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Introduction

�ere are two types of estimation for any identity. One is point 
estimation and the other is con�dence interval estimation. In Survival 
analysis literature, con�dence interval estimate for the survival function 
is not new. Especially con�dence interval estimate for the baseline 
survival function is extensively studied with many authors. For example, 
for Kaplan-Meier survival function con�dence interval estimate is 
studied using Greenwood formulae by [4,5] and many others. In Cox’s 
proportional hazard model, [6,7] formed log transformed con�dence 
interval for survival function with covariates. Her idea more recently 
extended by [1] to the exponential distribution and [2] to exponential 
proportional hazard model, respectively. Weibull proportional hazard 
function is also investigated by [3]. Interval estimate for survival 
function is generally useful in the analysis of survival or life time data. 
In this study, symmetric type and proportional odds transformed 
con�dence interval approach is developed for log-logistic survival 
function without covariates and proportional odds regression survival 
function with covariates. 

 �e plan of this study is given as follows. In the next section, the 
log-logistic distribution and proportional odds regression and their 
important functions are presented. In section 3, it is formed con�dence 
interval estimate for the survival function of log-logistic distribution 
and proportional odds regression model too. In section 4; it has given a 
real data example and as an extension of the real data, simulation study 
for illustrating the proposed method in this study. �e study completed 
with a discussion section. 

Log-logistic distribution and proportional odds regression 
model

Log logistic distribution: �e log-logistic distribution has the 
proportional odds property and the distribution is the natural one to 
use in conjunction with the proportional odds model. Cox and Oakes 
[8] demonstrated that the log-logistic distribution is the only one that
shares the accelerated survival time property and proportional odds
property. Situations in which the hazard function changes, direction

of hazard function can arise. For example, a patient faces an increasing 
hazard of death in heart transplantation over the �rst few days or a�er 
the transplant, while the body adapts to the new recovers. �e hazard 
then decreases with time as the patient recovers. In situations such as 
this, a unimodal hazard function may be appropriate. 

  A particular form of unimodal hazard is the function
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�is hazard function decreases monotonically if α ≤ 1. If α > 1, than 
the hazard has a stable mode. �e survival function corresponding to 
the hazard function in equation (1) is given below 
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Probability density function is also given below
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�is is the density function of a random variable T which has a 
log-logistic distribution with parameters α and λ. �e distribution is 
so called because the variable logT has log-logistic distribution and 
a symmetric distribution whose probability density function is very 
similar to the normal distribution [9]. 

 �e suitability of the log-logistic distribution for the analysis of a 
data set can be empirically checked using a linear relationship derived 
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Abstract

Log-logistic and Weibull distributions have both accelerated survival time property. The log-logistic distribution has 
also proportional odds property. Log-logistic distribution has unimodal hazard curve which changes direction. Link [6,7] 

presented a confidence interval estimate of survival function using Cox’s proportional hazard model with covariates. Her 
idea more recently extended by [1] to the exponential distribution and [2] to exponential proportional hazard model, re-
spectively. The same idea has been extended to the Weibull proportional hazard regression model by [3]. In this study, 
it is formed on confidence interval for log-logistic distribution survival function for any values of the time provided that 
the survival times have a log-logistic distributed random variable. It is also extended the same results to the proportional 
odds regression. A Real time data and a simulation data examples are also considered in the study for illustration the 
discussed confidence interval.
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from expression of S(t) and F(t)=1-S(t). �e odds of surviving beyond 
time t are S(t)/F(t)=(λt)-α and consequently log odds of survival beyond 

t can be expressed as 
( )
( )

log log log
S t

t
F t

α λ α
   = − − 
  

 or equivalently 

( )
( )

log log log
F t
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S t
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                                                      (4)

�at is, the log-logistic distribution corresponds to a linear model 
for the log odds of failure over the logarithm of time, with slope α 
[10,11]. �e Kaplan-Meier sample estimate Ŝ

KM
(t) can be used to 

calculate the log odds and a plot of them versus log t should follow 
approximately a straight line for the log-logistic model in order to be 
suitable. 

Proportional odds regression model

 �e application of accelerated survival time and proportional odds 
models to the analysis of reliability data has recently been described 
by [12]. �e general proportional odds model for survival data was 
introduced by [13,14] describes the proportional odds model. 

