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ABSTRACT

Recently, Kabaila and Wijethunga assessed the performance of a confidence interval cen-

tred on a bootstrap smoothed estimator, with width proportional to an estimator of

Efron’s delta method approximation to the standard deviation of this estimator. They

used a testbed situation consisting of two nested linear regression models, with error

variance assumed known, and model selection using a preliminary hypothesis test. This

assessment was in terms of coverage and scaled expected length, where the scaling is with

respect to the expected length of the usual confidence interval with the same minimum

coverage probability. They found that this confidence interval has scaled expected length

that (a) has a maximum value that may be much greater than 1 and (b) is greater than a

number slightly less than 1 when the simpler model is correct. We therefore ask the fol-

lowing question. For a confidence interval, centred on the bootstrap smoothed estimator,

does there exist a formula for its data-based width such that, in this testbed situation, it

has the desired minimum coverage and scaled expected length that (a) has a maximum

value that is not too much larger than 1 and (b) is substantially less than 1 when the

simpler model is correct? Using a recent decision-theoretic performance bound due to

Kabaila and Kong, it is shown that the answer to this question is ‘no’ for a wide range

of scenarios.
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1. Introduction

A bootstrap smoothed (or bagged, Breiman, 1996) estimator is a smoothed version of

an estimator found after preliminary data-based model selection. A key result of Efron

(2014) is a very convenient and widely applicable formula for a delta method approxima-

tion to the standard deviation of this estimator. Efron (2014) also considered a confidence

interval, with nominal coverage 1−α, centred on the bootstrap estimator and with half-

width equal to the 1 − α/2 quantile of the standard normal distribution multiplied by

an estimate of this approximation to the standard deviation. To rigorously assess the

performance of this confidence interval, Kabaila & Wijethunga (2019a) use the following

testbed situation. They consider two nested normal linear regression models with known

error variance and parameter of interest θ, a specified linear combination of the regression

parameters. These two nested models are the full model and the simpler model. The

simpler model is obtained when τ , a distinct specified linear combination of the regres-

sion parameters, is set to 0. The bootstrap smoothed estimator that they consider is a

smoothed version of the post-model-selection estimator obtained after a preliminary test

of the null hypothesis that τ = 0 against the alternative hypothesis that τ 6= 0.

For the testbed situation they consider, Kabaila & Wijethunga (2019a) derive com-

putationally convenient exact formulas for the ideal (i.e. in the limit as the number of

bootstrap replications diverges to infinity) bootstrap smoothed estimator and Efron’s

delta method approximation to the standard deviation of this estimator. They also as-

sess the performance of the confidence interval, with nominal coverage 1 − α, centred

on the ideal bootstrap estimator and with half-width equal to the 1 − α/2 quantile of

the standard normal distribution multiplied by an estimate of the ideal delta method

approximation to the standard deviation. We call this the sddelta interval. This confi-

dence interval has the attractive features that (A1) it has endpoints that are continuous

functions of the data and (A2) to an excellent approximation it reverts to the usual 1−α

confidence interval based on the full model when the data and the simpler model are

highly discordant.
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For the testbed situation, Kabaila & Wijethunga (2019a) assess the performance of

the sddelta interval using its coverage probability and scaled expected length, defined as

follows. The scaled expected length of a confidence interval is defined to be its expected

length divided by the expected length of the usual confidence interval, with the same

minimum coverage probability, based on the full model. Let ρ denote the known corre-

lation between the least squares estimators of θ and τ . For ρ = 0, the sddelta interval is

identical to the usual 1 − α confidence interval based on the full model. However, as |ρ|

increases, these two confidence intervals increasingly differ from each other.

Define the parameter γ to be τ divided by the standard deviation of the least squares

estimator of τ , so that γ is unknown. For given nominal coverage 1 − α and size of

preliminary test, both the coverage probability and the scaled expected length of the

sddelta interval are functions of |ρ| and |γ|. Figure 5 of Kabaila & Wijethunga (2019a)

and Figures 6–10 of the Supplementary Material for this paper show the following. The

sddelta interval has scaled expected length that (a) has a maximum value that is an

increasing function of |ρ| that can be much larger than 1 for large |ρ| and (b) is greater

than a number slightly less than 1 when the simpler model is correct (i.e. when γ = 0).

In the context of the testbed situation used by Kabaila & Wijethunga (2019a), we

have sought a formula for the width of a confidence interval centred on the ideal boot-

strap smoothed estimator that leads to this confidence interval having scaled expected

length that is substantially less than 1 when the simpler model is correct. We tried five

different formulae, including the width being based on the actual standard deviation and

the parametric version of the symmetric nonparametric bootstrap confidence described

by Hall (1992, Section 3.6). None of these confidence intervals possessed this desired

property. This then raises the following question:

In the context of this testbed situation, is there any formula for the width of

a confidence interval centred on the ideal bootstrap smoothed estimator that

leads to this confidence interval having the attractive features (A1) and (A2),

the desired minimum coverage probability 1 − α and scaled expected length

that (a) has a maximum value that is not too much larger than 1 and (b) is
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substantially less than 1 when the simpler model is correct?

We use a performance bound derived by Kabaila & Kong (2016) to answer this ques-

tion. This bound builds on the earlier work of Blyth (1951), Hodges & Lehmann (1952),

Kempthorne (1983, 1987, 1988) and Kabaila & Tuck (2008). As shown in Section 3 of

the present paper, the application of this performance bound is carried out by computing

two unfavourable discrete distributions, each consisting of a finite number of probability

masses. We have programmed this computation in R, using simple code that is based on

the theoretical results described in Sections 3 and 5 and Appendix A.3. For the scenarios

described in Section 6 the answer to the question above is ‘no’.

