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 Kelly (2005) made a number of important contributions to the literature 

pertaining to confidence intervals (CIs) for Cohen’s (1988) effect size (ES) 

statistic. One important finding he noted was that a noncentral-t (NCT) based CI 

has inaccurate coverage when data are nonnormal. Further, he found, that when 

data are nonnormal, accurate coverage could be achieved by adopting bootstrap 

methods. Specifically, he found two methods to be effective: the percentile 

method and the bias-corrected and accelerated (BCA) bootstrap methods. 

Coverage for the BCA method was better than the percentile bootstrap method 

and accordingly Kelly recommended that researchers adopt the BCA CI for 

Cohen’s ES statistic. 

However, Kelly (a) explored a limited range of non-normality, (b) did not 

examine a complete comparison of how population values of ES and sample size 

affects coverage probability, and (c) in some cases, used sample sizes that 

would be quite large in educational and psychological research. Accordingly, our 

study was designed to generalize Kelly's results.  

Theoretical Background 

One of the most commonly reported ESs is Cohen’s d: 

 2 1Y Y
d
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where jY  is the mean for the jth level 1,2j  and S is the square root of the 

pooled variance, which we refer to as the pooled standard deviation. The number 

of observations in a level is denoted by jn  1 2N n n . Cohen’s d estimates  
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where 
j
is the population mean for the jth level and is the population standard 

deviation, assumed to be equal for both levels. 

It is known (see, for example, Cumming & Finch, 2001 or Steiger & 

Fouladi, 1997) that when the sample data are drawn from normal distributions, 

the variances of the two populations are equal, and the scores are independently 

distributed, an exact CI for the population ES i.e.,  can be constructed by 

using the NCT distribution. Figure 1 presents a central and NCT distribution. The 

distribution of the right is an example of a NCT distribution and is the sampling 

distribution of the t statistic when  is not equal to zero. It has two parameters. 

The first is the familiar degrees of freedom and is 2N  in our context. The 

second is the noncentrality parameter 

 1 2 2 1 1 2

1 2 1 2

n n n n

n n n n
. 

The noncentrality parameter controls the location of the NCT distribution. In fact, 

the mean of the NCT distribution is approximately equal to  (Hedges, 1981), 

with the accuracy of the approximation improving as N increases. The central t 

distribution, the sampling distribution of the t statistic when 0 , is the special 

case of the NCT distribution that occurs when , and therefore, are zero. 

 To find a 95% (for example) CI for , we first use the NCT distribution to 

find a 95%  CI for .  Then multiplying the limits of the interval for  by 

1 2 1 2n n n n  a 95% CI for  is obtained. The lower limit of the 95% CI for  is 

the noncentrality parameter for the NCT distribution in which the calculated t 

statistic 
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is the .975 quantile.  The upper limit of the 95% interval for  is the noncentrality 

parameter for the NCT distribution in which the calculated t statistic is the .025 

quantile of the distribution (see Steiger & Fouladi, 1997). Means and standard 

deviations for an example are provided in Table 1. Calculations show that 

.97d and 3.14t . The t statistic, along with two NCT distributions, is depicted 

in Figure 2. As Figure 2, indicates, if 5.21, then 3.14t is the .025 percentile. 

Therefore the upper limit of the CI for is 5.21. If 1.05  then 3.14t is the .975 

percentile and the lower limit of the CI for is 1.05. Multiplying both limits 

by
1 2 1 2n n n n , .32 and 1.61 are obtained as the lower and upper limits, 

respectively, for a 95% CI for . 

Methods 

 We investigated the robustness of the NCT distribution-based CIs for 

and to sampling from nonnormal distributions. Probability coverage was 

estimated for all combinations of the following three factors: population 

distribution (four cases from the family of g and h distributions), sample size: 

1 2 20n n  to 100 in steps of 20, and population ESs : 0 and .2 to 1.4 in steps 

of .3. The nominal confidence level for all intervals was .95 and each condition 

was replicated 5000 times. 

The data were generated from the g and h distribution (Hoaglin, 1985). 

Specifically, we chose to investigate four g and h distributions: (a) 0g h , the 

standard normal distribution 1 2 0 , (b) .76g and .098h , a distribution 
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with skew and kurtosis equal to that for an exponential distribution 
1 22, 6 , 

(c) 0g  and .225h   
1 20 and 154.84 , and (d) .225g  and .225h  

( 1 4.90 and 2 4673.80 ). The coefficient 1  is a measure of skew and 2  is a 

measure of kurtosis. As indicated in the description of the first distribution, a 

normal distribution has 1 2 0 . Distributions with positive skew typically have 

1 0  and distributions with negative skew typically have 1 0 . Short-tailed 

distributions, such as a uniform distribution, typically have 2 0  and long-tailed 

distributions, such as a t distribution, typically have 2 0.  The three nonnormal 

distributions are quite strongly nonnormal. We selected these because we 

wanted to find whether the CIs would work well over a wide range of 

distributions, not merely with distributions that are nearly normal. 

To generate data from a g and h distribution, standard unit normal 

variables 
ijZ  were converted to g and h distributed random variables via 

 
2exp 1

exp
2

ij ij

ij

gZ hZ
Y

g
 

when both g and h were non-zero. When g was zero 

2

exp
2

ij

ij ij

hZ
Y Z . 

The ijZ  scores were generated by using RANNOR in SAS (SAS, 1999).  For 

simulated participants in treatment 2, the 2iY  scores were transformed to 

 2iY .  

These transformed scores were used in the CI for .  
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Figure 1. A central and a noncentral t distribution. 
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Figure 2. Graphical representation of finding a confidence interval for the 

noncentrality parameter 

 

Our conclusion would be that with non-normal data BCA on delta may not 

work with sample sizes typical of those in the educational and psychological 

research [25 to 75 per group--If we need to go higher (100 per group I can do 

that) ] and that researchers need to be very cautious in applying percentile or  

BCA to delta.  If we want to we can conclude by pointing out that in the context of 

a repeated measures design Algina and Keselman (EPM, in press) introduced 

delta sub R and showed that percentile bootstrap intervals for delta sub R 

worked quite well and that Algina and Keselman (under review) have shown the 

same results in the context of an independent samples design.  Taken together 

these results suggest replacing delta by delta sub R and using the percentile 

bootstrap interval. 
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