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In psychological experiments linearity is desirable
and usually realized. Some models, however, cannot
avoid the nonlinearity of the underlying processes, or,
for descriptive models, the obvious coordinate systems
(log-log, semilog, probit, etc.) which leave the data
nonlinear have been tried and failed. In any case, non­
linear regression becomes appropriate.

Recent examples of parameters that appear in in­
trinsically nonlinear equations are arousal constants
(Killeen, 1975), expectancy thresholds (Gibbon, 1977),
transfer parameters (Davis & Levine, 1977), intellectual
growth parameters (Zajonc & Markos, 1975), generali­
zation factors (Blough, 1975), coupling constants
(Staddon, 1977), cost parameters (Staddon, in press),
consolidation parameters (Wickelgren, 1976), salience
parameters (Rescorla & Wagner, 1972), and search
constants (Norman & Rumelhart, 1970). Unless a large
amount of data variance is accounted for or confidence
intervals are established, the relationships or critical
differences between parameters cannot be assessed.

This paper briefly outlines a method to obtain
confidence intervals from nonlinear regression and
demonstrates the use of a BASIC program employing
this algorithm for computing confidence intervals for
any nonlinear function regardless of the regression
method.

Confidence Intervals for Nonlinear Regression.
Suppose observations from an experiment arise as
(y. ,td, (Y2,t2)·.· (Yn,tn). The standard regression
model is of the form

Yj == F(tdJ> +€j,

where, as usual, the €j are assumed to be normally
distributed with mean zero and common variance.

If F(O) is an n by p matrix with elements

then the matrix (F'F)p~p contains in the diagonals the
variances of the p parameters. Denote this inverse
matrix as C; then the 95% confidence interval may be
found for the ith parameter given the .025 critical
value of a t variate with n - p degrees of freedom as

OJ ± t. 0 2 S ~s.

Similarly, a t value for each parameter may be con­
structed by computing the ratio

where s is the .vI /(n - p) ~()'j - F(tj,Oj»2 and qj is the
ith diagonal element from c (cf. Gallant, 1975; also
see for convergence properties of these statistics).

Program Parameters. The following input information
is either specified in the initial queries or documented
in various points in the program CONF. Initially, the
user-defined function FNA should be input at line 1
of the program (see Figure 1). All computations later
will be made on FNA. Any nonlinear function may be
input into the program this way as long as the variable is
T and the parameters are written as P(l), P(2), ... P(i).
These parameter positions in the function should be
noted as they must be input into the same positions as
they appear in this function.

The program asks first for the number of parameters
and the number of data points. Next, it needs the sum
of the squares residual (s); if only error variance is out­
put, s may be computed by

s == Verror variance n/(n - p).

Finally, input each estimated value of the parameter
from the regression into the P vector. The program asks
for each parameter in the equation sequentially to be in­
put into P(i), i == 1,2, ... p (see Figure 2).

The program begins by numerically computing the
partials of the user-defined function and filling the F
matrix, with these partials evaluated at the estimated
values of the parameters and observation points tj.·
Next, an inversion is performed on the F'F matrix
through a Gauss-Jordan reduction. The diagonal ele­
ments of this matrix are the variances of the parameters.
Thus, the standard error (SE), a t value, and confidence
intervals for the parameters may all be defined.

The statistical properties of the parameters are useful
in that they can be given some interpretation. For
example, the t value gives some indication of the "sig­
nificance" of that particular parameter. Although
the model may be a good description of the data, the
amount of "work" done by any particular parameter
may be insignificant. Specifically, a parameter whose
t value is less than t.o2S (with n - p df) is considered
not different? from zero. Standard errors of the param­
eters give some indication of how well the parameters
are determined. For example, if SE OJ> SE OJ, a
parameter-parameter confidence region maps out an
elliptical area where the major axis corresponding
to OJ is larger than that corresponding to OJ (Draper
& Smith, 1966). That is, for any particular value of OJ
there is a larger range of values of OJ which holds the
regression constant. This statistic indicates from the
data peculiarities of the function and the importance of
the kind or "quality" of work done by that parameter.
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Figure 1

o REM INPUT MODEL HERE (LINE 1)

