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Confidence Interval Based Distributionally Robust

Real-Time Economic Dispatch Approach

Considering Wind Power Accommodation Risk
Peng Li, Student Member, IEEE, Ming Yang, Senior Member, IEEE,

Qiuwei Wu, Senior Member, IEEE

Abstract—This paper proposes a confidence interval based
distributionally robust real-time economic dispatch (CI-DRED)
approach, which considers the risk related to accommodating
wind power. In this paper, only the wind power curtailment and
load shedding due to wind power disturbances are evaluated in
the operational risk. The proposed approach can strike a balance
between the operational costs and risk even when the wind power
probability distribution cannot be precisely estimated. A novel
ambiguity set is developed based on the imprecise probability
theory, which can be constructed based on the point-wise or
family-wise confidence intervals. The worst pair of distributions
in the established ambiguity set is then identified, and the original
CI-DRED problem is transformed into a determined nonlinear
dispatch problem accordingly. By using the sequential convex
optimization method and piecewise linear approximation method,
the nonlinear dispatch model is reformulated as a mixed integer
linear programming problem, for which off-the-shelf solvers are
available. A fast inactive constraint filtration method is also
applied to further relieve the computational burden. Numerical
results on the IEEE 118-bus system and a real 445-bus system
verify the effectiveness and efficiency of the proposed approach.

Index Terms—Ambiguity set, confidence interval, distribution-
ally robust, economic dispatch, imprecise probability theory,
operational risk.

NOMENCLATURE

A. Sets and Indices:

i ∈ G AGC units.

m ∈ M Wind farms.

l ∈ L Transmission lines.

t ∈ T Time periods.

j ∈ J Conventional Loads.

B. Decision Variables:
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Digtial Object Identifier

pi,t/αi,t Base point/participation factor of generators.

∆pupi,t/∆pdni,t Upward reserve capacity/downward reserve

capacity for generators.

wu
m,t/w

l
m,t Upper/lower output bound of wind farms.

∆pupm,t/∆pdnm,t Maximum allowed upward/downward dis-

turbance of wind farms m in period t, sat-

isfying ∆pdnm,t = pm,t − wl
m,t, ∆pupm,t =

wu
m,t − pm,t.

wu
m,t,s

′ /wl
m,t,s

′ Value of wu
m,t/w

l
m,t in segment (s

′

, s′ +1).

Uu
m,t,s

′ /U l
m,t,s

′ Binary variable indicating whether the actual

wind power is located at segment (s
′

, s′+1).
λup
ml,t/λ

dn
ml,t Auxiliary decision variables for transmission

capacity constraints.

C. Parameters:

ci Price of generators to provide energy.

ĉi/či Price of generators for providing upward/

downward flexible capacity.

θl/θu Prices for the load shedding/the wind power

curtailment.

φPS
m,t/φ

WP
m,t Operational risk related to the load shedding/

the wind power curtailment.

wmax
m Installed capacity of wind farms.

pm,t Expected output of wind farms.

dj,t Load demand of load node j.

Dt Amount of the load demand, which is pre-

specified.

Mil/Mml/Mjl Generation shift distribution factors of gen-

erators/wind farms/loads.

G/M/T/L Number of AGC units/wind farms/time pe-

riods/ transmission lines.

pmax
i /pmin

i Maximal/minimal output of generators.

Rup
i /Rdn

i Ramp-up/ramp-down limitation for genera-

tors.

Tl Transmission capacity of lines.

ou
m,t,s

′ /ol
m,t,s

′ Break points of the upward/downward wind

power disturbance region.

x Output of wind farms.

P (x)/P (x) Confidence bands of the cumulative distribu-

tion function of random variable x.

Fx(X) Probability of the random event x ≤ X .

D. Random Variables:

p̃m,t Random outputs of wind farms.

∆p̃i,t Random reserve of AGC generators.

∆p̃m,t Random disturbances of wind farms.
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I. INTRODUCTION

ECONOMIC dispatch (ED) is fundamental in power sys-

tem operation, which aims to allocate the forecasted load

among committed generators at minimum total cost, while

satisfying all concerned operational constraints [1]–[3]. Over

the past decades, as a solution of the global crisis in energy

resources and environment, large-scale renewable energy has

been widely integrated into power systems, which significantly

intensifies the uncertainty in power system operation, and thus

poses huge challenges on conventional ED methods.

To meet these challenges, great efforts have been devoted to

improving the current ED practice so that more renewable en-

ergy can be accommodated at a reasonable cost. For example, a

stochastic ED model for real-time power system operation was

formulated in [4], where the concept of uncertainty responses

is introduced to assess the power system operational risk

with respect to net load uncertainties. Ref. [5] investigated a

multi-objective stochastic ED model considering wind power

integration, which is transformed into an equivalent determin-

istic optimization problem based on the scenario method. A

stochastic programming (SP) framework for multiple timescale

ED that can enhance the renewable energy integration was

presented in [6]. The framework allows slow-response and

fast-response energy resources to be controlled at different

timescales. However, the effectiveness of the SP-based meth-

ods depends on the quality of the probability distribution

function (PDF), which cannot be guaranteed in practice.

Another tool for optimization in the presence of uncertain-

ties is robust optimization (RO), which is more efficient than

SP in general [7]. RO minimizes the worst-case cost over

all possible realizations within a deterministic uncertainty set,

ignoring the probability information [8]. Many RO-based ED

methods have been investigated in the literature, in which

the adopted uncertainty sets are usually predetermined [9]–

[11], and thus over-conservative decisions may be obtained.

To overcome this shortcoming, several studies utilize dynamic

confidence levels to develop an adjustable uncertainty set [12].

Furthermore, [13] incorporated the probability distribution

function (PDF) of wind power into robust ED problems.

However, like the SP-based methods, the RO-based methods

that consider the PDFs of wind power also rely on the precisely

known PDFs, which restricts the practicability of the methods.

