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A reinforcement learning agent that autonomously explores its environment can utilize

a curiosity drive to enable continual learning of skills, in the absence of any external

rewards. We formulate curiosity-driven exploration, and eventual skill acquisition, as a

selective sampling problem. Each environment setting provides the agent with a stream of

instances. An instance is a sensory observation that, when queried, causes an outcome

that the agent is trying to predict. After an instance is observed, a query condition, derived

herein, tells whether its outcome is statistically known or unknown to the agent, based on

the confidence interval of an online linear classifier. Upon encountering the first unknown

instance, the agent “queries” the environment to observe the outcome, which is expected

to improve its confidence in the corresponding predictor. If the environment is in a setting

where all instances are known, the agent generates a plan of actions to reach a new

setting, where an unknown instance is likely to be encountered. The desired setting is a

self-generated goal, and the plan of action, essentially a program to solve a problem, is a

skill. The success of the plan depends on the quality of the agent’s predictors, which are

improved as mentioned above. For validation, this method is applied to both a simulated

and real Katana robot arm in its “blocks-world” environment. Results show that the

proposed method generates sample-efficient curious exploration behavior, which exhibits

developmental stages, continual learning, and skill acquisition, in an intrinsically-motivated

playful agent.

Keywords: intrinsic motivation, artificial curiosity, continual learning, developmental robotics, online active

learning, markov decision processes, AI planning, systematic exploration

1. INTRODUCTION

During our lifetimes, we continually learn, and our learning is
often intrinsically motivated (Piaget, 1955; Berlyne, 1966). We
do not just learn declarative knowledge, such as that exhibited
by contestants appearing on the popular quiz show Jeopardy, but
also procedural knowledge, such as how to write a Ph.D. thesis.
In general, a skill is a program able to solve a limited set of prob-
lems (Schmidhuber, 1997; Srivastava et al., 2013), but the notion
of a skill is often coupled with procedural knowledge, which is
typically demonstrated through action. In continually learning
artificial agents, skill acquisition (Newell et al., 1959; Ring, 1994;
Barto et al., 2004; Konidaris, 2011; Lang, 2011; Sutton et al.,
2011) is a process involving the discovery of new skills, learning
to reproduce the skills reliably and efficiently, and building upon

the acquired skills to support the acquisition of more skills. This
process should never stop. An eventual goal of ours, and others,
is the development of lifelong learning robot agents (Ring, 1994;
Thrun and Mitchell, 1995; Ring, 1997; Sutton et al., 2011).

Traditional Markovian Reinforcement Learning (RL) (Sutton
and Barto, 1998; Szepesvári, 2010) provides a formal frame-
work that facilitates autonomous skill acquisition. In the Markov
Decision Process (MDP) framework, a skill is represented as a
policy that, when executed, is guaranteed to efficiently reach a
particular state, which would be a “goal” state for that skill. RL
involves optimizing a policy, to allow the agent to achieve the
maximum expected reward.

There exist iterative planning methods, such as value itera-
tion (Bellman, 1957) and policy iteration (Howard, 1960), to
find an optimal policy for an MDP if a model of the environ-
ment is known to the agent; see (Mausam and Kolobov, 2012)
for recent reviews. The model is the set of transition probabilities
P(st + 1|st, at) of reaching successor state st + 1, together with the
associated expected immediate rewards R(st, at) when the agent
takes action at in state st . By selecting different goal states and
creating appropriate “phantom” rewards, which are not provided
by the environment, the agent could calculate a policy for a self-
generated goal immediately through planning (Luciw et al., 2011;
Hester and Stone, 2012; Ngo et al., 2012). An autonomous skill
learner for model-based Markovian RL needs only learn a single
transition model (or another type of predictive world model) and
to be able to generate a different reward function for each skill.

An important issue in learning a world model is system-

atic exploration. How can an agent explore the environment
to quickly and effectively learn? Early methods were based
on common-sense heuristics such as “visit previously unvis-
ited states,” or “visit states that have not been visited in a
while” (Sutton, 1990). More recent methods are those based
on Artificial Curiosity (Schmidhuber, 1991; Storck et al., 1995;
Wiering and Schmidhuber, 1998; Meuleau and Bourgine, 1999;
Barto et al., 2004; Şimşek and Barto, 2006; Schmidhuber, 2010;
Ngo et al., 2011), which can be exploited in developmental
robotics (Weng et al., 2001; Lungarella et al., 2003; Oudeyer
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et al., 2007; Asada et al., 2009; Hester and Stone, 2012,
Ngo et al., 2012).

Artificial curiosity uses an intrinsic reward, which is the learn-

ing progress, or expected improvement, of the adaptive world
model [i.e., predictor/compressor of the agent’s growing his-
tory of perceptions and actions (Schmidhuber, 2006)]. The
expected learning progress becomes an intrinsic reward for the
reinforcement learner. To maximize expected intrinsic reward
accumulation, the reinforcement learner is motivated to cre-
ate new experiences such that the adaptive learner makes quick
progress.

We investigate an autonomous learning system that utilizes
such a progress-based curiosity drive to explore its environment.
This is a “pure exploration” setting, as there are no external
rewards. The general framework is formulated as a selective sam-
pling problem in which an agent samples any action in its current
situation as soon as it sees that the effects of this action are statis-
tically unknown. We present one possible implementation of the
framework, using online linear classifiers (Azoury and Warmuth,
2001; Vovk, 2001; Cesa-Bianchi and Lugosi, 2006) as predictive

action models, which essentially predict some aspects of the next
state, given the current state-action features.

If no available actions have a statistically unknown outcome,
the agent generates a plan of actions to reach a new setting
where it expects to find such an action. The planning is imple-
mented using approximate policy iteration, and depends on the
procedural knowledge accumulated so far in the adaptive world
model. The agent acquires a collection of skills through these
self-generated exploration goals and the associated plans.

