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Abstract: The Birnbaum–Saunders (BS) distribution, also known as the fatigue life distribution,
is right-skewed and used to model the failure times of industrial components. It has received much
attention due to its attractive properties and its relationship to the normal distribution (which is
symmetric). Furthermore, the coefficient of variation (CV) is commonly used to analyze variation
within a dataset. In some situations, the independent samples are collected from different instruments
or laboratories. Consequently, it is of importance to make inference for the common CV. To this
end, confidence intervals based on the generalized confidence interval (GCI), method of variance
estimates recovery (MOVER), large-sample (LS), Bayesian credible interval (BayCrI), and highest
posterior density interval (HPDI) methods are proposed herein to estimate the common CV of several
BS distributions. Their performances in terms of their coverage probabilities and average lengths
were investigated by using Monte Carlo simulation. The simulation results indicate that the HPDI-
based confidence interval outperformed the others in all of the investigated scenarios. Finally, the
efficacies of the proposed confidence intervals are illustrated by applying them to real datasets of
PM10 (particulate matter≤ 10 µm) concentrations from three pollution monitoring stations in Chiang
Mai, Thailand.

Keywords: confidence interval; common coefficient of variation; Birnbaum–Saunder distribution; Bayesian

1. Introduction

The original idea behind the Birnbaum–Saunders (BS) distribution lies in an investiga-
tion of vibrations in commercial aircraft that cause material fatigue. Fatigue is a type of
structural deterioration that happens when a material is subjected to fluctuating stress and
tension [1]. To address these problems, Birnbaum and Saunders [2] proposed the fatigue
life distribution, which is commonly known as the BS distribution to describe the failure
time of materials and equipment subjected to dynamic loads where failure is caused by the
initiation and growth of a dominant fracture. The BS distribution is positively asymmetric
and unimodal with two positive parameters: α, the shape parameter, and β, which is both
the scale parameter and the median of the distribution. In addition, it has many attractive
properties and has a close relationship with the normal distribution. The BS distribution
is very effective for fitting data that are all positive. Despite its origins in materials sci-
ence, the BS distribution has recently been applied to various other fields, including the
environment, business, industry, finance, and medical sciences [3–6].

The coefficient of variation (CV) is an important descriptive statistic for analyzing the
variability of data. In particular, it is a measure of variability relative to the mean. The CV
is defined as a ratio of the standard deviation (σ) to the mean (µ), namely CV = σ/µ. It is
free from the unit of measurement, and, thus, it has been preferentially used for comparing
relative variability between two or more populations rather than the variance or stan-
dard deviation [7]. In many situations, independent samples are collected from methods
involving different instruments, methodologies, and/or laboratories, and so estimating
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the common CV of these related populations is of great interest. Many researchers have
developed confidence intervals for estimating the common CV of several populations
from various distributions using several methods. For example, Tian [8] used the concept
of the generalized confidence interval (GCI) to construct the confidence interval for the
common CV of several independent normal samples. Verrill and Johnson [9] proposed a
likelihood ratio-based confidence interval for a common CV of several normal distributions.
Behboodian and Jafari [10] utilized the concept of generalized p-values and GCI to develop
a new method for estimating the confidence interval for the common CV of several normal
populations. Ng [11] suggested a method for estimating the confidence interval for the com-
mon CV of several lognormal samples by utilizing the concept of the generalized variable.
Thangjai and Niwitpong [12] developed the adjusted method of variance estimates recovery
(MOVER) for constructing the confidence interval for the common CV of two-parameter
exponential distributions and then compared its performance with GCI and large-sample
(LS) confidence intervals. Liu and Xu [13] introduced a new confidence interval for the
common CV of several normal distributions based on the concept of the confidence distri-
bution interval. Recently, Yosboonruang et al. [14] constructed confidence intervals for the
common CV of delta-lognormal distributions using the fiducial GCI (FGCI), equal-tailed
Bayesian credible intervals (BayCrI) based on the independent Jeffreys or uniform priors,
and MOVER.

Estimating the parameters of a BS distribution is of significant interest to many re-
searchers and has recently garnered much attention in the literature. For instance, the maxi-
mum likelihood estimation (MLE) of α and β were introduced in Birnbaum and Saunders
[15] and Engelhardt et al. [16]. Ng et al. [17] presented modified moment estimators
(MMEs) for α and β and a bias reduction method with Jackknife resampling to reduce the
biases of the MMEs and MLEs. Wu and Wong [18] improved the confidence interval for
the two-parameter BS distribution based on a high-order likelihood asymptotic procedure.
Xu and Tang [19] explored Bayesian estimators for α and β under the reference prior by
using Lindley’s method and Gibbs’ sampling to obtain approximate Bayesian estimators
for these two parameters. Wang [20] examined GCI for α, as well as some important
reliability quantities, such as mean, quantiles, and a reliability function. Wang et al. [21]
considered Bayesian estimators under inverse-gamma priors for α and β to compute their
Bayesian estimates and credible intervals. Guo et al. [22] applied a hybrid of the general-
ized inference method and the LS theory for interval estimation and hypothesis testing of
the common mean of several BS distributions. Puggard et al. [23] proposed confidence
intervals for the CV and the difference between the CVs of BS distributions based on GCI,
the bootstrap confidence interval, BayCrI, and the highest posterior density interval (HPDI).
Recently, Puggard et al. [24] presented confidence intervals for the ratio of the variances
of two independent BS distributions using the generalized fiducial confidence interval,
BayCrI, and HPDI based on a prior distribution with partial information and a proper
prior with known hyperparameters. However, estimating the common CV of two or more
independent BS distributions has not previously been reported. Therefore, the goal of this
study is to estimate confidence intervals for the common CV of several BS distributions
based on the concepts of GCI, MOVER, LS, BayCrI, and HPDI.

