
Confidence-Based Policy Learning from Demonstration
Using Gaussian Mixture Models

Sonia Chernova
Carnegie Mellon University

Computer Science Department
Pittsburgh, PA, USA

soniac@cs.cmu.edu

Manuela Veloso
Carnegie Mellon University

Computer Science Department
Pittsburgh, PA, USA

veloso@cs.cmu.edu

ABSTRACT

We contribute an approach for interactive policy learning
through expert demonstration that allows an agent to ac-
tively request and effectively represent demonstration exam-
ples. In order to address the inherent uncertainty of human
demonstration, we represent the policy as a set of Gaussian
mixture models (GMMs), where each model, with multiple
Gaussian components, corresponds to a single action. In-
crementally received demonstration examples are used as
training data for the GMM set. We then introduce our con-
fident execution approach, which focuses learning on rele-
vant parts of the domain by enabling the agent to identify
the need for and request demonstrations for specific parts of
the state space. The agent selects between demonstration
and autonomous execution based on statistical analysis of
the uncertainty of the learned Gaussian mixture set. As it
achieves proficiency at its task and gains confidence in its
actions, the agent operates with increasing autonomy, elim-
inating the need for unnecessary demonstrations of already
acquired behavior, and reducing both the training time and
the demonstration workload of the expert. We validate our
approach with experiments in simulated and real robot do-
mains.

Categories and Subject Descriptors

I.2.6 [Artificial Intelligence]: Learning—Machine Learn-
ing

General Terms

Algorithms, Design, Performance

Keywords

learning from demonstration, imitation, robotics

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
Copyright 2007 IFAAMAS .

1. INTRODUCTION
Designing robot controllers is a challenging problem due

to sensor complexity, noise, and the non-deterministic effects
of robot actions and the environment. As a result, many
robotic platforms are not used to their full potential due to
the difficulty of developing controllers for a wide range of
applications. To advance robotics and incorporate robots
into our daily lives, natural and intuitive approaches must
be developed that allow new skills to be taught in a timely
manner.

Learning from demonstration, a collaborative learning ap-
proach based on human-robot interaction, offers a promis-
ing solution to this problem. The goal of this approach is
to learn to imitate the behavior of a teacher by observing
a demonstration of the task. In addition to providing an
intuitive training method, it has been shown to significantly
reduce learning time compared to exploration-based meth-
ods such as reinforcement learning [22].

We view learning from demonstration as strongly related
to statistical supervised learning since both approaches rely
on labeled training data. Supervised learning techniques are
frequently used in demonstration-based learning to learn a
policy given a fixed set of labeled data [4, 10, 18]. In addition
to this, demonstration learning must also provide a method
for incrementally gathering this training data, ideally in a
way that minimizes the number of demonstrations needed
to acquire the policy.

In this work, we contribute an interactive policy learn-
ing approach that reduces the number of required demon-
strations by allowing an agent to actively request relevant
demonstration examples. In order to address the inherent
uncertainty of human demonstration, we represent the pol-
icy as a set of Gaussian mixture models, where each model,
with multiple Gaussian components, corresponds to a single
action. We then introduce our confident execution approach,
which focuses learning on relevant parts of the domain by en-
abling the agent to identify the need for and request demon-
strations for specific parts of the state space.

Our approach relies on expert demonstration, during which
the agent is fully under the control of an expert while contin-
uing to experience the task through its own sensors. Demon-
stration data is acquired incrementally though confident ex-
ecution, during which the agent actively decides between au-
tonomously executing the next action and requesting demon-
stration from the expert based on statistical analysis of the
uncertainty of the currently learned GMM set. The agent
operates with increasing autonomy as it achieves proficiency
at its task, eliminating the need for unnecessary demonstra-

tions of already acquired behavior, and reducing both the
training time and the demonstration workload of the expert.
Additionally, the quality of the learned model is continually
evaluated by comparing its similarity to the demonstrated
behavior, allowing the expert to track the agent’s learning
progress in real time. We validate our approach with exper-
iments in simulated and real robot domains.