Recently, distributionally robust optimization (DRO), which

assumes that the true distribution of uncertainties lies in an

ambiguity set, is proposed to address the above issues. One of

the most popular DRO approaches is the moment-based DRO,

where the ambiguity sets are constructed using all probability

distributions with given mean and covariance. In [14], a

moment-based DRO model was presented for the reserve

schedule problem with partial wind power information, i.e., the

PDF of wind power is unknown while its statistical moments

are available. Ref. [15] proposed a moment-based DRO model

for the co-ordinated reserve scheduling problem, considering

the operational risk. In [16], a two-stage moment-based DRO

model for the joint energy and reserve dispatch of power

systems was proposed. Ref. [17] proposed a new moment-

based DRO model for power system ED problems. However,

the PDF or cumulative distribution function (CDF) contains

more information than the moments, and is not fully utilized in

the moment-based DRO, which may lead to over-conservative

decisions [18]. Meanwhile, the moment-based DRO problems

are usually formulated as a semidefinite programming (SDP),

which is very computationally intensive. Besides, the moments

estimated from sample data may also be uncertain. To address

the issues, some distance-based DRO methods are proposed,

which believe that the true distribution is not far away from

the empirical distribution. In the distance-based DRO methods,

the ambiguity set is a family of probability distributions within

a fixed distance from the empirical distributions. The distance

between two distributions can be measured by the KL diver-

gence or the Wasserstein metric, resulting in KL-divergence-

based DRO approaches or Wasserstein-metric-based DRO

approaches. Ref. [18] proposed a distance-based distribution-

ally robust unit commitment model via the KL divergence,

where the ambiguity set is a family of distributions within a

fixed distance from an empirical distribution. However, the

KL-divergence-based DRO cannot be applied to stochastic

optimization models with heavy tail random functions due

to infinite worst-case expectation. Moreover, to estimate KL-

divergence-based ambiguity sets, each training sample must

be assigned positive probability mass. Ref. [19] discussed

a distributionally robust chance constrained approximate AC

optimal power flow (OPF), where the ambiguity set is the

Wasserstein ball centered at the empirical distribution. In

[20], the similar Wasserstein-metric-based ambiguity set was

employed to establish a new DRO model for the risk-based

ED problem. Ref. [21] proposed a risk-based DRO approach

to investigate the OPF with dynamic line rating, considering

a new distributional uncertainty set based on the moment

and the Wasserstein metric. The Wasserstein-metric-based

DRO approaches can overcome the shortcomings of the KL-

divergence-based DRO approaches, but as mentioned in [21],

they are usually difficult to solve and their computational

burden grows heavily with the amount of the data employed

to construct the ambiguity set. Besides, in [18] and [19], the

risk costs of accommodating wind power were ignored and the

admissible region of wind power (ARWP) cannot be obtained

from the optimization results directly. In [20], the ARWP has

to be centered at the expected wind power output, which may

lead to sub-optimal decisions.

The concept of the operational risk resulting from uncer-

tainties is also introduced in power system operation opti-

mization problems. In [22], a risk-based OPF model was

proposed, where a trade-off between the generation costs

and the conditional energy transaction costs is made based

on the conditional value-at-risk method, neglecting the op-

erational risk related to wind power curtailment. Ref. [23]

proposed a risk-based ED model to determine the optimal

spinning reserve capacity based on the conditional value-

at-risk method, where a predetermined confidence level is

required to calculate the conditional value-at-risk. However,

in practice, selecting a suitable confidence level is lack of

systematic methods. In [24], a novel risk-based day-ahead unit

commitment model was presented, where the risks of the loss

of load, wind curtailment and branch overflow caused by wind
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power uncertainty are considered. A robust risk-constrained

unit commitment formulation was also proposed in [25] to

cope with large-scale volatile and uncertain wind generation.

Each of the aforementioned risk-based models has its own

merits. However, on the one hand, they usually rely heavily

on the exact PDF of wind power, which is hard to be estimated

precisely in practice. In other words, the uncertainties of wind

power distributions are ignored in these risk-based models.

And thus, the risk reliability will not be guaranteed. On the

other hand, the ARWP on each node cannot be obtained from

the optimization results directly in the aforementioned risk-

based models.

In this paper, a novel confidence interval (CI) based wind

power ambiguity set is constructed based on the imprecise

probability theory [26], which generalizes the classical prob-

ability theory to allow for partial probability specifications.

Then, a confidence interval based distributionally robust real-

time economic dispatch (CI-DRED) model is proposed to

strike a balance between the operational costs and risk under

the worst pair of distributions in the proposed ambiguity set.

In the proposed model, only the wind power curtailment and

load shedding due to wind power disturbances are evaluated

in the operational risk. According to the proposed model, an

optimal ARWP on each node can be obtained. By using the

sequential convex optimization method and piecewise linear

approximation method, the CI-DRED model is converted into

a mixed integer linear programming (MILP) problem. More-

over, a fast inactive constraint filtration method is also applied

to further relieve the computational burden. The advantages of

the proposed approach are as follows.

i) A CI-DRED model is proposed based on the RO architec-

ture, which can provide explicit operational risk reliability

guarantee to ensure the risk robustness of economical

system operation. And the optimal admissible region of

wind power for each wind farm can also be obtained from

the solution directly, providing important information for

wind farms.

ii) A novel CI-based ambiguity set is proposed, which can be

constructed from available observations directly without

any prior knowledge about the distribution. The more

samples are available, the less conservative solution is

obtained. Compared with the moment-based ambiguity

sets, more information is included in the proposed am-

biguity set, and thus less conservative decisions can be

obtained. Compared with the distance-based ambiguity

sets, the scale of the proposed model remains unchanged

as the available data increases and the proposed ambiguity

set can be applied to any type of distributions.

iii) An efficient algorithm incorporating the risk estimation

method, sequential convex optimization method, and inac-

tive constraint filtration method is proposed to transform

the proposed model into a mixed integer linear program-

ming (MILP), significantly reducing the computational

burden and making the proposed approach suitable for

large-scale power system applications.

The remaining parts of this paper is organized as follows.

In Section II, the wind power ambiguity set is constructed

and the operational risk is introduced. Section III describes

the mathematical formulation of CI-DRED. In Section IV, the

solution methodology is presented. Case studies are reported

in Section V and the conclusions are drawn in Section VI.

II. RISK CONSIDERING DISTRIBUTIONAL UNCERTAINTY

A. Wind Power Ambiguity Set

In many cases, the wind power PDF cannot be estimated

precisely due to insufficient information. To address this

issue, all possible distributions should be considered in the

optimization to make a distributionally robust decision, and

the set that contains all these distributions is referred to as an

ambiguity set [16]. Different from the moment-based ambi-

guity set [14], a novel CI-based ambiguity set is constructed

using the confidence interval-based ambiguity set construction

method (CIAS). CIAS can directly establish the confidence

bands (CBs) for the CDF of wind power. All probability

distributions, whose CDFs are within the CBs, construct the

proposed ambiguity set.