The remainder of this study is organized as follows. Section 2 provides the methodolo-
gies for constructing confidence intervals for the common CV of several BS distributions.
Section 3 covers the methodology and results of an extensive Monte Carlo simulation study
to compare the performances of the proposed confidence intervals. An illustration of the
proposed confidence intervals with datasets of PM10 (particulate matter (PM) ≤ 10 µm)
concentrations collected in March 2019 from three pollution monitoring stations in Chiang
Mai, Thailand, is presented in Section 4. Finally, conclusions are covered in Section 5.
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2. Methods

Let Xij = (Xi1, Xi2, . . . , Xini ) be random samples of size ni drawn from a BS distribu-
tion, where i = 1, 2, . . . , k and j = 1, 2, . . . , ni. The cumulative distribution function (cdf) of
random variable Xij can be written as:

F(xij) = Φ
[

1
αi

(√ xij

βi
−
√

βi
xij

)]
, xij > 0, αi, βi > 0, (1)

where Φ(·) is the standard normal cdf and αi and βi are the shape and the scale parameters,
respectively. Thus, the probability density function (pdf) of Xij is given by:

f (xij, αi, βi) =
1

2αiβi
√

2π

{(
βi
xij

) 1
2

+

(
βi
xij

) 3
2
}

exp
[
− 1

2α2
i

( xij

β
+

βi
xij
− 2
)]

. (2)

The expected value and variance of Xij are defined as:

E(Xij) = βi
(
1 +

1
2

α2
i
)

(3)

and
V(Xij) = (αiβi)

2(1 + 5
4

α2
i
)
, (4)

respectively. Therefore, the CV of Xij can be easily obtained as:

λi =
αi

√
1 + 5

4 α2
i

1 + 1
2 α2

i
. (5)

According to Ng et al. [17], the MMEs of (αi, βi) are given by:

α̂i =

{
2
([

x̄i

ni

∑
j=1

x−1
ij /ni

]1/2

− 1
)}1/2

and β̂i =

{
x̄i

( ni

∑
j=1

x−1
ij /ni

)−1}1/2

,

where x̄i =
ni
∑

j=1
xij/ni. In addition, it has been shown in the study of Ng et al. [17] that the

asymptotic joint distribution of αi and βi is bivariate normal, which is given by:

(
α̂i
β̂i

)
∼N

(αi
βi

)
,

 α2
i

2ni
0

0 (αi βi)
2

ni

(
1+ 3

4 α2
i

(1+ 1
2 α2

i )
2

)
. (6)

By applying the delta method, it follows that:

√
ni(λ̂i − λi)

d−→ N
[

0,
α2

i
2

(
8(2α2

i + 1)

(α2
i + 2)2

√
5α2

i + 4

)2]
, (7)

where λ̂i =
α̂i

√
1+ 5

4 α̂2
i

1+ 1
2 α̂2

i
. By applying Equation (7), the variance of λ̂i becomes:

δi = V(λ̂i) =
α2

i
2ni

(
8(2α2

i + 1)

(α2
i + 2)2

√
5α2

i + 4

)2

. (8)
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According to Thangjai and Niwitpong [12] and Yosboonruang et al. [14], the common
CV of several BS distributions can be written as:

λ =
∑k

i=1 wiλi

∑k
i=1 wi

, (9)

where wi = 1/V(λ̂i). The following proposed methods are used to construct the confidence
intervals for the common CV of several BS distributions.

2.1. The GCI Approach

Weerahandi [25] introduced the concept of the generalized pivotal quantity (GPQ)
and deduced the GCI as an extension of the classical confidence interval. In contrast to a
traditional pivotal quantity, the GPQ can be a function of the nuisance parameters and has
a distribution that is independent of the unknown parameter and an observed value that is
independent of the nuisance parameters. Therefore, the GCI is useful in situations when
the traditional pivot quantity is either unavailable or difficult to obtain. A full detailed
discussion, as well as several applications can be found in Weerahandi [25,26], Tian [8],
Behboodian and Jafari [10], Chen and Ye [27–29], and Luo et al. [30].

Consider k independent random samples Xi1, Xi2, . . . , Xini from BS distributions. Ac-
cording to Sun [31] and Wang [20], the GPQ for βi can be defined as:

Tβi := Tβi (xij; Ti) =

{
max(βi1, βi2), i f Ti ≤ 0
min(βi1, βi2), i f Ti > 0,

(10)

where xij = (xi1, xi2, . . . , xin) are the observed values of Xij and Ti follow a t-distribution
with ni − 1 degrees of freedom (denoted as Ti∼t(ni − 1)). By applying Equation (10), βi1
and βi2 are the two solutions for:

[
(ni − 1)B2

i −
1
ni

DiT2
i
]
β2

i − 2
[
(ni − 1)AiBi − (1− AiBi)T2

i
]
βi + (ni − 1)A2

i −
1
ni

CiT2
i = 0, (11)

where Ai = n−1
i ∑ni

j=1
√

Xij, Bi = n−1
i ∑ni

j=1 1/
√

Xij, Ci = ∑ni
j=1(

√
Xij − Ai)

2 and Di =

∑ni
j=1(1/

√
Xij − Bi)

