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Abstract

This paper presents the new confidence interval for the coefficient
of variation of lognormal distribution with restricted parameter. We
proved the coverage probability and expected length of our proposed
confidence interval.
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1 Introduction

Let X = (X1, X2, . . . , Xn) be a random variable having a lognormal distribu-
tion, and μ and σ2, respectively, are denoted by the mean and the variance
of Y where Y = ln(X) ∼ N(μ, σ2). The probability density function of the
lognormal distribution, LN(μ, σ2), is

f(x, μ, σ2) =

⎧⎪⎨
⎪⎩

1

xσ
√

2π
exp

(
−(ln(x) − μ)2

2σ2

)
; for x >0

0 ; for x ≤0.

(1)
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The mean and variance of lognormal population is E(X) = exp (μ + σ2/2)
and V ar(X) = exp (2μ + σ2)(exp (σ2) − 1). We are interesting to construct
the confidence interval for the CV of the lognormal population (η) which is
denoted by CV =

√
V ar(X)/E(X),

CV = η =

√
exp (2μ + σ2)(exp (σ2) − 1)

exp (μ + σ2/2)

=
√

exp (σ2) − 1 (2)

when parameter η is bounded i.e., r < η < s where r and s are constants and
r < s.

2 Confidence interval for the coefficient of vari-

ation of Lognormal distribution

Let S2 =
1

(n − 1)

n∑
i=1

(Yi − Ȳ )2 where Yi = ln(Xi) ∼ N(μ, σ2), i = 1, 2, . . . , n.

The statistic χ2 =
(n − 1)S2

σ2
is distributed as the chi-square distribution with

(n − 1) degrees of freedom. It is straightforward to see that the 100(1 − α)%
confidence interval for σ2 is

(n − 1)S2

χ2
(n−1),(1−α/2))

≤ σ2 ≤ (n − 1)S2

χ2
(n−1),(α/2)

, (3)

when α ∈ (0, 1) and χ2
(n−1),(α/2) is the α/2 quantile of the chi-square distri-

bution with (n − 1) degrees of freedom.. Verril [4] proposed the 100(1 − α)%
two-sided confidence interval for CV of the lognormal distribution based on
the exact approach (3) which is

CIV = [L,U ] =

⎡
⎣
√√√√exp

(
(n − 1)S2

χ2
(n−1),(1−α/2)

)
− 1,

√√√√exp

(
(n − 1)S2

χ2
(n−1),(α/2)

)
− 1

⎤
⎦ .

(4)
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3 Confidence interval for the coefficient of vari-

ation of Lognormal distribution with restricted

parameter space

We begin this section by considering the relation between a bounded mean and
a bounded variance leading to a bounded coefficient of variation. Consider,

a < μ < b → a2 < μ2 < b2

→ −b2 < −μ2 < −a2

→
∑

Y 2
i

N
− b2 <

∑
Y 2

i

N
− μ2 <

∑
Y 2

i

N
− a2

→ σ2
b < σ2 < σ2

a

where σ2
a =

�
Y 2

i

N
− a2 and σ2

b =
�

Y 2
i

N
− b2. Hence the variance of X is

also bounded, i.e. σ2
b < σ2 < σ2

a. Additionally, we have
√

exp(σ2
b ) − 1 <√

exp(σ2) − 1 <
√

exp(σ2
a) − 1 or r < η < s, where r =

√
exp(σ2

b ) − 1 and

s =
√

exp(σ2
a) − 1.

Following Wang [5] and Niwitpong [2], the confidence interval for η with
restricted parameter, 0 < r < η < s is

CIr = [max (r, L) , min (s, U)] .

In the next section, we have proved two Theorems for the approximated
coverage probability and the expected length of confidence interval CIr.

4 Main results

Theorem 1. The approximated coverage probability of CIr is

E[Φ(W2) − Φ(W1)] where W2 = min(s,U)√
A

, W1 = max(r,L)√
A

where

A = S.E.ofCV ≈
√

σ4 exp(2σ2)
2n(n−1)(exp(σ2)−1)

.

E[·] is an expectation operator and Φ(·) is the cumulative distribution function
of N(0, 1) and the expected length of CIr are respectively

1.1 s − r, if max(r, L) = r and min(s, U) = s,

1.2
√

(1 + c1)σ2 + O(c2
1σ

4(n − 1)−1) − r, if max(r, L) = r and min(s, U) =
U ,
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1.3 s−√c2σ2 + σ2 + O((c2
2σ

4)(n − 1)−1), if max(r, L) = L and min(s, U) =
s,

1.4
√

(1 + c1)σ2 + O(c2
1σ

4(n − 1)−1)−√c2σ2 + σ2 + O((c2
2σ

4)(n − 1)−1), if
max(r, L) = L and min(s, U) = U ,

when c1 = n−1
χ2

(n−1),(α/2)

and c2 = n−1
χ2

(n−1),(1−α/2)

.

Proof. It is easy to see that the standard error of η is A by using the delta
method. Also apply Theorems 1 and 2 of Niwitpong and Niwitpong [3] or
Niwitpong [1], the coverage probability of CIr is

1 − α = P

[
max(r, L) ≤ η ≤ min(s, U)

]

= P

[
max(r, L)

A
≤ η

A
≤ min(s, U)

A

]

= E[I{W1<Z<W2}(ξ)], I{W1<Z<W2}(ξ) =

{
1, if ξ ∈ {W1 < Z < W2}
0, otherwise

= E[E[I{W1<Z<W2}(ξ)]|S2]

= E[Φ(W2) − Φ(W1)].

The expected length of CIr is easy to see that

1.1 if max(r, L) = r and min(s, U) = s, the expected length of CIr is E(s−r) =
s − r,
1.2 if max(r, L) = r and min(s, U) = U , the expected length of CIr is

E(U − r) = E(

√√√√exp

(
(n − 1)S2

χ2
(n−1),(α/2)

)
− 1 − r

= E(
√

exp(c1S2) − 1 − r

≥
√

E(exp(c1S2)) − 1 − r

=

√
E(1 + c1S2 +

(c1S2)2

2!
+

(c1S2)3

3!
+ ...) − 1 − r

=

√
c1σ2 + σ2 +

c2
1σ

4

n − 1
+

E(c1S2)3

3!
− r

=
√

(1 + c1)σ2 + O(c2
1σ

4(n − 1)−1) − r.
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1.3 if max(r, L) = L and min(s, U) = s, the expected length of CIr is

E(s − L) = s − E(

√√√√exp

(
(n − 1)S2

χ2
(n−1),(1−α/2)

)
− 1

= s − E(
√

exp(c2S2) − 1

≥ s −
√

E(exp(c2S2)) − 1

= s −
√

E(1 + c2S2 +
(c2S2)2

2!
+

(c2S2)3

3!
+ ...) − 1

= s −
√

c2σ2 + σ2 +
c2
2σ

4

n − 1
+

E(c2S2)3

3!

= s −
√

c2σ2 + σ2 + O((c2
2σ

4)(n − 1)−1).

1.4 if max(r, L) = L and min(s, U) = U , the expected length of CIr is

E(U−L) =
√

(1 + c1)σ2 + O(c2
1σ

4(n − 1)−1)−
√

c2σ2 + σ2 + O((c2
2σ

4)(n − 1)−1)

.
Hence, Theorem 1 is proved.
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