�e log-logistic distribution is commonly extended to include a 
vector of covariates x by reformulating the survival function is given 
as follows 

( ) ( ) ( )
-1
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                                                     (5)

Under the accelerated failure time model, the hazard of death at the 
time of t is given below

( ) ( )( ) ( ) ( )
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                                (6) 

�us the survival time for the ith observation also has a log-logistic 
distribution and therefore it has both accelerated failure time and 
proportional odds property. 

Con�dence intervals for survival function

Log-logistic distribution: First multiply, both numerator and 
denominator, by α with equation (2). �e equation value will not 
change. �erefore we can re-write equation (2) as follows 

( ) ( )
1
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                                                                 (7)  

If we take natural logarithm of α(λ)α identity, we can get the result as 
logα+ α logλ. Now let R

i
 = logα + logλ be the score (risk score) function. 

�en we denote logλ with β
0
 and logα with β

1
, the score function can 

be written as R
i
 = β

0 
+ β

1
. �erefore the survival function given (7) can 

be re-written as follows
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                                                                       (8)

Estimated survival function is also given by

( )
1ˆ ˆˆ ˆ ˆ iR

i iS t e tαα α
−

 = +  
                                                                           (9) 

As a result we can prepare for con�dence intervals of survival 
function for the log-logistic distribution. To do this, we �rst can form 
con�dence intervals for R

i
  then extended it to the survival function. 

For the score function R
i 
100(1-α)% con�dence interval is given by 

( ) ( ){ }2 2
ˆ ˆ ˆ ˆPr 1i i i i iR z se R R R z se Rα α α− ≤ ≤ + = −                        (10)

or 

( )low(i) upp(i)
ˆ ˆPr 1iR R R α≤ ≤ = −                                                         (11)

Here Zα/2 denotes coordinate value of standard normal distribution 
at the signi�cance level of α/2 and se( R̂i ) is also denotes standard error 
of estimated score function. �e estimated standard error of the score 
function is calculated using by

( ) ( ){ }
1 2ˆˆ â xT

i i ise R x Var=                                                                 (12)

where, 1 1T
ix  =    is a unit column vector in this simple model and 

Var( â̂ ) is also variance-covariance matrix of estimated parameters. 

We can easily form a 100(1-α)% con�dence intervals of survival 
function using score function con�dence intervals. So that, the 
con�dence intervals for survival function of a log-logistic distribution 

are given by ( ) ( )
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 for upper limit, respectively. So, 

100(1-α)% con�dence intervals for survival function of the log-logistic 
distribution can given as following 

( ) ( ) ( ){ }ow upp
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Proportional odds regression model

Let R
i 
= logα + logλ + αθTx

i
  be score function for i-th observation. 

If we denote αlogλ with β
0
 and logα with β

1
, then the score function for 

i-th observation can be written as R
i
 = β

0 
+ β

1
 + βTx

i
 . Here βT is (p×1) 

column vector and equals to αθT. 

Let β
0 

+ β
1
 + βT denote as âT a (k×1) size column vector and y

i
 

also a same size column vector too. �en the score function for i-th 
observation can be written as  â yT

i iR = . So that, the survival function 
given in (2) can be written as in equation (14)

( )
1

; y iR
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−
 = +                                                                  (14) 

Estimated survival function is also given by equation (15)

( )
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−

 = +  
                                                                  (15)

�erefore we can prepare con�dence intervals of survival function 
for the proportional odds regression. As we made for log-logistic 
distribution, �rstly we can form con�dence intervals for R

i
 then 

extended it to the survival function. For the score function R
i 
100(1-

α)% con�dence interval is given by equation (10) or equation (11). �e 
estimated standard error of the score function for i-th observation is 
calculated using equation (16)

( ) ( ){ }
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i i ise R Var=                                                                    (16)

where, 1y 1 1T
i i kix x =    a column vector in this model and 

( )ˆ
âVar  is also variance-covariance matrix of estimated parameters. In 

this model, the estimated variance-covariance matrix might be given 
as follows 
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A 100(1-α)% con�dence intervals of survival function uses 
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con�dence intervals of score function. Namely, the con�dence 
intervals for survival function of a proportional odds model are 

given by ( ) ( )