The framework is applied to a simulated and actual Katana
robot arm manipulating blocks. Results show that our method
is able to generate sample-efficient curious exploratory behav-
ior, which exhibits developmental stages, continual learning,
and skill acquisition, in an intrinsically motivated playful agent.
Specifically, a desirable characteristic of a lifelong learning agent
is exhibited: it should gradually move away from learned skills
to focus on yet unknown but learnable skills. One particularly
notable skill learned, as a by-product of its curiosity-satisfying
drive, is the stable placement of a block. Another skill learned is
that of stacking several blocks.

2. MATERIALS AND METHODS

In this section, we describe the setting of the learning environ-
ment, followed by introducing the selective sampling formulation
(which is not environment specific). We then describe the planner
and the online learning of the world model, and finally present the
derivation of the query condition.

2.1. KATANA IN ITS BLOCKS-WORLD ENVIRONMENT

Our robot, a Katana arm (Neuronics, 2004), and its environment,
called blocks-world, are shown in Figure 1. There are four differ-
ent colored blocks scattered in the robot’s play area. In Section 3.1
we describe a simulated version of blocks-world with eight blocks.
We use the simulated version for a thorough evaluation of our
method. In both versions, the agent “plays” with the blocks,
through the curiosity-driven exploration framework, and learns
how the world works.

FIGURE 1 | The Katana robot arm in its blocks-world environment.

In the real-world environment, detection and localization of
the blocks is done with straightforward computer vision tech-
niques. The overhead camera was calibrated using the toolbox
developed by Bouguet (2009), so that the system can convert 2D
image coordinates to the robot’s arm-centered Cartesian coor-
dinates. Since all the blocks have different colors, a color-based
detection and pixel grouping is used for segmentation, lead-
ing to a perceptual system that reliably detects the positions
and orientations (in the image coordinate system) of the visible,
non-occluded blocks. The positions and orientations of occluded
blocks are stored in a memory module. Since any occluded block
was once a fully visible block, and the occluded block positions
do not change, the memory module updating is also straightfor-
ward, requiring basic logic. The purpose of the memory module
is to infer the heights of the blocks on top of occluded ones, since
the overhead camera does not provide the height information.

When a block is selected for grasping, or a location selected
for placement, the system converts the image coordinates to the
arm-centered Cartesian coordinates. For reaching and grasping,
we use the Katana’s inverse kinematics module, which solves for
joint angles given the desired pose (position and orientation) of
the gripper, and its motion planning module.

In each environment setting, defined as a configuration of
blocks, the agent first moves the gripper out of view of the camera,
and takes a snapshot of the workspace below. The fundamental
choice it needs to make is to decide what the most interest-
ing block placement location would be. A placement location is
specified by a vector including pixel-coordinates and orienta-
tion parameters in the workspace image, as well as the height, in
terms of the number of blocks. After the desired placement loca-
tion is decided, the agent needs to decide which block to pick
up for placement. The block that is grasped could be selected
via a variety of heuristics. We choose to have the robot grasp
the accessible (e.g., non-occluded) block furthest away from the
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desired placement location, which avoids interference with the
blocks at the selected placement location. Grasping will succeed
as long as the perception is accurate enough and the block is
within the workspace. In the real experiments, grasping is rarely
not successful. In these cases, we reset the situation (including
internal values related to learning) and have the robot do it again.
After grasping, the robot performs another reach, while holding a
block, and places it at the desired location.

Next we will illustrate how the robot represents its world,
and how this representation leads to something resembling, and
which, functionally, serves as an MDP.

2.2. FOVEA AND GRAPH REPRESENTATION

The top-down camera image (640 × 480 pixels) is searched using
a subwindow of 40 × 40 pixels, which we call a fovea. Each fovea
center location represents a possible block placement location.

At any fovea location, the state s is the maximum height of a
stack of blocks visible in the fovea window. The action a is a func-
tion of the feature vector that encapsulates the placement location
relative to the blocks in any stacks below. How this feature vector
is computed will be described below. Any feature vector is con-
verted into one of six possible actions. After an action is executed,
i.e., a block is picked and placed at the fovea central location,
the outcome state s′ is identified in the same way as s, with the
fovea location unchanged. The resulting graph resembles a dis-
crete MDP and serves as a basis for tractable exploration in the
blocks-world environment.

In a given setting (block configuration), each fovea location
maps onto a single (s, a, s′) transition in a graph. But only s and
a are visible before the placement experiment. The missing piece
of knowledge, which the agent needs to place a block to acquire,
is the outcome state s′. The fovea can be thought of as a window
into a “world” where the robot can do an experiment. Yet, what
the robot learns in one “world” applies to all other “worlds.” The
question is: which transition is most worth sampling?

Instead of being provided a single state and having to choose
an action, as in a classical RL formulation, our system is able to
choose one of multiple available state-action pairs from each set-
ting. Availability is determined from the known block positions.
The agent’s estimated global state-action value function Q(s, a) is
used to identify an available state-action pair (s∗t , a∗

t ) with the
highest value, constrained by availability. The agent knows the
heights of all blocks in the workspace, which informs it of the
possible states currently available. It also knows the fovea location
that centers on each block. The desired state s∗t is selected from the
available heights in the current setting, by selecting the one with
maximum state value. Next, the desired action a∗

t is selected as the
one with maximum Q-value of all action pairings with s∗t . To find
a fovea location for the desired (s∗t , a∗

t ), the agent searches by mov-
ing the fovea to different placement locations around the stacks
of height s∗t , until the contextual information (feature vector xt)
associated with the action is matched.

The fovea search occurs in this “top-down” way, since it is
computationally burdensome to extract the contextual informa-
tion of state-action pairs at all fovea positions in each setting. This
biased and informed search mechanism is much more efficient.
As a future extension, fovea movement would be learned as well
[(Whitehead and Ballard, 1990; Schmidhuber and Huber, 1991);
see also recent work by Butko and Movellan (2010)].