2. Mathematical specification of the question we will answer

We consider the testbed situation consisting of two nested linear regression models: the

full model M2 and the simpler model M1. Suppose that the full model M2 is given by

y = Xβ + ε

where y is a random n-vector of responses, X is a known n×p matrix with linearly inde-

pendent columns (p < n), β is an unknown p-vector of parameters and ε ∼ N(0, σ2In),

with σ2 assumed known. Suppose that β = [θ, τ,λ⊤]⊤, where θ is the scalar parameter

of interest, τ is a scalar parameter used in specifying the model M1 and λ is a (p− 2)-

dimensional parameter vector. The model M1 is M2 with τ = 0. As shown by Kabaila

& Wijethunga (2019a), this scenario can be obtained by a change of parametrisation from

a more general scenario.

Let θ̂ and τ̂ denote the least squares estimators of θ and τ , respectively. Let vθ =

var(θ̂)/σ2, vτ = var(τ̂ )/σ2 and ρ = corr(θ̂, τ̂). Note that vθ, vτ and ρ are known. Let

γ = τ/
(
σvτ

1/2
)
, which is an unknown parameter, and also let γ̂ = τ̂ /

(
σvτ

1/2
)
. Suppose

that we carry out a preliminary test of the null hypothesis τ = 0 against the alternative

hypothesis τ 6= 0. For given value of the positive number d, suppose that we accept this

null hypothesis when |γ̂| ≤ d; otherwise we reject this null hypothesis. Let α̃ denote the
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size of this preliminary test. If |γ̂| ≤ d we choose model M1; otherwise we choose model

M2.

Let k(γ) = φ(d + γ) − φ(d − γ) + γ
(
Φ(d − γ) − Φ(−d − γ)

)
, where φ and Φ denote

the N(0, 1) pdf and cdf. Kabaila & Wijethunga (2019a) prove that the ideal (i.e. in the

limit as the number of bootstrap replications diverges to infinity) bootstrap smoothed

estimator of θ is

θ̃ = θ̂ − ρ σ v
1/2
θ k(γ̂).

Efron (2014) derived a delta method approximation to the standard deviation of the

bootstrap smoothed estimator. Kabaila & Wijethunga (2019a) show that, in the limit

as the number of bootstrap replications diverges to infinity, this approximation is given

by σ v
1/2
θ rdelta(γ), where rdelta(γ) =

(
1 − 2ρ2q(γ) + ρ2q2(γ)

)1/2
, with q(γ) = Φ(d − γ) −

Φ(−d−γ)−d
(
φ(d+γ)+ φ(d−γ)

)
. Let z(a) = Φ−1(1−a/2). The confidence interval for

θ, with nominal coverage 1−α, centred on θ̃ and with half-width equal to z(α) multiplied

by an estimate of this approximation to the standard deviation is

[
θ̂ − σ v

1/2
θ ρ k(γ̂)± σ v

1/2
θ

(
z(α) rdelta(γ)

)]
.

The function rdelta : R → [0,∞) is a continuous even function and rdelta(x) → 1 as x → ∞.

As shown in the Supplementary Material, to an excellent approximation, rdelta(x) = 1 for

all x ≥ c, where c = 10.

We consider confidence intervals of the form

CI(s) =
[
θ̂ − ρ σ v

1/2
θ k(γ̂)± σ v

1/2
θ s(γ̂)

]
,

where s : R → [0,∞) is an even function. To apply the performance bound of Kabaila

& Kong (2016), we suppose that s(x) = z(α) for all x ≥ c. Let D denote the class of

functions s that satisfy this property. We do not require that the function s is continuous.

In other words, a confidence interval CI(s), where s ∈ D, does not necessarily possess

the attractive feature (A1). In addition, such a confidence interval does not necessarily

possess the attractive feature (A2). This is because γ̂ ∼ N(0, 1) under the simpler model,

so that the data and this model can be said to be highly discordant when |γ̂| > 4, say.

We now introduce the following question:
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Is there a confidence interval CI(s), specified by a function s in D, such that

this confidence interval has minimum coverage probability 1 − α and scaled

expected length that (a) has a maximum value that is not too much larger

than 1 and (b) is substantially less than 1 when the simpler model is correct?

If the answer to this question is ‘no’ then the answer to the question posed in the intro-

duction must also be ‘no’.

3. Exact formulas for the coverage probability and scaled ex-

pected length of CI(s)

For notational convenience, let b(x) = ρ k(x) for all x ∈ R, so that

CI(s) =
[
θ̂ − σ v

1/2
θ b(γ̂)± σ v

1/2
θ s(γ̂)

]
.

Every s ∈ D is an even function that satisfies s(x) = z(α) for all x ≥ c. Hence every

s ∈ D is specified by s restricted to the domain [0, c]. In this section we present exact

formulas for the coverage probability and scaled expected length of CI(s) in terms of the

function s restricted to the domain [0, c]. The function k is a continuous odd function

and k(x) → 0 as x → ∞. As shown in the Supplementary Material, to an excellent

approximation, k(x) = 0 for all x ≥ c, where c = 10. For computational convenience, we

approximate k(x), and therefore b(x), by 0 for all x ≥ c.

The following theorem, proved in Appendix A.1, provides an exact formula for the

coverage probability of the confidence interval CI(s) in terms of the function s restricted

to the domain [0, c].