2. RELATED WORK

Learning from demonstration, and related areas such as
learning from observation, imitation, and robot shaping, are
interactive learning methods that utilize expert examples. A
wide variety of demonstration training methods have been
explored in previous work, including teleoperation [18, 25],
direct manipulation of the learning agent [3], and following
robotic [9] or human [14, 15] teachers. In our work we focus
on a direct policy learning approach [20], in which the agent
experiences the demonstration through its sensors while un-
der the control of an expert.

Nicolescu and Mataric [14, 15] present a learning frame-
work based on demonstration, generalization and teacher
feedback, in which training is performed by having the robot
follow a human and observe its actions. A high-level task
representation is then constructed by analyzing the expe-
rience with respect to the robot’s underlying capabilities.
The authors also describe a generalization of the framework
that allows the robot to interactively request help from a
human in order to resolve problems and unexpected situa-
tions. This interaction is implicit as the agent has no direct
method of communication; instead, it attempts to convey
its intentions by communicating though its actions.

Lockerd and Breazeal [7, 11] demonstrate a robotic sys-
tem where high-level tasks are taught through social inter-
action. In this framework, the teacher interacts with the
agent through speech and visual inputs, and the learning
agent expresses its internal state through emotive cues such
as facial and body expressions to help guide the teaching
process. The outcome of the learning is a goal-oriented hi-
erarchical task model. In later work [23], the authors exam-
ine ways in which people give feedback when engaged in an
interactive teaching task. Although the study’s focus is to
examine the use of a human-controlled reward signal in rein-
forcement learning, the authors also find that users express
a desire to guide or control the agent while teaching. This
result supports our belief that, for many robotic domains,
teleoperation provides an easy and intuitive human-robot
communication method.

Bentivegna et al. [4, 5, 6] and Saunders et al. [18] present
demonstration learning approaches based on supervised learn-
ing methods. Both groups use the k-nearest neighbor (KNN)
[12] algorithm to classify instances based on similarity to
training examples, resulting in a policy mapping from sen-
sory observations to actions.

Our approach similarly uses supervised learning, in the
form of Gaussian mixture models, for classification. Addi-
tionally, we contribute an interactive learning approach that
allows the agent to request help from a human, similar to
that of Nicolescu and Mataric [14, 15]. Inamura et al. [10]
present a similar method based on Bayesian Networks [16]
limited to a discretely-valued feature set.

Figure 1: A 2-dimensional Gaussian mixture model

with three components. Contour lines below the

GMM mark the one- and two- standard deviation

ellipses.

3. GAUSSIAN MIXTURE MODELS

The Gaussian probability density function (pdf) is the
statistical distribution:

N (x; µ, σ) =
1

σ
√

2π
e
−

(x−µ)2

2σ2 (1)

completely characterized by the mean µ and variance σ2.
A Gaussian mixture model is a multimodal distribution

resulting from a combination of several Gaussian compo-
nents [24]. Figure 1 shows an example of a 2-dimensional
GMM with three Gaussian components. The GMM can be
characterized by the vector Θ of the means, variances, and
weights of its C components:

Θ = {µ1, σ1, ω1, ...µC , σC , ωC} (2)

where the weight of each component is the portion of sam-
ples belonging to that component, such that 0 < ωc ≤ 1 and
P

C

c=1
ωc = 1.

The probability density function of a GMM, parametrized
by Θ, is defined as a weighted sum over its Gaussian com-
ponents:

p(x|Θ) =
C

X

c=1

ωcN (x; µc, σc) (3)

Several approaches exist for estimating the parameters of
the GMM given a set of datapoints. The most popular, and
the one used here, is the expectation-maximization (EM)
algorithm [8], which iteratively optimizes the model using
maximum likelihood estimates.

We elected to base our approach on Gaussian mixture
models because of previously reported successes using classi-
fication methods for demonstration learning [4, 18]. GMMs
provide a built-in measure of classification confidence, which
is required for our confident execution approach, and are
also robust to noise, generalize, and capture correlations be-
tween continuous features. All of these characteristics make
GMMs a powerful tool for robotic data analysis.