Figure 2 (left) shows six examples to illustrate the features
used. The thick black lines represent the boundaries of actual
blocks. Example fovea locations are represented by the blue
dashed squares. The central point of the fovea is shown as a
small blue circle. The pink dotted lines show the convex hulls

constructed from the block pixels inside the fovea. If the central
placement point is inside the convex hull, the feature value is set
to one, and zero otherwise. Note the case shown in (c), where the
central placement point is not on top of any block at the fovea,
but still within the convex hull, and so the feature is set to one.
For stacks of several blocks as in (d), the intersection of all the

A

C

B

D

E F

FIGURE 2 | Left: (a–f) Examples illustrating the features that were used. Right: An example showing how the state and action are encoded (bottom) for a given

blocks-world setting (top). See text for details.
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block pixels are constructed, and used to construct the convex
hull.

As shown in (e) and (f), the features are calculated around the
central location, which results in a five-element feature group. In
our real robot implementation we use this setup. With a place-
ment location as in (e) four bits are “on,” while in (f), only one
bit is “on.” The number of bits that are on, plus one, provides
the action index. For example, a fovea location with only one bit
on, as described above, would correspond to action a = A2 and
is encoded by feature vector x = (0, 1, 0, 0, 0, 0). Figure 2 (right)
shows an illustration of states and actions at different fovea loca-
tions for a particular block configuration. In the lower subfigure,
we see the state-action representation underneath a few sampled
fovea locations. This representation allows for generalization: the
same state-action (S1, A2) can be accessed at both the red block
(to the lower right) and the black block.

We note in passing that this Katana and blocks-world envi-
ronment is simplified to become functionally discrete, but the
method we use for learning, approximate policy iteration, is not
tabular( as the name suggests), nor is the way we use linear basis
functions to convert each observation to a feature vector. Our
general framework, which will be described next, does not require
a tabular environment. Furthermore, the subsystem relevant to a
“placement experiment,” i.e., the blocks in the stack right below
the fovea, is an MDP according to the formulated graph we use.
The approach of considering only relevant features in learning
and planning makes the learning, and particularly the planning
process, more efficient, as well as tractable1.

2.3. SELECTIVE SAMPLING FORMULATION

Consider an online learning scenario where a learner L inter-
acts with nature N (its environment) in rounds. At each round
i, nature presents a setting Si. A setting may refer to a single state,
or a set of subsystem states (as in our Katana blocks-world envi-
ronment). Within each setting, the learner will observe a sequence
of instances xt ∈ R

d. Here, and for the remainder of this article,
we use subscript i to denote the setting, and the subscript t to
denote the instances observed within. Every time the setting is
updated, i ← i + 1, and the observation counter t persists (e.g., if
there were five instances in setting S1, the first observation in the
next setting S2 will be x6).

For every instance, the learner must decide whether or not to
“query” nature for the true label yt of the current instance xt ,
where yt ∈ {±1} (for binary classification2). By query we mean
the learner takes an action (interact with nature) and observes its
outcome. Hence, we can think of xt as the contextual information
associated with each action at . An observed feature vector, once
queried, becomes a training instance to improve the learner. The
training will be described in Section 2.5.

Let Qt ∈ {0, 1} denote the query indicator at time t. If a query
is issued, i.e., Qt = 1, the setting is updated (i ← i + 1), and the
learner observes the label of the queried instance. It then updates

1For more information on subspace planning, see related work in relational
RL by Lang and Toussaint (2009).
2A more general framework would consider the multiclass and regression
cases, which we leave for future extension.

its hypothesis, taking into account the queried example (xi, yi)

as well as the previous hypothesis, which was learned over previ-
ous queries. Otherwise, i.e., Qt = 0, the learner skips the current
instance xt (meaning its label is not revealed) and continues to
observe new instances from the current setting (i ← i).

Clearly, this constitutes a sequential decision process, which
generates training examples for the learner. Since each interaction
can require the learner to spend time and effort, i.e., labels are
expensive to get, it is reasonable to set the objective of the decision
process to be such that the learner learns as much and as fast as

it can.
As a concrete example of this framework, consider our blocks-

world environment. Here, a setting is a configuration of all the
blocks on the table, while an instance xt is a feature vector encod-
ing a possible placement location. The fovea sequentially provides
possible placement locations, and, for each one, a new instance
xt is observed. For each new instance in turn, the agent predicts
the outcome of placement. Here, the binary outcome label indi-
cates the success or failure of stacking. The label yt = 1 indicates
a stable placement, while the label yt = −1 indicates an unstable
placement.

After the action is taken, “nature” reveals a new setting Si + 1

and the agent obtains, through observation, the outcome and
therefore the label, which will be used to improve its world model.
In implementation, the agent obtains the outcome label by com-
paring two images of the configurations before and after the
placement. This is possibly noisy, but usually correct.

2.4. PLANNING IN EXPLORATION

Our system has a set of adaptive classifiers to predict the block
placement outcomes, which, together, constitute the world model
M. These obtain knowledge about the world, and a curiosity-
drive causes the agent to desire to accumulate such knowledge
(learning progress) as quickly as possible.

The agent is greedy in its pursuit of knowledge. For every
instance xt observed during setting i, a query condition Qt ∈ {0, 1}

is generated. The query condition is used to decide if this instance
is worth querying for its label (outcome), based on the current
model Mt = Mi. As soon as it encounters a true query condi-

tion, it executes the query, observes the outcome, and updates the
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FIGURE 3 | A single robot-environment interaction, illustrating a setting

change. Each pick and place “experiment” causes a change in setting. The

outcome of the previous experiment was that the robot placed the blue block

on top of the yellow block, and observed the label +1, corresponding to

“stable.” Now (middle), the robot examines three fovea locations (t, t′ and

t ′′), each of which involves a query. The query is false for t′ and t ′′, but true

for t, and the robot immediately (greedily) grasps the furthest block, which

happens to be the red one, and places it at the queried location. The action

causes a change in setting to i + 1 and the outcome −1 is observed

(“unstable”).

model to Mi + 1. Figure 3 illustrates this exploration behavior in
our blocks-world environment.