Theorem 1. For any given ρ and function s ∈ D, the coverage probability of CI(s)

is a function of γ. We denote this coverage probability by c(γ; s, ρ). For any given ρ

and s ∈ D, c(γ; s, ρ) is an even function of γ. Also, for any given γ and s ∈ D,

c(γ; s, ρ) is an even function of ρ. Let ℓ(h, γ; x) = P
(
b(h) − x ≤ G̃ ≤ b(h) + x

)
and

ℓ†(h, γ) = P
(
− z(α) ≤ G̃ ≤ z(α)

)
, for G̃ ∼ N

(
ρ(h− γ), 1− ρ2

)
. Now let R1(s, γ) denote

∫ c

0

( (
ℓ†(h, γ)− ℓ(h, γ; s(h))

)
φ(h− γ) +

(
ℓ†(−h, γ)− ℓ(−h, γ; s(h))

)
φ(h+ γ)

)
dh.
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Then c(γ; s, ρ) = 1− α− R1(s, γ).

It follows from this theorem that, for any given s ∈ D, R1(s, γ) is an even function of

γ. It also follows from this theorem that, for any given γ and s ∈ D, R1(s, γ) is an even

function of ρ.

Let I denote the usual 1 − α confidence interval for θ based on the full model. In

other words,

I =
[
θ̂ ± z(α) σ v

1/2
θ

]
.

Define the scaled expected length of CI(s) to be

E(length of CI(s))

E(length of I)
=

E(s(γ̂))

z(α)
.

It follows from (7) that this is a function of γ for given function s. We denote this function

by e(γ; s). The following theorem, proved in Appendix A.2, provides an exact formula

for e(γ; s) in terms of the function s restricted to the domain [0, c].

Theorem 2. For given function s, the scaled expected length of CI(s) is a function of γ.

We denote this scaled expected length by e(γ; s). Then e(γ; s) = 1 +R(s, γ), where

R(s, γ) =

∫ c

0

(
s(h)

z(α)
− 1

)(
φ(h− γ) + φ(h+ γ)

)
dh. (1)

Obviously e(γ; s) and R(s, γ) are even functions of γ.

The function R1(s, γ) is the probability of non-coverage of θ by CI(s), for true param-

eter value γ. The function R(s, γ) is the scaled expected length of CI(s) minus 1, for true

parameter value γ. Both R1(s, γ) and R(s, γ) are risk functions in the following sense. If

both R1(s1, γ) < R1(s2, γ) and R(s1, γ) < R(s2, γ) then CI(s1) is preferred to CI(s2), for

true parameter value γ (cf. Kempthorne, 1987, p.172).

4. Application of the performance bound of Kabaila & Kong

(2016)

A direct answer to the question raised at the end of Section 2 is provided by finding

infs∈D e(0; s), subject to the following two constraints:
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(C1) Coverage constraint

The coverage constraint is c(γ; s, ρ) ≥ 1−α for all γ ≥ 0. We have used here the fact

that c(γ; s, ρ) is an even function of γ.

(C2) Maximum Scaled Expected Length constraint

For given u > 0, e(γ; s) ≤ 1 + u for all γ ≥ 0. We have used here the fact that e(γ; s)

is an even function of γ.

We answer the question raised at the end of Section 2 indirectly by finding a lower bound

on infs∈D e(0; s), subject to these two constraints. If this lower bound is greater than 1

then the answer to this question is no.

To apply the performance bound of Kabaila & Kong (2016), we need to express

e(0; s) and the constraints (C1) and (C2) in terms of risks and integrated risks. Since

e(γ; s) = 1 +R(s, γ),

Subject to the constraints (C1)and (C2), inf
s∈D

e(0; s) = 1 + inf
s∈D

R(s, 0). (2)

Note that

R(s, 0) = 2

∫ c

0

(
s(h)

z(α)
− 1

)
φ(h) dh =

∫ ∞

−∞

R(s, γ) d π(γ),

where π is the cumulative distribution function of the distribution with a unit probability

point mass at 0, i.e. π(x) = 1 for x ≥ 0 and π(x) = 0 for x < 0. Thus R(s, 0) is an

integrated risk. To bring the notation in line with that used by Kabaila & Kong (2016),

let R2(s, γ) ≡ R(s, γ). We now express the two constraints as follows.

(C1) Coverage constraint

The coverage constraint is R1(s, γ) ≤ 0 for all γ ≥ 0.

(C2) Maximum Scaled Expected Length constraint

For given u > 0, R2(s, γ) ≤ u for all γ ≥ 0.

We now apply Theorem 2(a) and the method described in Appendix C of Kabaila &

Kong (2016). Let m1 and m2 be given positive integers. Suppose that γ1(1), . . . , γ1(m1)

and γ2(1), . . . , γ2(m2) satisfy

0 ≤ γ1(1) < γ1(2) < · · · < γ1(m1)

0 < γ2(1) < γ2(2) < · · · < γ2(m2).
(3)
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Introduce the nonnegative variables ν1(1), . . . , ν1(m1) and ν2(1), . . . , ν2(m2) and let

γ =
(
γ1(1), . . . , γ1(m1), γ2(1), . . . , γ2(m2)

)

ν =
(
ν1(1), . . . , ν1(m1), ν2(1), . . . , ν2(m2)

)
.

A given value of (γ,ν) corresponds to the following two prior distributions:

(1) A discrete prior distribution that consists ofm1 probability point masses p1(1), . . . , p1(m1)

located at γ1(1), . . . , γ1(m1) respectively, where

p1(j) =
ν1(j)∑m1

k=1
ν1(k)

(j = 1, . . . , m1).

(2) A discrete prior distribution that consists ofm2 probability point masses p2(1), . . . , p2(m2)

located at γ2(1), . . . , γ2(m2) respectively, where

p2(j) =
ν2(j)∑m2

k=1
ν2(k)

(j = 1, . . . , m2).