As is well known, the CDF of a real-valued random variable

x can be defined as Fx(X) = P (x ≤ X), indicating the

probability of the random event x ≤ X . Specifically, if

we have a out of b independent and identically distributed

samples less than or equal to A and b → +∞, the probability

Fx(A) will be a/b according to the Law of Large Numbers.

By repeating this process for all points in the support of x,

we can obtain the CDF of x (See Fig. 1(a)). However, in

practice, only finite samples of x are available, e.g., wind

power, which violates the Law of Large Numbers. In this case,

the preciseness of the probability estimated for x ≤ X cannot

be assured and thus the obtained CDF will be unreliable. To

indicate the uncertainty existing in the estimated CDF, the

CBs of the CDF are explicitly estimated with respect to the

available data.

According to the definition of CDF, three key steps are

designed to estimate the CBs of wind power CDF.

1) (Confidence intervals for sample points) Given a sample

set of the random wind power x, for each sample point of

x, say A, the CI of the probability of x ≤ A at a specified

confidence level is estimated, as shown in Fig. 1(a). By

this step, the upper and lower bounds of the random wind

power CDF at each sample point can be obtained, as shown

in Fig. 1(b).

2) (Confidence intervals for points that are not sample

points) Since only finite samples are available in practice,

in Step 1), CIs are just calculated at the sample points.

However, because the wind power CDF is non-decreasing,

the confidence intervals at the points that are not the sample

points can then be safely estimated using the interpolation

methods. For example, we have two adjacent sample points,

i.e., Xk and Xk+1, as shown in Fig. 1(c). For any point

within these two sample points, its cumulative probability

confidence intervals can be safely estimated as [ak, bk+1],
where ak and bk+1 are the lower bound of cumulative

probability confidence interval at sample point Xk and the

upper bound of cumulative probability confidence interval
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Fig. 1. Diagrams of (a) the CI at one sample point over the CDF, (b) constructing the CBs of the CDF, and (c) the stair-step interpolation method.

at sample point Xk+1, respectively. By this step, the con-

fidence intervals of the wind power cumulative probability

at each point that is not sample point can be obtained.

3) (Conference bounds for the whole CDF) By connecting

the lower and upper bounds of the confidence intervals

obtained in Step 1) and Step 2), respectively, the confidence

bands of the wind power whole CDF are constructed, as

shown in Fig. 1(c).

In this paper, the CI at each sample point is estimated based

on the imprecise probability theory, which is a generalization

of the classical probability theory allowing partial probability

specifications. Typically, it quantifies the uncertainty of a

random event by a probability interval (PI) [26]. For instance,

the imprecise probabilities of x ≤ A and its complementary

event x > A can be expressed by P̃A = [PA, PA] and

P̃Ā = [P Ā, P Ā], satisfying PA + P Ā = 1, PA + P Ā = 1,

0 ≤ PA ≤ PA ≤ 1, and 0 ≤ P Ā ≤ P Ā ≤ 1. The width of

the estimated PI is closely related to the historical data. The

more the historical data, the narrower the PI. If sufficient data

are available, the interval may shrink to a single point and a

precise probability will be obtained [27].

In this paper, CIAS applies the method in [28] and [29],

which can estimate the PI according to a specified confidence

level, i.e., γ, to estimate the CIs. Specifically, the γ-CI of

Fx(A) = P (x ≤ A) can be estimated by







ak = 0, bk = G−1( 1+γ
2 ), nk = 0,

ak = H−1( 1−γ
2 ), bk = G−1( 1+γ

2 ), 0<nk<n,

ak = H−1( 1−γ
2 ), bk = 1, nk = n,

(1)

where ak and bk are the lower and upper bounds of the CI,

respectively, H is the CDF of beta distribution B(nk, s+n−
nk), G is the CDF of beta distribution B(s + nk, n − nk),
nk is the number of the samples satisfying x ≤ A, n is the

sample size, and s is the equivalent sample size [29]. By this

means, the CI at each sample point can be obtained.

For the second step, a simple stair-step interpolation is

applied to obtain the CBs of the whole CDF [30], which can

be expressed as (2), as shown in Fig. 1(c).

{

P (x) = ak, x ∈ (Xk, Xk+1],
P (x) = bk+1, x ∈ [Xk, Xk+1).

(2)

Finally, the ambiguity set A can be constructed as

A = {Fx|Fx(X) ∈ [P (X), P (X)]}. (3)

Remark 1: Note that the spatial correlation of probability

distributions of multiple wind power plant random outputs is

not exploited in the ambiguity set. It should be pointed out

that this treatment inevitably brings additional conservatism to

the obtained decisions. However, this treatment also possesses

the following advantages: 1) Tractability: The optimization

models ignoring the spatial correlation of probability distri-

butions of multiple wind power plant random outputs can

usually be transformed into tractable convex problems whereas

those incorporated the spatial correlation usually form non-

convex problems, which cannot be effectively solved by off-

the shelf solvers. 2) Scalability: Based on this treatment, the

dimension of the constructed ambiguity set grows linearly with

the number of wind power plants, which can contribute to

the highly scalable algorithm. Nevertheless, when the spatial

correlation is considered in the ambiguity set, the dimension of

the ambiguity set will increase much faster with the number of

wind power plants compared with this treatment, which will

significantly increase the computational complexity. Specif-

ically, the dimension of the ambiguity set that ignores the

spatial correlation is N ′ × 1 where as the dimension of the

ambiguity set that considers the spatial correlation is N ′×N ′,

where N ′ is the number of wind power plants. Of course, since

the spatial correlation has a significant impact on the overall

wind power uncertainty, a practical and computational efficient

model considering the spatial correlation would be one of our

future research directions.

B. PW Confidence Intervals and FW Confidence Intervals

It should be pointed out that besides the CI obtained using

the approach presented in this paper (hereafter referred to as

PW-CI), there is another kind of CI, named as the FW-CIs,

which can be estimated by the Calibration for Simultaneity-

based method in [30]. In fact, the CIAS method can also be

used to estimate the FW-CIs. It only needs to adjust some

parameters and conditions in the CIAS. Then, the FW-CI can

be obtained by estimating the particular PW-CI.

Compared with the FW-CI obtained using the method

mentioned in [30], the PW-CI obtained using the approach

presented in this paper has the following three significant

differences:

• In the method in [30], only a uniform distribution is used

as the prior distribution. In contrast, to avoid the prejudice

of the prior distribution, the approach presented in this
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paper uses a set of prior distributions instead of a single

prior distribution, which will result in more robust bound

estimations for PW-CIs.