But in the case where no instances in the setting are deemed
to be valuable to query, the agent has to plan. In that case, the
curiosity drive wants to quickly reach a new setting from which
an instance worth querying can be observed. To decide which
instances are worth querying, the agent simulates future expe-
rience of performing different actions from the current setting,
and sees, for the simulated new settings, if the query condition
becomes true at any point. If so, an intrinsic reward is placed
at that transition. A true query condition in simulated experi-
ence becomes a binary curiosity reward indicating if an instance
is worth exploring. By planning on the induced MDP with “phan-
tom” reward function, the agent generates an efficient exploration
policy whenever it needs to. These policies for reaching self-
generated goals are the skills learned by the agent. Note that this
curiosity reward is instantaneous, taking into account the current
state of the learners, and not a previous learner. See Algorithm 1

for a sketch of this process.
The planner can be implemented using any relevant MDP

planning algorithms (Mausam and Kolobov, 2012), for instance,
local methods (i.e., for the current state only) like UCT (Kocsis
and Szepesvári, 2006), or global methods (for every state) like
LSPI (Lagoudakis and Parr, 2003). In our implementation we
use approximate policy iteration (LSPI, specifically the algorithm
LSTDQ-Model), a global method, to allow the agent to choose
between different states/heights (if several stacks are available) in
each setting.

In the MDP constructed for our Katana blocks-world environ-
ment, the transition probabilities are derived from the adaptive
classifiers. At planning time, we update the transition matrix
P(s′|s, a) for all state-action-state triplets as follows: P(s′|s, a) = 0
if s′ > s + 1; P(s′|s, a) = (1 + �̂)/2 if s′ = s + 1; and P(s′|s, a) =

(1 − �̂)/2/s if s′ ≤ s, with the prediction margin �̂ computed
as the inner product between the contextual feature x represent-
ing action a, and the linear weight vector w of the predictor, i.e.,
�̂ = w · x (more details will be provided in the next section). In
other words, the transition probability to current height plus one
is equal to the probability of a stable placement. It is zero for
any height which is two or higher above the current one, and is

a uniform fraction of the probability of instability for the lower
heights. Note that this is just an approximation, but it is good
enough for effective planning to reach higher heights.

The next two sections describe our adaptive learners and the
derivation of query condition, based on these learning models.

2.5. ONLINE LEARNERS

We focus on adaptive binary linear classifiers. There are multiple
such classifiers in our system—one per height—but the discourse
in this subsection will be with respect to a single classifier, for
simplicity. For such a classifier, with weight vector wt ∈ R

d, a clas-
sification of instance xt is then of the form ŷt = sign(wt · xt).
The term �̂t = wt · xt is often referred to as the prediction mar-

gin attained on instance xt , and the magnitude of the margin |�̂t |

is a measure of confidence of the classifier in label prediction3.
In the setting of a developmental robot interacting with nature,

training instances are generated in a biased manner. They are
not independent and identically distributed—the sampling/query
process depends on the learner’s adaptive model Mt . However,
their corresponding labels can be assumed to be generated from
a linear stochastic model. Specifically, we make the following
assumptions: 1) The labels yt ∈ {−1, +1} are realizations of inde-
pendent random variables Yt sampled from a stochastic source
with a probability density function P(Yt |xt) continuous at all xt .
This entails that, if �t = E[Yt |xt] ∈ [−1, 1], then sign(�t) is the
Bayes optimal classification. 2) There exists a fixed but unknown
vector u ∈ R

d for which u · xt = �t for all t. Hence u is the Bayes
optimal classifier under this noise model.

Note that when running our algorithms in a reproducing ker-
nel Hilbert space (RKHS) H with a universal kernel (Steinwart,
2002), the classifiers are implicitly non-linear, and �t is well
approximated by f (xt), for some non-linear function f ∈ H,
hence assumption 2 becomes quite general.

The key elements in designing an online learning algorithm
include the comparator class U ⊆ R

d, the loss function ℓ, and
the update rule. For an arbitrary classifier v ∈ U , denote by
ℓ(v; xt, yt) its non-negative instantaneous loss suffered on the

3Note that the terms weight vector, linear hypothesis, classifier, and learner are
fairly interchangeable for the purposes of this article.
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current example (xt, yt), and abbreviated by ℓt(v), i.e., ℓt(v) =

ℓ(v; xt, yt). We define the total loss of an adaptive learner
L on a particular sequence of examples D = {(xt, yt)}

T
t = 1 as

LT(L,D) =
∑T

t = 1 ℓt(wt), and we also define the total loss of

some (fixed) classifier v as LT(v,D) =
∑T

t = 1 ℓt(v). A good
learner that makes few online prediction mistakes also has small
relative loss compared to the best linear hypothesis u:

LT(L,D) − inf
v ∈U

LT(v,D), (1)

for any sequence D. Since the online learner only observes one
example at a time, the relative loss is the price of hiding future
examples from the learner (Azoury and Warmuth, 2001). A
desired analysis step in designing online learners is then to prove
upper bounds on such a relative loss. This bound should grow
sublinearly in T, so that it vanishes when T approaches infinity.

We use a modified version of the widely used regularized
least square (RLS) classifier (Azoury and Warmuth, 2001; Cesa-
Bianchi et al., 2009; Dekel et al., 2010)—a variant of the online
ridge-regression algorithm—as our online learner. As the name
suggests, this class of algorithms uses the squared loss function,
and possesses a proven relative loss bound under our label noise
model (Vovk, 2001; Dekel et al., 2012), with the desired sublin-
ear growth. Established results for the algorithm will be used to
derive our query condition (Section 2.6).

Given the sequence of queried (i.e., training) examples up to
setting i, {(xj, yj)}

i
j = 1, the RLS classifier maintains a data cor-

relation matrix, Ai = I +
∑i − 1

j = 1 xjx
⊤
j , with I the d × d identity

matrix and A1 = I. For the i-th queried instance xi, the weight
vector can be updated as wi + 1 = A−1

i + 1

(
Aiwi + yixi

)
.

