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Confidence in subjective pain 
is predicted by reaction time 
during decision making
Troy C. Dildine1,2, Elizabeth A. Necka1 & Lauren Y. Atlas1,3,4*

Self-report is the gold standard for measuring pain. However, decisions about pain can vary 
substantially within and between individuals. We measured whether self-reported pain is accompanied 
by metacognition and variations in confidence, similar to perceptual decision-making in other 
modalities. Eighty healthy volunteers underwent acute thermal pain and provided pain ratings 
followed by confidence judgments on continuous visual analogue scales. We investigated whether 
eye fixations and reaction time during pain rating might serve as implicit markers of confidence. 
Confidence varied across trials and increased confidence was associated with faster pain rating 
reaction times. The association between confidence and fixations varied across individuals as a 
function of the reliability of individuals’ association between temperature and pain. Taken together, 
this work indicates that individuals can provide metacognitive judgments of pain and extends research 
on confidence in perceptual decision-making to pain.

Pain is a subjective experience, yet patients must engage in decision making and translate their internal experi-
ence to a verbal descriptor in order to obtain treatment and relief. Decades of work have focused on pain psy-
chophysics and factors that modulate  pain1–6 but few studies have investigated the pain decision process  itself7–10. 
Understanding factors that guide pain decision making is essential, as clinicians and researchers continue to rely 
on unidimensional methods to assess patients’ pain (e.g., a visual analogue scale or verbal pain report). �ese 
methods assume that pain is constructed consistently within and across individuals; however this assumption 
is unlikely, as research has shown uncertainty a�ects decision making in other sensory modalities (e.g.,11) and 
manipulating uncertainty a�ects subjective  pain12,13. Although recent work has assessed con�dence in decisions 
comparing multiple nociceptive  stimuli14, to our knowledge no studies have investigated how individuals judge 
certainty or con�dence in their subjective pain ratings. To address this gap, we measured whether individuals 
can provide metacognitive insights on their pain and whether implicit measures predict explicit subjective 
uncertainty (i.e., lack of con�dence) in pain ratings.

Determining whether individuals are capable of pain metacognition is critical to understanding the pain 
decision-making process. Metacognition is described as ‘knowing about knowing’15 and involves judgments 
about one’s decisions or inferences about one’s  knowledge16–18. While we have a growing understanding of the 
metacognitive processes that guide decision making in domains as varied as  memory19, value-based  decisions20, 
and multi-sensory decision  making21, we know relatively little about how individuals make inferences about 
their pain. In other domains, metacognitive judgments are tied to internal factors such as  introspection22 and 
to external factors such as the magnitude of sensory information that is  received23,24. Similarly, pain is intrinsi-
cally linked to both internal states (e.g., attention, anxiety, and expectations) and external factors (e.g., objective 
intensity of the noxious stimulus and predictive cues). �e question of whether metacognition accompanies pain 
similarly to other modalities is largely unknown. People may exhibit variance in judging how their pain relates 
to the intensity of an objective noxious stimulus, and how con�dent they are in the pain ratings themselves. 
Alternatively, if people cannot introspect in their subjective pain (e.g., if pain ratings are themselves the “gold 
standard”25) there may be no meaningful variation in meta-cognitive reports.

Recently, Beck and  colleagues14 provided the �rst test of metacognition of noxious stimulation. Participants 
compared an objective reference stimulus (i.e., a speci�c temperature) with a target stimulus of varying inten-
sity (i.e., a di�erent temperature) and reported which stimulus was more painful; this provided a measure of 
pain-related accuracy. Participants provided similar judgments about visual stimuli and made metacognitive 
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judgments of con�dence in their decisions about both types of stimuli. Metacognition acted similarly across 
sensory domains: pain judgments were similar to judgments of visual stimuli in overall con�dence, metacogni-
tive e�ciency (con�dence given a certain level of performance or ability to process a signal), and metacognitive 
sensitivity (con�dence-accuracy correlation). However, individual di�erences in metacognitive e�ciency and 
metacognitive sensitivity were not correlated across domains (i.e. some participants had better metacognitive 
sensitivity for pain, while others had better sensitivity for vision), suggesting distinctions between subjects. 
�is study provided a critical �rst step in indicating that individuals can make metacognitive inferences about 
acute noxious stimulation. However, there are important distinctions between categorizing noxious stimuli and 
subjective pain. Pain is fundamentally distinct from nociception, the actual encoding of potentially damaging 
 stimuli26. While an individual can rate which of two stimuli feels more painful, a task that measures accuracy in 
comparisons based on objective stimulus intensity is actually measuring nociception rather than pain, which is 
a subjective experience. Testing accuracy is important, as this provides a way to compare con�dence with actual 
task performance, (i.e., metacognitive sensitivity, bias, and  e�ciency16). However, assessing responses solely based 
on stimulus intensity fails to incorporate the myriad of factors that lead to meaningful variations in pain even 
within the same objective stimulus intensity, such as  sensitization27,  habituation28, and variations in  attention29,30. 
Pain researchers have discussed at great length the importance of trusting individuals’ pain ratings, rather than 
searching for objective measures that can invalidate patients’  pain31. �is leaves open the question of whether 
people experience variable con�dence in judgments about their subjective pain rating.

It is possible that many forms of pain modulation, including both psychological interventions (e.g. placebo) 
and pharmacological treatments, interact with not only pain but also con�dence in one’s pain. For example, one 
must evaluate the intensity of a headache and one’s con�dence in one’s symptoms when determining whether 
or not to take an over-the-counter analgesic. A�er taking medication and subsequently experiencing relief, one 
might attribute the relief to the pill, or one might reevaluate the initial headache and consider whether it might 
have subsided on its own. At this point, one might reevaluate one’s con�dence in their initial headache inten-
sity. To understand how con�dence in pain might a�ect pain-related decision-making, we must �rst establish 
whether individuals are capable of pain metacognition and how to detect when an individual is experiencing 
uncertainty in pain.

To probe whether individuals vary in con�dence in their pain ratings, we applied acute noxious thermal 
stimulation to the volar forearm of healthy volunteers and measured self-reported pain and con�dence in pain 
rating (see Fig. 1 for task design). Prior research indicates that less con�dent decisions are associated with slower 
reaction  times32,33 and increases in the number of eye �xations on visual alternatives during decision-making 
34–37, and that introspective accuracy varies substantially across  individuals22. We therefore measured pain rat-
ing reaction time and the number of eye �xations participants made while viewing the pain scale, as well as the 
overall variance in a participant’s pain ratings that could be explained by temperature (i.e., the reliability of a 
participant’s temperature-pain relationship), which might relate to introspective accuracy.

