of the observations. We construct such confidence bands by finding the set of N−K

time series whose envelope is minimized. We refer to this problem as the minimum

width envelope problem. We show that the minimum width envelope problem is NP-

hard, and we develop a greedy heuristic algorithm, which we compare to quantile-

and distance-based confidence band methods. We also describe a method to find an

effective confidence level αeff and an effective number of observations to remove Keff ,

such that the resulting confidence bands will keep the family-wise error rate below α.

We evaluate our methods on synthetic and real datasets. We demonstrate that our

method can be used to construct confidence bands with guaranteed family-wise error

rate control, also when there is too little data for the quantile-based methods to work.
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1 Introduction

Confidence intervals are typically used to describe a univariate distribution. However,

the concept of confidence intervals can be extended and be used to describe also

multivariate time series data. We focus on the traditional two dimensional value-

versus-time representation of time series and speak of confidence bands that define a

region of most probable observations. A time series is extreme if it at some point falls

outside of the confidence band.

Confidence bands, such as the ones shown in Fig. 1, are useful for many reasons.

They are easy to interpret both because of the direct analogy to univariate confidence

intervals and because they are presented in the same format as the data. The visual rep-

resentation is particularly effective as we can easily spot trends, patterns, and outliers

when the data are presented as an image. In addition, automatic detection of outliers

is readily implemented using simple thresholding.

However, as the length of the time series grows, false alarms become a problem.

For example, consider a time series of length 10 where the time points are completely

uncorrelated to each other. One naïve option is to form a 90 % confidence band, which

consists of ten independently-computed scalar 90 % confidence intervals. The time

series will lie completely within this band only 0.9010 = 35 % of the time. In the

remaining 65 % at least one of the time points lies outside the naïve confidence band.

In a real world application these might trigger an alarm 65 % of the time. Hence,

we should be able to control the number of false positives our method produces,

i.e., to perform multiplicity correction. The standard way to perform the multiplicity

correction is to define an error rate (e.g., the fraction of false positives f p), a threshold

(call it α), and devise a method that keeps the error rate at or below the given threshold.

In the statistical literature there is a plethora of methods for multiplicity correction,

but most of them are either specific to a certain statistical test or they consider only

the p-values from a set of possibly correlated tests. Multiplicity correction is rarely

applied to the construction of the confidence bands. In Sect. 6 we provide further

discussion regarding the related work.

In this work we describe a method to compute multivariate confidence bands for

time series data while controlling the family-wise error rate (fwer). The fwer is the

probability of making one or more false discoveries. In particular, when saying “con-

trolling the fwer at α,” we mean that the probability of falsely marking a time series as

extreme is at most α. The proposed methods are data-driven and are well suited for the

analysis of multivariate autocorrelated data (time series). No parametric assumptions

about the data are made and the only required input is the observed time series data.

We formalize the problem of finding a confidence band as a problem of finding an

envelope of minimum width. Given a set of N time series the minimum width envelope

(mwe) problem is to find a subset of N − K time series such that their envelope has

the smallest total width. The problem turns out to be NP-hard and, in addition, we

can show that the complement objective function is hard to approximate. However,

we provide an efficient greedy algorithm for finding an approximate solution. We also

describe a method that can be used to guarantee fwer control.

A motivating example is shown in Fig. 1. It shows a set of real normal heart beats

along with three possible 90 % confidence bands. The narrowest band (solid red) is
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Fig. 1 A set of N = 1,507 normal heart beats along with different 90 % confidence bands. Shown are

the simple quantile (solid red), minimum width envelope with K = ⌊0.1 × 1507⌋ = 150 observations

removed (solid blue) and minimum width envelope with guaranteed fwer control (Keff = 27, dotted blue)

confidence bands. Details about the data can be found in Sect. 5.1

computed using simple quantile at each time point without any multiplicity correction.

Although this seems crude in light of the discussion above, this method is often used

in practice. The confidence band produced by our mwe method (solid blue) is con-

siderably wider. The widest band is computed using mwe with fwer control (dotted

blue) and it is guaranteed to keep fwer under 10 %. Hence Fig. 1 clearly demonstrates

that the width of the simple quantile confidence band is very far from a width that

would control fwer.

From a set of confidence bands that control the fwer at some desired level α, a

narrow band has the highest power of detecting an extreme observation. Hence, it is

justified to use the confidence band width as a cost function in the two dimensional

representation shown above.

In addition to the mwe method, we introduce for comparison novel methods based

on ideas from multivariate outlier detection literature.

To summarize, the contributions of this work are the following:

1. Definition and characterization of the mwe problem for time series data,

2. Efficient algorithm to solve the mwe problem,

3. A procedure to guarantee fwer control,

4. Comparison to other applicable methods, and

5. Publicly available code (algorithms and experiments).1

In the following we first define the mwe problem. We prove that the problem is NP-

hard and that the complement objective function is hard to approximate. To confront

with the problem we devise a greedy heuristic algorithm. We also provide definitions

of quantile and distance-based confidence bands, followed by a general procedure that

can be used to guarantee that the fwer remains controlled. Finally, we use synthetic

and real datasets to compare the methods and discuss the related literature.

1 https://bitbucket.org/jtkorpel/mwe_2014.
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2 Problem definition

2.1 The minimum width envelope (mwe) problem

We consider N time series, each one having M time points. We organize this data in

an N × M matrix X. We write I ⊆ {1, . . . , N } to denote a subset of the N time series,

or equivalently, a subset of rows of X. We define the upper envelope of X[I, ·] to be

Eup(m, I ) = maxn∈I X[n, m] and the lower envelope Elow(m, I ) = minn∈I X[n, m].

We define U (I ) =
∑M

m=1

(

Eup(m, I ) − Elow(m, I )
)

to be the size of the envelope of

the sub-matrix X[I, ·]. The confidence band is defined as the minimal area that bounds

the envelope.