The inverse matrix A−1
i + 1 can be updated incrementally using

the Sherman-Morrison method,

A−1
i + 1 = A−1

i −
bib

⊤
i

1 + ci
,

where

bi = A−1
i xi

and

ci = x⊤
i A−1

i xi = xi · bi.

Using the fact that A−1
i + 1xi = bi/(1 + ci), the weight vector update

is simplified as:

wi + 1 = wi +
(yi − wi · xi)

1 + ci
bi.

An implementation-efficient pseudocode of this modified RLS
update rule is presented in Algorithm 2.

2.6. QUERY CONDITION

Our query condition is greatly inspired by work in selective sam-
pling, a “stream-based” setting of active learning (Atlas et al.,
1989; Freund et al., 1997). In selective sampling, the learner has
access to an incremental stream of inputs and has to choose, for
each datum in order, whether to query its label or not. State of the
art methods in selective sampling, with theoretical performance
guarantees, include BBQ (Orabona and Cesa-Bianchi, 2011) and
DGS (Dekel et al., 2012). These methods also use variants of the
RLS algorithm (Azoury and Warmuth, 2001; Vovk, 2001; Auer,
2003; Cesa-Bianchi et al., 2005; Cesa-Bianchi and Lugosi, 2006;
Cavallanti et al., 2008; Strehl and Littman, 2008; Cesa-Bianchi
et al., 2009), and maintain a data correlation matrix to calculate a
confidence interval or uncertainty level in their prediction, which
is essentially an estimate of the variance of the RLS margin for the
current instance.

The query condition must indicate when the outcome is statis-
tically known or unknown. Here we derive a query condition for
this purpose, based on the expected learning progress. Essentially,
when the learner is certain in what it predicts, it can ignore the
instance, since, with high probability, its learning model will not
get updated much on this example if it is queried. Inversely, only
those instances that the learner is uncertain in its prediction are
worth querying for labels, since the model of the learner will
undergo a large update on such training examples.

The following lemma from Orabona and Cesa-Bianchi (2011)
defines χt , the uncertainty level, or confidence interval of the RLS
prediction.

Lemma 1. Let δ ∈ (0, 1] be a confidence level parameter, hδ, u(t) be

a function of the form

hδ, u(t) = ||u||2 + 4
i∑

k = 1

rk + 36 log
t

δ
,

where ||u|| is the unknown squared norm of the optimal Bayes

classifier, and ri = x⊤
i A−1

i + 1xi.
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Now, define χt =
√

cthδ, u(t) with ct = x⊤
t A−1

i + 1xt . With prob-

ability at least 1 − δ, the following inequality holds simultaneously

for all t:

|�t − �̂t | ≤ χt .

This inequality can be rewritten as,

�t�̂t ≥
�2

t + �̂2
t − χ2

t

2
≥

�̂2
t − χ2

t

2
,

which essentially implies that if |�̂t | > χt , the learner is certain

(with probability at least 1 − δ) that �̂t and �t have the same
sign (i.e., �̂t�t > 0), and there is no need to query for the true

label. Inversely, when |�̂t | ≤ χt , the learner is uncertain about
its prediction, and it needs to issue a query. Formally, the query
condition is stated as follows:

isQuery(Mi + 1, xt) : Qt ←
[
χt > |�̂t |

]
,

where [·] denotes the indicator function of the enclosed event.
Now, from Lemma 1 we also have |�t | ≤ |�̂t | + χt .

Combined with the query condition derived above, we have
|�t | ≤ 2χt with probability at least 1 − δ when a query is
issued. When the magnitude |�t | of the optimal prediction mar-
gin is small, the instance label is almost certainly noise, i.e.,
the prediction is nearly a random guess. These instances are
“hard” or even “impossible” to learn, and the learner should
instead focus on other instances that it can improve its pre-
diction capability. We derive another query condition to reflect
this insight, by enforcing another threshold θ on the uncertainty
level,

isQuery(Mi + 1, xt) : Qt ←
[
[χt > |�̂t |] ∧ [χt > θ]

]
. (2)

In implementation, a surrogate or proxy function is used to avoid
dependency on the optimal yet unknown u. This takes the form,

χt = α
√

cth(t),

where α is a tunable positive parameter, and

h(t) = log(1 + i)

is a simplification of hδ, u(t). Importantly, the confidence inter-
val does not depend on the squared norm of the optimal but
unknown Bayes classifier u. See Dekel et al. (2012) Equation (12)
and Lemma 7, notice the additional assumption of ||u|| ≤ 1. See
also Orabona and Cesa-Bianchi (2011) Algorithm 2 for another
proxy function.

3. RESULTS

In all implementations we used the following parameter val-
ues: discount factor γ = 0.95, and query condition scaling

factor α = 1. The confidence-interval threshold θ = 0.01
for simulations, while θ = 0.1 was used in the real robot
experiments.

3.1. SIMULATED BLOCKS-WORLD ENVIRONMENT

We designed a stripped-down simulated version of the actual
blocks-world, in order to test our system. In simulation, thou-
sands of trials can be run, which would take far too long on
the real robot. Of course we cannot capture all aspects of the
real-world robot setting, but we can capture enough so that the
insights and conclusions arising from simulated results suffice to
evaluate our system’s performance.

The simulated environment also allows us to use any num-
ber of blocks and any number of features. For any configuration
of blocks, some set of heights will be available for the agent to
place upon, corresponding to the heights of the top blocks in the
stack(s), and height zero. In the simulation, we use eight blocks,
and 21 features. Each height’s feature vector is of length 21 bits,
with only one bit set. All 21 feature vectors are available for each
available height. The agent must select one of them. Unlike the
actual robot setting, in simulation, the features do not correspond
to any physical aspect of the simulated world. In simulation, each
of the 21 features are associated with a different probability of
stability, which is randomly generated.