Consistent with metacognition in other sensory modalities, we hypothesized that participants would exhibit 
variance in their con�dence in their pain ratings and would take longer to make judgments about pain and 
exhibit more �xations when considering their pain (i.e., during pain rating scale presentation) when they were 
less con�dent. We hypothesized that these relationships would be stronger in individuals with greater reliability 
between pain rating and stimulus intensity. In light of evidence that con�dence increases when there is more 
sensory  information38 and as a function of  experience39, we also hypothesized that con�dence would increase 
as a function of noxious stimulation intensity and across time. If individuals make meaningful metacognitive 
judgments about pain and if such variance can be identi�ed using explicit self-report and/or implicit behavioral 
measures, then future studies should measure metacognition to gain insight on how con�dence might modulate 
pain and what factors shape pain-related con�dence.

Results
Participants report variations in confidence about subjective pain. Eighty healthy volunteers 
experienced brief noxious thermal stimulation (Mtemperature = 44.89 °C, SDtemperature = 3.15 °C) and rated their pain 
on a 0–10 visual analogue scale (VAS; Mpain = 4.58, SDpain = 2.71) following a 3-s looking period, in which the 
scale was presented and we measured the number of �xations. Temperatures were iteratively updated using an 
adaptive calibration to elicit ratings of 2, 5, and 8 on the pain scale (see Methods). We �t an initial linear regres-
sion between temperature and pain rating from the �rst 3 heat stimulations. �e �t was iteratively updated 
and used to predict the remaining 21 temperatures consistent with prior work using this approach (e.g.,40–43). 
Although all temperatures were estimated to evoke pain, some trials (Mwithin-subjects = 3.96 trials) were rated as 
non-painful. Analyses in the main manuscript include all trials, and we report results of analyses restricted to 
painful trials in Supplementary Results (see ‘Correlational analyses restricted to painful trials’; ‘Two-part model 
restricted to painful trials: Reaction time’; and ‘Two-part model restricted to painful trials: Number of �xations’). 
On average, much of the variance in participants’ pain ratings could be explained by the temperature of the 
stimulus they experienced (Mr2 = 0.66, SDr2 = 0.17); we refer to the amount of variance in pain ratings explained 
by temperature (i.e.,  R2 of the pain-temperature association) as reliability.

Immediately a�er each pain rating, participants rated uncertainty in their pain rating for that trial using a 
0–100 VAS, in which 0 denoted complete certainty and 100 complete uncertainty. Across all trials, participants 
reported low levels of uncertainty (Muncertainty = 9.48, SDuncertainty = 15.64, Coe�cient of Variation = 165.0%), such 
that 817 trials (42.5%) were rated with zero uncertainty. Eight participtants (10%) only rated with zero uncer-
tainty and were not included in any analyses assessing associations and e�ects of predictors on con�dence. Still, 
participants on average reported non-zero uncertainty: a one-sample t-test on individual participant’s W, the test-
statistic resulting from a within-subject Wilcoxon signed rank test on uncertainty responses for each individual, 
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demonstrated that participants do experience some degree of uncertainty in their pain judgments (MW = 2.14, 
SDW = 2.05, t(75) = 9.09, p < 0.001, CI [1.67, 2.61]). In other words, participants are not entirely con�dent in their 
subjective pain ratings. However, the data overall were zero-in�ated, meaning that there was a preponderance 
of trials on which participants reported complete con�dence. �is was con�rmed via a zero-in�ation score test 
based on a χ(1)

2  distribution44 (S(β̃)̃) = 4,145,914, p < 0.001; see Fig. 2 for a distribution of uncertainty). Uncertainty 
ratings did not di�er by sex or race (all p’s > 0.1).

Pain-related uncertainty decreases over time and is associated with slower reaction times dur-
ing pain rating. We used within-subjects Spearman’s correlations to investigate each individual’s associa-
tions between uncertainty (for those with variable uncertainty; n = 72) and each of our behavioral measures, as 
well as time (i.e., trial number) and sensory intensity (i.e., temperature) across 24 trials. �e correlation between 
uncertainty and number of eye �xations was restricted to those with valid eye data (n = 66). We calculated rho 
coe�cients for each individual and for each association and compared the distribution of rho values against 
zero using one-sample t-tests for each independent variable (�nd full results in Supplementary Table S1). We 
also computed the correlations restricted to painful trials and report our results in the Supplementary Results 
(see ‘Correlational analyses restricted to painful trials’). Furthermore, we investigated the association between 
reliability (one value per person) and mean uncertainty (one value per person) by running an across-subjects 
Spearman’s correlation. Across participants, there was a positive association between uncertainty and reaction 
time (Mrho = 0.12, SDrho = 0.24, t(71) = 4.38, p < 0.001, CI [0.07, 0.18]; see Fig.  3a for a distribution of the rho 
 coe�cients45), such that participants took longer to rate pain when they were more uncertain. �ere was a 
negative association between uncertainty and time (Mrho = − 0.08, SDrho = 0.34, t(71) = − 2.05, p = 0.04, CI [− 0.16, 
− 0.002]; see Fig. 3b for a distribution of the rho coe�cients), such that individuals reported less uncertainty on 
later trials. We analyzed within-subject correlations between reaction time (RT) and time (trial number) and 
observed a signi�cant di�erence from zero across rho coe�cients (Mrho = − 0.30, SDrho = 0.26, t(79) =  − 10.42, 
p < 0.001, CI [− 0.36, − 0.24]), such that reaction times decreased over the course of the experiment. Uncertainty 
was not consistently associated with number of �xations, reliability, or temperature (all p’s > 0.4). However, we 
note that uncertainty was negatively associated with temperature when we restricted analyses to painful trials 