• To estimate PW-CIs, the parameter s is used to tune

the influence of the prior distribution on the posterior

distribution. The larger the value of s, the more significant

the influence. In contrast, to estimate FW-CIs, a fixed

parameter, i.e., s = 1, is adopted, which is a particular

case of PW-CIs.

• To estimate FW-CIs, the employed samples of random

variables have to be different from each other, which

may not take full advantage of all available samples in

practice. In contrast, to estimate PW-CIs, all available

samples can be made full use of, regardless of whether

there are identical samples in the available sample set.

Therefore, PW-CIs are more general compared with FW-

CIs obtained using the method mentioned in [30] and thus the

PW-CIs are recommended for constructing the ambiguity set

in this paper.

C. Wind Power Accommodation Risk

The wind power disturbances within the ARWP can be ac-

commodated by the system safely. Otherwise, undesired power

imbalance that cannot be fully handled by the committed units

themselves may occur [13]. In such a situation, additional

emergency regulations, i.e, load shedding or wind generation

curtailment in this paper, may have to be used to recover the

operational security [25]. Therefore, in this paper, considering

the distributionally uncertainty, the worst expected cost for

such emergency regulations is referred to as operational risk

that can be taken as the economic loss in operation. Fig. 2

provides a diagram of operational risk under the CDF of wind

power. In the figure, Fa(x) and Fb(x) are the CBs of the wind

power CDF; wl and wu mean the lower and upper bounds

of the admissible region. For the given node, if actual wind

power x is within the admissible region [wl,wu], the wind

power can be accommodated by the system safely. In this

case, no additional emergency regulations are required and

thus no economic loss is caused by wind power disturbances.

If the actual wind power is greater than the upper bound of

the admissible region, i.e., x>wu, the wind power has to be

curtailed to ensure system operational security. Similarly, if

the actual wind power is less than the lower bound of the

admissible region, i.e., x<wl, a load shedding will be required.

Thus, the total operational risk of the node is the economic

loss due to wind power curtailment and load shedding. And

the system operational risk can be obtained by summing all

the nodal operational risk.

Accordingly, the operational risk of wind power curtailment

and load shedding at a given node can be computed by

max
Pm∈Am

φPS
m,t = max

Pm∈Am

EPm
[
(

wl
m,t − x

)

|0 ≤ wl
m,t − x ≤ wl

m,t]

= max
Pm∈Am

∫ wl
m,t

0

(wl
m,t − x)Pm(x)dx, (4)

max
Pm∈Am

φWP
m,t = max

Pm∈Am

EPm
[
(

x− wu
m,t

)

|wu
m,t ≤ x ≤ wmax]

= max
Pm∈Am

∫ wmax

wu
m,t

(x− wu
m,t)Pm(x)dx, (5)

where Pm(x) is the PDF of wind power x, which is one of

the probability distributions in the ambiguity set Am; Eq. (4)

and Eq. (5) indicate the expected loss for loading shedding

and wind power curtailment under the worst distribution in

the ambiguity set Am, respectively.

Moreover, according to the partial integration method, φPS
m,t

can be reformulated as

φPS
m,t =

{

(wl
m,t − x)Fm(x)

∣

∣

∣

wl
m,t

0
+

∫ wl
m,t

0

Fm(x)dx
}

=

∫ wl
m,t

0

Fm(x)dx, (6)

where Fm(x) is the CDF of x. Similarly, φWP
m,t can be

reformulated as

φWP
m,t = wmax − wu

m,t −

∫ wmax

wu
m,t

Fm(x)dx, (7)

Then, for a given power system node, its operational risk

can be estimated by Eq. (4)-Eq. (7).

III. OPTIMIZATION MODEL

CI-DRED aims to minimize the total cost, including the

operational costs and risk costs. Without loss of generality,

it is assumed that only AGC units are schedulable in ED to

simplify the symbolic representation. Thus, CI-DRED can be

modeled as follows.

z = min
∑

t∈T

(

∑

i∈G

(cipi,t + ĉi∆pupi,t + či∆pdni,t )

+
∑

m∈M

max
Pm∈Am

(θuφWP
m,t + θlφPS

m,t)

)

, (8)

s.t. (4)− (7),

∑

i∈G

pi,t +
∑

m∈M

pm,t =
∑

j∈J

dj,t = Dt, ∀t, (9)

∑

t∈T

∑

m∈M

max
Pm∈Am

(θuφWP
m,t + θlφPS

m,t) ≤ Risklim, (10)

∆pupi,t ≥ αi,t

∑

m∈M

∆pdnm,t, ∀i, ∀t, (11)

∆pdni,t ≥ αi,t

∑

m∈M

∆pupm,t, ∀i, ∀t, (12)

∑

i∈G

αi,t = 1, ∀t, (13)

pi,t+1−pi,t+∆pdni,t+∆pupi,t+1≤Rup
i ,∀i, ∀t, (14)

pi,t−pi,t+1+∆pupi,t+∆pdni,t+1≤Rdn
i ,∀i, ∀t, (15)
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pmin
i +∆pdni,t ≤ pi,t ≤ pmax

i −∆pupi,t , ∀i, ∀t, (16)

∑

m∈M

Mml(pm,t +∆p̃m,t) +
∑

i∈G

Mil(pi,t +∆p̃i,t)

+
∑

j∈J

Mjldj,t ≥ −T l, ∀l, ∀t,
(17)

∑

m∈M

Mml(pm,t +∆p̃m,t) +
∑

i∈G

Mil(pi,t +∆p̃i,t)

+
∑

j∈J

Mjldj,t ≤ Tl, ∀l, ∀t,
(18)

In this problem, the objective function (8) is employed to

strike a balance between the operational costs and risk, where

the first three terms denote the operational costs, including

the generation costs and reserve capacity supply costs, and

the last two terms represent the operational risk costs. Eq. (9)

describes the power balance requirement in the base case. Eq.

(10) denotes the operational risk cost limitation requirement.

Eqs. (11)-(12) are the reserve capacity requirements for each

AGC unit, where ∆pdnm,t and ∆pdnm,t are the maximum allowed

downward and upward disturbances of wind power, satisfying

∆pdnm,t = pm,t−wl
m,t, ∆pupm,t = wu

m,t−pm,t. Eq. (13) indicates

the sum of all PFs should be equal to 1. Eqs. (14)-(15) are

the ramping rate limits of the AGC units, ensuring adequate

response capabilities are available even in the worst case.