4. CONFIDENCE-BASED LEARNING

FROM DEMONSTRATION
In this section we present the details of our demonstration-

based learning approach. Section 4.1 describes our algo-
rithm for learning and using an action policy given a set of
training data. Section 4.2 presents our confident execution
approach for acquiring training data and focusing learning
on relevant parts of the domain by adjusting the autonomy
of the robot. Section 4.3 discusses two ways of applying
confident execution to learning a new task.

Our approach utilizes the learning by experienced demon-
stration [15] technique, in which the robot is fully under
the expert’s control while continuing to experience the task
through its own sensors. During each training timestep, the
robot records sensory observations about its environment
and executes the action selected by the human expert.

Observations are represented using an n-dimensional fea-
ture vector that can be composed of continuous or discrete
values. The agent’s actions are bound to a finite set A of
action primitives, which are the basic actions that can be
combined together to perform the overall task. Each labeled
training point consists of the pair (o, a), with observation o

and expert-selected action a ∈ A. The goal is to learn the
policy π : o→ A, mapping observations to action primitives.

4.1 Multi-Mixture Policy Learning
We use a set of Gaussian mixture models to generate and

represent the action policy based on the training data. To
learn the policy, all datapoints are separated into classes
based on their action label, so that all observations leading
to the same action are clustered together. Since a single
action is often associated with a number of distinct domain
states (the action turn left may be taken from several differ-
ent locations), a separate Gaussian mixture is used to rep-
resent each action class. Components within the mixture
represent distinct state regions, and each mixture may have
a different number of components. Our policy is therefore
represented by the set {Ga : a ∈ |A|}, where Ga is a GMM
representing action a, parameterized by Θa with Ca compo-
nents, such that:

pa(o|Θa) =

Ca
X

c=1

ωcN (o; µc, σc) (4)

The parameters of each mixture model are learned using
the EM algorithm. Since EM requires the number of compo-
nents in the mixture as input, the algorithm uses the Akaike
Information Criterion (AIC)[2] to find the optimal number
of components per mixture. AIC represents a measure of the
goodness of fit of an estimated statistical model, calculated
by:

AICk = 2Ck − 2L(Gk) (5)

where L is the likelihood of Gk. The preferred model, repre-
sented by the lowest AIC value, is the one that best explains
the data with a minimum number of components. For a set
of mixture models, the optimal parameters are determined
by taking a weighted sum of the AIC values over the entire
set:

AIC =

|A|
X

k=1

AICk Pr(Gk) (6)

where Pr(Gk) is the probability that a point is generated

Algorithm 1 Confident execution

observation← GetSensorData()
(gmmAction, conf)← Classify(observation)
if conf > autonThresh then

ExecuteAction(gmmAction)
else

expertAction← GetExpertAction()
LogDatapoint(observation, expertAction)
if numNewDatapoints > maxNew then

UpdateModel()
ExecuteAction(expertAction)

by mixture k based on the portion of datapoints belong-
ing to that mixture. Using the AIC, the optimal number
of components is determined by permuting the number of
components per mixture from one to some fixed maximum
(bound by the number of datapoints in the mixture), and
searching over this space to find the combination with the
lowest AIC value. This search ranges from the assumption
that all mixtures are represented by a single Gaussian, to the
assumption that every point in each mixture forms its own
component. Most models, however, have far fewer Gaussian
components than datapoints, and so basic knowledge of the
domain can be used to limit the maximum number of com-
ponents to a small number to avoid extensive computation.

Once the algorithm learns the parameters of the model,
it classifies a new datapoint by assigning it to the mixture
class m with the maximum likelihood:

m = argmax
1≤k≤|A|

pk(o|Θk) Pr(Gk) (7)

The output of the classification is the action represented by
the selected GMM. Additionally, the model returns a con-
fidence value representing the certainty of the classification
based on the likelihood.

The complete model can be used to control the agent’s
actions through direct execution of the learned policy. The
agent follows the policy by classifying the current obser-
vation, and then deterministically executing the action se-
lected by the model.

4.2 Confident Execution
In this section, we describe the method for acquiring the

training data by adjusting the autonomy of the learning
agent. Algorithm 1 presents a pseudocode summary of our
algorithm.