1ˆ ˆ
low

ˆ ˆ ˆ; y UPP iR
i i iS t e tαα α

−
 

= +  
 for lower limit and 

( ) ( )

1ˆ ˆ
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= +  
 for upper limit, respectively. So, 

100(1-α)% con�dence intervals for survival function of the proportional 
odds regression can be shown as follows

( ) ( ) ( ){ }ow upp
ˆ ˆPr ; ; ; 1l i i i i i iS t y S t y S t y α≤ ≤ = −                                (18)

Model selection criterion

 In this study we tested performance of proposed model with 
log-likelihood value and besides with AIC and BIC model selection 
criterions. �e Akaike information criterion (AIC) is a measure of 
the relative goodness of �t of a statistical model. It was developed by 
[15]. Bayesian Information Criterion (BIC) is a criterion for model 
selection among a class of parametric models with di�erent numbers 
of parameters. It has been introduced by [16].�e AIC and BIC is given 
as follows, respectively

AIC=-2×loglik+2×p                                    (19)

BIC=-2×loglik+p×ln(n)s                                                                    (20)

When data has small samples size, corrected AIC can be given

2
2 log

( 1)

p n
AICc lik

n p

× ×
= − × +

− −
                 (21)

where p is de�ned as number of free parameters.

Given a set of candidate models for the data, the preferred model is 
the one with the smallest value of Log Likelihood, AIC and BIC.

Illustrative example

 In this section a real data illustration considered to con�dence 
intervals for survival function which we discussed it earlier sections in 
this study. For this reason, we �rst give some information about the 
data just in the next subsection. Second, we use the data for illustrating 
con�dence intervals estimation for the survival function of the 
proportional odds regression model. 

Real time data: Ovarian cancer study

Data are from [17] on ovarian cancer. �e data are taken from 
[18]. �e ovarian cancer frame includes the survival times (in days) 
and indicator variable (status) of death or censoring plus the following 
4 additional variables on each patient. �ese are patient’s age (age), an 
indicator of the extent of the residual disease (residual.dz), treatment 
given (rx) and measure of performance score or functional status using 
the Eastern Cooperative Oncology Group’s scale (ecog.ps). �e survival 
analysis chapter in the S-Plus documentation describes these data sets 
further and illustrates survival analysis methods with them. �ere were 
26 patients in the study. Total censoring ratio is 53.85%. 

Con�dence intervals for survival function in Proportional 
odds regression model

We �rst have taken the goodness of �t for the survival times which 
comes from a log-logistic distribution. To do this, a common and 
useful technique for checking the validity of a parametric model is to 
embed it in larger parametric model and use, e.g., the likelihood ratio 
test to check whether the reduction to the actual model is valid; for 
applications in survival analysis [8,19].

Secondly, the tests of the survival times come from a log-logistic 
distribution. We use the Kolmogorov-Smirnov type test. �e test 
statistic result is D

26
 = 0.1251. �is further indicates that a log-logistic 

distribution is a reasonable one.

 �irdly, one use of the Nelson-Aalen or Kaplan-Meier estimators 
for survival data is to check graphically whether the survival time will 
appear to follow a certain parametric distribution; in fact, this was the 
ration able behind the estimator in [20] original paper. For the log-logistic 

distribution with log odds function is 
( )
( )

log log log
F t

t
S t

α λ α
  

= + 
  

so 

that log odds plotted against log t should yield an approximately straight 
line for the log-logistic distribution �is result is given in (Figure 1a) 
for the ovarian cancer data. �e curve is roughly linear, suggesting that 
a model may be appropriate. In the same Figure, the corresponding 
log odds estimates (straight lines) based on log-logistic distribution 
are added the graph and it can seen for approximate the Kaplan-Meier 
estimates quite good too. In (Figure 1b), QQ plot support same results 
in (Figure 1a). In (Figure 1c) Baseline Hazard function shows unimodal 
shape. Also in (Figure 1d), proportional odds regression hazard is a 
increasing function for risk score function of age.

As a result, (Figure 1d) summarizes that when ages and survival 
times increases hazard function increases in same direction.