Figure 1.  Task design. A. Schematic of trial design. Trials began with a Heat Stimulus, followed by a three-
second looking period, during which participants could look at the pain rating scale (while their eye movements 
were tracked) but could not make a pain rating. A�er three-seconds of pain rating scale presentation, an arrow 
appeared on the scale and participants made a pain rating for the preceding stimulus. Finally, participants 
provided con�dence ratings. �ere was no time limit for pain ratings or con�dence ratings. B. Heat stimulus. 
Each 8-s heat stimulus included 5 s of stimulation at a peak destination temperature ranging from 36 °C to 
50 °C, as well as 1.5-s ramps to and from a baseline of 32 °C. A�er 5 s at peak temperature, the stimulus ramped 
down to 32 degrees Celsius in 1.5 s. C. Looking period. Example of gaze position data during the Looking period, 
prior to pain rating. Each circle represents a �xation on the pain rating scale. Area and numbers denote the 
duration of the �xation, which was not used for the current analysis. D. Con�dence rating. Following pain rating, 
participants rated their con�dence using a visual analogue scale that ranged from “Completely Certain” to 
“Completely Uncertain”.
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(Mrho = − 0.09, SDrho = 0.30, t(70) =  − 2.43, p = 0.02, CI [− 0.16, − 0.02]) such that uncertainty was greater at lower 
temperatures (full results in Supplementary Results: ‘Correlational analyses restricted to painful trials’). For each 
test, we also compared rho coe�cient distributions by sex and race and observed no di�erence as a function of 
race or sex (all p’s > 0.1).

Two part multilevel model: uncertainty is associated with slower reaction times during pain 
rating. �e results above were based on one-sample t-tests of correlations within individuals, for comparison 
to previous work on metacognition using summary statistics approaches (e.g.,33). However, because trials were 
nested within subjects in our repeated-measures design, a more appropriate approach would be to use multi-
level models that simultaneously model within- and between-subject factors. Because standard linear models 
were inappropriate for our zero-in�ated uncertainty ratings (see Supplementary Methods: ‘Initial linear mixed 
models’), we used a two-part multilevel  model46–49 on log-normal data (see Methods and Fig. 4). �e �rst part of 
the model incorporated a logistic regression to predict trials rated with zero uncertainty versus trials on which 
participants reported some uncertainty (i.e., uncertainty > 0; irrespective of the magnitude of the non-zero rat-
ing). �e second part consisted of a linear model that measured associations between behavioral measures and 
variations in log-transformed uncertainty on trials when participants reported any level of uncertainty in their 
pain rating. We ran a two-part model for reaction time and a separate two-part model for number of �xations; 
therefore, we applied a Bonferroni correction and set alpha to 0.025 for each model. For each model, we only 
incuded participants that had at least four trials rated with and without complete certainty (reaction time: n = 37; 
number of eye �xations: n = 35; see Methods ‘Analytic Strategy’ for a full breakdown).

We ran model comparisons to �nd the simplest and best-�t model by adding one �xed or one random e�ect 
at a time and determining if the model signi�cantly improved. �e simplest model for log-normal reaction time 
(reaction time in ms), which included a �xed and random intercept and reaction time as a �xed e�ect but did 
not include time, reliability or temperature provided the best model �t via likelihood ratio tests (�nd full model 
comparison in Supplementary Table S2). Our �nal model for log-normal reaction time was:

We visualized the residuals from the two-part model via a qq-plot based on custom code (https:// drizo poulos. 
github. io/ GLMMa dapti ve/ artic les/ Goodn ess_ of_ Fit. html) for the DHARMa  package50 in R, and observed no 
deviations in the residuals (i.e., the model met assumptions; see visual in Supplementary Fig. S3).

The logistic portion of the model revealed a negative effect of reaction time in predicting certainty 
(β1Logistic = − 0.55, Odds: 0.58, SEM = 0.18, z = − 3.09, p = 0.002; see Fig. 5 and Table 1 for full model results) such 
that increasing log-normal reaction time by one log-unit (i.e., slowing the response) decreased the odds of being 
certain by 42%. In other words, longer reaction times were associated with lower odds of expressing complete 
certainty. �e linear portion of the two-part model revealed a positive e�ect of log-normal reaction time on 
log-normal uncertainty (β1Linear = 0.40, SEM = 0.11, z = 3.66, p < 0.001) such that slower ratings were associated 
with higher uncertainty.

(1)

{

LINEAR Uncertaintyij > 0= (γ00 + γ10ReactionTimeij) + (u0j) + rij

LOGISTIC In
Uncertaintyij=0

1−Uncertaintyij=0= (γ00 + γ10ReactionTimeij) + (u0j) + rij

Figure 2.  Distribution of uncertainty. �is �gure depicts uncertainty ratings across participants, smoothed via 
a kernel density function (top) and depicted as raw ratings (below). Uncertainty was present during the task 
(Muncertainty = 9.48, SDuncertainty = 15.63); however, the scores were zero-in�ated con�rmed via a zero-in�ation score 
test based on a χ1

2 distribution (S(β̃) = 4,145,914, p < 0.001. We therefore used a two-part model to account for 
zero-in�ated data (see Fig. 4).

https://drizopoulos.github.io/GLMMadaptive/articles/Goodness_of_Fit.html
https://drizopoulos.github.io/GLMMadaptive/articles/Goodness_of_Fit.html
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As the two-part model is newly implemented in  R49, we ran multiple models (see Supplementary Methods) 
with the same parameters to verify our results, including (1) a two-stage simple statistics  approach51; (2) a mul-
tilevel linear model on non-zero uncertainty trials; and (3) a multilevel logistic model to compare certain and 
uncertain trials.

Findings from both the logistic and linear parts of the two-part model were consistent across di�erent mod-
eling approaches. In the two-stage simple statistics approach, one-sample t-tests revealed consistent associa-
tions across subjects for both individual logistic regression coe�cients (Mlogistic = 0.94, t(36) = 2.02, p = 0.051, CI 
[− 0.004, 1.88] and individual linear regression coe�cients (MBeta = 0.57, t(64) = 2.15, p = 0.04, CI [0.04, 1.11]), 
although we note that both were marginal a�er Bonferroni correction (for full results, see Supplementary Results: 
‘Two-stage multilevel model: Reaction time’). Similarly, single-part multilevel models replicated �ndings from 
the two-part multilevel models. Our logistic multilevel model implemented in R’s glmer package revealed a 
signi�cant association between reaction time and uncertainty on trials in which subjects were not completely 
con�dent (β1Linear = 0.25, SEM = 0.05, t = 4.8, p < 0.001). For full results, see Supplementary Results: ‘Single-part 
multilevel linear and logistic models: Reaction Time’.