At each learning timestep, the robot uses its learned model
to classify its current observation of the environment. For
each classification, the model returns a recommended ac-
tion and a classification confidence. The agent selects be-
tween autonomously executing the action and requesting an
expert demonstration by comparing the classification con-
fidence value to an autonomy threshold parameter. Clas-
sification confidence greater than the threshold results in
autonomous execution of the model-selected action by the
agent, while confidence below the threshold interrupts the
execution of the task while the agent waits for the expert to
select the appropriate action. The agent’s model is updated
by relearning the mixture parameters after maxNew new dat-
apoints are obtained.

As the agent performs its task, it alternates between au-
tonomous execution in familiar domain states, and super-

vised demonstration in areas where further training data is
needed. As it gathers more information about the domain,
more of the agent’s observations are classified with high con-
fidence and fewer demonstrations become necessary.

The process of alternating between autonomous and su-
pervised execution is referred to as adjustable autonomy,
and this method has been proven effective in a wide range
of robotic applications, from personal assistants [19] to space
exploration [21]. Our algorithm combines learning with ad-
justable autonomy, resulting in an interactive teaching method
that reduces dependence on the human expert over time.

Adjustable autonomy has a number of advantages over
traditional, one-shot learning approaches. It reduces the
workload of the human expert by eliminating repetitive demon-
strations of already learned elements of the task. Addition-
ally, by requesting demonstrations in low confidence situa-
tions the algorithm provides feedback to the expert, calling
attention to areas of the domain where further learning is
needed. As a result, in many domains the expert is able
to adapt the training routine to focus on difficult to learn
areas, reducing the overall learning time of the algorithm.
Finally, partial autonomy can be used to restrict robot ac-
tivity in complex dynamic environments where human or
robot safety is a concern.

The confidence threshold value that determines the level
of autonomy is set and adapted by the human operator or by
the agent itself. Since the threshold value is continuous, our
approach allows smooth adjustment of the autonomy level.
We can also configure the algorithm to automatically adjust
the confidence threshold based on the prediction accuracy
of the model using a similar approach to the one presented
in [17].

4.3 Confident Execution Application
Confident execution can be applied to learn a new task in

one of two ways. One option is to begin learning directly
with the confident execution approach, without an existing
prior model. In this case, all initial classifications return a
confidence of zero, and the agent always requests demon-
stration until the first model estimate is learned.

Alternatively, confident execution can be preceded by a
non-interactive demonstration phase to build up an initial
model. The expert may prefer this approach for complex
tasks, where generating a long but continuous demonstra-
tion is simpler than a large number of interrupted ones (we
found this to be the case for driving, see Section 5). Using
this approach, the transition from non-interactive demon-
stration to confident execution is determined by the quality
of the learned policy.

We evaluate the performance of the learned policy by how
closely it matches the behavior of the expert. Prior to up-
dating the model with a new training point (o, a), we classify
the observation o using the current model. We then com-
pare the model-selected action to the demonstrated action
a. Performing this comparison over a window of consecu-
tive training points results in an estimate of the prediction
accuracy of the model that relates how closely the policy
matches the behavior of the expert. This estimate enables
the expert to track the agent’s learning progress in real time,
and to determine when model proficiency is high enough to
switch to confident execution.

The entire learning process is completed when the agent
is able to execute the task under full autonomy, or when the

Figure 2: The corridor navigation domain. The

robot’s target path is marked by a black line.

expert is satisfied with the performance of the model. At
this point, the robot executes the learned policy directly, as
described in Section 4.1.

5. EXPERIMENTAL RESULTS
We validate our approach by applying the learning frame-

work to two domains. A real-world corridor domain is used
with a Sony AIBO robot to demonstrate characteristics of
the algorithm in a real, sensory-based environment. We then
present results of a complex simulated driving task.

5.1 Corridor Navigation Domain
In the corridor navigation task, shown in Figure 2, the

AIBO must navigate the domain in a circular path. The
black line in the figure marks the navigation path demon-
strated by the expert.

The robot observes the environment using the IR sensor
built into the head. By turning its head, the robot calcu-
lates distance to the nearest obstacle in three directions –
left, right and front – resulting in a 3-dimensional continu-
ous feature vector. Due to the noise of the IR sensor, the
robot processes all sensor readings when it is stationary and
averages the values over 15 consecutive readings.

