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A composite score is the sum of a set of components. For example, a total test score can be defined as the sum

of the individual items. The reliability of composite scores is of interest in a wide variety of contexts due to

their widespread use and applicability to many disciplines. The psychometric literature has devoted consid-

erable time to discussing how to best estimate the population reliability value. However, all point estimates of

a reliability coefficient fail to convey the uncertainty associated with the estimate as it estimates the population

value. Correspondingly, a confidence interval is recommended to convey the uncertainty with which the

population value of the reliability coefficient has been estimated. However, many confidence interval methods

for bracketing the population reliability coefficient exist and it is not clear which method is most appropriate

in general or in a variety of specific circumstances. We evaluate these confidence interval methods for 4

reliability coefficients (coefficient alpha, coefficient omega, hierarchical omega, and categorical omega) under

a variety of conditions with 3 large-scale Monte Carlo simulation studies. Our findings lead us to generally

recommend bootstrap confidence intervals for hierarchical omega for continuous items and categorical omega

for categorical items. All of the methods we discuss are implemented in the freely available R language and

environment via the MBESS package.
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Composite scores are widely used in many disciplines (e.g., psy-

chology, education, sociology, management, medicine) for a variety

of purposes (e.g., attitudinal measures, quantifying personality traits,

personnel selection, performance assessment). A composite score is a

derived score that is the result of adding component scores (e.g.,

items, measures, self-reports), possibly with different weights, in

order to obtain a single value that purportedly represents some con-

struct.1 It can be argued that composite scores are generally most

useful when the individual components are each different measures of

a single construct. Measurement instruments that measure a single

construct are termed homogeneous. We focus exclusively on homo-

geneous measurement instruments throughout the article.

Understanding various properties of a measurement instrument as it

applies to a particular population is important. One property that is

necessary to consider when using composite scores is the estimate of

the population value of reliability for the population of interest.

Although we formalize the definition of composite reliability later,

recall that the psychometric definition of reliability is the ratio of the

true variance to the total variance. However, it is clear that a point

estimate of reliability does not go far enough, as the estimate will

almost certainly not equal the population value it estimates. The value

of the reliability for the population of interest, not the particular

sample from the population, is what is ultimately of interest.

In practice, the population reliability coefficient is almost always

unobtainable. Correspondingly, we believe that a confidence interval

for the population reliability coefficient should always accompany an

estimate. This statement is consistent with the American Psycholog-

ical Association (American Psychological Association, 2010), Amer-

ican Educational Research Association (Task Force on Reporting of

Research Methods in AERA Publications, 2006), and Association for

Psychological Science (Association for Psychological Science, 2014)

publishing guidelines, among others. A confidence interval quantifies

the uncertainty of the estimated parameter with an interval, where,

assuming the appropriate assumptions are satisfied, the confidence

interval provides lower and upper limits that form an interval in which

the population value will be contained within with the specified level

of confidence. The confidence interval limits can be informally con-

ceptualized as the range of plausible parameter values at the stated

1 Often the component scores are added with unit weights, which is often
termed unweighted. However, that need not be the case. For example, the
weights of components can be any real value (e.g., !1 for reverse coded
items, .5 for two items when the mean of those two items is taken, items
multiplied by the estimated factor loadings to form a factor score).
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confidence level.2 Unfortunately, even if a researcher wishes to follow

the established guidelines and provide a confidence interval for an

estimated reliability coefficient, there are not unambiguous “best

methods” for confidence interval construction for reliability coeffi-

cients.

Due to its ubiquity and importance in research and practice, the

reliability of a homogeneous measurement instrument has been the

subject of much attention in the psychometric literature (e.g., see

Sijtsma, 2009, for a discussion with references to important his-

torical developments and the commentaries that follow; e.g.,

Bentler, 2009; Green & Yang, 2009a; 2009b; Revelle & Zinbarg,

2009). However, most of the attention given to the reliability of a

homogeneous measurement instrument centers on the point esti-

mate of the population value. Feldt (1965) was the first to note the

paucity of work that considered the sampling characteristics of

reliability coefficients. Feldt stated that “test manuals rarely, if

ever, report confidence intervals for reliability coefficients, even

for a specific population” (p. 357). Unfortunately, 50 years later,

confidence intervals for population reliability coefficients are often

still not reported, even for composite scores with important uses.