The task is to remove K observations from X such that the envelope of the remaining

dataset is minimized. More formally, we have:

Problem 1 Minimum width envelope (mwe) problem. Given a dataset X, representing

N time series of dimension M , and given an integer K , find a subset of time series

Iopt ⊆ {1, . . . , N } of size |I | = N − K , such that the size of the envelope U (Iopt) is

minimized.

The solution to the mwe problem can be used to construct confidence bands. Sup-

pose we have obtained a set of N time series with M samples from an unknown

distribution F . An approximate empirical 1 − α confidence band for F is constructed

by setting K = ⌊αN⌋.

2.2 Complexity of the mwe problem

In this section we show that the mwe problem is NP-hard and that the complement

objective function is hard to approximate. Our proof uses a reduction from the Maxi-

mum k-Subset Intersection (msi) problem to a special case of the mwe problem.

The msi problem is be defined as follows: given a collection C = {S1, . . . , Sm} of

m subsets over a finite set of elements E = {e1, . . . , en}, and a positive integer k, the

objective is to select exactly k subsets J ⊆ {1, . . . , m}, |J | = k, whose intersection

size
∣

∣∩ j∈J S j

∣

∣ is maximum.

Theorem 1 (Xavier 2012) The msi problem is NP-hard.

Theorem 2 (Xavier 2012) Let ǫ > 0 be an arbitrary small constant. Assume that

SAT does not have a probabilistic algorithm that decides whether a given instance of

size n is satisfiable in time 2nǫ
. Then there is no polynomial time algorithm for the

msi problem that achieves an approximation ratio of 1/N ǫ′
where N is the size of the

instance, and ǫ′ depends only on ǫ.

Theorem 3 The mwe problem is NP-hard, and the complement objective function is

hard to approximate.

Proof We reduce the msi problem to a special case of the mwe problem by constructing

a 0–1 time series dataset X ∈ {0, 1}N×M , where N = 2m + 1 and M = n, as follows,
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X[i, j] =

{

1, i ≤ m and e j /∈ Si ,

0, otherwise.
(1)

We finally set K = m − k, hence defining an instance of the mwe problem. Because

K ≤ m and because at each time instance j ∈ {1, . . . , M} there are at least m + 1

zeroes in X [·, j], the lower envelope of any subset of N − K rows is always zero.

Therefore, the value of the solution of the mwe problem is given only by the upper

envelope as

U (I ) =

M
∑

j=1

max
i∈I

X[i, j]. (2)

Furthermore, the time series i ∈ {m + 1, . . . , 2m + 1} always belong to I since, by

definition, they are composed of only zeros and hence do not add to the envelope

width. For a given j , the maximum in Eq. (2) is equal to 1 if and only if there exists

some i ∈ I such that e j /∈ Si . Equivalently, the maximum term is zero only if such

term does not exists, i.e., all of Si with i ∈ I contain e j or | ∩i∈I

(

e j ∩ Si

)

| = 1. The

cost function can therefore equivalently be written in terms of sets of the msi problem

as

U (I ) =

M
∑

j=1

(

1 −
∣

∣∩i∈I∩{1,...,m}

(

e j ∩ Si

)
∣

∣

)

= M −
∣

∣∩i∈I∩{1,...,m}Si

∣

∣, (3)

where the latter term is M—the size of the original envelope of the time series data—

minus the msi cost function. Minimizing the mwe cost function is therefore equivalent

to maximizing the msi cost function with the msi solution set given by J = I ∩

{1, . . . , m}, i.e., U (I ) = M − |∩i∈J Si |. It follows from Theorem 1 that the mwe

problem is NP-hard and from Theorem 2 that the complement of the mwe cost function

is hard to approximate. ⊓⊔

Because inapproximability results do not necessarily apply to the complement of

cost functions, the inapproximability claim in Theorem 3 does not directly apply to

the mwe problem, when the cost function is defined as a minimization of the envelope.

However, the inapproximability results holds for the equivalent complement problem,

i.e., maximizing the area outside the envelope.

3 Algorithms

3.1 Greedy minimum width envelope algorithm

We now describe a greedy algorithm for solving the mwe problem. The idea is to

sequentially select K observations and remove them from the envelope. At each itera-

tion, the observation to select for removal is the one whose removal yields the largest

reduction ∆U in envelope size.
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Algorithm 1 Greedy mwe algorithm

1: input: (1) dataset X of size N × M with N observations of length M , (2) number of observations to

remove K

2: output: the set of central observations I

3: R ← ordering structure N observations in X ⊲ See Appendix 8.1

4: I ← {1, . . . , N } ⊲ The central observations

5: for k = 1 . . . K do

6: Create hash table ∆U such that a query with a previously unused key returns a value of zero

7: A ← ∅

8: for j = 1 . . . M do

9: ∆U [small(R, j)] ← ∆U [small(R, j)] + |X[small(R, j), j] − X[2ndsmall(R, j), j]|

10: ∆U [big(R, j)] ← ∆U [big(R, j)] + |X[big(R, j), j] − X[2ndbig(R, j), j]|

11: A ← A ∪ {small(R, j)} ∪ {big(R, j)}

12: end for

13: iopt ← arg maxi∈A ∆U [i]

14: R ← remove(R, iopt)

15: I ← I\{iopt}

16: end for

17: return I

The details of the approach are shown in Algorithm 1. First, each column is sorted

according to the values of its entries; this is shown in line 3. Information about the

ordering of the columns is maintained in a data structure R, which consists of a doubly-

linked list and an index structure. The data structure R and the respective methods

are described in the Appendix. In brief, the functions small(R, j) and 2ndsmall(R, j)

return the indices of the smallest and second smallest non-removed observations within

column j of X. The functions big(R, j) and 2ndbig(R, j) return the indices of the

largest and 2nd largest values, respectively. The function remove(R, i) removes the

i-th time series and updates the data structure R.