The robot has four available actions: forward, turn left,
turn right and u-turn. The forward action moves the robot
approximately 20 cm in the direction it is facing. turn left
and turn right rotate the robot while slowly advancing it
forward, and the u-turn action rotates the robot 180◦. Af-
ter completing each action, the robot stops to take the next
sensor reading; it requires a minimum of 26 actions to com-
plete one circuit of the domain. The goal of the learning is to
classify each observation into one of the four action classes.
To perform the task correctly, the robot must learn to dis-
tinguish between open space, nearby and far away walls.

Figure 2 shows the starting configuration of the robot.
During the initial training phase, the robot was teleoper-
ated by the expert using a wireless joystick until the learned
model achieved 90% prediction accuracy over a 20-move win-
dow. Learning then transitioned to the confident execution
phase. The robot required 46 consecutive demonstration

0.5
1

1.5
2

2.5
3

0.5

1

1.5

2

2.5

3

0.5

1

1.5

2

2.5

3

FrontLeft

R
ig

h
t

Forward

Turn Right

Turn Left

U−Turn

Figure 3: Corridor navigation domain training data

representing all of the action classes.

Figure 4: Gaussian mixtures fitted to corridor nav-

igation domain training data.

steps, or just under two complete traversals of the environ-
ment, to complete this first learning phase.

Learning continued with the confident execution approach
using a classification confidence threshold fixed at two stan-
dard deviations for the most likely Gaussian component.
During the next circuit, the robot requested help at 3 out of
26 locations, followed by two more queries during the next
two passes. The learning process was completed after the
agent continued to navigate correctly and autonomously for
an additional ten traversals of the domain.

Figure 3 shows data from the four Gaussian mixture mod-
els representing the final learned policy. In this domain, the
action classes form clear independent clusters, resulting in
non-overlapping Gaussian components as shown in Figure
4. Note that the turn left datapoints form two clusters as
two different domain states map to this action. However,
in this case the model uses a single Gaussian component to
represent the data as this over-generalization does not affect
classification of the other classes.

We compare the performance of our learning approach to
reinforcement learning within the same domain. During the
RL experiment, the robot learned the task by exploring the

Figure 5: Screenshot of the driving simulator.

domain and learning the policy using the Prioritized Sweep-
ing algorithm [13]. To avoid complex parameters that can af-
fect RL performance in continuous domains, we simplify the
domain by discretizing the real-values sensor data into bi-
nary wall/no-wall features typical of most grid-world exper-
iments. Our results show that even with this advantageous
simplification, RL takes significantly longer to learn the pol-
icy than our demonstration-based method while achieving
the same performance. Specifically, using a reward function
that returns greater reward values for less recently visited
states (thereby encouraging circular movement through the
domain), the Prioritized Sweeping algorithm took an aver-
age of 275 steps to learn the optimal policy, compared to
the 53 demonstration steps required by our algorithm.

5.2 Driving Domain
We now present results of a challenging simulated car driv-

ing domain (Figure 5), inspired by a similar task introduced
in [1]. In this domain, the agent takes the shape of a car
that must be driven by the expert on a busy road. The agent
travels at a fixed speed of 60 mph, while all other cars move
in their lanes at predetermined speeds between 20-40 mph.
Since the agent can not change its speed, it must navigate
between other cars to avoid collision. The agent is limited
to three actions: remaining in the current lane, and shifting
one lane to the left or right of the current position. The road
has three normal lanes and a shoulder lane on both sides;

0 50 100 150 200 250 300 350 400 450 500
0

10

20

30

40

50

60

70

80

90

100

Timestep

A
c
c
u

ra
c
y
 P

re
d

ic
ti
o

n
 (

%
)

Figure 6: Prediction accuracy of the learned model

over the initial training phase. Prediction accuracy

window = 150 timesteps.

the car is allowed to drive on the shoulder but can not go
off-road.

The environment is represented using four features, a dis-
tance to the nearest car in each of the three lanes and the
current lane of the agent. The agent’s lane is represented
using a discrete value symbolizing the lane number. The dis-
tance features are continuously valued in the [-25,25] range;
note that the nearest car in a lane can be behind the agent.