Let

g̃(s,γ,ν) =

∫ ∞

−∞

R(s, γ) d π(γ) +

m1∑

j=1

ν1(j)R1(s, γ1(j)) +

m2∑

j=1

ν2(j)R2(s, γ2(j)).

Now let s(γ,ν) denote a value of s ∈ D that minimizes g̃(s,γ,ν). It follows from Theorem

2(a) and the method described in Appendix C of Kabaila & Kong (2016) that a lower

bound for infs∈D R(s, 0), subject to the constraints (C1) and (C2), is

g̃
(
s(γ,ν),γ,ν

)
−

m2∑

j=1

ν2(j) u, (4)

where u is the given positive number in the description of the constraint (C2). As

proposed by Kabaila & Kong (2016), the lower bound (4) is numerically maximized

with respect to (γ,ν), to tighten this lower bound. This amounts to computing two

unfavorable discrete prior distributions. We then use (2) to obtain the desired lower

bound.

The crucial part of this procedure is the computation of s(γ,ν), a value of s ∈ D

that minimizes g̃(s,γ,ν), for given (γ,ν). This computation, which requires some care,

is described in the next section.
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5. Computation of s(γ,ν) for given (γ,ν)

Throughout this section we suppose that (γ,ν) is given. We describe the computation of

s(γ,ν), a value of s ∈ D that minimizes g̃(s,γ,ν). Straightforward manipulations show

that

g̃
(
s,γ,ν

)
=

∫ c

0

q
(
s(h); h,γ,ν

)
dh, (5)

where q(x; h,γ,ν) is defined to be

(
x

z(α)
− 1

) (
2φ(h) +

m2∑

j=1

ν2(j)
(
φ(h− γ2(j)) + φ(h+ γ2(j))

))

+

m1∑

j=1

ν1(j)
[ (

ℓ†(h, γ1(j))− ℓ(h, γ1(j); x)
)
φ(h− γ1(j))

+
(
ℓ†(−h, γ1(j))− ℓ(−h, γ1(j); x)

)
φ(h+ γ1(j))

]
.

It follows from (5) that a function s(γ,ν), defined as a minimizer of g̃(s,γ,ν) over s ∈ D,

may be found as follows. We set s(γ,ν), evaluated at any h ∈ [0, c], to be a minimizer

over x ∈ [0,∞) of q(x; h,γ,ν).

Now q(x; h,γ,ν) is a continuous function of x ∈ [0,∞) for all h ∈ [0, c] and every

given (γ,ν). An examination of some examples of this function of x ∈ [0,∞) show that

this function may have several local minima, including the possibility of a local minimum

at x = 0. Consequently, the value of x ∈ [0,∞) that minimizes q(x; h,γ,ν) may change

discontinuously, as h increases. In other words, the function s(γ,ν) of h may have discon-

tinuities. Figure 5 of the Supplementary Material provides some illustrations of functions

q(x; h,γ,ν) of x ∈ [0,∞) that have two local minima. Figure 4 of the Supplementary

Material provides an illustration of a function s(γ,ν) of h with discontinuities.

To evaluate the lower bound (4), we need to evaluate

g̃
(
s(γ,ν),γ,ν

)
=

∫ c

0

q
(
s(γ,ν) evaluated at h; h,γ,ν

)
dh. (6)

Although the function s(γ,ν) of h may have discontinuities, the integrand of the integral

on the right-hand side of (6) is a continuous function of h ∈ [0, c]. An illustration of

this, when the function s(γ,ν) of h has discontinuities, is provided by Figure 3 of the

Supplementary Material.
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To carry out the computation of the function s(γ,ν) accurately and effectively, we use

the properties of dq(x; h,γ,ν)/dx, considered as a function of x, described in Appendix

A.3. Suppose that h ∈ [0, c] is given. Theorem 3 of Appendix A.3 leads to the procedure

described at the end of this appendix for finding an interval
[
0, x̃
]
that must contain a

value of x ≥ 0 that minimizes q(x; h,γ,ν).

We use the following two step procedure to find the value of x ∈ [0, x̃] that minimizes

q(x; h,γ,ν). We find all possible local minima in Step 1 and compare them to find the

global minimum in Step 2.

Step 1: By considering dq(x; h,γ,ν)/dx, find all the local minimizers of q(x; h,γ,ν) in

the interval [0, x̃]. Define w to be the smallest integer that is greater than or equal to 10 x̃.

We evaluate dq(x; h,γ,ν)/dx on the evenly-spaced grid x1 = 0, x2 = 0.1, x3 = 0.2, . . . , xw

of values of x. To find the values of x ∈ [0, xw] that are local minimizers of q(x; h, γ, ν),

we need to consider the following two cases.

Case 1: x = 0

x = 0 is a local minimizer of q(x; h,γ,ν) if either dq(0; h,γ,ν)/dx > 0 or dq(0; h,γ,ν)/dx =

0 and dq(x2; h,γ,ν)/dx > 0; otherwise x = 0 is not a local minimizer.

Case 2: 0 < x < xw

If dq(xi; h,γ,ν)/dx < 0 and dq(xi+1; h,γ,ν)/dx > 0, then dq(x; h,γ,ν)/dx has a zero

in the interval [xi, xi+1] that is a local minimizer of q(x; h,γ,ν). We find this zero

using the R function uniroot, to which we provide the interval [xi, xi+1]. Also, if

dq(xi; h,γ,ν)/dx = 0 and dq(xi−1; h,γ,ν)/dx < 0 and dq(xi+1; h,γ,ν)/dx > 0 then

xi is a zero of dq(x; h,γ,ν)/dx that is a local minimizer of q(x; h,γ,ν).