1 DEF FNA(T)=P(l)*(EXP(-T/P(2»-EXP(-T/P(3)))
2 DIM Z(50,50),Z1(50,50)
4 PRINT "NO. OF PARAMETERS, NO. OF DATA PTS.?"
5 INPUT N,M\Nl=M
6 PRINT"SS RES.";\INPUT W
7 PRINT "INPUT "N" PARAMETERS"
8 FOR J=1 TO N
9 PRINT "P("J")=";\INPUT Pl(J)
10 P(J)=Pl(J)\NEXT J
11 REM CONSTANTS LINES 15-17
12 REM LINE 15 =CRITICAL TVALUE
13 REM LINE 16 =LABLE FOR LEVEL
14 REM LINE 17 =SCALEVALUE FOR Y
15 Q=2.306
16 A=95
17 V=1
20 FOR J=1 TO N
25 T=-I/(2*M)*V
30 K=1
31 REM DO PARTIALS
35 FOR 1=1 TO M
40 T=T+1/M*V
45 P=P(J)
50 P(J)=.999*P(J)
55 GOSUB 1000
60 P(J)=1.002*P(J)
65 GOSUB 1000
70 Z(I,J)=(D(2)-D(1»/2.00000E-03/P
75 P(J)=.999*P(J)
80 NEXT I
85 NEXT J

100 REM TRANSPOSE Z
105 FOR 1=1TO N
110 FOR J=l TO M
115 ZI(1,J)=Z(J,I)
120 NEXT J
125 NEXT I
130 REM ZT*Z
140 FOR 1=1 TO N
150 FOR J=l TO N
155 FOR K=1 TO M
160 A(I,J)=A(I,J)+(Zl(1,K)*Z(K,J)
165 NEXT K
166 NEXT J
168 NEXT I
169 REM COMPUTE INVERSE A
170 1=1
171 M=N
175 J=M+1
180 B=I+M
185 IF B=J THEN 198
190 A(I,J)=O
195 GO TO 200
198 A(I,J)=1
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Figure 1 Continued

200 J=J+l
215 IF J<=2*M THEN 185
216 1=1+1
217 IF I<=M THEN 175
230 REM BEGIN GAUSS-JORDAN ELIMINATION
235 K=l
240 J=K
245 S=A(K,K)
250 A(K,J)=A(K,J)/S
255 J=1+1
260 IF J<=2*M THEN 250
265 1=1
270 IF I=K THEN 400
275 J=K
280 S=A(I,K)
350 A(I,J)=A(I,J)-S*(A(K,J))
360 J=J+1
380 IF J<=2*M THEN 350
400 1=1+1
405 IF I<=M THEN 270
410 K=K+1
415 IF K<=M THEN 240
450 PRINT "CONFIDENCE INTERVALSFOR "N1 - N" DF AT "A"% LEVEL"
451 PRINT "AND T FOR HO: P(I)=O"
460 S=SQR(W/(N1-N»
500 FOR 1=1 TO M
501 K=M+I
502 P(I)=P1(I)
504 PRINT "S.E. (P("I"»="SQR(A(I,K»
505 PRINT P(I)"+OR-"Q*SQR(A(I,K»*S
507 T=P(I)/SQR(A(I,K»*S)
508 PRINT "T="T
509 IF T>Q THEN 511
510 PRINT "NOT SIGNIFICANT"
511 NEXT I
550 END
1000 IF K=2GO TO 1015
1014 x-i
1015 D(K)=FNA(T)
1020 K=2
1025 RETURN

These statistical properties are output by CONP in
a convenient format in the order in which the param­
eters were input (see Figure 2).

An Example. Killeen (1975) suggested a nonlinear­
izable function for the time course of general activity
of pigeons between periodic brief feedings:

R(t) = A(e- t / C - e- t / I) , C > I, t > O.

This function is bitonic for C and I> 0, and rate of
growth for decay from the maxima is governed by the
two time constants I and C. The time constants are

indicants of two interacting exponential processes
which arise between feedings. "A" was taken as a
measure of the motivation or arousal of the organism.
These parameters were estimated on a PDP-II mini­
computer using a random leap-optimization algorithm
(cf. Curry, 1975).