Finally, because we observed a signi�cant association between time and reaction time in our correlational 
analyses, we ran an additional two-part model for reaction time which included mean-centered trial number 
(time) and an interaction term between reaction time and trial number. We observed no interaction between the 
two variables in either the logistic or linear portions and the e�ect of reaction time on both the linear and logistic 
portions of the model remained (for full details see: Supplementary Results: “Two-part model for reaction time: 
Including time and the interaction between time and reaction time as �xed e�ects.” ).

Uncertainty decreases over time and association with number of fixations depends on reli-
ability. We ran model comparisons and observed a model including a �xed and random intercept and �xed 
e�ects of number of �xations, time, reliability and an interaction term between reliability and number of �xa-
tions provided the best �t (see full model comparison in Supplementary Table S3). Our �nal model for number 
of �xations was:

Figure 3.  Distribution of within-subject associations between Reaction Time and Uncertainty & between Time 
and Uncertainty. Here we depict distributions of within-subject associations with uncertainty based on rho 
coe�cients, smoothed with a kernel density function (top) with boxplot and individual subject’s rho coe�cients 
below. Correlations were run between uncertainty and reaction time (RT) and between uncertainty and time 
across trials within each participant. We ran a one sample t-test against zero on the subject-level rho coe�cients 
for each predictor respectively. (a) �ere was a positive association between uncertainty and reaction time 
(Mrho = 0.12, SDrho = 0.24, t(71) = 4.38, p < 0.001, CI [.07, .18]) such that participants took a longer time to rate 
their pain when they reported more uncertainty. (b) �ere was a negative association between uncertainty and 
time (Mrho = − 0.08, SDrho = 0.34, t(71) =  − 2.05, p = 0.04, CI [− 0.16, − 0.002], such that participants reported less 
uncertainty on later trials (i.e. with more experience in the task).
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In the logistic portion of our model, we observed an interaction between number of �xations and reliability, 
β1Logistic = − 1.12, Odds: 0.33, SE = 0.34, z = − 3.35, p < 0.001 (see a scatter plot between reliability and number of 
�xations di�erence score in Fig. 6), such that a one unit increase in number of �xations is associated with a 1% 
decrease in odds of being certain when reliability is average, but for every unit increase in reliability the e�ect of 
number of �xations on odds of being certain increases by 67% (see Table 2 for full results). In other words, for 
participants who exhibited greater reliability in their association between pain and temperature, more �xations 
were associated with higher odds of uncertainty, whereas for participants who exhibited less reliability, more 
�xations were associated with higher odds of certainty. �ere was no additional association between uncertainty 
and �xation in the linear part of the model (p > 0.1). �ere was no relationship with time in the logistic part of the 
model (p > 0.4). However, in the linear portion of our model, we observed a negative association between time 
and uncertainty (β1Linear = − 0.02, SEM = 0.007, z = − 2.5, p = 0.01) such that participants reported more certainty 
later in the task. 

�e association between reliability and the uncertainty-�xation relationship from the logistic part of the 
two-part model was robust to di�erent modeling approaches. Two-stage simple statistics revealed a signi�-
cant association between reliability and individual logistic regression coe�cients and reliability (β1Linear = 1.88, 
SEM = 0.50, t(32) = 3.8, p < 0.001; for full results, see Supplementary Results: ‘Two-stage multilevel model: Number 
of �xations’). We also observed a signi�cant interaction with reliability in the single-part logistic multilevel model 
implemented with glmer (β1Logistic = 1.09, Odds: 2.97, SEM = 0.33, z = 3.3, p = 0.001). For full results, please see 
Supplementary Results: ‘Single-part multilevel linear and logistic models: Number of �xations’.

�e negative association between time and uncertainty from the linear part of the two-part model was also 
robust across modeling approaches: it was replicated in both the two-stage simple statistics approach via a one-
sample t-test on individual linear regression betas (MBeta = − 0.03, t(60) = − 2.9, p = 0.005, CI [− 0.05, − 0.009]) 
and in the linear multilevel model via lmer (β1Linear = − 0.02, SEM = 0.004, t = − 4.2, p < 0.001).

(2)

{

LINEAR Uncertaintyij > 0= (γ00 + γ10FixationNumberij + γ10timeij + γ01R
2
j + γ11FixationNumberijγ01R

2
j ) + (u0j) + rij

LOGISTIC In
Uncertaintyij=0

1−Uncertaintyij=0= (γ00 + γ10FixationNumberij + γ10timeij + γ01R
2
j + γ11FixationNumberijγ01R

2
j ) + (u0j) + rij

Figure 4.  Associations between reaction time and uncertainty based on two-part multilevel model. Top: 
Con�dence ratings were heavily weighted toward zero (i.e. complete certainty; see also Fig. 2). We therefore 
used a two-part multilevel  model43 to measure associations with uncertainty. �e �rst (logistic) part classi�ed 
trials into either ‘trials with uncertainty’ OR ‘trials with no uncertainty’ across all participant while the second 
(linear) part tested associations with variations in uncertainty within non-zero (i.e. uncertain) trials. Lower 
le�: In the logistic part of the model, we evaluated whether �xations or reaction time (reaction time is shown) 
predicted the likelihood that a trial was rated with uncertainty or not across all participants. �e solid black 
line represents the group estimate (exponentiated to transform from log odds to odds) and the dashed lines 
represents the con�dence interval. Lower right: �e linear part of the model evaluated whether �xations or 
reaction time (reaction time is shown) predict the variations in uncertainty within uncertain trials. �e solid 
black line represents the group estimate and the dashed lines represents the con�dence interval.
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Discussion
Our results extend the literature of metacognition and perceptual decision making to decisions related to pain. 
Individuals experienced variations in con�dence when rating acute pain, suggesting that individuals can make 
metacognitive judgments about their pain experience and are aware of their con�dence (or lack thereof). We 
observed mixed results for associations between con�dence and our behavioral measures, number of �xations 
and reaction time. Similar to other modalities, reaction time was linked to con�dence in pain, such that indi-
viduals were slower to rate pain on trials when they felt less certain. �e association between con�dence and 
number of �xations on the scale was less consistent across individuals, and varied as a function of the reliability 
between temperature and pain, providing a link between pain metacognition and introspective accuracy. Here 
we discuss the implications of these �ndings and future directions for this work.