Step 2: Evaluate q(x; h,γ,ν) at the local minimizers of q(x; h,γ,ν) found in Step 1.

The global minimum of q(x; h,γ,ν) is simply the minimum of the local minima.

6. Numerical results

As noted in Section 3, for any given γ and s ∈ D, R1(s, γ) is an even function of ρ. Since

R(s, γ) does not depend on ρ, it is therefore sufficient to consider ρ ∈ [0, 1). For any

given size α̃ of the preliminary test, desired minimum coverage 1 − α and ρ ∈ [0, 1), we
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proceed as follows.

Let Q(m1, m2) denote the set of possible values of (γ,ν), for positive integers m1 and

m2. Also let LB(u;m1, m2,γ,ν) denote the lower bound (4). We will make use of the

following easily-proved, but very useful result.

Theorem 3. For any given positive integers m1 and m2 and (γ,ν) ∈ Q(m1, m2) such

that
∑m2

j=1
ν2(j) > 0 the following result is true. The lower bound LB(u;m1, m2,γ,ν) is

a decreasing function of u ∈ (0,∞).

Proof. Suppose that the positive integers m1 and m2 and (γ,ν) ∈ Q(m1, m2), satisfying

∑m2

j=1
ν2(j) > 0, are given. The function s(γ,ν) does not depend on u > 0. The result

now follows from the expression (4).

Using the procedure described in Section S3 of the Supplementary Material, we find

‘good values’ of the positive integers m∗
1 and m∗

2, u
∗ > 0 and (γ∗,ν∗) ∈ Q(m∗

1, m
∗
2). Now

define u∗∗ to be the solution for u of

1 + g̃
(
s(γ∗,ν∗),γ∗,ν∗

)
−

m2∑

j=1

ν∗
2(j) u = 1.005.

In other words,

u∗∗ =
g̃
(
s(γ∗,ν∗),γ∗,ν∗

)
− 0.005∑m2

j=1
ν∗
2(j)

.

If u∗∗ > 0 then Theorem 3 implies that the answer to the question stated at the end of

Section 2 is ‘no’ for all u satisfying 0 < u ≤ u∗∗. Consequently, if u∗∗ > 0 then for all u

satisfying 0 < u ≤ u∗∗ the answer to the question stated in the introduction is ‘no’.

Section S2 of the Supplementary Material describes the details of computations using

the R programming language. In Section S4 of the Supplementary Material we provide a

method to check the accuracy of the final computed results and describe this procedure

using an example. Table 1 describes the values of u∗∗ computed using the procedure

described in Section S3 of the Supplementary Material, with ǫ = 0.05. All of the results

are for nominal coverage 1 − α = 0.95, α̃ ∈ {0.05, 0.1} and |ρ| ∈ {0.5, 0.6, 0.7, 0.8}. This

table also lists the values of m1 and m2, the numbers of probability point masses in the

discrete prior distributions (described in Section 4) that relate to the coverage probability

and scaled expected length, respectively.
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Table 1. Values of u∗∗ such that LB(u;m1, m2,γ,ν) > 1 for all u satisfying 0 <

u ≤ u∗∗. These values were computed using the procedure described in Section S3

of the Supplementary Material, with ǫ = 0.05. We consider α̃ ∈ {0.05, 0.1}, |ρ| ∈

{0.5, 0.6, 0.7, 0.8} and nominal coverage 1 − α = 0.95. Here m1 and m2 are the number

of probability point masses in the two prior distributions described in Section 4.

α̃ |ρ| m1 m2 u∗∗

0.05 0.5 4 4 0.05268182

0.6 4 4 0.07535683

0.7 5 3 0.11375010

0.8 5 3 0.15037320

0.1 0.5 4 2 0.02763119

0.6 7 4 0.04430236

0.7 5 2 0.06345934

0.8 5 2 0.07750792

In view of the question that we have posed in the introduction and at the end of

Section 2, it is reasonable to measure the performance of a confidence interval CI(s) that

satisfies constraints (C1) and (C2) as follows. Define the squared scaled expected length

gain (gain) to be

1−
(
e(0; s)

)2

and the squared scaled expected length loss (loss) to be

(1 + u)2 − 1 = u2 + 2u.

Ideally, the gain is large and the loss is small. If the positive number ℓ is a lower bound

on infs∈D e(0; s), subject to the constraints (C1) and (C2), then 1− ℓ2 is an upper bound

on the gain 1−
(
e(0; s)

)2
for all s ∈ D such that constraints (C1) and (C2) are satisfied.

For the values of u listed in Table 2, we used the values of m1 and m2 in Table 1 that

were used to compute u∗∗, to carry out Step 1 of the procedure described in Section S3 of

14



the Supplementary Material. Table 2 gives the resulting upper bound on the gain for loss

specified by the given value of u > 0. As can be seen from this table, the ratio (upper

bound on gain)/loss is small for all |ρ| ≥ 0.6.

Table 2. Computed upper bound on the gain for loss specified by the given value

of u > 0. These values were computed using the procedure described in Section S3

of the Supplementary Material, with ǫ = 0.05. We consider α̃ ∈ {0.05, 0.1}, |ρ| ∈

{0.5, 0.6, 0.7, 0.8} and nominal coverage 1− α = 0.95.