We begin the rest of this article with a brief review of ideas

relevant to classical test theory as they pertain to composite reli-

ability coefficients. We then present four reliability coefficients

before discussing confidence interval estimation for the population

reliability. We then evaluate the effectiveness of the different

confidence interval methods for the different reliability coeffi-

cients in a variety of contexts with three Monte Carlo simulation

studies. We then make recommendations to researchers about

which confidence interval methods should be used in which situ-

ations. Additionally, we provide open source and freely available

software to implement each of the methods we discuss.

Classical Test Theory and Reliability Coefficients

In classical test theory (CTT) an observed item Xij for the ith

individual (i " 1, . . . , N) on the jth component (e.g., item) (j "

1, . . . , J) is decomposed into two parts as

Xij ! Tij " #ij, (1)

where Tij (capital tau) is the true-score for the ith individual on the

jth component, and #ij is the error for the ith individual on the jth

component (e.g., Guilford, 1954; Gulliksen, 1950; Lord & Novick,

1968; McDonald, 1999; Zimmerman, 1975). For now we will

assume that the J items are continuous (but relax this assumption

in a future section). The theorem in which CTT is derived states

that the errors of measurement (i.e., the #·js) are (a) mutually

uncorrelated (i.e., $!#·j, #·j!" ! 0 for all j % j!); (b) are uncorrelated

with their corresponding true-scores (i.e., $(T·j, #·j) " 0); (c) are

uncorrelated with other true scores (i.e., $!T·j!,#·j" ! 0 for all

j % j!); and (d) have a mean of zero (i.e., E[#·j] " 0), where a

centered dot in place of i in the subscript denotes across individ-

uals (Lord & Novick, 1968, Theorem 2.7.1, p. 36, see also p. 38).

A composite score is the sum of the J individual component

scores as

Yi ! #
j!1

J

Xij, (2)

where Yi is the observed composite score for individual i. As is

common, we do not use weights when forming the composite from

the J components. More formally a composite score of the form given

in Equation 2 could be called a unit-weighted composites (due to the

weights of the J X values implicitly being 1). The value of Yi is an

observed score and can be conceptualized in an analogous manner as

was done for Xi from Equation 1. That is, Yi can be denoted as

Yi ! Ti " #i, (3)

where

Ti ! #
j!1

J

Tij (4)

and

#i ! #
j!1

J

#ij. (5)

Note that there are no j subscripts for Yi, Ti, or #i in Equation 3

because these values represent the observed composite score, the

true composite score, and error for the composite score, respec-

tively, for the ith individual.

The general representation of reliability from a psychometric

perspective is the ratio of the true variance to the total variance,

which for the population can be formally written as

$(Y) !
&T

2

&T
2 " &#

2
(6)

and rewritten as

$(Y) !
&T

2

&Y
2

, (7)

where $(Y) is the population reliability of the composite measure Y,

&T
2 is the population variance of the true scores for the composite

across individuals, &#
2 is the population variance of the error of the

scores for the composite across individuals, and &Y
2 is the population

variance of the observed scores for the composite across individuals.

Because T and # are uncorrelated, based on the theorem defining CTT,

&Y
2 ! &T

2 " &#
2. The estimation of true and error variances (i.e., the

components in Equation 6) in order to find the ratio of true-to-total

variance (i.e., Equation 7) in the context of the reliability of a com-

posite has been based on various methods in the literature (e.g.,

Cronbach, 1951; Guttman, 1945; Hoyt, 1941; Kuder & Richardson,

1937; McDonald, 1999; van Zyl, Neudecker, & Nel, 2000; Wood-

house & Jackson, 1977; see Raykov, 2012, for a review).

Coefficient Alpha

The most widely used reliability coefficient used to estimate

$(Y) is coefficient alpha (Cronbach, 1951). The definition of

population coefficient alpha has long been given as

2 More formally, confidence, in the context of confidence intervals,
refers to the procedure that is used to form such intervals. We use C to
denote the specified level of confidence (e.g., .90, .95, .99). Further, we use
C100% to denote the confidence level in percentage form. For example,
C100% represents a 95% confidence interval when C " .95. More for-
mally, a confidence interval is an interval from a procedure in which, if it
were replicated an infinite number of times, would produce intervals in
which C100% of them would bracket the population value, provided that
the confidence interval procedure is exact and the assumptions upon which
it depends are satisfied.