Our �ndings indicate that pain metacognition is consistent with metacognition in other modalities in sev-
eral ways. Pain rating reaction times decreased as con�dence increased (i.e., individuals were faster to rate their 
pain when they were more con�dent) and con�dence in pain ratings increased over time (i.e., individuals were 
more con�dent about their pain ratings as they gained experience with the noxious stimulation and made more 
metacognitive judgments about their pain). �e e�ect of experience is particularly relevant for pain studies, 
which should implement practice trials or calibration procedures to increase the likelihood an individual will 
have con�dent pain reports during the study paradigm. Furthermore, it suggests the importance of including 

Figure 5.  Di�erences in reaction time between certain and uncertain trials. Participants were quicker to 
rate pain during certain trials (t(36) = 2.70, p = .01, CI = [.03, 0.18], mean di�erence = 0.11 log RT (RT in ms)). 
(A) We used violin plots to present participant’s mean log reaction time during certain trials (le� violin plot; 
MlogRT = 7.86 log RT, SDlogRT = 0.48) and uncertain trials (right violin plot; MlogRT = 7.96 log RT, SDlogRT = 0.45) and 
lines to indicate change in reaction between certain and uncertain trials for each participant. (B) We present 
participant di�erence scores (Mdi�erence score = 0.10, SEMdi�erence score = 0.038), computed by subtracting the mean 
reaction time during certain trials from the mean reaction time during uncertain trials for each participant. A 
boxplot shows the median di�erence value (Mediandi�erence score = 0.07) and interquartile range (IQR = 0.23; Q1: 
− 0.05, Q3: 0.18).

Table 1.  Asssociation between con�dence and reaction time based on Two-Part Multilevel Models. Statistical 
outcomes for the two-part multilevel models are reported separately for linear and logistic portions of the 
model.

Variable β SE z p

Logistic

 Intercept 1.98 0.13 15.14  < 0.001

 Reaction time 0.37 0.11 3.40  < 0.001

Linear

 Intercept 0.08 0.17 0.54 0.59

 Reaction time − 0.57 0.18 − 3.20 0.001
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experience (e.g., trial number or time in task) as a covariate in repeated-measure study designs. Pain rating reac-
tion time was associated with both whether or not an individual was con�dent on a given trial and their level 
of con�dence. �is e�ect exists even though di�erences in reaction time may have been diminished in our task, 
as we probed pain ratings a�er heat o�set, and decisions about pain may occur concurrently with stimulation 
or while viewing the pain rating scale prior to recording a response. Furthermore, these results were robust to 
several di�erent modeling options.

Pain metacognition also di�ered from other modalities in several ways. First, con�dence was not associated 
with stimulus intensity across all trials (i.e., individuals did not have increased con�dence on trials with higher 
temperatures). However, when we restricted to painful trials, higher temperatures, which are associated with 
greater nociceptor  activation52, were positively associated with con�dence. Second, con�dence was only associ-
ated with the number of �xations made to the pain rating scale when accounting for reliability, in contrast to 
previous work demonstrating associations between �xations and con�dence across participants in studies of 
visual perception and memory-related decision making (e.g.,34,37). �e lack of associations between con�dence 
and number of �xations across participants suggests the number of �xations made while viewing a pain rating 

Figure 6.  Association between reliability and the di�erence in �xations during certain and uncertain trials. For 
each participant, we computed a di�erence score by subtracting the average number of �xations during certain 
trials from the average number of �xations made during uncertain trials. �e e�ect of certainty on �xations 
(y-axis) was signi�cantly correlated with reliability (x-axis), the strength of the association between temperature 
and pain (r = 0.57, p < .001). �is association is still present, although weaker, when the outlier near the graph’s 
origin is removed (r = 0.4, p = .02).

Table 2.  Association between con�dence and number of �xations via Two-Part Multilevel Model. Statistical 
outcomes for two-part multilevel models are reported separately for linear and logistic portions of the model.

Variable β SE z p

Logistic

 Intercept 0.75 0.17 0.44 0.66

 Number of Fixations − 0.01 0.05 − 0.22 0.83

  R2 0.87 1.21 0.72 0.47

 Time 0.008 0.01 0.74 0.45

 Number of Fixations*R2 − 1.12 0.34 − 3.35  < 0.001

Linear

 Intercept 1.97 0.13 15.5  < 0.001

 Number of Fixations 0.01 0.02 0.38 0.70

  R2 0.28 0.89 0.32 0.75

 Time − 0.02 0.007 − 2.58 0.009

 Number of Fixations*R2 0.26 0.18 1.43 0.15
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scale is not a reliable marker of con�dence in pain ratings across participants. We only measured �xations during 
a three-second looking period while participants viewed the pain scale prior to recording responses. It is possible 
that �xations would be more variable during the heat stimulation period itself; however, we did not display the 
pain rating scale during this period to allow for pupil dilation analyses in a larger study assessing physiological 
responses of  pain43. Furthermore, it is possible that participants may have disengaged from the task and behaviors 
were diminished during the three-second looking period, as this period preceded mouse presentation used for 
pain ratings. However, we did �nd that the association between con�dence and �xations was moderated by reli-
ability. Although this was only present in the logistic portion of the model, it was robust to di�erent modeling 
options, and suggests individuals with greater reliability exhibit more �xations when they are less con�dent, 
consistent with other domains of decision-making, whereas individuals with lower reliability exhibit more �xa-
tions when con�dent. �is suggests the utility of eye �xations as an implicit marker of con�dence in pain may 
be restricted to those with heightened sensory acuity, which is closely related to introspective accuracy. Studies 
that use calibration tasks to exclude participants with low sensitivity or reliability (which was a secondary goal 
of the pain task we used here) would likely �nd a stronger association between �xations and con�dence across 
participants that mimics other modalities.

Participants reported high con�dence in their pain overall, although con�dence varied from trial to trial. In 
other sensory modalities con�dence and perceptual awareness tends to be high when an individual is ‘correct’ 
on a  trial14. Although pain has no objective ‘truth’, it is feasible that individuals deemed their subjective experi-
ence as correct responses (i.e., the pain the person felt is what they reported), hence why subjective con�dence 
reports seem to mimic distributions of con�dence found for ‘correct’ trials in other studies.