The main part of the greedy algorithm, shown on lines 5–16, is an iteration over

k = 1 . . . K to select the time series to remove. During the k-th iteration, the task is

to find an observation iopt that, when removed, reduces the size of the envelope of

the remaining time series most. By the construction of the data structure R, only the

time series that have not yet been removed are considered for removal. By extreme

observation we mean an observation X[i, ·] that contains the largest/smallest value of

some column m and has not yet been removed. To find out the reductions in envelope

width (∆U ) corresponding to the extreme observations, it suffices to iterate over all

M dimensions. Since the data structure R contains information of the ordering of each

column, each iteration requires constant time. On line 13 the optimal time series to

remove is selected and on line 14 the data structure R is updated.

To establish an approximate 1 − α confidence band for the dataset X, the number

of observations to remove is set to K = ⌊αN⌋. As the dataset size N increases the

true coverage of the band converges towards the target 1 − α.

3.2 Properties of the greedy algorithm

As we will see in our experimental evaluation, the greedy algorithm performs well

in practice. However, it can be shown that it does not provide any approximation

guarantee. An adversarial example is given by a setup with N = 5, M = 1, K = 2,
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and a data matrix given by xT = (1, 1 − ǫ/2, 2ǫ, ǫ, 0), with ǫ arbitrarily small. The

optimal solution is given by Iopt = {3, 4, 5} with cost U (Iopt) = 2ǫ, while the greedy

gives a solution Ialg = {1, 2, 3} with cost U (Ialg) = 1 − 2ǫ.

Constructing the data structure R requires time O(M N log N ), as discussed

in Appendix 8.1. The operations small(R, j), 2ndsmall(R, j), big(R, j), and

2ndbig(R, j) on lines 9–11 can be performed in O(1) time, and the operation

remove(R, i) on line 14 in O(M) time. Lines 5–16 of the algorithm, after the con-

struction of the ordering data structure R, can therefore be computed in O(M K ) time,

resulting to a total time complexity of O(M N log N + M K ) and memory requirement

of O(M N ) for the whole algorithm.

3.3 Confidence bands based on quantiles

A different approach to construct confidence bands is by considering quantiles for each

time instance separately. In this approach the α/2 and 1 − α/2 quantiles of X[·, m]

are computed, separately for each time instance m. We will refer to this approach

as the quantile method. A major drawback of the quantile method is that the

1 − α quantiles are formed independently for each m, so that the overall fwer is not

controlled. An approximate fwer control can be added using a Bonferroni correction.

The correction makes the quantiles smaller by defining them as α/(2M) and 1 −

α/(2M) (instead of α/2 and 1−α/2). We refer to the resulting method as bonferroni.

The fwer control of bonferroni is approximate because the quantile estimation is

sufficiently accurate only for large N .

One major problem with quantiles is that the smallest quantile that can be estimated

from a dataset of size N is 1/N . For the quantile methods to be applicable, it should

hold N > 2/α for quantile and N > 2M/α for bonferroni. For example, for the

values of α = 0.1 and M = 25 we need N > (2 ·25)/0.1 = 500 observations to apply

the bonferroni method. For many real datasets, the number of dimensions M can

easily reach hundreds and thus the required N becomes thousands of observations. To

actually reach the fwer control even more observations are needed, as we will see in

our experimental evaluation (Fig. 2a).

3.4 Confidence bands based on distance measures

Time series are conventionally visualized and interpreted by plotting them against

time. However, a time series of length M can also be interpreted as a point in an

M-dimensional space. Accordingly, a collection of N time series becomes a cloud

of data points. The distance of a data point from the center of this data cloud can be

used as a measure of extremeness, as often done in the context of outlier detection. A

natural assumption is to define the set of central observations I to be the N − K time

series with the smallest distance to the mean of all time series. This idea is formalized

in Algorithm 2.

Algorithm 2 can be applied for any distance function dist(·, ·). In the case of multi-

variate normal data, a commonly-used distance measure is the Mahalanobis distance.

Given a multivariate Gaussian with mean µ and covariance Σ the ellipsoids
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Algorithm 2 Distance measure based confidence bands

1: input: (1) dataset X of size N × M with N observations of length M , (2) number of observations to

remove K , (3) a distance function dist(·, ·) between two time series of length M

2: output: the set of central observations I

3: Let x be a M-dimensional vector of means of columns of X

4: Create a N -dimensional vector of distances d such that di = dist(X[i, ·], x)

5: Let I be the set indices of the N − K smallest values in d.

6: return I

(x − µ)T Σ−1(x − µ) = χ2
M (1 − α) (4)

define surfaces in R
M that mark the boundary of the 1−α confidence region, where χ2

ν

is the chi-squared distribution with ν degrees of freedom. The left hand side of Eq. (4)

is the Mahalanobis distance, which is often used to detect outliers from multinormal

datasets.

The Mahalanobis distance works well for approximately normal data as it takes

into account the covariance structure. The confidence regions defined by Eq. (4) are

M-dimensional ellipsoids. The mwe confidence bands correspond to M-dimensional

rectangles with the cost function corresponding to minimizing the sum of the lengths

of the sides of the rectangle. A compromise between the two approaches (rectangles

vs. ellipsoids) would be to define regions based on M-dimensional spheres. This can be

achieved by employing Algorithm 2, and using the L2 norm as the underlying distance

measure. We refer to the two instantiations of Algorithm 2, with the Mahalanobis

distance and with the L2 distance, as maha and l2, respectively. Because confidence

bands in two dimensions correspond to M-dimensional rectangles in R
M , the rectangle

approximation is used for the maha and l2 methods as well. In other words, the

confidence bands, not the confidence regions in R
M , are used when testing if an

observation is extreme or not.