2. Subsequently, Wang [20] also established the GPQ for αi which is
derived as:

Tαi := Tαi (xij; υi, Ti) =

[Si2T2
βi
− 2niTβi + Si1

Tβi υi

]1/2

, (12)

where Si1 = ∑ni
j=1 Xij, Si2 = ∑ni

j=1 1/Xij and υi follow a Chi-squared distribution with ni

degrees of freedom (denoted as υi∼χ2
(ni)

). By substituting Tαi into Equations (5) and (8),

the respective GPQs of λi and the variance of λ̂i become:

Tλi =
Tαi

√
1 + 5

4 T2
αi

1 + 1
2 T2

αi

(13)

and

Tδi =
T2

αi

2ni

( 8(2T2
αi
+ 1)

(T2
αi
+ 2)2

√
5T2

αi
+ 4

)2

. (14)

Consequently, the GPQ for the common CV of several BS distributions is the weighted
average of GPQ Tλi based on k individual samples as follows:

Tλ =
∑k

i=1 Twi Tλi

∑k
i=1 Twi

, (15)
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where Twi = 1/Tδi . It follows that the 100(1 − γ)% GCI for λ can be constructed as
[Tλ(γ/2), Tλ(1−γ/2)], where Tλ(γ/2) and Tλ(1−γ/2) denote the 100(γ/2)th and 100(1−
γ/2)th percentiles of Tλ, respectively. Algorithm 1 summarizes the computational steps
for constructing GCI.

Algorithm 1 : GCI approach

1. Generate datasets xij, for i = 1, 2, . . . , k; j = 1, 2, . . . , ni from a BS distribution.
2. Compute Ai, Bi, Ci, Di, Si1 and Si2, respectively.
3. For m = 1 to M
4. Generate Ti∼t(ni − 1), and then compute Tβi by using Equation (10).
5. If Tβi < 0, regenerate Ti∼t(ni − 1).
6. Generate υi∼χ2

(ni)
, and then compute Tαi by using Equation (12).

7. Compute Tλi and Twi to obtain Tλ.
8. (End M loops)
9. Compute Tλ(γ/2) and Tλ(1− γ/2).

2.2. The MOVER Approach

The original concept behind MOVER is to estimate a closed-form confidence interval
for the sum or difference between two independent parameters based on the confidence
intervals of the individual parameters [32,33]. The MOVER technique was recently applied
to a linear combination of parameters θ1, θ2, . . . , θk [34]. Suppose ∑k

i=1 ciθi is a linear com-
bination of parameters θ1, θ2, . . . , θk, where ci are known constants. Assume that θ̂i is an
unbiased estimate of θi. In addition, let (li, ui) denote the 100(1− γ)% confidence interval
for θi, for i = 1, 2, . . . , k. Hence, the 100(1− γ)% MOVER confidence interval for ∑k

i=1 ciθi
can be written as:

L =
k

∑
i=1

ci θ̂i −

√√√√ k

∑
i=1

c2
i (θ̂i − l∗i )

2 ; l∗i =

{
li if ci > 0

ui if ci < 0
(16)

and

U =
k

∑
i=1

ci θ̂i +

√√√√ k

∑
i=1

c2
i (θ̂i − u∗i )

2, ; u∗i =

{
ui if ci > 0
li if ci < 0.

(17)

By applying Equation (13), the 100(1− γ)% confidence interval for λi based on the
GPQs becomes

[Li, Ui] = [Tλi (γ/2), Tλi (1− γ/2)], (18)

where Tλi (γ/2) and Tλi (1− γ/2) denote the 100(γ/2)th and 100(1− γ/2)th percentiles of
Tλi , respectively. Therefore, the 100(1− γ)% MOVER confidence interval for the common
CV of several BS distributions can be expressed as

L =
k

∑
i=1

c∗i λ̂i −

√√√√ k

∑
i=1

c∗2i (λ̂i − L∗i )
2 ; L∗i =

{
Li if c∗i > 0
Ui if c∗i < 0

(19)

and

U =
k

∑
i=1

c∗i λ̂i +

√√√√ k

∑
i=1

c∗2i (λ̂i −U∗i )
2 ; U∗i =

{
Ui if c∗i > 0
Li if c∗i < 0,

(20)

where c∗i = wi/ ∑k
j=1 wj. The confidence interval based on MOVER can be easily con-

structed using Algorithm 2.
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Algorithm 2 : MOVER approach

1. Generate datasets xij, for i = 1, 2, . . . , k; j = 1, 2, . . . , ni from a BS distribution.
2. Compute c∗i and λ̂i.
3. Compute the 100(1− γ)% GCI for λi by applying Equation (18).
4. Compute L and U, by using Equations (19) and (20), respectively, leading to obtain

the 95% confidence interval based on MOVER.

2.3. The LS Approach

A large sample is a set of values that are used to estimate the true value of a population
parameter. For the BS distribution, the LS estimate of the CV is a pooled estimate of it, as
defined in Equation (9). Therefore, the 100(1− γ)% LS confidence interval for the common
CV can be derived as:

[LLS, ULS] =

[
λ̂− z1− γ

2

√√√√1/
k

∑
i=1

wi, λ̂ + z1− γ
2

√√√√1/
k

∑
i=1

wi

]
. (21)

Algorithm 3 was applied to obtain the LS confidence interval.

Algorithm 3 : LS approach

1. Generate datasets xij, for i = 1, 2, . . . , k; j = 1, 2, . . . , ni from a BS distribution.
2. Compute λi to obtain λ̂.
3. Compute the 95% LS confidence interval for λ by using Equation (21).