It is important to note that our study paradigm di�ered from most perceptual decision making tasks in several 
important ways. Many studies of con�dence restrict the number of responses in their con�dence scale (e.g., four 
discrete choices compared to a 0–100 continuous scale), which may lead to more variable decisions and prevent 
the zero-in�ation we observed in our data. Furthermore, we note that participants may rate con�dence towards 
the scale’s anchors (positioned at the extremes of our scale) and may generally overestimate their  con�dence16. 
�e propensity to overestimate con�dence is o�en assessed via metacognitive bias in the  literature16. However, 
as our paradigm lacks an absolute truth (i.e., pain is inherently subjective, and therefore there is no objective, 
external marker to code accurate response) and we utilized a continuous, visual analogue scale for our pain 
rating decisions (opposed to a two-alternative forced choice design), it was not possible to assess whether our 
participants exhibited a metacognitive bias. Future research should also evaluate whether con�dence and pain 
metacognition are impacted di�erently when subjects are asked to focus on sensory or a�ective aspects of pain 
(i.e. pain intensity versus pain unpleasantness) or when stimuli are described in terms of noxious stimulus inten-
sity versus subjective pain (e.g. anchoring judgments on “too hot” versus “worst pain imaginable”).

We used an adaptive task that was restricted to painful stimulation and iteratively �t each participant’s pain 
sensitivity pro�le to identify their pain threshold and tolerance and determine each participants’ reliability. 
Tasks that use a wider range of stimuli, including painful trials, non-painful trials, and trials near the perceptual 
threshold, are likely to elicit larger variations in con�dence. Furthermore, our participants provided pain ratings 
immediately a�er stimulus o�set, and then provided con�dence judgments. Although participants did not make 
decisions until a�er the heat stimulus subsided, it is possible that decision-making processes are most relevant 
during stimulation as participants gather evidence about the heat. Indeed, previous work has indicated that 
dri� di�usion models can predict pain  reports53,54, and that pain is associated with variations in both starting 
point and evidence accumulation. Future studies should evaluate whether on-line behavioral measures col-
lected concurrent with noxious stimulation might be better predictors of con�dence than those associated with 
post-stimulus ratings. Finally, we did not explicitly manipulate uncertainty during this task, which may have led 
to in�ated con�dence or decreased the likelihood that participants even engaged in metacognitive processes. 
Future studies should measure how experimental manipulations of uncertainty (e.g.,12,13) in�uence pain-related 
con�dence and whether �xations and reaction time predict metacognitive judgments in cases where con�dence 
is expected to vary more strongly within participants over time.

In summary, our �ndings suggest con�dence can be measured during pain decision making and that indi-
viduals do experience varying levels of con�dence in pain report. �is suggests that individuals are not always 
con�dent about the pain they report, and they are cognizant of this fact. Future research on pain and pain 
modulation should incorporate con�dence ratings to further understand features that drive con�dence and 
uncertainty in pain, whether behavioral indicators predict subjective judgments, and to measure whether pain 
metacognition interacts with other forms of pain modulation. Analgesics, placebos, and other forms of pain 
modulation may have dissociable e�ects on pain and pain metacognition; for example, placebos might decrease 
pain while increasing uncertainty. Likewise, patients and participants who are high in metacognitive sensitivity 
may respond di�erently to interventions from participants with low metacognitive sensitivity. Understanding 
these additional features of pain decision making will improve our ability to tailor pain treatment and address 
all aspects of patients’ pain, including con�dence in their pain decision-making.

Methods
Participants. Eighty healthy adult volunteers (Mage = 28.4  years old; SDage = 7.9  years; 56% female; 35% 
White, 42% Black, 10% Asian, 8% Hispanic/Latino, 2% Two or more races, 3% unknown) provided informed 
consent in accordance with the Declaration of Helsinki and as approved by the National Institutes of Health 
(NIH) Combined Neuroscience IRB (Protocol 15-AT-0132). All participants were recruited via �yers placed 
on the NIH campus, through emails distributed to approved list servers, website postings (ClinicalTrials.gov: 
NCT02446262), or through the NIH patient recruitment o�ce. Participants were not eligible if they had a his-
tory of chronic pain, neurological or psychiatric disorders, conditions a�ecting pain sensation or somatosensa-
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tion, dermatological conditions on the volar forearm, or medication use that could a�ect pain sensation. Fur-
thermore, participants were excluded if they had recent recreational drug use or were pregnant (both veri�ed 
by urine sample). All participants were �uent in English and were determined to be in good health based on a 
nursing assessment prior to the task. Eligible participants underwent sensory testing to determine their eligi-
bility for future studies. Participants received monetary compensation for their time and for receiving painful 
stimulation. Pain reports and heat-evoked physiological responses from this sample were included as a subset of 
a larger sample in a previous  publication43 that did not evaluate con�dence. Summary statistics were conducted 
on the full sample. Analyses assessing associations and e�ects of predictors on con�dence were limited to 72 
individuals (8 participants rated every trial with 100% complete con�dence; i.e., they had no variability in the 
outcome measure) and to 66 individuals when assessing eye �xations (7 participants who failed our eye calibra-
tion, including 1 individual who failed the eye calibration but also reported no variability in their con�dence).

Stimuli and apparatus. Healthy volunteers experienced 24 trials of noxious thermal stimulation, which 
was applied to 8 skin sites on the non-dominant volar forearm, with 3 stimulations per site. Noxious thermal 
stimulation was applied using a 16 mm × 16 mm ATS thermode (Medoc Ltd., Ramat Yisha, Israel) attached by 
Velcro. We used the Eyelink 1000 Plus eye tracking system (SR Research Ltd., Ontario, Canada) to measure eye 
position and pupil dilation in all participants. Visual stimuli were presented using Experiment Builder so�ware 
(SR Research Ltd., Ontario, Canada), which synchronized with the eye-tracking system to allow for precise task 
timing and measurements. Participants provided pain and uncertainty ratings using a computer mouse. �e res-
olution of the screen was 1920 × 1080 with a refresh rate of 144 Hz. We used a chin rest to prevent the head from 
moving excessively. Participants were seated in a chair without wheels that was adjusted vertically to position the 
participant’s head at the chin rest. �e chair was set 84 cm from the screen and distances from the participants 
eye to the top and bottom of screen were 52 and 58 cm respectively. We collected additional autonomic measures 
(skin conductance, heart rate, respiration, electrocardiogram) via the Biopac MP150 system (Biopac Systems 
Inc., Goleta, CA, USA), which were previously reported as part of a larger  sample43 and are outside the scope of 
this paper. Analyses were conducted using Matlab 2019a (Mathworks Inc., Natick, MA), R version 3.6.355 and R 
Studio 1.2.5033 (Boston, MA).