A human demonstrated the task by using a keyboard
interface. Figure 6 shows the prediction accuracy of the
model during the initial training phase. The expert con-
tinued to perform non-interactive demonstrations until the
model reached 80% prediction accuracy over a 150-timestep
window, which resulted in a demonstration length of 500
timesteps, or approximately 2.1 minutes. After transitioning
to the confident execution phase, the expert concluded the
training after 150 demonstration timesteps when the model
exhibited good performance. During the confident execution
phase, the expert performed all demonstrations as sequences
of ten consecutive moves.

The final learned model consisted of 34 Gaussian compo-
nents over three mixture models (one for each action class).
The feature space of this domain is much more complex
than that of the corridor domain as the different action
classes frequently overlap. Figure 7 shows a sample of the
data representing the policy for driving in the middle lane
(Lane2). The data is split into two regions based on the
relative position (in front or behind) of the nearest car in
the agent’s current lane. No samples appear in the 10 to
-10 distance range along the Lane2 axis as the expert avoids
collisions that would occur from having another car in such
close proximity.

The final policy was able to imitate the expert’s driv-
ing style and navigate well in the complex driving domain.1

Additionally, our agent’s performance is comparable to that
achieved by Abbeel et al. in a similar domain using Inverse
Reinforcement Learning [1].

1A video of the final learned policy is available at
http://www.cs.cmu.edu/∼soniac

Figure 7: Driving training data demonstrating the

agent’s driving policy in the middle lane. Graph

axes represent distance to the nearest car in each of

the three driving lanes.

Figure 8: Policy performance comparison using lane

distribution and collision evaluation metrics.

5.2.1 Evaluation

Since the algorithm aims to imitate the behavior of the
expert, no ’true’ reward function exists to evaluate the per-
formance of a given policy. However, we present two domain-
specific evaluation metrics that capture the key characteris-
tics of the driving task.

Since the demonstrated behavior attempts to navigate the
domain without collisions, our first evaluation metric is the
number of collisions caused by the agent. Collisions are mea-
sured as the percentage of the total timesteps that the agent
spends in contact with another car. Always driving straight
and colliding with every car in the middle lane results in a
30% collision rate.

Our second evaluation metric is the proportion of the time
the agent spends in each lane over the course of a trial.
This metric captures the driving preferences of the expert
and provides an estimate of the similarity in driving styles.
Each evaluation trial was performed for 1000 timesteps over
an identical road segment.

Figure 8 shows the agent’s performance at different stages

Figure 9: Prediction accuracy over the entire non-

interactive training sequence. The first 500 training

trials are duplicated on the left side of the image.

of the learning process with respect to these metrics. Each
bar in the figure represents a composite graph showing the
percentage of time spent by the agent in each lane. Col-
lision percentages for each policy are reported to the right
of the bar graphs. The bottom bar in the figure shows the
performance of the expert over the evaluation road segment
(not used for training). We see that the expert successfully
avoids collisions, and prefers to use the left three lanes, only
rarely using the right lane and right shoulder.

The top section of the graph, containing eight bars, sum-
marizes the agent’s performance throughout the non-interactive
demonstration and confident execution learning phases. Ini-
tially the agent always remains in the center lane, accumu-
lating a 30.4% collision rate in the process. As learning
progresses, the agent learns to change lanes effectively, be-
ginning to use all five available lanes after 500 demonstration
instances, with a collision rate of only 1.3%. However, the
agent’s lane preference differs significantly from the expert
as the agent spends most of its time avoiding traffic by driv-
ing on the right shoulder. The next three bars display perfor-
mance during the confident execution phase at 50-timestep
intervals. Similarity in lane preference improves over this
final training phase, reaching final performance very similar
to that of the expert with a low 1.9% collision rate.

5.2.2 Comparison to Non-Interactive
Demonstration Learning

In this section, we compare the performance of the con-
fident execution approach to training the model using only
non-interactive demonstration. We replace the confident ex-
ecution phase with 500 additional non-interactive demon-
strations by the expert, resulting in a total of 1000 consecu-
tive demonstrated timesteps. Figure 9 shows the prediction
accuracy over the entire training time.