T
h
is

d
o
cu

m
en

t
is

co
p
y
ri

g
h
te

d
b
y

th
e

A
m

er
ic

an
P

sy
ch

o
lo

g
ic

al
A

ss
o
ci

at
io

n
o
r

o
n
e

o
f

it
s

al
li

ed
p
u
b
li

sh
er

s.

T
h
is

ar
ti

cl
e

is
in

te
n
d
ed

so
le

ly
fo

r
th

e
p
er

so
n
al

u
se

o
f

th
e

in
d
iv

id
u
al

u
se

r
an

d
is

n
o
t

to
b
e

d
is

se
m

in
at

ed
b
ro

ad
ly

.

70 KELLEY AND PORNPRASERTMANIT



' $ ! J
J ( 1"%1 (

#
j!1

J

&j
2

&Y
2
&, (8)

where &j
2 is the population variance of the jth item. The estimated

value of coefficient alpha is

'̂ ! ! J
J ( 1"%1 (

#
j!1

J

sj
2

sY
2
&, (9)

When uncorrelated errors hold, as prescribed by the model

defining classical test theory, the population value of coefficient

alpha is equal to the population value of reliability when true-score

equivalence, also termed essential tau-equivalence, is satisfied.

True-score equivalence is a property in which the covariances of

the J distinct items are the same but with different variances and

potentially with different means (McDonald, 1999, pp. 85–86). In

true-score equivalence situations each of the items are said to be

equally sensitive at measuring the construct, an idea we return to

in more detail momentarily. When true-score equivalence does not

hold and errors are uncorrelated, the sample value of coefficient

alpha is not estimating population reliability coefficient, but rather

it estimates population coefficient alpha, which itself will be less

than the population reliability coefficient (e.g., Novick & Lewis,

1967). In practice, we believe that relatively few measurement

instruments are based on items that measure the underlying factor

equally well. Correspondingly, coefficient alpha, although histor-

ically the most commonly reported estimate of the reliability of a

set of scores, has major deficiencies (e.g., McDonald, 1999;

Raykov & Marcoulides, 2011; Revelle & Zinbarg, 2009; Sijtsma,

2009).3

Coefficient Omega

McDonald (1999) approached the reliability of a homogeneous

measurement instrument from a factor analytic perspective, in

which a single-factor model is used to decompose the true and

error variances (see also Green & Hershberger, 2000; Jöoreskog,

1971; Kelley & Cheng, 2012; Miller, 1995; Raykov & Shrout,

2002). From a factor analytic conceptualization of items, Figure 1

shows the structure of seven hypothetical items from a homoge-

neous measurement instrument, where )j
2 is the variance of the

errors of the jth item. Figure 1 is a visual representation of

decomposing the true score (i.e., Tij) from Equation 1 as

Tij ! *j " +j,i, (10)

where %j is the population mean of the jth item, &j is the factor

loading for the jth item and 'i is the factor score for the ith

individual. The mean of ', the factor, is fixed to 0 and the variance

of ' is fixed to 1 for model identification purposes. A model of the

form of Equation 10 represents a congeneric scale, which is a

special type of homogeneous measurement instrument in which

the items each potentially have different sensitivities and error

variances that can be heterogeneous (i.e., not restricted to the same

value). The factor loadings are conceptualized as the “sensitivity”

of an item, which quantifies how well the items measure the factor.

For a true-score equivalent situation, the factor loadings are each

the same value (i.e., there is no subscript for the factor loadings).

In this factor analytic perspective the ratio of true-to-total vari-

ance (i.e., reliability) can be shown (see Appendix) to equal

- !

%#
j!1

J

+j&2

%#
j!1

J

+j&2

" #
j!1

J

)j
2

(11)

(see McDonald, 1999, p. 89, for more details, as well as the Appen-

dix). For a set of items that are homogeneous with uncorrelated errors

( and the population reliability coefficient are equivalent:

- $ $(Y). (12)

Substituting estimates (e.g., from maximum likelihood estima-

tion) of the population values above yields an estimate of the

population coefficient omega:

-̂ !