We have also �t the Exponential Hazard Regression (HER), 
Proportional odds Hazard Regression (POR), Log-Normal Hazard 
Regression (LNR) and Weibull Hazard Regression (WHR) models to 
the data in ovarian cancer study. �e log likelihood, AIC, AICc and 
BIC values for each model are given in (Table 1). From the table, we 
can see that the proportional odds regression model provides the best 
�ts for the data. 

As we can see from (Table 1), Proportional odds regression values 
are smallest for all criterions. �us we can easily say, Proportional odds 
regression model is better than the other models.

�erefore we can �t the Proportional odds regression model and 
the results are given in (Table 2). From the (Table 2), we can see that all 
three parameters are very signi�cant. 

For calculating the con�dence intervals of survival functions 
estimated variance-covariance matrix is given below 

( )
9.3920 0.2210 -0.1519

ˆ
â 0.2210 0.0589 -0.0031

-0.1519 -0.0031 0.0025

V

 
 

=  
  

.

 Some calculations of con�dence intervals for survival function in 
the log odds regression model is given in (Table 3). Survival probabilities 
estimates and 95% con�dence intervals are also given (Figure 2). 

Approximate 95% con�dence limits are obtained using the risk 
score function and log odds transformation approach.

Figure 2 shows the log odds regression survival function estimate 
for ovarian cancer with approximate 95% con�dence intervals using 
(18). Because of small sample data the con�dence interval results are 
little bigger than expected. However we can easily say, the result is quite 
good.

Simulation study

 In order to Ovarian Cancer Data has small sample; to see the 

http://en.wikipedia.org/wiki/Goodness_of_fit
http://en.wikipedia.org/wiki/Statistical_model
http://en.wikipedia.org/wiki/Model_selection
http://en.wikipedia.org/wiki/Model_selection
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Figure 1: (a) Graphical Test For a Log-Logistic Distribution;  (b) QQ Plot;  (c) Baseline Hazard Function; (d) odds regression Hazard Function for Ovarian Cancer Study
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Figure 2: Estimated survival curve with ovarian cancer based on a Proportional 
odds regression.

behavior of Proportional odds regression on big samples, a simulation 
study is studied in this sub-section. Simulation study data has 100 
variable value and obtained as follows:

Step 1: Mean, variance and standard deviation for age variable in 
Ovarian Cancer Data is calculated. (σ =10.10036, µ = 
56.16544) 

Step 2: 100 age variable values has been simulated from normal 
distribution. Here Age = zσ + µ  where z~N(0,1).

Step 3: 100 random variable value has simulated with uniform 
distribution in (0,1) interval.

Model Log Likelihood 
Value AIC AICc BIC

EHR -91.7793 185.9986 185.7253 186.8167
POR -89.5509* 183.1018* 183.6235* 185.6180*
LNR -89.7349 183.4698 183.9915 185.9860
WHR -90.0012 184.0024 184.8241 186.5186

 Table 1: Results of Fitting Parametric Models to the Ovarian Cancer Data.

Parameter Value Std. Err. z-Test p-value

0β̂ ( ˆˆ logα λ= ) -25.9330 3.065 -22.85 0.000

1β̂ ( ˆlogα= ) 0.8003 0.243 3.30 0.000

2β̂  
( ˆα̂θ= ) 0.1975 0.050 3.96 0.001

Table 2: Results of Proportional odds regression Model to the Ovarian Cancer 
Data.

Step 4: With the help of parameter estimation values of Ovarian Cancer 

Data, survival times is simulated. To do this; i 0 1 2*R β β β= + +
  

 

Age is evaluated with risk function. Survival time is simulated 

with the formula 
i

1/

i
i

i

(1 u )e
t

u

R
α

α − − 
=  
  

 
. Where, α =2.22611 

and 0 1 2*β β β+ +
  

 are given as in (Table 2).