2.4. The BayCrI Approach

The Bayesian method involves making statistical inferences about a parameter based
on two sources of information: experimental data via its likelihood function and judgment
based on previous knowledge via its prior distribution. Combining these data sources
results in uncovering the posterior distribution.

For the BS distribution, the likelihood function for the parameters (αi, βi) from random
sample xij = (xi1, xi2, . . . , xini ) can be written as:

L(xij|αi, βi) ∝
1

αi
ni βi

ni

ni

∏
j=1

[(
βi
xij

) 1
2

+

(
βi
xij

) 3
2
]

exp
[
−

ni

∑
j=1

1
2α2

i

( xij

βi
+

βi
xij
− 2
)]

. (22)

The reference (independent Jeffreys’) prior of a BS distribution can lead to an improper
posterior distribution [35], so a suitable prior with known hyperparameters is needed to
ensure that a proper one is obtained. By utilizing useful reparameterization ηi = α2

i , an
inverse-gamma (IG) distribution with parameters ai and bi is a suitable prior for ηi (denoted
as IG(ηi|ai, bi)). In addition, an IG distribution with parameters ci and di is a suitable prior
for βi (denoted as IG(βi|ci, di)) [21]. Hence, the joint posterior density function of (ηi, βi)
can be obtained by combining the likelihood function from Equation (22) with the IG prior
distributions for ηi and βi as follows:

p(ηi, βi|xij) ∝ L(xij|αi, βi)π(ηi|ai, bi)π(βi|ci, di)

∝
1

(ηi)
ni
2 β

ni
i

ni

∏
j=1

[(
βi
xij

) 1
2

+

(
βi
xij

) 3
2
]

exp
[
−

ni

∑
j=1

1
2ηi

( xij

βi
+

βi
xij
− 2
)]

× (ηi)
−ai−1exp

(
− bi

ηi

)
β
−ci−1
i exp

(
− di

βi

)
.

(23)
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Subsequently, the marginal posterior distribution of βi can be written as:

π(βi|xij) ∝ β
−(ni+ci+1)
i exp

(
− di

βi

) ni

∏
j=1

[(
βi
xij

) 1
2

+

(
βi
xij

) 3
2
]

×
[ ni

∑
j=1

1
2

( xij

βi
+

βi
xij
− 2
)
+ bi

]−(ni+1)
2−ai

.

(24)

Moreover, the conditional posterior distribution of ηi given βi can be derived as:

ηi|βixij∼IG
(

ni
2
+ ai,

1
2

ni

∑
j=1

( xij

βi
+

βi
xij
− 2
)
+ bi

)
. (25)

Since the marginal posterior in Equation (24) is mathematically intractable, the Markov
Chain–Monte Carlo method can be utilized to draw posterior samples to be used for
inference. According to Wang et al. [21], the posterior sample of βi (β∗i ) can be generated
by applying the generalized ratio-of-uniforms method [36] as follows.

Let

A(ri) =

{
(ui, vi) : 0 < ui ≤

[
π

(
vi

uri
i
|xij

)]1/(ri+1)}
, (26)

where π(·|xij) is defined as in Equation (24) and ri ≥ 0 is a constant value. If (ui, vi)

is a random vector uniformly distributed over A(ri), then βi = vi/uri
i has probability

density function π(βi|xij)/
∫

π(βi|xij)dβi. In general, directly generating (ui, vi) uniformly
over A(ri) is not possible, so the accept–reject method from minimal bounding rectangle
[0, a(ri)]× [b−(ri), b+(ri)] is applied, where

a(ri) = sup
βi>0
{[π(βi|xij)]

1/(ri+1)}, (27)

b−(ri) = inf
βi>0
{βi[π(βi|xij)]

ri/(ri+1)}, (28)

and
b+(ri) = sup

βi>0
{βi[π(βi|xij)]

ri/(ri+1)}. (29)

As in Wang et al. [21], a(ri) and b+(ri) are finite, whereas b−(ri) = 0. The principal
steps of the generalized ratio-of-uniforms method for generating the posterior sample of βi
from Equation (24) can be summarized as follows:

1. Calculate a(ri) and b+(ri).
2. Generate ui and vi from U(0, a(ri)) and U(0, b+(ri)), where U(v, w) is a uniform

distribution with parameters v and w.
3. Calculate ρi = vi/uri

i .
4. If ui ≤ [π(ρi|xij)]

1/(ri+1), set β∗i = ρi; otherwise repeat the procedure.
For the posterior sample of αi (denoted as α∗i ), a value for ηi from Equation (25) is

generated by using the LearnBayes package from the R software, then α∗i =
√

ηi. By
Equations (5) and (8), the Bayesian estimator for the CV and variance of CV become

λ∗i =
α∗i

√
1 + 5

4 α∗2i

1 + 1
2 α∗2i

(30)

and

δ∗i =
α∗2i
2ni

(
8(2α∗2i + 1)

(α∗2i + 2)2
√

5α∗2i + 4

)2

, (31)
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respectively. Consequently, the Bayesian estimator for the common CV of several BS
distributions can be derived as

λ∗ =
∑k

i=1 w∗i λ∗i
∑k

i=1 w∗i
, (32)

where w∗i = 1/δ∗i . Finally, the 100(1− γ)% BayCrI for λ can be constructed as [λ∗(γ/2), λ∗(1−
γ/2)], where λ∗(γ/2) and λ∗(1− γ/2) denote the 100(γ/2)th and 100(1− γ/2)th per-
centiles of λ∗, respectively. Therefore, BayCrI for λ can be estimated via Algorithm 4.