The time complexity of Algorithm 2 is composed of the preprocessing time that

may be needed to perform more efficiently the pair-wise distance computations for

a predefined set of N time series of length M , O(F(N , M), computing the mean on

line 3, O(M N ), and the distance vector on line 4, O(N f (M)), where f (M) is the

time needed to compute a single distance. The sorting on line 5 requires O(N log N )

time. The time complexity of the full algorithm is therefore O(F(N , M)+ N f (M)+

N M + N log N ). If F(N , M) ≤ O(N M) and f (M) ≤ O(M) the computation of

the distance measure causes no computational overhead, and in this case the total

complexity is O(N M + N log N ). Computing the Mahalanobis distance involves a

costly inversion of a M × M matrix resulting to F(N , M) = N M + Mω, where ω is

the exponent in the best-known algorithm for matrix multiplication and whose current

value is ω = 2.373 (Williams 2011). On the other hand, the use of L2 norm causes no

computational overhead.

4 Controlling the FWER

Due to the finite sample size N , the confidence bands bonferroni, maha, l2, and

mwe control the fwer only approximately. In order to circumvent this problem, we
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Algorithm 3 fwer control algorithm

1: input: (1) dataset X of size N × M , (2) number of cross validation folds L , (3) α desired level of

fwer control, (4) cb.algorithm function to find a confidence band that outputs the set of central

observations

2: output: the set of central observations I

3: F ← Random partition of rows of X into L folds

4: Initialize � to a matrix of size L × ⌈αNL⌉, where NL is the maximum number of rows in a fold

5: for l = 1 . . . L do

6: �[l, ·] ← fwer.profile(∪i �=l Fi , Fl , ⌈αNL⌉, cb.algorithm)

7: end for

8: φ ← col.sums(�)/N

9: Keff ← largest k such that φ[k] ≤ α

10: I ← cb.algorithm(X, Keff )

11: return I

Algorithm 4 fwer.profile(X, Xtest, K , cb.algorithm)

1: input: (1) dataset X of size N × M , (2) test dataset Xtest of size Ntest × M , (3) number of observations

to remove K and (4) a confidence band algorithm to use

2: Initialize φ to a vector of length K

3: for k = 1 . . . K do

4: I ← cb.algorithm(X, k)

5: φ[k] ← n.obs.outside.cb(Xtest, X, I )

6: end for

7: return φ

use L-fold cross validation to estimate the true level of fwer control, as a function of

the number of removed observations (K ). We thus obtain a vector φ of fwer values,

where φ[K ] indicates the fraction of observations outside the confidence band (see

Fig. 8 for an example). By finding the largest K for which φ[K ] ≤ α, we get an

effective number of observations Keff to remove, such that fwer stays controlled at

level α. The respective effective confidence level αeff is defined as αeff = Keff/N .

Algorithms 3 and 4 describe how the fwer profile, Keff and respective confidence

bands are computed. The fwer control algorithm (Algorithm 3) randomly partitions

the dataset into L folds (line 3) and uses fwer.profile (Algorithm 4) to compute fwer

profile for each fold (line 6). The fwer profile for the whole dataset is an average of

the fold profiles (line 8) and it is used to compute Keff (line 9). The set of extreme

rows is computed using any of the algorithms defined above.

The fwer.profile algorithm computes the fwer profile for a given partition of the

data and its implementation is shown in Algorithm 4. cb.algorithm is applied repeat-

edly (line 4) with increasing K and the respective number of test observations outside

confidence bands is stored to the vector φ (line 5). The function n.obs.outside.cb

returns a vector indicating how many observations are outside the confidence band.

Note that once an observation falls outside the confidence band it will stay outside, as

the band always gets narrower.

The simplest approach is to compute the fwer profile for all values of K up to

K = N , but this is expensive for large datasets. Since one typically needs to estimate

only the beginning of the fwer profile, say up to K = ⌈αNL⌉, we may interrupt

the estimation as the desired level has been reached. The result will be correct up to

the truncation point. Notice that with the mwe, maha, and l2, the Algorithm 4 can
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be executed within the loops of Algorithms 1 and 3 without increasing the overall

time complexity. Quantile-based methods can be incorporated using α = k/N inside

cb.algorithm.

A larger number of folds, i.e., larger L , yield more accurate results as more data are

used for the confidence band estimation in fwer.profile. In the extreme case L = N

we get a leave-one-out type of situation where the test dataset consists of a single

observation, but the running time of our algorithm is multiplied by the factor of L .

4.1 Effective values of the parameters K , α and M

The effective number of observations to remove, Keff , might be smaller or larger than

the naïve target K = ⌊αN⌋. For methods, such as mwe, that make the confidence

band aggressively narrower as more observations are marked extreme, Keff is smaller

than ⌊αN⌋. For others, such as maha, where an observation can be extreme without

making the confidence band narrower, Keff is usually larger than ⌊αN⌋. For simplicity,

from now on all statements about Keff are for mwe if not stated otherwise.

The covariance structure of the data and the number of observations available (N )

dictate how much Keff differs from ⌊αN⌋. To obtain a better insight we introduce a

parameter Meff , which captures the effective dimensionality of the data. One extreme

is reached when the time series differ from each other only by a baseline shift, making

any pair of time time series perfectly correlated. As a result, there is effectively only

one variable since all M time instances convey the same information. We say that

the effective M , Meff , is one. In this extreme case, only little data are required to

get a reasonably accurate estimate of the confidence band. At the other extreme, all

time series in the dataset are uncorrelated. In this case all M time instances carry

information and Meff = M . To get an accurate estimate of the confidence band we

need a large value of N .

5 Experiments

We first briefly describe some synthetic and real datasets. Using these, we then provide

an extensive empirical evaluation of the different methods to obtain confidence bands.

5.1 Datasets

5.1.1 Synthetic data

Synthetic data were created by adding noise to a base signal. By changing the degree

of autocorrelation of the noise, datasets with different covariance structures were

generated. This process allowed us to create datasets with varying effective dimension

Meff needed to illustrate the concepts described above.

A noise vector of length M was generated by applying a moving average filter of

length w to a M + w − 1 vector of normal random variables N (0, 1). The larger the

value of w, the higher the degree of autocorrelation that was added to the noise vector.

Finally the noise vector was scaled to control the size of noise compared to the actual
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signal. The scaling remained the same for all applied w. The case w = M was treated

separately. In this case the whole signal was offset by a value drawn from N (0, 1).