%#
j!1

J

+̂j&2

%#
j!1

J

+̂j&2

" #
j!1

J

)̂j
2

, (13)

where a circumflex above a parameter value denotes an estimate of

the population value. As has been clearly articulated in the psy-

chometric literature, the estimated coefficient omega is preferred

over the estimated coefficient alpha for estimating $(Y) because,

even if errors are uncorrelated and the measurement instrument is

homogeneous, unless true-score equivalence holds (i.e., the factor

loadings from a single factor model are the same), the estimated

3 When uncorrelated errors does not hold coefficient alpha may overes-
timate the value of the population reliability (Green & Hershberger, 2000;
Komaroff, 1997; Zimmerman, Zumbo, & Lalonde, 1993).

Figure 1. Path diagram of a hypothetical congeneric factor model with

seven items. Note that each of the factor loadings, like the error variances,

are potentially different, as they include a subscript for each item.
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coefficient alpha will tend to underestimate the population reli-

ability (i.e., ) . $(Y); thus E''̂( . $!Y") (McDonald, 1999, p. 92).

Importantly, we want to emphasize that each & and each *2 in

Figure 1 have j subscripts, which acknowledges that in this frame-

work (for coefficient omega) the error variances (as is true for

coefficient alpha) can vary by item but so too can the factor

loadings. Thus, when estimating reliability from the coefficient

omega perspective there is no assumption that each item is equally

sensitive at measuring the factor. A scale of the general form given

in Figure 1 and as discussed here, where the &s can be unique (i.e.,

there are j such values) is termed congeneric. This differs from our

discussion of true-score equivalence, in that true-score equivalence

requires that the items measure the construct with equal sensitivity.

In our experience, the assumption of true-score equivalence (i.e.,

equally sensitive items) is untenable in many situations in which a

composite score is of interest.

Hierarchical Omega

All items in a homogeneous scale are manifestations presumed

to be caused by the same factor. One implication of a homoge-

neous scale is that, after partialing out the influence of the common

factor, all items are independent (recall that classical test theory

has this as part of the defining theorem). Implicit in a homoge-

neous scale is that there are no subdomains or facets among the

items. In practice, however, it is difficult to have perfectly inde-

pendent items after partialing out the variance due to the factor.

For example, there may be some pairs of items that are correlated

for reasons beyond the factor itself, such as similarly worded

items, the content of the items overlap an additional construct,

extraneous knowledge is required for a subset of items, et cetera.

We will refer to these influences among some items above the

factor itself as “minor factors.” In such situations an observed item

is decomposed into more than only the factor and the error that we

have discussed thus far. Instead, the jth component for the ith

individual is decomposed as

Xij ! *j " /Cij " /1ij " · · · "/Mij " #ij, (14)

where +Cij is the part of true score from the common factor for the ith

individual on the jth component and +mij is the part of true score from

the mth minor factor for the ith individual on the jth component.

Although Equation 14 represents nonhomogeneous items, a re-

searcher may assume that minor factors are ignorable and treat the

items as if they are explained by a homogeneous (i.e., single factor)

model. Minor factors can be reparameterized as correlations among

the residuals of the relevant items compromising the minor factor to

avoid model misspecification. If a scale with minor factors exists and

it is fitted with a single factor model (i.e., under the assumption of a

homogeneous set of items), the model is misspecified (because there

are correlations among some items due to the minor factor(s) being

ignored). Failure to appropriately address minor factors among a set

of items yields a misspecified model that, as a consequence, will lead

to the sum of the true variance and error variance not being equal to

the total variance of the composite. Correspondingly, when minor

factors are present, neither ) or ( equal $(Y).