α̃ |ρ| u upper bound loss (upper bound on

on gain gain)/loss

0.05 0.5 0.079 0.04948720 0.1642 0.3014

0.105 0.07126956 0.2210 0.3225

0.6 0.113 0.02959263 0.2387 0.1239

0.151 0.05424241 0.3248 0.1670

0.7 0.171 0.02867069 0.3712 0.0772

0.228 0.05785821 0.5079 0.1139

0.8 0.226 0.03730076 0.5031 0.0741

0.301 0.08313421 0.6926 0.1200

0.1 0.5 0.041 0.02654781 0.0837 0.3172

0.055 0.05058620 0.1130 0.4477

0.6 0.066 0.02488160 0.1364 0.1824

0.089 0.05302328 0.1859 0.2852

0.7 0.095 0.02606301 0.1990 0.1309

0.127 0.05599555 0.2701 0.2073

0.8 0.117 0.03431617 0.2477 0.1385

0.156 0.05958476 0.3363 0.1772

For given nominal coverage 1 − α, size α̃ of the preliminary test, |ρ|, u m1 and m2,
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it takes roughly 45 minutes to compute the lower bound on infs∈D e(0; s), subject to the

constraints (C1) and (C2), using a computer with i7 processor (3.4 GHz) and 32 GB of

RAM. In other words, the time taken to complete Step 1 of the procedure described in

Section S3 of the Supplementary Material is roughly 45 minutes. As a consequence, the

time taken to complete the entire algorithm described in Section S3 of the Supplementary

Material for given nominal coverage 1−α, size α̃ of the preliminary test, |ρ| and u is about

4 hours. The subsequent computation of u∗∗ for the given values of nominal coverage 1−α,

size α̃ of the preliminary test and |ρ|, takes an additional minute or so.

7. Remarks

Remark 7.1

It is reasonable to ask whether or not we have, in posing the question described in the

introduction, put forward requirements that are excessively restrictive in the sense that

these requirements cannot be achieved by any confidence interval whatsoever. In other

words, is it possible that, for the testbed scenario of two nested linear regression models

and known error variance σ2, there does not exist any confidence interval (whose centre is

not necessarily the bootstrap smoothed estimator) for which the answer to the question

posed in the introduction is ‘yes’?

We know that the requirements that we have put forward are not excessively restric-

tive because, as shown by Kabaila & Giri (2009), Kabaila & Giri (2013) and Mainzer

& Kabaila (2019), it is possible to compute formulas for the centre and width of the

confidence interval so that this interval has the attractive features (A1) and (A2), the

desired minimum coverage probability 1 − α and scaled expected length that (a) has a

maximum value that is not too much larger than 1 and (b) is substantially less than 1

when the simpler model is correct. Indeed, the R package ciuupi, described by Mainzer

& Kabaila (2019), computes confidence intervals that have the attractive features (A1)

and (A2), the desired minimum coverage probability 1− α and for which the gain is set

equal to the loss, where gain and loss are as defined in Section 6.

Remark 7.2

16



In the present paper we have considered the testbed scenario of two nested linear regres-

sion models for known error variance σ2. A natural question to ask is the following. Do

we obtain similar results when, instead, σ2 is unknown, so that it must be estimated from

the data?

It is highly plausible that, for two nested linear regression models with p fixed, the

following is true. The results obtained for the case that the error variance σ2 is known

provide an excellent approximation to the corresponding results obtained for the case that

σ2 is unknown and the residual degrees of freedom n−p is moderately large. Results that

support this claim are provided in Appendix B of Kabaila & Wijethunga (2019a) and in

Section 3 of Kabaila & Wijethunga (2019b), who consider the case that σ2 is unknown.

Therefore the results of the present paper suggest that for two nested linear regression

models and σ2 unknown the answer to the question posed in the introduction will be ‘no’,

provided that n− p is sufficiently large. However, by construction, the results of Kabaila

& Wijethunga (2019b) suggest that the answer to this question will be ‘yes’, when n− p

is small.

8. Conclusion

In Section 6 we consider a confidence interval centred on the bootstrap smoothed esti-

mator, for preliminary test size either 0.05 or 0.1. This confidence interval is required

to have (C1) coverage probability that never falls below 0.95 and (C2) scaled expected

length that never exceeds 1+u, for given u > 0. Table 1 gives values of u∗∗ such that for

all u satisfying 0 < u ≤ u∗∗, the scaled expected length of this confidence interval must

exceed 1 when the simpler model is correct. In other words, this table specifies values of

u > 0 such that it is impossible to find a formula for the width of this confidence interval

such that its scaled expected length is less than 1 when the simpler model is correct.

In Section 6 we also define a gain and loss for this confidence interval. Table 1 may be

viewed as giving values of the loss such that it is impossible for this confidence interval

to have any gain. As Table 2 shows, even for the listed values of u > u∗∗, the gain cannot

be more than a small fraction of the loss when |ρ| ≥ 0.6.
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Appendix

We will express all quantities of interest in terms of the random vector (θ̂, γ̂), which has

the following bivariate normal distribution:
[
θ̂
γ̂

]
∼ N

([
θ
γ

]
,

[
σ2 vθ ρ σ vθ

1/2

ρ σ vθ
1/2 1

])
. (7)

A.1 Proof of Theorem 1

The following proof is based, in part, on the derivations described in Section 4.3 of Giri

(2008). The coverage probability of the confidence interval CI(s) is

P (θ ∈ CI(s)) = P
(
θ̂ − σ v

1/2
θ b(γ̂)− σ v

1/2
θ s(γ̂) ≤ θ ≤ θ̂ − σ v

1/2
θ b(γ̂) + σ v

1/2
θ s(γ̂)

)

= P
(
−θ̂ + σ v

1/2
θ b(γ̂) + σ v

1/2
θ s(γ̂) ≥ −θ ≥ −θ̂ + σ v

1/2
θ b(γ̂)− σ v

1/2
θ s(γ̂)

)

= P
(
σ v

1/2
θ

(
b(γ̂)− s(γ̂)

)
≤ θ̂ − θ ≤ σ v

1/2
θ

(
b(γ̂) + s(γ̂)

))

= P

(
b(γ̂)− s(γ̂) ≤

θ̂ − θ

σ v
1/2
θ

≤ b(γ̂) + s(γ̂)

)

= P
(
b(γ̂)− s(γ̂) ≤ G ≤ b(γ̂) + s(γ̂)

)
,
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where G = (θ̂ − θ)/
(
σ v

1/2
θ

)
. It follows from (7) that

[
G
γ̂

]
∼ N

([
0
γ

]
,

[
1 ρ
ρ 1

])
. (8)

For given ρ and function s, the coverage probability of CI(s) is a function of γ. We denote

this coverage probability by c(γ; s, ρ).