Additionally, synthetic ecg datasets were created by adding noise to the average

normal heart beat from heartbeat-normal. These datasets differ both in length

(M) as well as by the amount of smoothing, measured using the relative width w/M

of the smoothing window.

5.1.2 ECG data

The dataset consists of electrocardiographic (ecg) raw signal. PhysioNet offers sev-

eral kinds of heart beat related data (Goldberger et al. 2000).2 We chose the MIT-BIH

arrhythmia database,3 which contains annotated 30 min records of normal and abnor-

mal heart beats, originally used for the evaluation of arrhythmia detectors (Moody

and Mark 2001). We selected test subject 106, whose record contains 1,507 nor-

mal beats and 520 abnormal beats with premature ventricular contraction (pvc). We

used the beat type annotation locations to align the beats and selected a time win-

dow of [−300, 400] ms around these locations as the window of interest. This creates

two datasets with M = 253 time points: heartbeat-normal (N = 1,507) and

heartbeat-pvc (N = 520).

5.1.3 Temperature data

We used the publicly available Global Historical Climatology Network (GHCN)

daily dataset,4 from US National Oceanic and Atmospheric Administration’s National

Climatic Data Center (NOAA NCDC).5 Using the information found in ghcnd-

inventory.txt, we verified that the station ITE00100554 in Milan, Italy, contains the

longest range of measurement years from 1763 to 2008. Several meteorological vari-

ables are available of which we select the maximum temperature (“tmax”). We then

aggregated the daily temperatures to average monthly temperatures. Only Decem-

ber 2008 was missing completely, so the final dataset max-temp-milan contained

years 1763–2007 corresponding to N = 245 observations.

5.1.4 Power-consumption data

The UCI-power dataset is the individual household electric power consumption data

from the UCI machine learning repository (Bache and Lichman 2013).6 It consists of

hourly averages of the variable “active.power”.

Table 1 shows statistics of our datasets and some related properties. The syn-

thetic datasets demonstrate that the smallest achievable fwer decreases as the dataset

2 http://physionet.org/.

3 http://physionet.org/physiobank/database/mitdb/.

4 ftp://ftp.ncdc.noaa.gov/pub/data/ghcn/daily.

5 http://www.ncdc.noaa.gov/.

6 http://archive.ics.uci.edu/ml/datasets/Individual+household+electric+power+consumption.
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Table 1 Datasets and their properties computed using mwec, L = 4 and target confidence level α = 0.1

N M min fwer αeff Keff ∆U

synth-ECG-0prc 1,000 25 .068 ± .002 .012 ± .002 12 ± 1.8 .960 ± .006

synth-ECG-75prc 1,000 25 .064 ± .002 .014 ± .002 14 ± 1.9 .958 ± .006

synth-ECG-100prc 1,000 25 .002 ± .000 .072 ± .001 72 ± 1.2 .569 ± .022

heartbeat-normal 1,507 253 .038 .017 26 .639

heartbeat-pvc 520 253 .104 – – –

max-temp-milan 245 12 .069 .004 1 .941

UCI-power 1,417 24 .029 .037 52 .830

min fwer is the smallest reachable fwer, reached when the training data envelope is directly used as

the confidence band in Algorithm 4. ∆U shows how much the original data envelope has to be narrowed

down to achieve the 1 − α confidence level, i.e., ∆U = U (I )/{whole data envelope}. For synthetic data

the mean of five iterations is given together with the standard error. Dashes indicate values that cannot be

computed

becomes more correlated. This corresponds to smaller values of effective dimension

Meff allowing αeff and Keff to increase.

5.2 Properties of the confidence bands

fwer control. Confidence bands are first computed for synthetic ECG datasets with

M = 25 and variable N . Consequently the fwer control of the bands is tested using

a test dataset of size N = 104.

Figure 2a shows the observed fwer of the methods when no fwer control proce-

dure is applied. Clearly the quantile method does not control the fwer at all. As

the number of observations increases, mwe and bonferroni converge to the target

confidence level but distance based measures converge to zero, i.e., become overly

conservative.

The observed fwer when fwer control procedure has been applied is shown in

Fig. 2b. The fwer is controlled for all methods for N > 500 and remains controlled

as dataset size increases. All methods yield similar results at N = 500 because at that

point even the training data envelope cannot always provide full fwer control at level

α = 0.1. The brief upward notch for bonferroni at N = 750 is a rounding artifact:

the quantiles can be estimated at 1/N intervals and for small N the grid is too sparse.

As N increases the fwer converges toward the desired level, except for distance based

methods.

5.2.1 Confidence band width

Figure 3a illustrates how the confidence band width grows as N increases. The mwe

algorithm produces the narrowest confidence bands, as designed. The bonferroni

bands are narrower than mwe bands for the largest N because bonferroni can mark

more time series as extreme than mwe. The confidence band width is upper bounded

by the true distribution of the data, which becomes more accurately represented as N

increases. Also in Fig. 4 the fwer is lower bounded by the target rate α.
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Fig. 2 Observed mean fwer along with standard error a without and b with fwer control procedure.

The dataset is synthetic heart beat data with M = 25, N = {100, 250, 500, 750, 1000} and w/M = 0.75

smoothing window. The test dataset is of size Ntest = 104. The horizontal dotted line shows the target

confidence level α = 0.1. For the bonferroni method quantiles cannot be estimated for N = {100, 250}

due to insufficient data for quantile estimation. When fwer control procedure is applied, all methods keep

the fwer under control after a sufficient dataset size of N > 500 has been reached

Figure 3b shows the situation with fwer control applied. bonferroni and quan-

tile bands are slightly narrower than mwe because more data are removed. All three

provide roughly the same level of fwer control but mwe does it with fewest observa-

tions removed.

More fwer control and confidence band results for a larger pool of datasets and

confidence band methods can be found in an additional material distributed together

with the source code.7

5.2.2 Effective data dimension Meff

Figure 4 shows the effect of varying the covariance structure of the data. The fwer

is better controlled for signals with higher autocorrelation, i.e., smaller Meff . Also,

with increasing N , fwer tends faster towards the target level α = 0.1 if Meff is

small.