Step 5: 100 random variable value is simulated with Bernoulli 
distribution which has mean value (successful probability) 
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Figure 3: (a) Graphical Test For a Log-Logistic Distribution;  (b) QQ Plot; (c) Baseline Hazard Function;  (d) odds regression Hazard Function for Simulation Study.
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1040 38.8932 1.273 -19.94846 -17.45311 -14.95777 0.573 0.942 0.995
1106 44.6000 1.022 -18.32942 -16.32627 -14.32312 0.383 0.821 0.971
1129 53.9068 0.674 -15.80995 -14.48859 -13.16723 0.157 0.411 0.724
1206 44.2055  1.039 -18.44022 -16.40417 -14.36811 0.348 0.804 0.969
1227 59.5890 0.555 -14.45356 -13.36660 -12.27965 0.060 0.159 0.359
268 74.5041 0.831 -12.05099 -10.42153 -8.792072 0.054 0.227 0.600
329 43.1370 1.085 -18.74130 -16.61515 -14.48900 0.916 0.989 0.999
353 63.2192 0.546 -13.72033 -12.64980 -11.57927 0.336 0.596 0.812
365 64.4247 0.557 -13.50280 -12.41177 -11.32073 0.266 0.520 0.763
377 58.3096  0.571 -14.73922 -13.61923 -12.49924 0.523 0.771 0.912

Table 3: 95% Confidence Intervals for Survival Probabilities of Proportional odds regression Model to the Ovarian Cancer Data.
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p=0.80. �erefore 20% censored survival times is identi�ed 
using these variables.

�e result for simulation data in graphs is given in (Figure 3). 
In (Figure 3a), the curve is quite linear. In the same Figure, the 
corresponding log odds estimates (straight lines) based on log-logistic 
distribution are added the graph and it can seen for approximate 
the Kaplan-Meier estimates are very good. In (Figure 3b), QQ plot 
support same results in (Figure 3a). In (Figure 3) Baseline Hazard 
function shows unimodal shape. Also in (Figure 3d), proportional odds 
regression hazard is a increasing for risk score function of age.

Table 4 results shows that Proportional odds regression model 
has the smallest criterion values than the other models. We can easily 
say that it is the best model above others. In Table 5, estimation 
of parameters is given and we can say that all estimations are very 
signi�cant.

For calculating the con�dence intervals of survival functions 
estimated variance-covariance matrix is given below: 

( )
1.116442 0.010860 -0.01848

ˆ
â 0.010860 0.00874 -0.00016

-0.01848 -0.00016 0.00032

V

 
 

=  
  

.

In (Figure 4), intervals of simulation data are quite small. Cox-Snell 
residuals intervals gave robust intervals compared to real time data. 
�us we can easily say that when data sample gets bigger, expected 
intervals will be smaller on survival structural data sets.

Discussion

Many statistical investigations can occur both estimation and 
hypothesis testing. Estimation can be made in two di�erent types. One 
is point estimation and the other is interval estimation. Both point 
and interval estimations can be achieve with an estimator. Interval 
estimation is generally called con�dence interval estimation and 
naturally the estimators are also called con�dence interval estimators.

Survival function may be the most important function in survival 
analysis or reliability analysis. Probability of living longer than t time 
is an important issue for both doctors and patients or patient relatives. 
Researching for factors which a�ects this issue is also important for 
determining risk factor function variables on survival times. It is 
necessary to search in�uence of hazard function for survival analysis. 
Both point estimation and con�dence interval estimation of the survival 
function may be achieved by �tting parametric distributions. Semi-
parametric proportional hazard model is known Cox regression model. 
In the Cox regression model con�dence interval estimation of survival 
function has studied by Link [6,7]. Her idea more recently extended 
by Alakus et al. [1] to the exponential distribution and Alakus et al. 
[2] to exponential proportional hazard model, respectively. Weibull 
proportional hazard function is also investigated by Alakuş [3].

For this reason, in this study we o�er a new con�dence interval 
with transformed log odds in symmetric type in proportional odds 
regression model. Proposed approach is studied with real time data 
and simulation data. Results were quite good enough. When sample 
size getting larger, con�dence intervals were getting tighter. Model 
selection criterions Log-Likelihood, AIC and BIC gave the best results 
for proposed model. Con�dence intervals are narrower than other 
studied models. At the thought real time data has small sample, a larger 
data set with simulation data also studied. Results are more robust than 
small sample. Based on the theorem of large numbers law; Ŝ(t;y) will be 
converges in probability to S(t;y). �is summarizes us when sample size 
is quite enough, distribution of risk function approximate to normal 
distribution and this becomes Ŝ(t;y) closer to S(t;y). �is is what we are 
investigating for.

�e investigated con�dence intervals may be extended to log-
normal hazard model. �is problem will be investigated by the 
forthcoming studies. 
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