Since b and s are odd and even functions, respectively,

c(γ; s, ρ) = P
(
− b(−γ̂)− s(−γ̂) ≤ G ≤ −b(−γ̂) + s(−γ̂)

)

= P
(
b(−γ̂)− s(−γ̂) ≤ −G ≤ b(−γ̂) + s(−γ̂)

)

= P
(
b(γ̂′)− s(γ̂′) ≤ G′ ≤ b(γ̂′) + s(γ̂′)

)
,

where G′ = −G and γ̂′ = −γ̂. It follows from (8) that

[
G′

γ̂′

]
∼ N

([
0
−γ

]
,

[
1 ρ
ρ 1

])
.

Hence c(γ; s, ρ) = c(−γ; s, ρ).

Since b(x) = ρ k(x),

c(γ; s, ρ) = P
(
ρ k(γ̂)− s(γ̂) ≤ G ≤ ρ k(γ̂) + s(γ̂)

)

= P
(
− ρ k(γ̂)− s(γ̂) ≤ −G ≤ −ρ k(γ̂) + s(γ̂)

)

= P
(
(−ρ) k(γ̂)− s(γ̂) ≤ G′ ≤ (−ρ) k(γ̂) + s(γ̂)

)
,

where G′ = −G. It follows from (8) that

[
G′

γ̂

]
∼ N

([
0
γ

]
,

[
1 −ρ
−ρ 1

])
.

Hence c(γ; s, ρ) = c(γ; s,−ρ).

It follows from (8) that the probability distribution of G, conditional on γ̂ = h, is

N
(
ρ(h− γ), 1− ρ2

)
. Note that

P
(
b(γ̂)− s(γ̂) ≤ G ≤ b(γ̂) + s(γ̂)

)

=

∫ ∞

−∞

P
(
b(h)− s(h) ≤ G ≤ b(h) + s(h)

∣∣γ̂ = h
)
φ(h− γ) dh

=

∫ ∞

−∞

P
(
b(h)− s(h) ≤ G̃ ≤ b(h) + s(h)

)
φ(h− γ) dh,
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where G̃ ∼ N
(
ρ(h− γ), 1− ρ2

)
. Thus

c(γ; s, ρ)

=

∫ ∞

−∞

ℓ(h, γ; s(h))φ(h− γ) dh

=

∫ −c

−∞

ℓ(h, γ; s(h))φ(h− γ) dh+

∫ c

−c

ℓ(h, γ; s(h))φ(h− γ) dh+

∫ ∞

c

ℓ(h, γ; s(h))φ(h− γ) dh

=

∫ −c

−∞

ℓ†(h, γ)φ(h− γ) dh+

∫ c

−c

ℓ(h, γ; s(h))φ(h− γ) dh+

∫ ∞

c

ℓ†(h, γ)φ(h− γ) dh.

(9)

The usual 1−α confidence interval based on the full model M2 has coverage probability

1− α. Thus

1− α = P
(
− z(α) ≤ G ≤ z(α)

)

=

∫ ∞

−∞

P
(
− z(α) ≤ G ≤ z(α)

∣∣ γ̂ = h
)
φ(h− γ) dh

=

∫ ∞

−∞

ℓ†(h, γ)φ(h− γ) dh.

Therefore

1− α =

∫ −c

−∞

ℓ†(h, γ)φ(h− γ) dh+

∫ c

−c

ℓ†(h, γ)φ(h− γ) dh+

∫ ∞

c

ℓ†(h, γ)φ(h− γ) dh.

It follows from this equality and (9) that

c(γ; s, ρ) = 1− α +

∫ c

−c

(
ℓ(h, γ; s(h))− ℓ†(h, γ)

)
φ(h− γ) dh

= 1− α−
(∫ c

0

(
ℓ(h, γ; s(h))− ℓ†(h, γ)

)
φ(h− γ) dh

+

∫ 0

−c

(
ℓ(h, γ; s(h))− ℓ†(h, γ)

)
φ(h− γ) dh

)
.

Change the variable of integration to y = −h in the second integral. The result c(γ; s, ρ) =

1− α− R1(s, γ) now follows from the fact that both s and φ are even functions.
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A.2 Proof of Theorem 2

The following proof is based, in part, on the derivations described in Section 4.3 of Giri

(2008). Note that

e(γ; s) =
1

z(α)

∫ ∞

−∞

s(h)φ(h− γ) dh

=

∫ −c

−∞

φ(h− γ) dh+
1

z(α)

∫ c

−c

s(h)φ(h− γ) dh+

∫ ∞

c

φ(h− γ) dh, (10)

since s(x) = z(α) for all |x| ≥ c. Obviously,

1 =

∫ −c

−∞

φ(h− γ) dh+

∫ c

−c

φ(h− γ) dh+

∫ ∞

c

φ(h− γ) dh.