Eq. (16) indicates the generation capacity constraints of the

AGC units. Eqs. (17)-(18) are the transmission line power flow

limits [11], which are constructed using the shift distribution

factors. Random variable ∆p̃i,t is the reserve capacity released

by AGC unit i. Random variable ∆w̃m,t is the disturbance

of wind farm m. The total disturbances of wind farms is

allocated to the AGC units according to the affine function:

∆p̃i,t = αi,t

∑M
m=1 ∆p̃m,t.

The objective function (8) and constraints (4)-(7), (9)-(18)

form a nonlinear DRO problem with uncertain variables, where

pi,t, αi,t, w
l
m,t and wu

m,t are decision variables. The solution

methodology will be explained in the next section.

IV. SOLUTION METHODOLOGY

Here, we propose an efficient algorithm incorporating the

risk estimation method, Soyster’s method, sequential convex

optimization method, and inactive constraint filtration method.

In the risk estimation method, two steps, i.e., deterministic

reformulation of risk estimation and linearization of the opera-

tion risk, are included. Soysters method is used to equivalently

reformulate uncertain constraints as deterministic constraints.

The bilinear constraints in the proposed model are handled by

the sequential convex optimization method. And the inactive

constraint filtration method is employed to improve the com-

puting efficiency by ruling out the inactive constraints. Fig. 3

provide the flowchart of the proposed approach.

A. Deterministic Reformulation of Risk Estimation

By interchanging the maximum and summation, Eq. (19)

provides an upper bound on the operational risk estimation.
∑

t∈T

∑

m∈M

( max
Pm1

∈A
θuφWP

m,t + max
Pm2

∈A
θlφPS

m,t) (19)

x
l
w

u
w

a
F x

b
F x

a

b

c

d

Fig. 2. Diagram of operational risk, copied from [31].

Fig. 3. Flowchart of the proposed approach.

As shown in Fig. 2, the value of φPS
m,t =

∫ wl
m,t

0
Fm(x)dx

equals to the area between Fm(x) and the horizontal axis

over [0, wl
m,t]. Obviously, for any Fm(x) ∈ Am, when

Fm(x) = Fm,b(x), the area reaches the maximum value. In

other words, for φPS
m,t, the worst-case CDF in the ambiguity

set (3) is Fm,b(x). Therefore, the second term in (19) can be

simplified to

∑

t∈T

∑

m∈M

max
Pm∈Am

φPS
m,t =

∑

t∈T

∑

m∈M

∫ wl
m,t

0

Fm,b(x)dx. (20)

Similarly, for φWP
m,t , the worst-case CDF in the ambiguity

set (3) is Fm,a(x). Thus, the first term in (19) can be simplified

to the following equation (21).

∑

t∈T

∑

m∈M

max
Pm∈Am

φWP
m,t =

∑

t∈T

∑

m∈M

(

wmax − wu
m,t−

∫ wmax

wu
m,t

Fm,a(x)dx
)

.

(21)

As a result, the operational risk due to wind power accom-

modation can be directly estimated by (20)-(21).

Note that the above estimation method for the operational

risk is conservative, because the worst pair of CDFs, i.e., Fm,a

and Fm,b, instead of the worst single CDF is employed. How-

ever, as shown in Fig. 2, when Fm,a(w
u
m,t) > Fm,b(w

l
m,t), the

operational risk estimated using the worst pair of CDFs is ex-

actly equal to that estimated using the worst single CDF, since

in this regard the worst single CDF can always be constructed

by connecting the points Fm,b(w
l
m,t) and Fm,a(w

u
m,t) with a

non-decreasing curve, such as the CDF a-b-c-d in the figure.

Moreover, as will be illustrated in Section V, the more the

available data, the narrower the CDF CBs, and thus the larger

the probability of Fm,a(w
u
m,t) > Fm,b(w

l
m,t). Therefore, the



IEEE TRANSACTIONS ON SUSTAINABLE ENERGY 7

above operational risk estimation method is suitable for wind

power because wind power usually has a considerable amount

of sample data in practice.

B. Linearization of the Operational Risk

Note that (20)-(21) are difficult to calculate due to their

nonlinearity. Thus they are approximately linearized by using

the piecewise linear approximation (PLA) method [32]. We

take Eq. (20) for example to show how the risk components

are linearized and how the piecewise linear approximation

coefficients are obtained. The linearization procedure of Eq.

(20) can be found as follows.

Step 1: The support of the random wind power x is divided

equally to obtain break points om,t,s′ , s
′ = 1, 2, ..., Sl. And

then wl
m,t can be reformulated as:



























wl
m,t =

Sl−1
∑

s′=1

wl
m,t,s′ ,

Sl−1
∑

s′=1

U l
m,t,s′ = 1,

olm,t,s′U
l
m,t,s′ ≤ wl

m,t,s′ ≤ olm,t,s′+1U
l
m,t,s′ ,

(22)

where Sl is the number of break points; U l
m,t,s′ is 0-1 variable

indicating whether wl
m,t is located at segment (s′, s′ + 1);

wl
m,t,s′ is the value of wl

m,t in the segment (s′, s′ + 1).

Step 2: Let Fm,b(om,t,s′) be the cumulative probability

corresponding to the break point om,t,s′ . Then, we can obtain

the corresponding operational risk components related to the

load shedding max
Pm∈Am

φPS
m,t when wl

m,t = om,t,s′ , as follows.

max
Pm∈Am

φPS
m,t =

∫ om,t,s′

0
Fm,b(x)dx. (23)

Step 3: The risk components related to the load shedding

max
Pm∈Am

φPS
m,t can be linearized as:

max
Pm∈Am

φPS
m,t =

Sl−1
∑

s′=1

(alm,t,s′w
l
m,t,s′ + blm,t,s′U

l
m,t,s′) (24)

where

alm,t,s′ =
Fb(om,t,s′+1)−Fb(om,t,s′ )

om,t,s′+1−om,t,s′

blm,t,s′ = −
Fb(om,t,s′+1)−Fb(om,t,s′ )

om,t,s′+1−om,t,s′
om,t,s′

+
∫ om,t,s′

o
Fm,b(x)dx

(25)

where (24) and (25) are the PLA of max
Pm∈Am

φPS
m,t,; a

l
m,t,s′ and

blm,t,s′ are the piecewise linear approximation coefficients.

As a result, Eq. (20) can be linearized as Eqs. (22), (24),

(25). Similarly, Eq. (21) can also be linearized using the same

aforementioned procedure.

It should be noted that (22)-(25) reveal that to compute the

operational risk using the PLA method, only the cumulative

probabilities at the selected break points are required.