Each possible height s has a different weight vector us, which
is the randomly generated “true model” for the result of placing
a block upon it. This was done in order to generate simulated
block placement outcomes in an easy-to-implement way. There
are 21 components 4 of each us, which are randomly gener-
ated in the range [−1, 1]. An outcome (stable/falling) is gener-
ated using the corresponding height’s true (probabilistic) model,
where the actual outcome label sign(u · xt) is flipped with prob-
ability 1−|u · xt |

2 . For the purpose of generating orderly plots in
Section 3.2, we re-order the 21 feature vectors of each height in
ascending order of their likelihood of stability, then re-assign their
feature indices from 1 to 21. Thus, the smaller the feature index,
the lower likelihood the placement will be stable. For an outcome
of falling, there is a chance that the entire stack underneath the
placement position collapses, in which case all blocks in that stack
are reset to height one.

The eight blocks’ configuration is represented by vector q. The
absolute value of each element |qj| is the height of the correspond-
ing block j. We set sign(qj) = −1 if block j is occluded (stacked
upon), while sign(qj) = 1 means block j is on the top of its stack,
which means its both graspable and another block can be placed
upon it. The set of different positive elements of q constitute the
set of current available states (heights to place upon) in addition
to height zero (which is always available). For example, vector
q = (−1, −2, −3, 4, −1, 4, −2, −3) means the configuration has
two different stacks of height four, having block IDs 4 and 6 on
top of the two stacks. Here, the set of available placement heights
is height zero and height four.

4To allow generalization in learning, each weight vector is extended with
one extra bias component, corresponding to an extra augmented feature
of 1. Thus, |u| = |w| = |xt | = 22 in the implementation of the simulated
environment, and |w| = |xt | = 7 in the implementation on the real robot.
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After selecting the state and action, the agent picks an “avail-
able” top block, and “places it.” By available, we mean it is the
top block of another stack. Another block in the stack (if any)
of the block that is grasped becomes a top block. If the place-
ment is stable, the highest block in the placement stack has its
sign reversed, and the placed block becomes the top block of that
stack. If the placement outcome turns out to be unstable, a “top-
pling” event occurs, where one randomly selected block in the
stack of placement, with a lower height, becomes a top block of
the remaining stack, with blocks below unchanged. The (unsuc-
cessfully) placed block and the other, higher blocks in the stack
topple to the surface, and their values are all set to +1.

3.2. RESULTS IN SIMULATED BLOCKS-WORLD

Figure 4 shows the averaged exploration behavior of our system
over time, for all different heights. “Direct exploration” refers to
settings where the query condition is true, while “planning expe-
rience” refers to settings where the algorithm has to execute a
planned action (since the query condition is always false for that
setting). On the y-axis, “cumulative experience” is a count of the
number of times these types of actions are generated. The dif-
ferent colored lines indicate different heights. The vertical lines
are from a single run, and indicate when, during that run, the
learner switches from direct exploration of one height to planning
exploration of higher heights.

These plots show the developmental stages of the learning
agent, where easier problems, such as direct exploration at height
one, are learned first, and more difficult problems are learned
later. They also show cumulative learning, as the acquired knowl-
edge at lower heights is exploited for planning, and this planning
helps the agent get to the higher heights, in order to acquire more
knowledge. The difficulty of this problem is shown by the time
the learner needs to spend to fully explore its environment, espe-
cially in achieving the highest heights. For instance, to even get
to height six to do experiments, the agent first needs to stack

blocks from lower heights each time the stack collapses, which
is a regular occurrence.

The agent does not necessarily explore a single height until
everything at that height is statistically known. There are some-
times situations where several heights worth exploring are avail-
able simultaneously in the environment. In such cases, the agent
starts with the height having the largest “future exploration
value” as estimated by LSPI. The planning step helps to trade
off “easy-to-get” small learning progress rewards with “harder-to-
get” larger ones. As shown in Figure 4, the exploration at higher
heights does, in fact, start before the direct exploration of lower
heights terminates.

Figure 5 shows the learning progress, measured with Kullback-
Leibler (KL) divergence between the learned models and the
true models. These distances tend to diminish exponentially with
experience, and they diminish faster at lower heights, where expe-
rience is easier to get. When each line in the graph saturates, it cor-
responds to the associated knowledge being “known” and ready
for exploitation in planning. The saturation levels are non-zero
due to the noise level in the training labels, the query condition
scaling factor α, and the confidence-interval threshold θ.

Figure 6 shows how the exploration focus changes over time,
for height one. In each subgraph row, the figure on the left
shows the distribution of the experience up until the timestep
in the subfigure title. The shaded area between the two verti-
cal lines represents the “unknown” region of input features that
is deemed to still be worth exploring. This will be the “explo-
ration focus” of the agent, in subsequent interactions. Regions
outside of this shaded area are considered “known” by the
learning agent, and not worth exploring any more. Going from
the top to the bottom of Figure 6, note that the query region
shrinks with the amount of experience. Additionally, note that
the middle features, associated with the most uncertain outcomes
(as mentioned in Section 3.1) stay interesting longer than the
others.
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FIGURE 4 | Exploration history (averaged over 10 runs).
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FIGURE 5 | KL-divergence between learned models and ground-truth models (averaged over 10 runs). Best viewed in color.

An interesting observation that is worth elaborating on, is
as follows. At timestep #2000, when every prediction is statisti-
cally known, the agent starts to exploit the acquired knowledge
for planning (i.e., taking its estimated “best” action #16 to reach
height two). It also keeps on refining the learned model, which
reveals, as a result of generalization in learning that the optimal
action (i.e., the most stable placement position) is action #20
instead. Afterwards, the agent switches its optimal policy for this
height, as shown in timesteps #3000 and #4000.

The plots on the right shows the learned predictive model
(blue dashed lines), with two thin black lines representing
the confidence intervals for each prediction. As more data are
observed, the associated confidence interval will shrink, reflecting
the learning progress. Note that as a result of generalization, the
neighboring area of the input feature space also gets improved,
indirectly, in its confidence interval. Recall that we re-arranged
the input feature indices so that their prediction margin (hence,
probability of stable/unstable outcomes) are in ascending order.