If the model-implied covariance matrix from the misspecified

model is used to estimate the total variance (i.e., when minor

factors exist but are ignored), the total variance as calculated from

summing the true plus error variance will differ from the actual

total variance of the composite (i.e., the variance of Y). If the

population reliability is estimated from the total variance implied

from a misspecified model in which minor factors exist, the

estimated value will have an expectation that underestimates or

overestimates the population value, depending on the structure of

the residual covariances. Because residual covariances cannot be

estimated by the factor analysis model, as the model would not be

identified, the appropriate total variance cannot be estimated by

model parameters from the factor analysis model. The variance of

the composite can be obtained from the observed covariance

matrix of the items or equivalently by the variance of Y. Using the

ideas of coefficient omega but with variance of Y in the denomi-

nator of Equation 13, the population reliability coefficient calcu-

lated in such a manner we call population hierarchical omega ((H):

-H $
%#

j!1

J

+j&2

#
j!1

J

#
j!!1

J

&jj!

!

%#
j!1

J

+j&2

&Y
2

, (15)

which has a sample analog calculated by replacing the population

parameters with their corresponding sample values.

Researchers never know with certainty all possible minor fac-

tors that may exist in a population and allowing the set of residual

to correlate cannot be done (as doing so would yield a model that

is not identified). However, knowing the items that are measures of

a minor factor or allowing all residuals to correlate is not needed

in our approach because we use the total variance for a set of items

calculated directly from the composite score (rather than obtaining

a total variance from the result of a potentially misspecified

model). Hierarchical omega acknowledges that such minor factors

might exist and calculates the total variance directly from the

variance of the composite. Hierarchical omega is more general

than coefficient omega. However, the two are equal in models in

which there are no minor factors (or correlations among errors).

The reason that we have named this type of reliability “hierar-

chical omega” is because the formula is similar to the reliability for

the hierarchical factor model proposed by McDonald (1999) and

Zinbarg, Yovel, Revelle, and McDonald (2006). McDonald (1999)

proposed that for the hierarchical factor model the reliability

should represent the squared correlation of the total test score with

the hierarchical general factor. The reason is that reliability should

also reflect criterion validity, the degree to which the composite

score reflects the true score that it is intended to measure. There-

fore, specific factors should not be used to compute the reliability

because they are not intended to measure the construct of interest.

The reliability in Equation 15 (i.e., hierarchical omega) serves the

same purpose for reliability coefficients of a composite as the

reliability coefficient from a hierarchical factor model. The differ-

ence, however, is that here the minor factors described in this

section are not included in the model because they are unknown

(or thought to be ignorable), whereas specific factors in McDonald

(1999) are explicitly included in a model.

What we have called hierarchical omega and the way in which it

accounts for the potential of minor factors, by using the observed

variance of Y, serves as a link between coefficient omega and cate-

gorical omega and has not been discussed in the literature before.

Categorical omega, which is discussed in the next section, uses the

information from bivariate item polychoric correlations to calculate
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the total variance of Y. However, coefficient omega calculates total

variance from the sum of true-score variance and error variance

derived from model parameters. There is no direct counterpart of

categorical omega that uses the observed covariance matrix to calcu-

late the total variance of Y so our hierarchical omega serves this

purpose. We also highlight that both hierarchical omega and categor-

ical omega have advantages over coefficient omega because they do

not assume that the confirmatory factor analysis (CFA) model fits

perfectly.

Categorical Omega

Until now we have considered all items to be continuous measures.

However, this is often an unrealistic assumption because many of the

mostly widely used scales use relatively few ordered categories (e.g.,

strongly disagree, disagree, neutral, agree, strongly agree). When

items are ordered-categorical, Xij cannot be represented as the sum of

a true score and error as shown in Equation 1 for continuous items.

Rather, the sum of the true score and error represent the continuous

response variable presumably underlying Xij, denoted as Xij
*. The

relationship between Xij
* and Xij can be modeled with a probit link

function (Muthén, 1984). In particular,

Xij ! c if tj,c 0 Xij
* . tj,c"1, (16)

where c " 0, 1, . . . , C – 1 and tj,c represents thresholds of indicator

j separating categories c ! 1 and c, tj,0 " ! , and tj,C " ,. Setting

Var!Xij
*" ! 1, which is known as the delta parameterization (Mill-

sap & Yun-Tein, 2004), the model-implied population covariances

for the categorical scale score (i.e., the composite) can be calcu-

lated as follows:

&jj!($̃jj!) ! #
c!1

C(1

#
c!!1

C(1

12(tj,c, tj!,c!, $̃jj!) ( %#
c!1

C(1

11(tj,c)&%#
c!!1

C(1

11(tj!,c!)&
(17)

where 11!tj,c" is the cumulative probability of tj,c given a univar-

iate standard normal distribution and 12!tj,c, tj!,c!, $̃ij" is the joint

cumulative probability of tjc and tj!c! given a bivariate standard

normal distribution with a population correlation of $̃jj!.