C. Deterministic Reformulation of Transmission Constraints

To eliminate the uncertain variables that exist only in the

constraints of (17)-(18), Soyster’s method is employed to

equivalently reformulate (17)-(18) as deterministic constraints

(26)-(27). More details can be found in [11].



























∑

m∈M

[(Mml +
∑

i∈G

Milαi,t)(∆pupm,t) + λdn
ml,t]

≥ −T l −
∑

i∈G

Milpi,t −
∑

m∈M

Mmlpm,t −
∑

j∈J

Mjldj,t

λdn
ml,t≤−(Mml+

∑

i∈G

Milαi,t)(∆pupm,t+∆pdnm,t)

λdn
ml,t≤ 0, ∀m, ∀l, ∀t

(26)



























∑

m∈M

[(Mml +
∑

i∈G

Milαi,t)(−∆pdnm,t) + λup
ml,t]

≤ Tl −
∑

i∈G

Milpi,t −
∑

m∈M

Mmlpm,t −
∑

j∈J

Mjldj,t

λup
ml,t ≥(Mml+

∑

i∈G

Milαi,t)(∆pupm,t+∆pdnm,t)

λup
ml,t ≥ 0, ∀m, ∀l, ∀t

(27)

D. The Sequential Convex Optimization Method for Bilinear

Constraints

The resulting model forms a bilinear programming problem.

To solve the problem, the sequential convex optimization

method in [33] is applied to accommodate bilinear terms

αi,t∆pdnm,t and αi,t∆pupm,t in constraints (11)-(12) and (26)-

(27). In the method, two variables in bilinear terms are opti-

mized in alternation, and then the original bilinear problem is

solved by solving a sequence of linear problems. The specific

procedures are as follows:

• Step 1: Let the iteration counter N = 1. Set the value of

αN
i,t according to the AGC unit capacity.

• Step 2: Substitute αi,t = αN
i,t into the original bilin-

ear problem. Solve the resulting linear problem, where

∆pdnm,t/∆pupm,t is the decision variable. And thus the

optimal solution ∆pdn,Nm,t /∆pup,Nm,t is obtained.

• Step 3: Substitute ∆pdnm,t/∆pupm,t = ∆pdn,Nm,t /∆pup,Nm,t

into the original bilinear problem. Solve the resulting

linear problem, where αi,t is the decision variable. And

thus the updated optimal solution αN+1
i,t is obtained.

• Step 4: If |αN+1
i,t −αN

i,t|/|α
N
i,t| ≤ β, where β is a prede-

fined tolerance, then the final optimal solution is obtained,

and the algorithm ends. Otherwise, let N = N + 1, and

return to Step 2.

E. Fast Identification for Inactive Transmission Constraints

For large-scale power systems, there are too many complex

transmission constraints that increase much computing burden.

Fortunately, in practice, most of them are inactive. Therefore,

the fast inactive constraint filtration method [34] is applied to

reduce the model scale by ruling out the inactive transmission

constraints. However, the method in [34] is originally used for

the deterministic UC problem while the problem in this paper

considers wind power uncertainty. To adapt the method to the

problem in this paper, it is extended as follows.

Consider the following problems (ICF):
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Tmax
l,t (or Tmin

l,t )=max(or min)
∑

m∈M

Mmlp̃m,t +
∑

i∈N

Milpi,t+

∑

m∈M

∑

i∈N

Milαi,t∆p̃m,t +
∑

j∈J

Mjldj,t, (28)

s.t.
∑

i∈N

(pi,t+∆p̃i,t)+
∑

m∈M

p̃m,t = Dt, ∀t, (29)

0 ≤ pi,t +∆p̃i,t ≤ pmax
i , ∀i, ∀t. (30)

It can be observed that the feasible sets of ICF are re-

laxations of the feasible set of the CI-DRED model. Thus,

the optimal value of objective function (28) of the above

minimization (maximization) optimization problem is a lower

(upper) bound of the possible transmission line flow.

Moreover, according to the analysis in [34], the solution of

ICF can be directly obtained without solving the optimization

problem. Let i1, ..., ie, ..., iG be a permutation of 1, ..., e, ..., G
such that Mi1l ≥ ... ≥ Miel ≥ ... ≥ MiGl, and let an integer

number k (1 ≤ k ≤ G) exist such that
∑k−1

e=1 p
max
ie

≤Dt −
∑M

m=1 p̃m,t≤
∑k

e=1 p
max
ie

. Then

Tmax
l,t (or Tmin

l,t ) =
k−1
∑

e=1
(Miel −Mikl)p

max
ie

+

G
∑

e=1
(Mikl −Miel)p̃m,t +

∑

j∈J

Mjldj,t.
(31)

As shown in Eq. (31), the values of Tmax
l,t and Tmin

l,t depend

on the realization of random variables p̃m,t. Therefore, we can

establish the following rules to quickly identify most of the

inactive constraints in (26)-(27).

For any l ∈ L and t ∈ T ,

• If max
0≤p̃m,t≤wmax

Tmax
l,t ≤ Tl, constraint (27) is inactive;

• If min
0≤p̃m,t≤wmax

Tmin
l,t ≥ −Tl, constraint (26) is inactive.

Note that the above rules are necessary conditions of inac-

tive transmission constraints. In other words, not all inactive

constraints can be identified based on the above rules while all

identified inactive constraints are inactive for any realization

of random variables p̃m,t. By using this extended inactive

constraint filtration method, the computation speed can be

significantly improved.

V. CASE STUDIES

Case studies on the modified IEEE 118-bus system and a

real 445-bus system were conducted to illustrate the effective-

ness of the proposed approach. All studies are implemented

using GAMS 23.8.2 on a PC with an Intel Core i5-3470 3.2

GHz CPU and 8 GB RAM. The MILP solver is CPLEX 12.6.

Unless otherwise specified, the confidence level γ is set to

0.95, the installed capacity of every wind farm is set to 50 MW,

and prices for the wind power curtailment and load shedding

are set to $300/(MW·h) and $3000/(MW·h) [35], respectively.

In practice, the prices for wind power curtailment and loading

shedding can be chosen according to historical data or long-

term electricity contract. After solving each approach, monte

TABLE I
TEST RESULTS UNDER DIFFERENT CIS

Sample Size Size of ARWPs (MW) Total cost ($) Risk cost ($)

PW-CI

1000 1557.1 758908 7702

5000 1498.3 757589 8070

104 1451.6 757178 8526

105 1419.4 756577 8880

FW-CI

1000 1635.2 760263 6795

5000 1548.3 758350 7698

104 1516.5 757841 7921

105 1440.2 756894 8662

carlo simulation with another 106 samples generated from the

true probability distribution is employed to test the practical

performance of each approach. The optimization results of

each approach shown in Case Studies are the average of the

practical performance of each approach.