Algorithm 4 : BayCrI approach

1. Generate datasets xij, for i = 1, 2, . . . , k; j = 1, 2, . . . , ni from a BS distribution.
2. Set the values for ai, bi, ci, di, and ri.
3. Compute a(ri) and b+(ri).
4. At the hth step,

(a) Generate ui∼U(0, a(ri)) and vi∼U(0, b+(ri)), independently, and then com-
pute ρi = vi/uri

i .
(b) If ui ≤ [π(ρi|xij)]

1/(ri+1), accept ρi and set β∗i,(h) = ρi; otherwise, repeat step (a).

(c) Generate η̃i,(h)∼IG
(

ni
2 + ai, 1

2

ni
∑

j=1

(
xij

β∗i,(h)
+

β∗i,(h)
xij
− 2
)
+ bi

)
and then α∗i,(h) =√

η̃i,(h).
(d) Compute λ∗i,(h) and w∗i,(h) to obtain λ∗(h).

5. Repeat step (4) H times.
6. Compute the 100(1− γ)% BayCrI for λ.

2.5. The HPDI Approach

The Bayesian estimation has already been produced in the previous subsection, but in
most cases, we have to construct an interval containing the estimated values of parameters
with a high probability. HPDI has the property that the probability density of each point
inside the interval is higher than that of every point outside it, and so the intervals of
the former are the shortest given probability level (1− γ) [37]. The HDInterval package
(version 0.2.2) from the R software was applied at step (6) in Algorithm 4 to calculate the
HPDI for λ.

3. Simulation Study and Results

Since a theoretical comparison of the confidence intervals is not possible, a Monte
Carlo simulation study was conducted to assess their performances by comparing their
coverage probabilities and average lengths. Throughout the simulation study, the nominal
confidence level was set at 0.95. The best-performing method for a particular scenario is
the one with a coverage probability greater than or close to the nominal confidence level
and the shortest average length. Since βi, i = 1, 2, . . . , k is the scale parameter, its value was
fixed as βi = 1.0 without losing any generality. The settings for the sample size and shape
parameter are provided in Table 1. The number of simulation runs was 1000 replications
with 3000 pivotal quantities for GCI. The following settings were used for BayCrI and
HPDI: H = 1000; hyperparameters ai = bi = ci = di = 10−4; and ri = 2 [21].
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Table 1. The parameter settings for k = 3, 5, and 10.

Scenarios (n1, n2, . . . , nk) (α1, α2, . . . , αk)

k = 3
1–6 (303) (0.53), (0.5, 1.02), (1.03), (1.02, 2.0), (1.0, 1.5, 2.0), (1.5, 2.02)
7–12 (302, 50) (0.53), (0.5, 1.02), (1.03), (1.02, 2.0), (1.0, 1.5, 2.0), (1.5, 2.02)
13–18 (503) (0.53), (0.5, 1.02), (1.03), (1.02, 2.0), (1.0, 1.5, 2.0), (1.5, 2.02)
19–24 (502, 100) (0.53), (0.5, 1.02), (1.03), (1.02, 2.0), (1.0, 1.5, 2.0), (1.5, 2.02)
25–30 (1003) (0.53), (0.5, 1.02), (1.03), (1.02, 2.0), (1.0, 1.5, 2.0), (1.5, 2.02)

k = 5
31–36 (302, 503) (0.53, 1.0, 2.0), (0.52, 1.02, 1.5), (0.5,1.03, 1.5), (0.5, 1.02, 2.02),

(1.03, 1.52), (1.0, 1.5, 2.03)
37–42 (302, 502, 100) (0.53, 1.0, 2.0), (0.52, 1.02, 1.5), (0.5,1.03, 1.5), (0.5, 1.02, 2.02),

(1.03, 1.52), (1.0, 1.5, 2.03)
43–48 (30, 502, 1002) (0.53, 1.0, 2.0), (0.52, 1.02, 1.5), (0.5,1.03, 1.5), (0.5, 1.02, 2.02),

(1.03, 1.52), (1.0, 1.5, 2.03)
49–54 (505) (0.53, 1.0, 2.0), (0.52, 1.02, 1.5), (0.5,1.03, 1.5), (0.5, 1.02, 2.02),

(1.03, 1.52), (1.0, 1.5, 2.03)
55–60 (502, 1003) (0.53, 1.0, 2.0), (0.52, 1.02, 1.5), (0.5,1.03, 1.5), (0.5, 1.02, 2.02),

(1.03, 1.52), (1.0, 1.5, 2.03)

k = 10
61–66 (305, 505) (0.53, 1.07), (0.53, 1.04, 1.53), (0.53, 1.02,1.53, 2.02), (1.04, 1.53,

2.03), (1.03, 1.53, 2.04), (1.02, 1.52, 2.06)
67–72 (305, 503, 1002) (0.53, 1.07), (0.53, 1.04, 1.53), (0.53, 1.02,1.53, 2.02), (1.04, 1.53,

2.03), (1.03, 1.53, 2.04), (1.02, 1.52, 2.06)
73–78 (303, 504, 1003) (0.53, 1.07), (0.53, 1.04, 1.53), (0.53, 1.02,1.53, 2.02), (1.04, 1.53,

2.03), (1.03, 1.53, 2.04), (1.02, 1.52, 2.06)
79–84 (506, 1004) (0.53, 1.07), (0.53, 1.04, 1.53), (0.53, 1.02,1.53, 2.02), (1.04, 1.53,

2.03), (1.03, 1.53, 2.04), (1.02, 1.52, 2.06)