7 https://bitbucket.org/jtkorpel/mwe_2014.
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Fig. 3 Mean and standard error of the 1 − α confidence band width for the same datasets and confidence

level as in Fig. 2a. Of methods that mark K = ⌊αN⌋ observations as extreme, mwe produces the smallest

envelopes
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Fig. 4 Mean (fwer) control using mwe on synthetic heart beat data with different covariance structures.

The synthetic time series were M = 100 points long with added moving average (MA) Gaussian noise. The

MA lengths w were {1, 90, 100}, where w = 1 corresponds to Meff ≈ M and w = 100 to Meff = 1. The

horizontal dotted line marks the target confidence level α = 0.1. Error bars show the standard error of mean

5.2.3 Scalability of the algorithms

The running times of the algorithms are shown in Fig. 5. The overall scalability follows

the theoretical estimates. Small deviations are due to R programming environment,
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Fig. 5 Running times of the algorithms as a function of M and N

which has been used to implement the algorithm and experiments. For a dataset of

size N = 104 and M = 100 the actual running times are approximately 73 s for mwe,

0.2 s for maha and 1.4 s for l2.

5.3 Consistency of extreme values between methods

The methods use different criteria to define extremeness and hence they label different

time series as extreme. A fictive example of this is shown in Fig. 6, where especially

maha differs considerably from the rest of the methods. quantile, l2 and mwe select

mainly observations whose removal makes the confidence band narrower, but differ

in how many and which observations they pick.

Similar effects can be observed for more realistic datasets as well. An example is

shown in Table 2, which lists the number of common extreme observations between

pairs of methods. The number of overlaps depends on the distance measures and the

dataset. Here overlaps are used to quantify the differences between methods.

quantile marks almost all of the 1,000 observations as extreme, which indicates

that 95 % of the observations belong to the 10 % tail in at least one time point. For

bonferroni the number drops down to 69. This underlines the need for some kind of

error rate control.

By design, the other methods mark ⌊αN⌋ = 100 observations as extreme. However,

they do this very differently: for example mwe has 29 common labelings with maha but

only one with l2. In addition, maha and l2 do not share a single common observation.
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Fig. 6 Example of how methods consider different observations to be extreme. The dataset is a simple toy

dataset consisting of a set of 55 perfectly autocorrelated time series and a set of 5 time series with added

uncorrelated normal noise. Extreme time series are plotted in red. Notice how in this example the quantile

and maha mark extreme observations that do very little to reduce the width of the confidence band, whereas

mwe consistently chooses to remove observations that make the confidence band narrower

Table 2 Total number of extreme observations (diagonal) and the number of common extreme observations

between methods, when no fwer control procedure has been applied

quantile bonferroni maha l2 mwe

quantile 945 69 100 81 100

bonferroni – 69 22 3 57

maha – – 100 0 29

l2 – – − 100 1

mwe – – − − 100

The dataset is synthetic heart beat data with N = 1,000, M = 25, and w = 0.75 × M , confidence level

α = 0.1
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Table 3 Number of common extreme observations between methods when fwer control procedure has

been applied

quantile c bonferroni c maha c l2 c mwec

quantile c 24 24 11 5 11

bonferroni c – 47 19 7 20

maha – – 112 5 9

l2 c – – − 232 2

mwec – – − − 22

The dataset is the same as in Table 2

Fig. 7 Heart beats from MIT arrhythmia database, subject 106. A total of 1,507 normal heart beats are

shown in black and 520 beats with premature ventricular contraction in red. The 90 % confidence band for

the normal beats is shown in bold black and the fold method mwe 90 % confidence band (Keff = 25) in

thick dashed black. All beats are centered around the beat annotation location. The premature contraction

is clearly visible around −0.25 s

This emphasizes the fact that even a small change in the distance measure can have a

huge impact on the outcome.

Table 3 contains the same experiment but with fwer control applied. The difference

between distance based methods and mwe is clearly visible: whereas maha and l2

mark over 100 observations as extreme mwe marks only 22. This is possible because

in the MWE method each removed observation makes the confidence band narrower,

whereas the same is not true for distance based measures. Mostly there is no specific

condition where overlap would be good or bad. The amount of overlap depends on the

data and Fig. 6 illustrates a situation where the different definitions of extremeness

lead to very different results.

5.4 Examples using real data

5.4.1 ECG data

We applied the mwe fold algorithm to the normal beats data using L = 4 folds. The

resulting profile shows that the smallest achievable fwer is approximately 0.051,
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(a) Whole profile (b) Zoom in (            )lower left

Fig. 8 fwer profile φ against proportion of removed observations (K/N ) for temperature data using

L = 245. The whole profile is shown on the left and a zoom-in on the right. The solid line represents

y = x and the dashed line shows the position of the desired confidence level. The first observation in b

corresponds to k = 0, i.e., the data envelope. Note that the desired confidence level α = 0.1 is reached

already at approximately K/N = 3/245 ≈ 0.012. The envelope of the whole original dataset controls

fwer at rate 0.06

indicating that the dataset envelope would approximately provide 95 % confi-

dence band. A conservative estimate for the 90 % confidence band is achieved

using Keff = 25.

Figure 7 contains an illustration of the data along with 90 % confidence bands.

The fold method confidence bands are slightly wider but seem to coincide with the

regular mwe around signal peaks. Notice how most of the pvc anomalies lie outside

the confidence bands around −0.25 s.

5.4.2 Temperature data

Applying the mwe fold algorithm with L = 245, i.e., using leave-one-out folding

scheme produces the profile in Fig. 8. The lowest achievable fwer turns out to be

0.069 meaning that there is not enough data to achieve a 95 % confidence band. A

conservative estimate of the 90 % confidence band is found using Keff = 3. Note that

in Table 1 using L = 4 the same result was Keff = 1. Thus the partitioning in the fwer

control procedure has an effect, but the leave-one-out scheme used here provides the

most accurate result because of maximal size of the training dataset.