A. Modified IEEE 118-Bus System

The 118-bus system has 54 units and 186 lines. The

generator capacity ranges from 20 MW to 650 MW, and 10

generators of 100 MW are selected as the AGC units. The

system data can be found in [11], where the ramp rate of

all AGC units is modified to 8 MW/h. Three wind farms are

located at buses 17, 66, and 99, respectively. The forecasted

wind power and total load in the test system are scaled down

from the actual data of Eirgrid [36]. All uncertainties are

assumed to originate from the wind power. Normal distribution

is taken as the underlying true distribution of wind power and

is employed to generate the realistic wind power forecasting

error data. The standard deviation of wind power is set as 20%
of the real value [37].

B. Comparing PW-CIs and FW-CIs

As mentioned in Section II.B, there are two kinds of CIs:

1) the PW-CIs, and 2) the FW-CIs. To compare the two kinds

of CIs, simulations involving the different CIs are conducted

on the 118-bus system. The test results can be found in Table

I and Fig. 4.

From Table I, it is observed that as the sample size grows,

the optimization results obtained using the PW-CIs and FW-

CIs both become better and gradually approach to the opti-

mization result obtained by the RED-PT. This occurs because

the ambiguity sets constructed using the PW-CIs and FW-CIs

shrink and the worst pairs of distributions in their established

ambiguity sets both converge to the true distribution when

more historical data are incorporated (See Fig. 4). On the

other hand, Fig. 4 shows that, under the same sample size,

the obtained FW-CIs are usually wider than the obtained PW-

CIs. This illustrates the analysis in Section II.B that the FW-

CIs usually lead to a more than required confidence level and

cause a more conservative result.

C. Comparison with the Model Knowing the True Distribution

To illustrate the effects of considering the uncertainties of

wind power distributions in the optimization, the proposed
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Fig. 4. Confidence bands under different sample sizes.

model is compared with the model assuming the true wind

power distribution is exactly known. The test results are listed

in Table II, where RED-PT represents the latter model and

CI-DRED(n) denotes the proposed model with n samples.

From Table II, it is observed that as the sample size grows,

the gap between the performances of CI-DRED and RED-PT

decreases gradually. And it can be expected that if sufficient

historical data are available, the gap may disappear and the

optimization results will be almost the optimization results

obtained under the true distribution. This indicates that the

more the data, the less conservative the result obtained in CI-

DRED. In other words, in CI-DRED, the conservativeness can

TABLE II
TEST RESULTS UNDER DIFFERENT APPROACHES

Size of ARWPs (MW) Total cost ($) Risk cost ($)

CI-DRED (500) 1616.9 759563 7101

CI-DRED (1000) 1557.1 758908 7702

CI-DRED (5000) 1498.3 757589 8070

CI-DRED (104) 1451.6 757178 8526

CI-DRED (105) 1419.4 756577 8880

RED-PT 1386.7 756377 9249

be reduced by incorporating more historical data.

On the other hand, the uncertainties of wind power distribu-

tions are considered in CI-DRED, and then the corresponding

optimization result is obtained under the worst pair of distribu-

tions in the established ambiguity set. In contrast, the RED-PT

knows the true distribution of wind power that is usually better

than the worst pair of distributions in the ambiguity set. As

a result, compared with the RED-PT, the CI-DRED obtains

costly dispatch results regardless of the sample size. But note

that as mentioned in Section II.A, the true distribution is hardly

estimated precisely in practice.

In fact, the CBs for the wind power CDF represent the

reliable information that can be extracted from the sample set.

Fig. 4 shows the CBs for the wind power CDF under different

historical sample data size. From Fig. 4, it can be observed

that when few historical data are available, to ensure the

required confidence level, the width of the CDF CBs should be

relatively larger, i.e., the worst pair of distributions is much

worse than the true distribution. In this case, more reserve

should be required to ensure the robustness of the dispatch

results, leading to a much higher total cost. On the contrary,

when sufficient historical data are available, the CDF CBs will

shrink to the true CDF and thus the worst pair of distributions

in the ambiguity set will converge to the true distribution,

as shown in Fig. 4. In this case, the best balance between

the operational costs and risk can be obtained with precisely

estimated wind power distribution.

It can also be observed that the risk cost increases with the

sample number and the RED-PT has the highest risk cost. The

opposite results can be found for the size of ARWPs. This is

because the proposed approach aims to minimum the sum of

the operational cost and the worst-case risk cost. Obviously,

if the proposed approach and RED-PT have the same ARWP,

their operational costs are the same while the worst-case risk

cost of the proposed approach is larger than that of RED-PT.

This is because the worst-case distribution instead of the true

distribution is utilized in the proposed approach. Under the

circumstances, to make a trade-off between the operational

cost and the worst-case risk cost, the proposed approach

has to enlarge the ARWP so that the operational cost will

increase and the worst-case operational risk cost will decrease

accordingly. In this case, the practical operational risk cost

of the proposed approach will decrease and thus the practical

operational risk cost of the proposed approach is less than that

of RED-PT. Therefore, the RED-PT has the highest risk cost

and the smallest ARWP. On the other hand, as the number

of the samples is increasing, the worst-case distribution will
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Fig. 5. Sensitivity Analysis of the Risk Cost Coefficients.

Fig. 6. Total cost under different approaches.

converge to the true distribution, as shown in Fig. 4. In other

words, with the same ARWP, as the number of the samples is

increasing, the worst-case operational risk cost will increase

gradually. Therefore, larger ARWP will be obtained using the

proposed approach with fewer samples so that the balance

between the operational cost and the worst-case operational

risk cost can be obtained. In the case, less practical operational

risk cost and larger ARWP will be obtained using the proposed

approach with fewer samples. Therefore, the practical risk cost

increases with the sample number and the size of the ARWP

decreases with the sample number.