The model-implied covariance for the categorical scale score

can be used to calculate categorical reliability (Green & Yang,

2009a). The population value of categorical omega is given as

-C !
#
j!1

J

#
j!!1

J

&jj!!+j+j!"

#
j!1

J

#
j!!1

J

&jj!!$Xj
*Xj!

*"
, (18)

where #j!1
J #j!!1

J &jj!!+j+j!" (i.e., the numerator of Equation 18)

represents the variance explained by true scores and $Xj
*Xj!

* is the

polychoric correlation between items j and j!. The estimated value

of categorical omega can be obtained, we use robust weighted least

square (Flora & Curran, 2004), and substituted for the population

values in Equation 18.

It is useful to note that Equation 18 is equivalent to hierarchical

omega because a polychoric correlation is equivalent to the ob-

served item correlation. Polychoric correlation is the correlation

between two latent variables presumed to be underlying the or-

dered categorical items (and not based on the model-implied item

covariances as done for coefficient omega). Green and Yang

(2009a) found in the situations they investigated that if a scale has

both negatively and positively skewed distributed items, categor-

ical omega has higher values than hierarchical omega when no

minor factors are present. That is, controlling for the polychoric

correlation, the Pearson’s correlation coefficient between categor-

ical items is lower when the skewness of both items is in different

directions (see Crocker & Algina, 1986 for numerical illustration).

Hence, coefficient omega underestimated categorical omega when

response distributions were skewed in different directions.4

Methods of Confidence Interval Formation for

Population Reliability Coefficients

We have now discussed four different point estimates of the

population composite reliability. However, a point estimate alone

does not acknowledge the uncertainty with which the population

value has been estimated. The population value, not the sample

value, is what is ultimately of interest. Many different methods to

calculate a confidence interval for the population reliability coef-

ficient have been proposed. In this section we briefly discuss each

of five classes of confidence interval formation methods that we

evaluate in the next section. We aim for our brief summaries of the

confidence interval methods to provide a general overview of each

of the confidence interval procedures we evaluate.

Feldt’s Approach

Parallel items is a restrictive structure in which the items have

equal covariances to each other and equal variances (p. 86 Mc-

Donald, 1999). From the factor analytic perspective, parallel items

imply that the factor loadings are all the equal to one another and

that the error variances are all equal to one another. Thus, from

Figure 1 there are no j subscripts. If the item distribution is

multivariate normal and the items are parallel, Feldt (1965) and

Feldt, Woodruff, and Salih (1987) showed that the approximate

1 ( '̂ confidence interval for coefficient alpha can be derived

using an F-distribution as

Pr[1 ( !1 ( '̂"F(1(C) ⁄ 2,N(1,(N(1)(J(1) . $(Y) . 1

( !1 ( '̂"F1((1(C) ⁄ 2,N(1,(N(1)(J(1)] ) C, (19)

where Pr() represents the probability of the bracketed terms, '̂ is the

estimated value of coefficient alpha, N is sample size, J is the number

of items, FA,df1,df2
is the value of the Ath quantile of the F distribution

with degrees of freedom of df1 and df2, and C is the confidence level.5

4 Raykov, Dimitrov, and Asparouhov (2010) proposed a reliability index
for binary items. Because the Raykov et al. (2010) approach is for only two
categories, and in practice many scales have more than two categories, we
elected not to include it in our evaluation of reliability coefficients. Instead,
we used the Green and Yang (2009a) categorical omega approach because
of its generalizable nature, as it can be used for any number of categories.