General procedures. Participants provided consent and were escorted to the behavioral testing room. 
Prior to noxious stimulation, participants were familiarized with the thermode, rating scales, and completed 
state and trait questionnaires not analyzed here. �ey were then situated in the chair and the head rest was 
adjusted to an appropriate height to stabilize the head and maximize eye data quality. Once the participant was 
comfortable, the lens was focused, and the right eye was calibrated using a 9-point calibration. We validated the 
calibration and proceeded to the task when we achieved less than 1 degree of di�erence between calibration and 
validation for each site.

Participants underwent 24 heat stimulations of varying intensity on eight skin sites using an adaptive cali-
bration  procedure40,43 described below. Most studies assessing con�dence in decisions utilize two-alternative 
forced choice designs and use adaptive staircases to adjust performance and maintain a criterion performance 
level (e.g.,56). Here, our adaptive calibration di�ered from other work on perceptual judgments in that we used 
an iterative regression procedure to target temperatures required to elicit ratings of low (2), medium (5), or high 
pain (8), rather than assessing a speci�c performance criterion. We discuss this approach in more detail below. 
To increase real-world  application57 we used a continuous 0–10 pain scale to rate pain from a single stimulus 
and a continuous scale to probe con�dence in pain judgments. Participants were instructed to provide ratings 
on a VAS ranging from 0 (no sensation) to 10 (most pain imaginable) using the following anchors: 1 = warm 
sensations; 2 = beginning of pain; 5 = moderate pain; 8 = most tolerable pain; 10 = worst pain imaginable (for exact 
language see Supplemental: ‘Pain rating scale instructions’). Participants were also told they could use decimals 
and if a participant found a stimulus to be intolerable, they were told that they could ask the experimenter to 
stop the stimulus immediately or they could remove the thermode from their arm. �e participant was asked to 
rate this pain above an 8 on the scale (written as ‘Too hot’ on the scale) and this temperature was not applied to 
the same site on any subsequent trial, in order to avoid applying any temperatures that exceeded a participant’s 
tolerance (per IASP’s, Ethical guidelines for pain research in humans58). 98 trials were rated above 8 in the current 
study  (Mwithin-subjects = 1.2 trials).

�e �rst 3 temperatures were the same for all individuals (41 °C, 44 °C, and 47 °C). An initial linear regression 
between temperature and pain rating was created from the �rst 3 heat stimulations and was iteratively updated 
and used to predict the remaining 21 temperatures. �e temperature applied on each trial was estimated to elicit 
one of three target pain intensities on the scale: pain threshold (rating of 2), medium pain (5), or pain tolerance 
(8). Each skin site was stimulated once at each target pain level. If a pain rating deviated from the estimate, 
then the line of best �t and the estimated temperatures for each target would update according to the degree 
of deviation (i.e., the slope and intercept would update).We used  r2 to measure the reliability between stimulus 
temperature and subjective pain rating and included reliability as a moderator in our across-participants analyses. 
�is measure also served as screening criteria for eligibility in future studies in our lab (participants with  r2 < 0.4 
did not continue to subsequent experiments).

During the task, each trial began with a black �xation box that appeared in the center of the screen. Partici-
pants were required to �xate on the cue for 500 ms in order for the task to advance. We marked the failure to �xate 
and manually advanced and repeated eye calibrations on trials when the participant was not able to �xate on the 
visual cue for 500 ms. �e remaining trial elements are illustrated in Fig. 1. A�er cue o�set, an eight-second heat 
stimulus was applied (1.5 s ramp to target temperature, 5 s at peak, 1.5 s ramp to baseline; the �rst 12 participants 
experienced ten-second heat stimuli with 7 s at peak). Following heat o�set, a 1398-pixel wide (72.8% screen 
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width) pain rating scale appeared for three seconds and participants were instructed to think about their rating 
while eye �xations were recorded. A�er three seconds, an arrow appeared at the center of the scale. Participants 
used the arrow to mark and rate their pain in addition to verbally con�rming pain report. �ere was no time limit 
for this decision, and we measured pain rating reaction time (from the appearance of the arrow) on every trial.

Following the pain rating, participants rated how uncertain they were in their pain rating using a 0–100 scale, 
where 0 = completely certain and 100 = completely uncertain. We provided two questions to ensure proper usage 
of the uncertainty scale (see Supplementary Methods: ‘Instructions for rating explicit uncertainty’). We recog-
nize that our scale probed con�dence and not  certainty17,18; therefore, we use the term con�dence throughout 
the introduction and discussion of our manuscript, but we have kept the terms ‘certainty/uncertainty’ in our 
results as this more aptly relates to the instructions and scale used by participants. �e uncertainty scale was 
aligned 200 pixels higher on the screen compared to the pain rating scale and anchored from completely certain 
to completely uncertain to prevent orienting or automatic carry-over from pain ratings. �ere was no time limit 
for the uncertainty ratings, and reaction time for uncertainty ratings was not analyzed further.

A�er each uncertainty rating was recorded, a prompt appeared that instructed the experimenter to move the 
thermode to the next skin site. �e experimenter moved the thermode to the next skin site and began the next 
trial when the participant was ready.

Data processing. Data was processed using Eyelink 1000 PLUS so�ware (SR Research, 2009), which de�nes 
saccades as any period during which the eye exceeded a velocity of 30°/second or an acceleration of 8000°/sec-
ond^2, and codes any period during which pupil and corneal re�ection were tracked that was immediately pre-
ceded by or followed by a saccade or blink as a �xation (i.e., a moment when the retina is relatively stable on an 
item in the  environment59). Eye data was exported from Eyelink into Matlab with custom code (https:// github. 
com/ djang raw/ GazeV isToo lbox). Based on recommendations from  Holmqvist60, we excluded all �xations under 
50 ms as well as �xations under 120 ms that are either preceded by or come right a�er a blink. Finally, triggers 
that marked the beginning and end of the 3-s looking period were used as event markers. We measured the 
number of valid �xations during this period on each trial for use in analyses irrespective of position. We chose 
to focus on the total number of �xations during the looking period, rather than restricting �xations to the scale 
or measuring gaze position, because our pain scale numerical anchors were above the scale and the mouse 
appeared on a restricted horizontal line below the scale, and because participants always �xated at the center of 
the screen during heat stimulation prior to pain scale presentation. Participants who had fewer than three trials 
of eye data or failed our �xation manipulation check were not included in analyses that included eye �xations 
(n = 7). For those individuals included in the �nal analyses with eye data (n = 66), trials with less than 50% eye 
data present during the three second looking period were excluded from analyses (M = 0.47 trials excluded per 
participant).