This model has been input as the user-defined func­
tion FNA at line 1 (see Figurel), and two cases of the
activity data are considered. The first case arises under
one of the shortest interfood intervals and is quite
peaked; that is, the data rise to and fall from its maxima
quite rapidly. Nonetheless, this particular model de-
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RUNNH
NO. OF PARAMETERS, NO. OF DATA PTS.?

?3
?10
SS RES.?9.7
INPUT 3 PARAMETERS
P( 1 )=?134
P( 2 )=?30
P(3)=?13

CONFIDENCE INTERVAL FOR 7 DF & 95 % LEVEL
AND T FOR HO: P(I)=O
S.E.(P( 1 »= 11.8454
134 +OR- 32.1549

T= 9.60985
S.E.(P( 2 »= .024406

.3 +OR- .066251
T= 10.4421
S.E.(P( 3 »= l.22117E-03
.13 +OR- 3.31492E-03

T= 90.4336

RUNNH
NO. OF PARAMETERS, NO. OF DATA PTS.?
?3
?10

SS RES.?2.17

INPUT 3 PARAMETERS
P( 1 )=?10

P( 2 )=?1.63
P( 3 )=?02

CONFIDENCE INTERVAL FOR 7 DF & 95 % LEVEL
AND T FOR HO: P(I)=O
S.E.(P( 1 »= 2.35737
10 +OR- 3.02668

T= 7.6189
S.E.(P( 2 »= 1.9574
1.63 +OR- 2.51316

T= 1.49564
NOT SIGNIFICANT
S.E.(P( 3 »= .0194156
.02 +OR- .0249283

T= 1.85011
NOT SIGNIFICANT

READY

Figure 2

scribes the data quite well (w 2 = .99). The least
squares estimates of Parameters A, C, and I were, respec­
tively, 134, .30, and .13. This information was input
into CONF and standard errors, T values, and confidence
intervals were computed for all three parameters. The
sample run appears in the top of Figure 2.

Two aspects of the parameters are notable. First,
as indicated by the t values, all parameters are doing a
"significant" amount of work. Second, due to the

nature of the function, some parameters seem more
constrained than others. For example, comparing the
standard error of I to either C or A indicates that the
allowable range of the latter two parameters is much
greater than that of I. Thus, changes in I have a much
more significant effect on the fit than either of the
other two parameters.

The second case is also interesting. The data were
collected at one of the longest intervals, 200 sec. The
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data were nearly flat (see Killeen, 1975, Figure 1),
although the best fit was that with a nonzero I value
(increasing limb). The fit here too is quite good
(w 2 = .97). The input parameters into CONF were
10 (A), 1.63 (C), and .02 (I). The sample run is shown at
the bottom of Figure 2.

The results of the run indicate that neither I nor C is
necessary for the goodness of fit. Both t values are
less than that for a critical .025 t value" with 7 df.
Also, the confidence intervals for these parameters are
larger than the parameters themselves. "A" on the other
hand is quite constrained and appears to be the only
hardworking parameter in this fit.

Across runs the parameter changes over some in­
dependent variable, and, in this case, interfood interval
can be accompanied by corresponding confidence limit
changes. Changes in confidence limits might be an
important consideration when attempting to determine
the kind of functional form the parameters take.

Computer. CONF was written and developed on a
PDP-II/OS under the RT-II operating system.

Availability. A listing of CONF with sample output
is available at no cost upon request from the author
at Arizona State University, Department of Psychology,
Tempe, Arizona 85281.
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NOTES

1. The variable T is normalized over (0.1) for ready compari­
son of different data spans. However, note that if data are fit
over a nonnormalized range, this variable must be altered in the
program at line 17: Simply set V equal to the upper limit of the
range of the independent variable.

2. For time constants as in the present case (or any param­
eter which appears in a denominator), a test against either zero
or infinity would be equivalent, since both values reduce the
exponential terms to constants independent of T. However, one
must be careful of the interpretation of the kind of "nonwork"
the parameter is doing. Time constants close to zero indicate
the process is almost over once it starts. On the other hand,
time constants close to infinity indicate that the process is quite
persistent.

3. The probability level may be altered at line 15 by setting
Q equal to the appropriate critical t value (adjust A at line 16
also).
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