Note that despite the large number of demonstrations, the
prediction accuracy does not continue to grow. This arises
due to the complexity of the domain and the inconsistency
of the human demonstration as frequently more than one

0 50 100 150 200 250
0

0.2

0.4

0.6

0.8

1

Timestep

C
la

s
s
if
ic

a
ti
o

n
 C

o
n

fi
d

e
n

c
e

Figure 10: Gaussian mixture distance values of

the best classification over a sequence of timesteps.

Squares mark timesteps during which the agent was

involved in a collision.

action is reasonably applicable for a given situation. Con-
sider for example the case in which the agent is approaching
a car in its own lane. The agent must switch lanes in order
to pass, but in addition to deciding the direction to turn,
the agent must also decide at which timestep to do it. In re-
ality, switching lanes can be successfully accomplished over
a range of states, and a human demonstrator is unlikely to
select the exact same instance every time. As a result, the
model is not able to accurately predict the expert’s actions
and the prediction accuracy is only able to estimate the
quality of the model to some degree.

Five bars in the middle segment of Figure 8 show the
learner’s performance for the 500 additional non-interactive
demonstration timesteps. The agent initially shows a strong
preference for driving in the left shoulder, but achieves a
final driving pattern that is again similar to that of the ex-
pert, although with a slightly higher collision rate of 4.0%.
In summary, we find that the confident execution approach
achieved slightly better performance while requiring sev-
eral hundred fewer demonstration trials than non-interactive
demonstration training.

Finally, we present evidence of why confident execution
works to improve the learning process. Figure 10 plots a
sequence of classification confidences reported by the model
that was learned after the first 500 demonstrations. Squares
plotted along the curve mark timesteps during which colli-
sions with other cars occur. The majority of collisions occur
shortly after a significant drop in classification confidence,
indicating that the agent was in a situation of high uncer-
tainty. Confident execution works not only by preventing
the low confidence action from being executed and leading
to a collision, but also by labeling the uncertain observation
using the action selected by the expert during the resulting
demonstration, increasing the likelihood that the correct ac-
tion will be selected with high confidence in the future.

6. CONCLUSION
When creating an intelligent agent, it is often difficult to

encode expert knowledge procedurally. Teaching by demon-
stration is a direct and intuitive approach aimed at ad-
dressing this problem. In this work, we presented an in-
teractive policy learning approach, based on Gaussian mix-
ture models, that reduces the number of required demon-
strations by allowing an agent to actively request and ef-
fectively represent the most relevant training data. Using
our approach, the agent operates with increasing autonomy
as it achieves proficiency at its task, eliminating the need
for repeated demonstrations of acquired behavior. Our re-
sults demonstrate that confident execution significantly re-
duces the number of training timesteps compared to explo-
ration and non-interactive demonstration based methods,
while achieving equivalent or superior performance levels.

7. ACKNOWLEDGMENTS
This research was partly sponsored by United States De-

partment of the Interior under Grant No. NBCH-1040007
and by BBNT Solutions under subcontract no. 950008572.
The views and conclusions contained in this document are
those of the authors and should not be interpreted as rep-
resenting the official policies, either expressed or implied,
of any sponsoring institution. We would also like to thank
Paul Rybski for providing his simulator package.

8. REFERENCES

[1] P. Abbeel and A. Y. Ng. Apprenticeship learning via
inverse reinforcement learning. In International
Conference on Machine learning, New York, NY,
USA, 2004. ACM Press.

[2] H. Akaike. A new look at the statistical model
identification. IEEE Transaction on Automatic
Control, 19:716–722, 1974.

[3] C. G. Atkeson and S. Schaal. Robot learning from
demonstration. In International Conference on
Machine Learning, pages 12–20, San Francisco, CA,
USA, 1997. Morgan Kaufmann Publishers Inc.

[4] D. C. Bentivegna, C. G. Atkeson, and G. Cheng.
Learning from observation and practice using
primitives. AAAI Fall Symposium Series, ’Symposium
on Real-life Reinforcement Learning’, 2004.