5 Siotani, Hayakawa, and Fujikoshi (1985) used a similar formula to
Feldt’s (1965)’s method. The difference is that the degrees of freedom in
the F-distribution for the Siotani et al. (1985) approach are N and N(J ! 1),
rather than N ! 1 and (N ! 1)(J – 1) from Feldt’s method. Because the
difference between the degree of freedom values will generally be trivial,
we included only Feldt’s method in our simulation study. Note that the
method of Siotani et al. (1985) is also referred to as Koning and Franses
(2003)’s exact method in Romano et al. (2010).
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Although we believe that the parallel assumption is generally unreal-

istic, we include this method here to make the current simulation

comparable with previous simulation studies that included it (Cui &

Li, 2012; Romano, Kromrey, & Hibbard, 2010). We also applied this

method to coefficient omega because coefficient omega equals coef-

ficient alpha under the parallel assumption. Thus, more generally, '̂ in

Equation 19 can be replaced with $̂!Y", where $̂!Y" represents either

'̂ or -̂ depending on the condition.

Delta Method

The delta method is a way to obtain an approximate distribution

of a function, including estimates of its moments such as the mean

and variance, using an approximation of the function that is easier

to deal with (e.g., Oehlert, 1992).

There are two ways to apply the delta method to estimate the

standard error of coefficient alpha. First, van Zyl, Neudecker, and

Nel (2000) used the delta method to derive an approximate vari-

ance of the sample coefficient alpha that assumes multivariate

normality of the items for a true-score equivalent model (i.e., more

lenient than the parallel items assumption as used in the Feldt

approach, in that true-score equivalence allows heterogeneous

error variances).6 The variance from this approach for the sample

coefficient alpha is

Var!'̂" !
1
N

J2

(J ( 1)2

2

(1!S1)3
'(1!S1)(tr(S2) " tr2(S))

( 2tr(S)(1!S21)(, (20)

where S is a J - J sample covariance matrix among items, tr() is the

trace function of a matrix (i.e., the sum of diagonal elements of the

matrix), 1 is a J - 1 vector in which all elements are 1, and, to be

clear, S2 is matrix multiplication of the matrix with itself: S2 " S -

S). This method assumes that coefficient alpha is asymptotically

normally distributed (i.e., the sampling distribution is normally dis-

tributed when the sample size approaches infinity) and, consequently,

the confidence interval is symmetric. The Wald (normal-theory) con-

fidence interval with confidence level C can be computed as

Pr''̂ ( z1((1(C) ⁄ 2 2 *Var!'̂" . ' . '̂ " z1((1(C) ⁄ 2

2 *Var!'̂"( ) C, (21)

where z1!(1!C)/2 is the 1 ! (1 ! C)/2 quantile of the standard

normal distribution.7 Note that the confidence interval obtained from

Equation 21 is a Wald confidence interval, in that this interval, like

others to follow, is formed as an estimate plus-and-minus the product

of the appropriate critical value and standard error.

Second, Maydeu-Olivares, Coffman, and Hartmann (2007) used

the asymptotically distribution free method (ADF) to derive the

standard error of coefficient alpha. However, unlike the normal-

theory approach, the ADF approach does not require the observed

random variables to be normally distributed because the ADF

approach uses the variance and the shape of the distributions of

items to find the standard error of the coefficient alpha (Browne,

1984). The minimizing function is based on the asymptotic cova-

riance matrix of the unique elements of the item covariance matrix.

That is, the unique elements of the item covariance matrix are

stacked. Then, the asymptotic covariance matrix of the unique

elements is calculated, in which the square root of each diagonal

element is the corresponding standard error. This asymptotic co-

variance matrix is used as the weight in the minimizing function

and used to calculate the standard error of coefficient alpha. The

standard error of coefficient alpha will be weighted more by (a)

items that have smaller standard errors (more precision), and (b)

items that have low nondiagonal elements of the asymptotic co-

variance matrix. This implies that the standard error of coefficient

alpha will be weighted more by items that provide less redundant

information about the composite score.

The ADF approach does, however, assume that the sampling

distribution of the estimated coefficient alpha values is asymptot-

ically normally distributed (Wald confidence interval). Conse-

quently, the ADF approach assumes that the distribution of the

coefficient alpha is symmetric. In addition, the ADF method

requires the asymptotic covariance matrix of the unique elements

of the item covariance matrix. The asymptotic covariance matrix

of the unique elements can be quite large. As examples, the size of

the covariance matrix would be 15 - 15 for computing a coeffi-

cient alpha from a five-item scale (i.e., 5 - 6/2) and 78 - 78 for

a 12-item scale (i.e., 12 - 13/2). Because the number of the

parameters needed to be estimated in the covariance matrix can be

large, a large sample size is often necessary to yield an accurate

estimate of the standard error.