It follows from this equality and (10) that

e(γ; s) = 1 +

∫ c

−c

(
s(h)

z(α)
− 1

)
φ(h− γ) dh

= 1 +

∫ 0

−c

(
s(h)

z(α)
− 1

)
φ(h− γ) dh+

∫ c

0

(
s(h)

z(α)
− 1

)
φ(h− γ) dh.

Change the variable of integration to y = −h in the first integral on the right-hand side.

The fact that both s and φ are even functions implies that (1) is true.

A.3 Properties of dq(x; h,γ,ν)/dx considered as a function of x

It is straightforward to show that

ℓ(h, γ; x) = Φ

(
b(h) + x− ρ(h− γ)

(1− ρ2)1/2

)
− Φ

(
b(h)− x− ρ(h− γ)

(1− ρ2)1/2

)

and

ℓ†(h, γ) = Φ

(
z(α)− ρ(h− γ)

(1− ρ2)1/2

)
− Φ

(
−z(α)− ρ(h− γ)

(1− ρ2)1/2

)
.

It follows that

d q(x; h,γ,ν)

dx
= t1(h,γ,ν)− t2(x; h,γ,ν),

where t1(h,γ,ν) is defined to be

1

z(α)

(
2φ(h) +

m2∑

j=1

ν2(j)
(
φ(h− γ2(j)) + φ(h+ γ2(j))

))
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and t2(x; h,γ,ν) is defined to be

m1∑

j=1

ν1(j)

(
φ(h− γ1(j))

d ℓ(h, γ1(j); x)

dx
+ φ(h+ γ1(j))

d ℓ(−h, γ1(j); x)

dx

)
,

with

d ℓ(h, γ; x)

dx
=

1

(1− ρ2)1/2

(
φ

(
b(h) + x− ρ(h− γ)

(1− ρ2)1/2

)
+ φ

(
b(h)− x− ρ(h− γ)

(1− ρ2)1/2

))
.

Suppose that h ∈ [0, c] and (γ,ν) are given. Then t1(h,γ,ν) is a fixed positive

number. Observe that t2(x; h,γ,ν) is a function of x ∈ [0,∞) that can only take positive

values and dℓ(h, γ; x)/dx approaches 0 as x → ∞. We will use the following theorem to

find x̃ < ∞, such that dq(x; h,γ,ν)/dx > 0 for all x ≥ x̃. This implies that a value of x

that minimizes q(x; h,γ,ν) cannot belong to the interval [x̃,∞).

Theorem 4. Let µ(h, ρ, γ) = b(h)−ρ(h−γ). Then t2(x; h,γ,ν) is a decreasing function

of x ∈
[
x∗,∞

)
, where

x∗ = max
(
|µ(h, ρ, γ1(1))|, |µ(−h, ρ, γ1(1))|, . . . , |µ(h, ρ, γ1(m1))|, |µ(−h, ρ, γ1(m1))|

)
.

Proof. We first prove that, for every h ∈ R, dℓ(h, γ; x)/dx is a decreasing function of

x ∈
[
|µ(h, ρ, γ)|,∞). Observe that, for all x ≥ 0,

φ

(
b(h) + x− ρ(h− γ)

(1− ρ2)1/2

)
+ φ

(
b(h)− x− ρ(h− γ)

(1− ρ2)1/2

)

= φ

(
b(h)− ρ(h− γ) + x

(1− ρ2)1/2

)
+ φ

(
−
(
b(h)− ρ(h− γ)

)
+ x

(1− ρ2)1/2

)
, since φ is an even function,

= φ

(
µ(h, ρ, γ) + x

(1− ρ2)1/2

)
+ φ

(
−µ(h, ρ, γ) + x

(1− ρ2)1/2

)

= φ

(
|µ(h, ρ, γ)|+ x

(1− ρ2)1/2

)
+ φ

(
−|µ(h, ρ, γ)|+ x

(1− ρ2)1/2

)
.

This is a decreasing function of x ∈
[
|µ(h, ρ, γ)|,∞). Consequently, dℓ(h, γ; x)/dx and

dℓ(−h, γ; x)/dx are decreasing functions of x ∈
[
|µ(h, ρ, γ)|,∞) and x ∈

[
|µ(−h, ρ, γ)|,∞),

respectively.

Thus dℓ(h, γ1(j); x)/dx is a decreasing function of x ∈
[
|µ(h, ρ, γ1(j))|,∞

)
, for j =

1, . . . , m1. Therefore
m1∑

j=1

ν1(j)φ(h− γ1(j))
d ℓ(h, γ1(j); x)

dx
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is a decreasing function of x ∈
[

max
j=1,...,m1

|µ(h, ρ, γ1(j))|,∞
)
. Similarly, dℓ(−h, γ1(j); s)/ds

is a decreasing function of s ∈
[
|µ(−h, ρ, γ1(j))|,∞

)
, for j = 1, . . . , m1. Therefore

m1∑

j=1

ν1(j)φ(h+ γ1(j))
d ℓ(−h, γ1(j); s)

ds

is a decreasing function of s ∈
[

max
j=1,...,m1

|µ(−h, ρ, γ1(j))|,∞
)
. Therefore t2(x; h,γ,ν) is a

decreasing function of x ∈
[
x∗,∞

)
.

We use this theorem to find x̃ < ∞, such that dq(x; h,γ,ν)/dx > 0 for all x ≥ x̃ as

follows. First evaluate x∗ and then dq(x∗; h,γ,ν)/dx. If dq(x∗; h,γ,ν)/dx > 0 then set

x̃ = x∗ and stop; otherwise use the R function uniroot to find the solution for x ∈ [x∗,∞)

of dq(x; h,γ,ν)/dx = 0 and then set x̃ equal to this solution.
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