Pain and uncertainty ratings were transformed from raw pixel values to appropriate ratings by accounting 
for the screen position of the visual analogue scale. If an uncertainty rating was coded below zero or above 100 
(i.e. the participant clicked slightly to the le� or right of the scale), the mouse position was veri�ed, and the rat-
ing recoded as zero or 100 accordingly (see Supplemental Methods: ‘Corrections for con�dence ratings below 
0 and above 100′). A rating of zero was of particular interest for our analyses, as we used a logistic regression to 
determine zero vs. non-zero con�dence data (see Analytic Strategy below for more details).

We measured reaction time for the pain rating on each trial. To remove extreme outliers prior to our analyses, 
we applied minimal a-priori trimming per Baayen and  Milin61 to our reaction time data. We �rst removed tri-
als in which reaction time was less than or more than three standard deviations from the mean within-subject 
(M = 0.62 trials per participant) and then log-transformed to normalize the data.

Analytic strategy. We began by running the Lilliefors composite goodness-of-�t test on uncertainty rat-
ings via the lillietest function in Matlab to determine if our uncertainty data was normally distributed. Our data 
were not normal; therefore, we ran non-parametric versions of tests where normality is assumed. We ran non-
parametric Wilcoxon signed rank tests to determine if uncertainty was reported di�erently from zero within 
subjects and ran a one-sample t-test against zero on the individual test scores, W. We ran Spearman’s correlations 
to evaluate associations between uncertainty and our independent variables (time, temperature, number of �xa-
tions, and reaction time). We examined rho coe�cients across all subjects and tested whether rho coe�cients 
were signi�cantly di�erent from zero via one-sample t-tests. We also investigated the association between reli-
ability and con�dence, but as we had only one value per participant for reliability  (r2) we ran a single correlation 
(with mean con�dence values) and report one rho coe�cient across participants for this independent variable.

As independent and dependent variables were measured over time, within individuals, we next evaluated 
mixed models. We separately modeled con�dence as a function of response time or number of �xations. We 
included reliability and its interaction with our variables of interest (reaction time and number of �xations) as 
we assumed potential impacts of perceptual awareness on metacognition and we included the external factors of 
time (trial number) and temperature as �xed covariates of interest. We initially evaluated linear mixed models 
on raw data followed by models using log and square root transformed uncertainty data (see Supplementary 
Methods: ‘Initial linear mixed models’), but determined that the residuals were not normally distributed and 
that con�dence ratings were zero-in�ated. To account for the high propensity of ‘completely certain’ responses, 
we ran a two-part mixed e�ects  model48 to separate zero (i.e. 100% certainty) and non-zero data. �e two-part 
model provides a critical method for analyzing metacognition for pain and subjective experiences. �e model 
allowed us to jointly test 1) whether behaviors di�er categorically between certain and uncertain trials and 2) 
whether behaviors are linearly associated with changes in uncertainty. We ran our two-part model using the 
GLMMadaptive package (version 0.6.8) in  R49. To ensure su�cient variability to calculate log-odds for the logistic 
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regression, we only included participants who had at least four trials with complete certainty and at least 4 trials 
with some uncertainty (Reaction time: n = 37 with 28 participants excluded due to too few certain trials and 7 
participants excluded due to too few uncertain trials; Number of �xations: n = 35 with 26 participants excluded 
due to too few certain trials and 5 participants excluded due to too few uncertain trials).

Each two-part model treated uncertainty as a dependent variable and included an overall intercept as well as 
random intercepts for each participant. We created separate models for �xation number and reaction time. We 
added �xed and random e�ects, one at a time, to our model and computed likelihood ratio tests to determine 
whether a parameter should be included in the model. We ran likelihood ratio tests for each predictor to identify 
the simplest model with best �t and Bonferroni-corrected alpha levels to 0.025 as we used two separate models to 
�nd an implicit marker for con�dence (see Supplementary Tables S2 and S3 for model comparisons for reaction 
time and number of �xations respectively). �e simplest model for log-normal reaction time provided the best 
model �t via likelihood ratio tests (see ‘Model 1′ in Supplementary Table S2). Our �nal model for log-normal 
reaction time was:

A model including reliability and time provided the best �ts for a model predicting log-normal uncertainty 
via number of �xations (see ‘Model 4′ in Supplementary Table S3). Our �nal model for number of �xations was:

As packages for two-part multilevel models of semi-continuous data are relatively new in R, we veri�ed 
our results by running a simple summaries (two-stage) approach to the multilevel model (see Supplementary 
Methods: ‘Two-stage simple statistics approach to the two-part multilevel model’) and by running separate 
linear and logistic multilevel models with commonly used functions part of the lme4 package (v1.1–23;62) on 
the associated data (see Supplementary Methods: ‘Validating two-part model with separate single-part multilevel 
linear and logistic models).

Note that the logistic regressions used in models 1 and 3 for veri�cation predict the odds of being non-zero 
(uncertain) whereas the logistic part in the two-part model predicts the odds of being zero; thus, the signs of the 
beta coe�cients con�ict across the models even when the implications of the beta coe�cients within the context 
of its model are consistent. Comparisons to the two-part model are reported in Results and full results for each 
of the models can be found in Supplementary Results.

Data availability
Behavioral data from participants who consented to data sharing (n = 46) is available on  OSF33 at: https:// osf. io/ 
s46pr/. Eye data and analysis scripts are available upon request.
Custom code �e GLMMadaptive package used to run the two-part mixed e�ect model for semicontinuous 
data can be found at: https:// cran.r- proje ct. org/ packa ge= GLMMa dapti ve and the custom code to verify model 
assumptions can be found at: https:// drizo poulos. github. io/ GLMMa dapti ve/ artic les/ Goodn ess_ of_ Fit. html. �e 
GazeVisToolbox to import eye data into matlab can be found at: https:// github. com/ djang raw/ GazeV isToo lbox.
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