The Milan dataset along with 90 % confidence bands is shown in Fig. 9. There are

three years, namely 2003, 2006, and 2007, which lie outside the confidence bands; all

of these are ones with a documented heat wave.8 The number of observations limits

the accuracy of the analysis. With the current N = 245 observations we can afford to

mark three observations as extreme, before the data envelope becomes too narrow for

8 http://en.wikipedia.org/wiki/2003_European_heat_wave.

http://en.wikipedia.org/wiki/2006_European_heat_wave.

http://en.wikipedia.org/wiki/2007_European_heat_wave.
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Fig. 9 Monthly temperatures in Milan, Italy from 1763 to 2007 (GHCN station id: ITE00100554, ftp://

ftp.ncdc.noaa.gov/pub/data/ghcn/daily/all/ITE00100554.dly). The whole dataset is shown in fine black,

regular mwe 90 % confidence band (k = 24) in thick black and the fold method mwe 90 % confidence band

(Keff = 3) in thick dashed black. The number of observations is 245. The extreme observations correspond

to years 2003 (#1), 2006 (#2), and 2007 (#3) and are shown in red

Fig. 10 Heart beats from MIT arrhythmia database, subject 106 (same data as in Fig. 7). Normal and PVC

beats have been pooled (N =2,027) and are plotted in faint black. Cluster means are shown in bold red and

97 % mwe confidence bands are shown as red bands around the means

the desired fwer control. If we had more data, the confidence band could be estimated

with more detail and some additional years would become extreme as well.

5.5 Disjoint confidence bands

If the dataset X has multiple modes, the confidence bands should be split accordingly.

The straightforward solution is to cluster the dataset in c clusters and compute the
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confidence bands separately for each cluster using 1 − α/c as the confidence level.

This is primarily a clustering problem with the main question being that of choosing

a “correct” number of clusters. This is an open problem in data mining (Xu and Wun-

sch 2005) and therefore we demonstrate the approach using a predefined number of

clusters. Dataset size is another limiting factor that comes into play, as clusters usually

end up having too few observations to guarantee fwer control at the desired level α.

An example of this is shown in Fig. 10, where the dataset is a union of

heartbeat-normal and heartbeat-pvc. As an example we have identified

c = 3 clusters from the data using a standard k-means algorithm. Confidence bands

are then constructed separately for each cluster using 1 − α/c as the confidence level,

in this case 1 − 0.1/3 ≈ 97 %. Comparison to Fig. 7 reveals that clusters 1 and 2

correspond to the PVC beats and cluster 3 to normal beats. Cluster sizes are 248,

251, and 1528 which matches to the numbers of normal beats (1,507) and PVC (520),

respectively.

6 Related work

Confidence bands presented in this work focus on describing a multivariate target

distribution consisting of time series, where the series are assumed to have a fixed

length M . The estimated quantity is the location of a given percentile of the distribution.

A related approach is prediction, where the interest is in predicting the future samples

from the same population using e.g., prediction intervals (Hahn and Meeker 1991).

For time series this means predicting the value of the series k time steps ahead at t +k,

when observations up to t are available. In prediction it is assumed that the series gets

longer as time passes, in contrast to our approach.

In some applications, such as with temperature data or when analyzing some

repeated bio-signal waveform, new instances of a complete time series are constantly

generated. In these applications it would make sense to speak of prediction bands

that would describe the estimated location of a future realization of the M-point time

series. Mahalanobis distance is an example of such a region, as it can be used to form

the prediction region for a multivariate normal distribution (see Eq. (4)). However, in

general, we do not consider prediction bands in this work.

We were surprised to find only very few references to principled, non-parametric

approaches to the problem of finding simultaneous multivariate confidence intervals

for autocorrelated data. In their book Davison and Hinkley present an idea of a graph-

ical test involving confidence bands and multiplicity correction (see Davison and

Hinkley 1997, p. 154). Mandel and Betensky (2008) extend the idea by providing

exact algorithms to solve the problem, but do not apply the algorithms to time series

data. Both approaches use the rank of the most extreme coordinate value within an

observation as the ranking criterion. This leads to problems as the dimension of the

data grows, because many observations start assuming equal ranks and finding quan-

tiles in the rank distribution becomes difficult. The methods applied in the present

work use cost functions that do not suffer from this phenomenon.

Another related field of research is that of outlier detection, either in a traditional

multivariate setting (Aggarwal 2013) or for time series data (Gupta et al. 2013). The
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distance functions defined by the outlier detection methods can be directly used as

ranking criteria for extremeness. As outlier detection methods have not yet been

applied to the construction of confidence bands, we included Mahalanobis (maha)

and the Euclidean distance (l2) based confidence bands as comparison conditions.

One should, however, bear in mind that maha and l2 confidence bands are based

on a different definition of extremeness than mwe. Depending on the application the

researcher might find one or the other more justified.

Interestingly, when the extremeness of some items with respect to others is defined in

terms of dissimilarity rather than strict distance metrics, an outlier/deviance detection

algorithm such as the one by Arning et al. (1996) may closely resemble the mwe

approach adopted here. The database deviation detection approach by Arning et al.

(1996) proceeds by adding elements to an “exception set” using dissimilarity and

cardinality functions. The same happens in the mwe approach, where the cost function

(envelope width) plays the role of a dissimilarity function but the cardinalities are not

considered. The largest differences between the two approaches are the size of the

“exception set” (fixed in mwe, variable in Arning’s approach) and the application

domain (time series for mwe, text data for Arning).

In the field of information visualization, the time series have been studied a lot, the

confidence bands being one of the visual components used; see Aigner et al. (2011)

for a review.

In statistics a related problem is the one of finding the confidence region for the

estimate of the mean of a random vector. Examples of the different approaches pro-

posed can be found for example in Owen (1990), Efron (2006), and Arlot et al. (2010).