The simulation results for k = 3, 5, and 10 are reported in Tables 2, 3 and 4, respectively.
It can be seen that they are similar for these three scenarios, and, thus, we can draw the
following conclusions. The coverage probabilities of the GCI, BayCrI, and HPDI confidence
intervals were greater than or close to the nominal confidence level of 0.95 under most
circumstances whereas those for the MOVER and LS confidence intervals were under in
all of the scenarios. As the sample sizes were increased, the coverage probabilities of the
MOVER and LS confidence intervals performed better but were still under the nominal
confidence level of 0.95. Note that both are based on the MME of αi, which is highly
biased when the sample size is small and αi is large [17]. When considering the average
lengths, those of the LS confidence interval were the shortest under most circumstances,
followed by MOVER. However, the coverage probabilities of these two confidence intervals
were lower than the nominal confidence level of 0.95 for all cases, and so they failed to
meet the requirements. Among the remainder, the average lengths of HPDI were the
shortest in all of the circumstances tested whereas those of GCI were the longest. When the
sample sizes were increased, the average lengths of all of the confidence intervals became
shorter, whereas when the shape parameter was increased, the average lengths of all of the
confidence intervals became longer. Overall, HPDI performed the best in the simulation
study because it fulfilled the requirements for both criteria.
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Table 2. The coverage probabilities and the average lengths of the 95% confidence intervals for the
common CV of several BS distributions when k = 3.

Coverage Probability Average Length
Scenarios

GCI MOVER LS BayCrI HPDI GCI MOVER LS BayCrI HPDI

1 0.931 0.936 0.851 0.922 0.912 0.1598 0.1588 0.1447 0.1590 0.1566
2 0.956 0.848 0.799 0.953 0.948 0.2887 0.2105 0.1948 0.2873 0.2835
3 0.948 0.942 0.878 0.949 0.943 0.2817 0.2657 0.2516 0.2795 0.2761
4 0.957 0.816 0.727 0.951 0.946 0.4024 0.2583 0.2478 0.3902 0.3844
5 0.961 0.872 0.812 0.958 0.955 0.3815 0.2615 0.2535 0.3703 0.3661
6 0.947 0.910 0.879 0.945 0.950 0.3090 0.2540 0.2501 0.2986 0.2957

7 0.936 0.935 0.877 0.933 0.922 0.1429 0.1420 0.1314 0.1424 0.1404
8 0.949 0.826 0.774 0.947 0.942 0.2788 0.1976 0.1843 0.2775 0.2743
9 0.952 0.944 0.887 0.951 0.943 0.2510 0.2394 0.2291 0.2488 0.2461
10 0.952 0.837 0.781 0.954 0.950 0.3468 0.2308 0.2229 0.3416 0.3381
11 0.946 0.840 0.806 0.947 0.943 0.3222 0.2328 0.2270 0.3165 0.3138
12 0.953 0.925 0.896 0.950 0.948 0.2670 0.2270 0.2242 0.2602 0.2579

13 0.950 0.951 0.897 0.949 0.944 0.1209 0.1206 0.1142 0.1205 0.1191
14 0.953 0.837 0.789 0.952 0.943 0.2237 0.1597 0.1527 0.2231 0.2207
15 0.946 0.945 0.907 0.946 0.939 0.2109 0.2038 0.1975 0.2094 0.2073
16 0.941 0.834 0.783 0.940 0.936 0.2980 0.1981 0.1935 0.2925 0.2889
17 0.949 0.843 0.806 0.950 0.943 0.2800 0.2008 0.1974 0.2758 0.2733
18 0.937 0.906 0.894 0.937 0.932 0.2254 0.1948 0.1932 0.2214 0.2195

19 0.926 0.930 0.889 0.924 0.918 0.1042 0.1037 0.0995 0.1037 0.1025
20 0.948 0.827 0.795 0.950 0.952 0.2101 0.1460 0.1404 0.2091 0.2072
21 0.951 0.942 0.925 0.946 0.941 0.1805 0.1760 0.1720 0.1793 0.1776
22 0.952 0.815 0.765 0.948 0.946 0.2483 0.1685 0.1655 0.2463 0.2441
23 0.946 0.855 0.814 0.944 0.942 0.2286 0.1702 0.1680 0.2263 0.2244
24 0.940 0.917 0.903 0.941 0.937 0.1854 0.1661 0.1652 0.1832 0.1817

25 0.940 0.943 0.909 0.936 0.926 0.0840 0.0837 0.0816 0.0838 0.0828
26 0.948 0.834 0.807 0.949 0.946 0.1581 0.1117 0.1093 0.1572 0.1558
27 0.959 0.959 0.933 0.957 0.954 0.1455 0.1432 0.1411 0.1446 0.1433
28 0.946 0.824 0.812 0.953 0.943 0.2036 0.1389 0.1374 0.2018 0.1999
29 0.951 0.847 0.837 0.950 0.946 0.1919 0.1410 0.1398 0.1897 0.1881
30 0.954 0.932 0.924 0.948 0.948 0.1519 0.1368 0.1363 0.1504 0.1491

Table 3. The coverage probabilities and the average lengths of the 95% confidence intervals for the
common CV of several BS distributions when k = 5.