[5] D. C. Bentivegna, G. Cheng, and C. G. Atkeson.
Learning from observation and from practice using
behavioral primitives. 11th International Symposium
of Robotics Research, 2003.

[6] D. C. Bentivegna, A. Ude, C. G. Atkeson, and
G. Cheng. Learning to act from observation and
practice. International Journal of Humanoid Robotics,
1(4), 2004.

[7] C. Breazeal, G. Hoffman, and A. Lockerd. Teaching
and working with robots as a collaboration. In
AAMAS ’04: Proceedings of the Third International
Joint Conference on Autonomous Agents and
Multiagent Systems, pages 1030–1037, Washington,
DC, USA, 2004. IEEE Computer Society.

[8] A. Dempster, N.M.Laird, and D. Rubin. Maximum
likelihood from incomplete data via the em algorithm.
Journal of Royal Statistical Society, 8(1), 1977.

[9] G. Hayes and J. Demiris. A robot controller using

learning by imitation. In 2nd International Symposium
on Intelligent Robotic Systems, 1994.

[10] T. Inamura, M. Inaba, and H. Inoue. Acquisition of
probabilistic behavior decision model based on the
interactive teaching method. In Ninth International
Conference on Advanced Robotics (ICAR), pages
523–528, 1999.

[11] A. Lockerd and C. Breazeal. Tutelage and socially
guided robot learning. In IEEE/RSJ International
Conference on Intelligent Robots and Systems, 2004.

[12] T. Mitchell. Machine Learning. McGraw Hill, 1997.

[13] A. W. Moore and C. G. Atkeson. Prioritized sweeping:
Reinforcement learning with less data and less time.
Machine Learning, 13(1):103–130, 1993.

[14] M. N. Nicolescu and M. J. Mataric. Learning and
interacting in human-robot domains. In IEEE
Transaction on Systems, Man and Cybernetics, pages
419–430, 2001.

[15] M. N. Nicolescu and M. J. Mataric. Natural methods
for robot task learning: instructive demonstrations,
generalization and practice. In Second International
Joint Conference on Autonomous Agents and
Multiagent Systems, pages 241–248, New York, NY,
USA, 2003. ACM Press.

[16] J. Pearl. Probabilistic Reasoning in Intelligent
Systems. Morgan Kaufmann.

[17] R. Ros and J. L. Arcos. Acquiring a robust case base
for the robot soccer domain. In International Joint
Conferences on Artificial Intelligence, 2007.

[18] J. Saunders, C. L. Nehaniv, and K. Dautenhahn.
Teaching robots by moulding behavior and scaffolding
the environment. In HRI ’06: Proceeding of the 1st
ACM SIGCHI/SIGART conference on Human-robot
interaction, pages 118–125, New York, NY, USA,
2006. ACM Press.

[19] P. Scerri, D. Pynadath, and M. Tambe. Towards
adjustable autonomy for the real world, 2003.

[20] S. Schaal, A. Ijspeert, and A. Billard. Computational
Approaches to Motor Learning by Imitation, pages
199–218. Number 1431. Oxford University Press, 2004.

[21] M. Sierhuis, J. Bradshaw, A. Acquisti, R. Hoof,
R. Jeffers, and A. Uszok. Human-agent teamwork and
adjustable autonomy in practice, 2003.

[22] W. D. Smart and L. P. Kaelbling. Effective
reinforcement learning for mobile robots. In IEEE
International Conference on Robotics and Automation,
2002.

[23] A. L. Thomaz, G. Hoffman, and C. Breazeal.
Reinforcement learning with human teachers:
Understanding how people want to teach robots. In
15th IEEE International Symposium on Robot and
Human Interactive Communication (RO-MAN), 2006.

[24] D. M. Titterington, A. Smith, and U. E. Makov.
Statistical Analysis of Finite Mixture Distributions.
Wiley, New York, NY, 1985.

[25] M. van Lent and J. E. Laird. Learning procedural
knowledge through observation. In K-CAP ’01:
Proceedings of the 1st international conference on
Knowledge capture, pages 179–186, New York, NY,
USA, 2001. ACM Press.