A measure of the difficulty of a learning problem is the sample
complexity needed to achieve some desired level of confidence.
The shaded regions (i.e., “unknown” and worth exploring) shrink
with experience, toward the input feature values with small pre-
diction margin ground-truth. These feature values correspond
to the input subspace with prediction outcomes close to noise,
i.e., hard to predict. However, these instances lying close to the
decision boundary are the most informative instances for con-
structing a good decision plan. Our system first explores much
of the input space, then quickly shifts its attention to this “hard-
to-learn” input region, where most of its exploration effort is
spent. As a result, the learned predictive model gets closer to the
true model over time. Note that for “known” regions outside the
shaded area, even though the number of experiences is small,
and the confidence interval (i.e., uncertainty level) is large, the
learning algorithm is still confident that its prediction (sign of the
margin) is close to the optimal one with high probability. Thus,
these regions are not worth exploring any more.

The same exploration behavior is observed when we analyze
the data for other heights, as shown in Figure 7 for height two,
and Figure 8 for the first six heights when exploration terminates.
In all the experiments, the agent first explores the whole input
feature space, then focuses on subspaces of input features that are
informative but for which high confidence is hard to achieve, then
on features that are useful for planning. This typically occurs for
each height in turn. As a result of learning how to plan, which
necessarily entails reliably transitioning from one state (height)
to another, the skill of block stacking is achieved.

To further analyze the effectiveness of our method, we com-
pare its performance to three other methods. The comparison
measure is the KL-divergence with respect to the true model.
The first method simply is uniform random action selection,
which results in undirected, babbling-like, behavior. The second
method, which we call Conf (Ngo et al., 2012), uses confidence
intervals χt of the prediction margin directly as phantom rewards
to generate the exploration policy through planning. Intuitively,
this is also an informed exploration method since it promotes
exploration in parts of the environment with high uncertainty.
The main difference is the confidence intervals are used them-
selves as rewards, instead of using a query condition. The third
method is a variant of our proposed method, but the exploration
policy is updated (i.e., planning) after every 10 observations,
instead of on-demand whenever exploration planning is invoked.
We denote this variant as Q10, and our proposed method as Q1.

The results are shown in Figure 9, with each subgraph showing
the KL-divergence between learned models and their ground-
truth at each timestep. Inspecting carefully the subgraph for
height one and two, we see that Q1 gets close to the true model
exponentially fast in the first 1000 timesteps, then saturates. The
random method, on the other hand, though making much slower
progress than Q1 and Q10 in the first 1000 timesteps, keeps
improving its learned models and achieves the best models for
height one and two, among the four methods. However, for the
other five higher heights, its learned models are much worse
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FIGURE 6 | How the focus of the self-generated exploration goals at height 1 changes over time as the learned predictive model gets closer to the

true one.
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FIGURE 7 | How the focus of the self-generated exploration goals at height 2 changes over time as the learned predictive model gets closer to the

true one.
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FIGURE 8 | Experience distribution after the last timestep (learning has completed) for heights 1–6.
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FIGURE 9 | A comparison of exploration methods in terms of the KL-divergence between the learned predictive models at each time step and their

ground-truth models. Results are averaged over 10 runs.

compared to the rest. This can be explained by the fact that the
blocks-world environment naturally generates unbalanced expe-
rience distribution among all the states under random action
selection, and lower heights will get much more learning expe-
rience compared to higher ones. This undirected exploration
behavior makes random exploration the least efficient method
compared to the other three (informed) exploration methods, as
shown in the overall results in the last subgraph at the bottom-
right corner. The confidence-based method performs much better
than random method, but is still inferior compared to query-
based methods Q1 and Q10. The overall performance of Q1 is
the best, closely followed by Q10, which is less efficient due to less
frequent planning updates.

3.3. RESULTS ON THE REAL ROBOT

Now, we show the learning behavior on the real robot.
Figures 10–12 show a snippet of experience consisting of 12 con-
secutive experiment sequences. In each frame, one should focus
on the configuration of the blocks in the workspace and track

the changes from the previous frame. Each sequence starts with
i) a fovea-based search for the desired placement in the cur-
rent block configuration (i.e., either the query condition returns
“unknown” or the best planned action is selected), as shown in
the first column, followed by ii) an action picking a block unre-
lated to the placement experiment (second column), then iii)
placing the block at the desired height, orientation, and rela-
tive position with respect to the stack below (third column). The
sequence ends with an observation process to self-generate the
label (last column). The end of one sequence is also the begin-
ning of the next sequence. Since the robot has already had some
prior experience before continuing from sequence #1 of the snip-
pet, it now focuses on exploring height two. Specifically, from all
the 12 sequences, we find that the robot gradually shifted its atten-
tion (from the second sequence in Figure 11 to the second last
sequence in Figure 12 to trying actions A3 and A4 (correspond-
ing to relative placement positions with two and three bits set),
which are actually the actions with the most uncertain placement
outcomes among the six actions. Note that with tower height four,
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FIGURE 10 | Sample query sequence on real robot (1/3).

the robot arm does not have many feasible workspace points for
the pick and place task. Hence we limit the maximum height to
three.

Figure 13 shows the predictive models the Katana robot arm
acquired in a single run with 30 interactions (see demo video at
www.idsia.ch/∼ngo/frontiers2013/katana_curious.html; the last
12 interactions shown in Figures 10–12 start from 1:52).

Figure 14 shows a “tricky” situation for the robot, which it can
overcome if it has learned the model well. Here, the robot must
demonstrate its block stacking skill, as an externally imposed
goal.

4. DISCUSSION

4.1. SYSTEMATIC EXPLORATION

This work was conceived with pure exploration in mind, which
is contrasted with the treatment of exploration in classical RL.
There, exploration is discussed in terms of the exploration-

exploitation tradeoff. On the one hand, the agent should exploit

the acquired knowledge by selecting the current best (greedy)
action, thereby not spending too much time in low-value areas
of the state space. On the other hand, it needs to explore promis-
ing actions to improve its estimation of the value function, or to
build a more accurate model of the environment.
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FIGURE 11 | Sample query sequence on real robot (2/3).