Coverage Probability Average Length
Scenarios

GCI MOVER LS BayCrI HPDI GCI MOVER LS BayCrI HPDI

31 0.953 0.706 0.612 0.948 0.942 0.2375 0.1225 0.1147 0.2334 0.2293
32 0.945 0.750 0.664 0.943 0.932 0.2365 0.1417 0.1325 0.2347 0.2323
33 0.944 0.749 0.684 0.947 0.948 0.2569 0.1560 0.1475 0.2550 0.2526
34 0.959 0.631 0.590 0.957 0.950 0.3481 0.1498 0.1427 0.3431 0.3399
35 0.954 0.900 0.840 0.951 0.948 0.2165 0.1767 0.1711 0.2143 0.2124
36 0.958 0.891 0.858 0.960 0.963 0.2198 0.1629 0.1602 0.2159 0.2140

37 0.959 0.609 0.544 0.953 0.943 0.2511 0.1147 0.1080 0.2483 0.2453
38 0.931 0.717 0.634 0.927 0.924 0.2376 0.1327 0.1248 0.2367 0.2346
39 0.953 0.726 0.686 0.952 0.945 0.2477 0.1438 0.1368 0.2460 0.2441
40 0.945 0.568 0.529 0.949 0.938 0.3138 0.1361 0.1304 0.3109 0.3084
41 0.947 0.879 0.828 0.950 0.947 0.1926 0.1594 0.1551 0.1910 0.1893
42 0.954 0.897 0.858 0.954 0.951 0.1874 0.1455 0.1435 0.1846 0.1830
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Table 3. Cont.

Coverage Probability Average Length
Scenarios

GCI MOVER LS BayCrI HPDI GCI MOVER LS BayCrI HPDI

43 0.949 0.632 0.580 0.948 0.931 0.2153 0.1029 0.0980 0.2137 0.2111
44 0.961 0.748 0.704 0.963 0.955 0.1998 0.1157 0.1104 0.1989 0.1970
45 0.949 0.747 0.688 0.942 0.938 0.2118 0.1292 0.1240 0.2105 0.2086
46 0.945 0.591 0.556 0.946 0.941 0.2746 0.1221 0.1178 0.2726 0.2703
47 0.941 0.891 0.851 0.943 0.941 0.1679 0.1413 0.1384 0.1668 0.1654
48 0.956 0.888 0.868 0.956 0.960 0.1605 0.1291 0.1277 0.1586 0.1573

49 0.941 0.741 0.678 0.939 0.937 0.1964 0.1079 0.1028 0.1931 0.1897
50 0.942 0.787 0.722 0.940 0.932 0.1870 0.1201 0.1148 0.1860 0.1839
51 0.958 0.787 0.740 0.951 0.946 0.2218 0.1357 0.1304 0.2201 0.2181
52 0.953 0.634 0.599 0.958 0.952 0.3062 0.1313 0.1268 0.3014 0.2982
53 0.939 0.878 0.831 0.937 0.934 0.1930 0.1608 0.1568 0.1911 0.1893
54 0.942 0.839 0.806 0.947 0.948 0.2112 0.1509 0.1490 0.2073 0.2054

55 0.958 0.690 0.651 0.954 0.952 0.1704 0.0881 0.0852 0.1687 0.1666
56 0.961 0.744 0.682 0.957 0.952 0.1746 0.1036 0.1000 0.1740 0.1725
57 0.948 0.765 0.728 0.946 0.939 0.1850 0.1133 0.1101 0.1841 0.1826
58 0.950 0.597 0.573 0.950 0.949 0.2480 0.1079 0.1052 0.2464 0.2445
59 0.944 0.897 0.866 0.950 0.945 0.1502 0.1273 0.1252 0.1496 0.1483
60 0.951 0.876 0.849 0.952 0.944 0.1470 0.1168 0.1159 0.1456 0.1444

Table 4. The coverage probabilities and the average lengths of the 95% confidence intervals for the
common CV of several BS distributions when k = 10.

Coverage Probability Average Length
Scenarios

GCI MOVER LS BayCrI HPDI GCI MOVER LS BayCrI HPDI

61 0.921 0.736 0.634 0.921 0.910 0.1594 0.1060 0.0992 0.1587 0.1573
62 0.932 0.654 0.546 0.925 0.923 0.1975 0.1071 0.1004 0.1954 0.1938
63 0.945 0.534 0.456 0.936 0.930 0.2508 0.1056 0.0994 0.2471 0.2448
64 0.951 0.774 0.695 0.948 0.943 0.1839 0.1229 0.1197 0.1800 0.1783
65 0.958 0.822 0.753 0.955 0.958 0.1773 0.1213 0.1186 0.1736 0.1721
66 0.937 0.840 0.781 0.944 0.948 0.1679 0.1185 0.1164 0.1637 0.1622

67 0.944 0.747 0.617 0.938 0.934 0.1481 0.0976 0.0920 0.1470 0.1459
68 0.933 0.623 0.534 0.931 0.923 0.1908 0.0993 0.0937 0.1899 0.1882
69 0.945 0.516 0.454 0.942 0.937 0.2369 0.0959 0.0909 0.2348 0.2328
70 0.951 0.812 0.760 0.952 0.947 0.1537 0.1081 0.1058 0.1519 0.1506
71 0.953 0.843 0.787 0.957 0.955 0.1482 0.1068 0.1049 0.1460 0.1447
72 0.955 0.870 0.824 0.960 0.958 0.1411 0.1049 0.1034 0.1379 0.1367

73 0.919 0.736 0.648 0.920 0.916 0.1383 0.0913 0.0867 0.1374 0.1363
74 0.931 0.631 0.539 0.929 0.923 0.1785 0.0933 0.0886 0.1777 0.1762
75 0.955 0.582 0.499 0.954 0.944 0.2147 0.0906 0.0864 0.2133 0.2115
76 0.956 0.828 0.788 0.957 0.955 0.1381 0.0992 0.0975 0.1368 0.1356
77 0.953 0.820 0.774 0.948 0.945 0.1324 0.0985 0.0970 0.1308 0.1297
78 0.941 0.874 0.840 0.940 0.937 0.1242 0.0964 0.0953 0.1224 0.1214