D. Sensitivity Analysis of the Risk Cost Coefficients

Fig. 5 shows the total cost and the size of ARWPs under

different risk cost coefficients, where 10E3, 5*10E3, 10E4,

and 10E5 denote the proposed approach with 10E3, 5*10E3,

10E4, and 10E5 samples, respectively; “Real” denotes the

proposed approach with the true distribution; K denotes the

proportion of the tested risk cost coefficients and the originally

set risk cost coefficients. It can be observed that as the

size of the employed samples is increasing, the total cost

will gradually decrease and the size of ARWPs will become

smaller, regardless of the choice of the risk cost coefficients. In

other words, although the choice of the risk cost coefficients

affects the optimization solutions of the proposed approach,

the choice of the risk cost coefficients will not change the

conclusion, indicating the robustness of the conclusion of the

risk cost coefficients.

TABLE III
RISK RELIABILITY UNDER DIFFERENT APPROACHES

Approach 10E3 10E4 10E5 M-DRO Risk SP

R-DRTD 97.7% 97.1% 96.2% 98.6% 89.6% 85.4%

E. Comparison with the Conventional Approaches

To illustrate the advantages of the proposed ambiguity

set, the proposed approach is compared with SP, moment-

based DRO, and the conventional risk-based approach. The

conventional risk-based approach is chosen from [24], where

the probability distribution is obtained using the maximum

likelihood estimation. SP and the conventional risk-based ap-

proach assume the wind power follow the normal distribution.

It should be point out that in this test, a real wind power

sample data is employed, which is scaled down from the

actual data of Eirgrid [36]. Fig. 6 shows the total cost of

different approaches. The violation probability of the risk

limit constraint for different approaches are further compared

in Table III, where the required risk reliability level is set

as 95%. In Fig. 6 and Table III, 10E3, 10E4, and 10E5

denote the proposed approach with 10E3, 10E4, and 10E5

samples, respectively; “Risk” denotes the conventional risk-

based approach; M-DRO denotes the moment-based DRO.

From Fig. 6, it can be observed that the total cost of the

moment-based DRO is the highest whereas SP can obtain

the lowest total cost. The proposed approach with different

size of samples and the conventional risk-based approach are

intermediates between the moment-based DRO and SP. From

Table III, it can be observed that in SP and the conventional

risk-based approach, the required risk reliability level cannot

be guaranteed because the assumed probability distribution

is not the true one. In contrast, the proposed approach can

provide the risk reliability guarantee, regardless of the size of

the employed samples, indicating the high risk reliability of

the proposed ambiguity set.

F. Calculation Performance

To investigate the calculation performance of the proposed

algorithm, the following two algorithms are compared.

BM-D: The algorithm in [13], which is based on the big-M

method and the decomposition method. The big-M method is

applied to handle bilinear constraints and the decomposition

method is applied to release the computing burden resulting

from transmission constraints.

SC-F: The algorithm presented in Section IV.

The calculation performance is demonstrated on the 118-

bus system and the equivalent 445-bus system of Shandong

Province, China. The 445-bus system has 48 units, 693 trans-

mission lines and 5 integrated wind farms, and 15 units whose

capacity ranges from 100 MW to 250 MW are selected as the

AGC units. The test results are listed in Table IV.

Clearly, for both algorithms, the computational time changes

little as the sample size grows, indicating that the computa-

tional efficiencies of both BM-D and SC-F are unrelated to

the size of the employed historical data. Meanwhile, com-

pared with the BM-D, the SC-F enhances the computational
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TABLE IV
CALCULATION PERFORMANCE OF DIFFERENT APPROACHES

Approach
118-bus system 445-bus system

CPU time (s) Total cost ($) CPU time (s) Total cost ($)

BM-D(1000) 12.364 758826 28.718 3066759

BM-D(5000) 13.152 757561 29.943 3063078

BM-D(104) 12.873 757162 28.429 3061948

BM-D(105) 12.581 756589 29.162 3060326

SC-F(1000) 7.875 758908 16.628 3066796

SC-F(5000) 8.498 757589 17.471 3063097

SC-F(104) 8.232 757178 17.611 3061887

SC-F(105) 7.930 756577 17.167 3060358

efficiency by 35.9% on average in the 118-bus system and

42.3% on average in the 445-bus system while maintaining the

similar computational precision as BM-D, which illustrates the

effectiveness of SC-F. In fact, the BM-D is slow because of the

following reasons: 1) as mentioned in [13], the applied big-M

method may face the scalability issue, especially for large-

scale power systems because many auxiliary constraints and

integer variables are introduced; 2) all transmission constraints

will be checked in each iteration of the decomposition method,

which will increase the computing burden. When the SC-

F is employed, by identifying and eliminating most inactive

transmission constraints (approximately 90% of the transmis-

sion constraints on both systems are identified as inactive

and thus eliminated), the numbers of complex transmission

constraints in the optimization is significantly reduced, and no

integer auxiliary variables are introduced when applying the

sequential convex optimization method rather than the big-M

method. Thus, the computational efficiency of the SC-F can be

increased significantly compared with the BM-D. In addition,

the fast inactive constraint filtration method applied in the

SC-F only eliminates the inactive transmission constraints

that have no effect on the optimization result. Therefore, the

computational precision can be maintained.

VI. CONCLUSIONS

In this paper, the DRO is integrated into real-time ED

that considers the operational risk of accommodating wind

power. Based on the imprecise probability theory, a CI-based

wind power ambiguity set is directly constructed with wind

power historical sample data. To achieve the operational risk

reliability, the worst pair of CDFs in the proposed ambiguity

set that can be identified directly is considered for the wind

power accommodation risk assessment. As such, the CI-DRED

model is formulated to strike a balance between the operational

costs and risk regarding the uncertainties of wind power distri-

butions. An efficient algorithm based on the sequential convex

optimization method, and the fast inactive constraint filtration

method is presented to improve the computational efficiency.

Numerical results on the 118-bus and 445-bus systems reveal

that the proposed ambiguity set shrinks to the true distribution

as the amount of historical data increases. Therefore, the con-

servativeness of the solution can be reduced by incorporating

more data. Compared with the regular RO and the moment-

based DRO, the proposed approach can significantly reduces

the conservativeness to obtain less conservative solutions. The

proposed approach also outperformances SP and the conven-

tional risk-based approaches in terms of the risk reliability.

In addition, the scale of the optimization problem remains

unchanged when using more data, ensuring the feasibility

of incorporating more data to decrease the conservativeness.

In conclusion, the proposed approach can efficiently model

the uncertainty of probability distributions to strike a balance

between the operational cost and risk while ensuring the risk

reliability. Future works include developing a hourly day-

ahead unit commitment model as well as incorporating the

uncertainty of the line rating into the ambiguity set to estab-

lish distributionally robust methods which can simultaneously

consider the uncertainties from different kinds of resources.
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