The most widely used method for balancing exploration and
exploitation is the ǫ-greedy algorithm (Watkins and Dayan, 1992;
Sutton and Barto, 1998). At each state, with probability of 1 − ǫ

the agent selects the greedy action with respect to the estimated
value function, and with a small probability of ǫ it selects a ran-

dom action for exploration. Optimistic initialization is another
common method for exploration (Sutton and Barto, 1998). By
initializing the value function for all states with high values, the
agent will try to reach less visited states until their values converge
to near-optimal ones, which is much lower than the initial values.
The initial values strongly affect the exploration time. Progress-
driven artificial curiosity is a more general method for balancing

exploration and exploitation which 1. removes the reliance on
randomness—the exploration is informed, instead of relying on
randomness (uninformed), and 2. promotes exploration of states
where learning can occur over states where not much can be
learned. To contrast, in optimistic initialization, every state is
equally worth exploring.

Somewhat recently, several algorithms modifying optimistic
initialization have been proposed that guarantee to find near-
optimal external policies in a polynomial number of time steps
(PAC-MDP). These algorithms, such as E3 (Kearns and Singh,
2002) and R-max (Brafman and Tennenholtz, 2003), maintain
a counter for the number of times each state-action pair is
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FIGURE 12 | Sample query sequence on real robot (3/3).

tried. When this number exceeds some threshold, the estimated
state-action value is quite accurate, and the state-action pair will
be considered “known”—thus with high probability the greedy
action will be near-optimal (exploitation). Otherwise, the value
is replaced with a highly optimistic one, encouraging the agent to
explore such “less-selected” state-action pairs. Recent work in this
model-based line of research extends R-max in several aspects.
Rao and Whiteson (2012) give a better estimate of the optimistic
reward using a weighted average between experienced and opti-
mistic ones, resulting in the V-MAX algorithm that is capable of
exploiting its experience more quickly. Lopes et al. (2012) propose
to replace the counter of visits to a state with expected learning

progress based on leave-one-out cross-validation on the whole
interaction history. Our method for estimating learning progress
is, in contrast, instantaneous and online. Furthermore, it is able
to generalize across different actions, instead of treating them
separately.

The common theme in many intrinsically motivated RL
approaches is that the estimated learning progress is used as
secondary to external rewards. The purpose of the behav-
ior (i.e., the policy) of the agent has a goal of achieving
external rewards. Exceptions include, for instance, Şimşek and
Barto (2006), where the agent’s behavior is based on a sec-
ond value function using an intrinsic reward signal, which is
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FIGURE 13 | Learning progress of the Katana robot arm’s predictive models at height 1 and 2 after 30 settings. Action 1 (no bits set) is the most

unstable. Action 6 (all bits set) is the most stable. See earlier discussion on the features and Figure 2.

FIGURE 14 | A “tricky” situation to test the robot’s stacking skill. We

show this case to illustrate the value of exploring to learn how the world

works. Consider the robot is faced with a task to build a stack of blocks as

fast as possible from this initial setting. Given its learned model of the

world, the robot will decide to start stacking from height 1 instead of height

2, as with high probability the stack of two blocks will fall after placing

another block upon them.

calculated based on the changes in value estimates of external
rewards.

Besides our preceding work (Ngo et al., 2012), which this
work is an extension of, some recent work in the pure explo-
ration setting also uses planning. Yi et al. (2011) develop a

theoretically optimal framework based on the Bayesian meth-
ods, in which the agent aims to maximize the information gain
in estimating the distribution of model parameters. An approxi-
mate, tractable solution based on Dynamic Programming is also
described. Hester and Stone (2012) present results on simulated
environments, where two progress-based intrinsic reward signals
are used for exploration: one based on the variance in predictions
of a decision tree model, and one based on the “novelty” of the
state-action pair, to promote the exploration focus to shift toward
more complex situations. In our system, we use a single curios-
ity reward signal based on the derived query condition, and our
approach has been shown to be more effective than the previous
variance-based approaches, since observations with large variance
will not be worth querying if the learner is confident about its
predictions.

In all the aforementioned work with pure exploration, plan-
ning is used to generate exploration policies, which must be
invoked at every timestep. It has been observed (Gordon and
Ahissar, 2011; Luciw et al., 2011) that quickly learning agents do
not update their exploration policies fast enough to achieve the
intrinsic rewards they expect to achieve. In such cases, learning
progress-based exploration is no better than random action selec-
tion or various simple heuristics. In other words, the update speed
of the policy generation must be much greater than the learn-
ing speed of the underlying learner. This can be computationally
demanding. It can also be wasteful, when the intrinsic reward that
the agent plans to achieve is, while non-zero, quite small.

Our approach allows the agent to choose the most informa-
tive observations (possibly several steps ahead) to sample, and
only invoke expensive planning when the current situation is
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already “known.” A statistically “known” prediction means the
agent knows with high probability that its prediction is almost
as correct as that of the Bayes optimal predictor. Due to this
approach, the computational demands are reduced compared to
a regular planner, and further, the agent will know when to stop
its planning efforts—when everything is “known.”

4.2. CONCLUSION

Goal-driven exploration is very common in the traditional RL
setting. In the pure-exploration setting, self-generated goals are
needed. The agent described here generates goals based on its con-
fidence in its predictions about how the environment reacts to
its actions. When a state-action outcome is statistically unknown,
the environment setting where that experience can be sampled
becomes a goal. The agent uses planning to manipulate the envi-
ronment so that the goal is quickly reached. Without planning,
only local, myopic exploration behavior can be achieved. The
result is a sample-efficient, curiosity-driven, exploration behav-
ior, which exhibits developmental stages, continual learning, and
skill acquisition, in an intrinsically-motivated playful agent. Key
characteristics of our proposed framework include: a mechanism
of informed exploration (with no randomness involved), a clear
distinction between direct and planned exploration (i.e., plan-
ning is done only when all local instances are statistically known),
and a mathematically-solid way of deciding when to stop learning
something and when to seek out something new to learn.
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