However, confidence bands are not mentioned in any of them.

Lastly, confidence bands can often be formed by inverting a statistical test. The

standard multiplicity correction procedures (see Dudoit et al. 2003) define such tests,

but the inversion is straightforward only for the Bonferroni method. However, recent

developments by Guilbaud (2008) suggest that also step-wise correction procedures

can be used to form simultaneous confidence regions.

7 Conclusions

The focus of this work is on the analysis of datasets with correlated variables such as

time series. We introduce a minimum width envelope (mwe) method that can be used

to compute confidence bands when several observations of a time series are available.

The method is intuitive, non-parametric and adjusts automatically to varying degrees

of correlation within the data. We also provide a procedure to ensure that the confidence

bands are such that the fwer remains controlled.

In this work we define the mwe problem and show that, when the area of the confi-

dence band is used as the cost function, the problem is NP-hard and the complement

objective function is hard to approximate. We also provide a greedy algorithm to solve

the problem along with several notes on how to implement the algorithm efficiently.

The algorithm turns out to have time complexity O(M N log N + M N ), where N is

the number of observed time series and M is the dimension of the data.
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To ensure that the mwe confidence bands control the fwer as intended, we provide

a cross validation type of approach. The approach can be applied to other confidence

band computation methods as well.

We also compare mwe to other methods that can be used to form confidence bands.

We show that due to the lack of multiplicity correction, naïve quantiles are not an option

to use for robust time series analysis. The quantile method can be improved using the

Bonferroni correction, but the resulting confidence bands cannot be reliably estimated

for small N due to problems in estimating the tails of the empirical probability density

function. Also, the Bonferroni correction does not take into account the correlation

structure of the data and is known to be very conservative thus lacking statistical power.

We tested multivariate distance based confidence bands as well. As such these

methods create overly conservative confidence bands. The fwer control procedure

makes the bands less conservative but the achieved fwer control varies a lot. The

bands are also wider than those of the other methods (especially for l2).

Summarizing, we have introduced an intuitive and fast method of computing con-

fidence bands for time series data. The fact that mwe adapts automatically to the

covariance structure of the data is an important feature, because time series data usu-

ally contain significant auto-correlations. Using the fold approach approximate fwer

control is achieved also for small datasets.

With mwe, as with all data-driven confidence band computation methods, lack of

data (small N ) leads to problems. High dimensional datasets simply need lot of data

for reliable estimation. Another problematic situation arises in special cases where the

time series lie parallel to each other, i.e., the effective dimension is close to one. If

two or more time series now lie very close to one another (or the exact same series is

repeated), the greedy algorithm cannot shrink the confidence band from the respective

direction as there is no reduction in confidence band width to be gained. In these cases

the distance based methods produce narrower bands.

It should be kept in mind that the confidence bands in two dimensions correspond

to a hypercube in the M dimensional data space. The cube is a crude approximation

even to the multivariate normal distribution, for which an ellipsoid would be more

appropriate. However, as time series are conventionally presented by plotting their

values against time and this visualization unveils a lot of useful information, confidence

bands are needed especially if visual inspection of data is required.

Distributions with multiple modes pose a problem for any confidence region/band

estimation method in both univariate and multivariate domains. The main difficulty

lies in deciding which of the modes are to be treated as separate clusters and which

are just coincidental collections of outliers. Finding the “correct” number of clusters

is an open problem in data mining community with approaches such as minimum-

description length principle (MDL) and Bayesian information criterion (BIC) provid-

ing reasonable answers. Assuming that the desired number of clusters c is known, a set

of disjoint confidence bands can be constructed by applying the mwe separately to each

cluster using 1−α/c as the confidence level. The main problem in this straightforward

approach is that in many cases the clusters have so few observations that the desired

level of fwer control (α/c) cannot be reached. This problem could be circumvented

by relaxing the requirement that each cluster should contribute an equal number of out-

liers. Applying, e.g., the k-means minus-minus by Chawla and Gionis (2013) the clus-
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ters and outliers can be estimated simultaneously. Also the cross-validation approach

to guarantee fwer control can be easily included. Changing the distance measure from

the Euclidean distance to a one that focuses on envelope widths could then provide a

basis for a mwe method for distributions with multiple modes. To keep the scope of

this work compact and as there still is research to be done in the unimodal problem,

we decided to leave the extension of mwe to multimodal distributions as future work.

Other future research topics could include the study of approximability if the type

of data is restricted in some way. As the mwe is in all practical applications a geometric

problem, our intuition is that an approximation ratio might exist for some special data

types. Another line of research would be to think of ways to control other error rates

than fwer.
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8 Appendix

8.1 Efficient implementation of order data structure R

This section describes the data structure R, referred to in Algorithm 1, that allows the

mwe algorithm to be efficient. R stores the ordering information for columns j of the

(a)

(b)

Fig. 11 a An example data structure Rj that combines a doubly linked list and an index vector to make

the retrieval of largest/2nd largest ranks and associated observation indices a constant time operation. This

structure allows the efficient implementation of rows 9–10 and 13 in Algorithm 1. b Same data structure

with observation i = 4 removed showing the update of links within the list
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data matrix X[i, j]. A substructure Rj for a single column j with N = 5 observations

is shown in Fig. 11a. The rank order of the values in column j are stored in a doubly

linked list, with the first element corresponding to the index i of the smallest element

in X[·, j]. The second element contains the index of the second largest value etc. The

indices of the (second) largest and (second) smallest values can be extracted in O(1)

time for a single column j , or in time O(M) for all columns (all values of j).

The substructure Rj additionally contains a vector of length N , where the i th item

is a pointer to the node of the doubly linked list with a value of i . With the help of this

additional vector, it is possible to delete (bypass) a node corresponding to any time

series i from the doubly linked list as shown in Fig. 11b. This takes O(1) time for

single column j and O(M) time for the whole time series. The data structure can be

initialized in O(M N log N ) time with the memory requirement of O(M N ).
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