79 0.940 0.751 0.689 0.938 0.937 0.1190 0.0797 0.0767 0.1185 0.1174
80 0.956 0.652 0.585 0.956 0.952 0.1494 0.0807 0.0778 0.1489 0.1476
81 0.941 0.557 0.515 0.937 0.934 0.1857 0.0791 0.0766 0.1843 0.1827
82 0.949 0.835 0.786 0.947 0.949 0.1288 0.0916 0.0903 0.1275 0.1265
83 0.944 0.811 0.788 0.942 0.937 0.1233 0.0902 0.0891 0.1221 0.1210
84 0.954 0.868 0.836 0.958 0.960 0.1170 0.0888 0.0879 0.1155 0.1145

4. Application of the Confidence Interval Methods with Real Data

Air pollution is currently one of the most important public health concerns since it causes
mortality and morbidity. Of the various air pollutants, PM10 and PM2.5 (PM ≤ 2.5 µm)
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are widely considered to be the most damaging and important. In Chiang Mai, agri-
cultural burning and forest fires during the dry season caused a haze of predominantly
PM10 and PM2.5 each year. It begins in early February, peaks in March, and subsides
by the end of April. During this time period, the population is significantly impacted
by PM2.5 and PM10 pollution, with concentrations substantially above the World Health
Organization’s recommended levels. The average daily PM10 concentrations from three
pollution monitoring stations located in Chiang Mai province: (1) Chang Phueak, (2) Si
Phum, and (3) Changkerng were obtained from the Pollution Control Department [38]
and selected to assess the performances of the proposed confidence intervals. Since the
concentrations of PM10 are always positive and vary depending on factors, such as source,
local topography, and local meteorology, they are positively skewed and suitable for fitting
to a lognormal, BS, exponential, gamma, or Weibull distribution. It is important to check
the suitability of the distribution for the datasets, and so minimum Akaike information
criterion (AIC) and Bayesian information criterion (BIC) analyses were conducted.

As reported in Tables 5 and 6, it can be concluded that the BS distribution is suitable
for fitting these datasets. The summary statistics for the PM10 concentrations data from
the three pollution monitoring stations located in Chiang Mai are provided in Table 7.
The estimated common CV was 0.4453. Note that we set ri = 2 and ai = bi = ci = di = 10−4;
i = 1, 2, . . . , k for BayCrI and HPDI. Table 8 reports the 95% confidence intervals for the
common CV of PM10 concentration data from three pollution monitoring stations in Chiang
Mai, Thailand. Similar to the simulation results when (n1, n2, n3) = (30, 30, 30), the average
length of the LS confidence interval was the shortest, followed by MOVER. However, their
coverage probabilities were under the nominal confidence level of 0.95, and so they are
not recommended for constructing the confidence interval for the common CV of these
datasets. When comparing GCI, BayCrI, and HPDI, although all three provided coverage
probabilities greater than or close to the nominal confidence level of 0.95, the latter provided
the shortest average length. Hence, HPDI is the most suitable method when considering
the coverage probability and the average length together.

Table 5. AIC results for the fitting of five tested distributions.

Distributions Lognormal BS Exponential Gamma Weibull

Chang Phueak 334.4613 333.9956 366.2775 335.8974 339.0671
Si Phum 326.8568 326.2713 351.1782 328.6437 331.6056
Changkerng 301.5002 301.1981 337.6783 303.2755 307.9442

Table 6. BIC results for the fitting of five tested distributions.

Distributions Lognormal BS Exponential Gamma Weibull

Chang Phueak 337.3293 336.8636 367.7115 338.7653 341.9351
Si Phum 329.7248 329.1392 352.6122 331.5116 334.4735
Changkerng 304.3682 304.1661 339.1123 306.1435 310.8121

Table 7. Summary statistics for the PM10 data.

Area n Min. Median Mean Max. Variance CV

Chang Phueak 31 61 122 131.0323 282 3310.556 0.4391
Si Phum 31 42 85 102.7097 248 2798.680 0.5151
Changkerng 31 43 81 82.6129 182 1191.045 0.4177
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Table 8. The 95% confidence interval for the common CV of PM10 data from three pollution monitor-
ing stations in Chiang Mai, Thailand.

Methods Interval Length

GCI 0.3788–0.5163 0.1375
MOVER 0.3860–0.5212 0.1352
LS 0.3698–0.4972 0.1274
BayCrI 0.3796–0.5160 0.1364
HPDI 0.3727–0.5059 0.1332

5. Conclusions

Herein, we propose confidence intervals for the common CV of several BS distribu-
tions constructed by using the GCI, MOVER, LS, BayCrI, and HPDI approaches. Their
performances were studied numerically through Monte Carlo simulation in terms of their
coverage probabilities and average lengths. The simulation results indicate that the cov-
erage probabilities for GCI, BayCrI, and HPDI were greater than or close to the nominal
confidence level, while HPDI produced the shortest average length for all cases. Therefore,
HPDI is appropriate for constructing the confidence interval for the common CV of several
BS distributions. Meanwhile, the coverage probabilities of the MOVER and LS confidence
intervals were under the nominal confidence level, and so neither can be recommended as
a solution for this scenario. Furthermore, when applying the methods to analyze PM10 con-
centrations from three pollution monitoring stations in Chiang Mai, Thailand, the results
are in accordance with those from the simulation study.
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