For coefficient omega, the normal-theory approach or the ADF

approach can be used. Raykov (2002a) used the normal-theory

approach to derive a closed-form solution for the variance of

coefficient omega assuming that data are multivariate normally

distributed (i.e., using maximum likelihood estimation). Alterna-

tively, nonlinear constraints can be used to find the standard error

of coefficient omega when a one-factor model is estimated in

structural equation modeling packages (Cheung, 2009; Raykov,

2002a). For violations of the assumption of normally distributed

items, robust maximum likelihood estimation (Bentler & Satorra,

2010; Satorra & Bentler, 2001) could be used to approximate

standard errors that are more robust to normality violation.

For the ADF approach, a closed-form equation for the standard

error is not available to our knowledge. However, with nonlinear

constraints in SEM programs, ADF can be implemented for the

estimate of coefficient omega and its standard error. The difference

is the change of the estimation method from maximum likelihood

estimation to ADF. Using the ADF estimation method, however,

the parameter estimates of coefficient omega are estimated by a

different discrepancy function from the maximum likelihood

method, which involves the asymptotic covariance matrix of the

unique elements of item covariances. As noted in the context of

coefficient alpha, the ADF estimation method can be advantageous

because it is not based on the multivariate normality assumption of

items (Browne, 1984; Olsson, Foss, Troye, & Howell, 2000).

However, the obtained point estimate might be biased (Olsson et

6 van Zyl et al. (2000) also proposed the reduced form of this formula
when the items are parallel. The parallel-form formula was referred to as
“Koning and Franses’s approximate method” in Romano et al. (2010).
Note also that the method of van Zyl et al. (2000) was referred to by
Romano et al. (2010) as Iacobucci and Duhachek (2003)’s method.

7 If Type I error is denoted as '!, the quantile of interest from the
standard normal distribution could be denoted as z1('!⁄ 2 rather than
z1!(1!C)/2. In an effort not to confuse the Type I error rate with coefficient
alpha, we use C for the confidence interval coefficient. It will always be the
case that '! " C ! 1.
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al., 2000) in small sample size situations because of the inaccuracy

in the asymptotic covariance matrix. Therefore, if the confidence

interval procedure fails to perform well, it may be due to the

method yielding biased point estimates of the population value of

coefficient omega or due to the standard error being inappropriate.

The limit of the confidence interval for coefficient omega from

both the normal-theory and ADF approaches is that the confidence

intervals are calculated in the form of Wald confidence intervals

(i.e., symmetric confidence intervals).

Transformation-Based Approaches

The delta method does not acknowledge that, when sample

size is small, the reliability coefficient (e.g., '̂ or -̂) is rarely

normally distributed. Because the scale of reliability can range

from 0 to 1, the margin of error on the side closer to a limiting

bound tends to be shorter than on the other side.8 Taking a

population reliability coefficient of .99 as an example, the

sampling distribution of an estimated reliability coefficient in

finite samples will have a nontrivial proportion of the estimated

reliability coefficients being smaller than the population value

but due to the boundary at 1.0 (i.e., perfect reliability), no

possibility of having an estimated value larger than 1.0. Thus,

comparing the proportion of values from the sampling distri-

bution less than .99 to the proportion greater than .99 will yield

an asymmetry (a much higher proportion of sample values will

be less than the population value here). Thus, in such a situa-

tion, the sampling distribution is negatively skewed.

The transformation-based approach acknowledges this potential

asymmetry by transforming the estimated reliability coefficient so

that the new different scale has a sampling distribution closer to

normality, even in a small sample. Based on the result of previous

simulation studies (e.g., Padilla, Divers, & Newton, 2012; Romano

et al., 2010), we included Fisher’s, Bonett’s, Hakstian and

Whalen’s, and logistic transformations in this study for both co-

efficient alpha and coefficient omega. Romano, Kromrey, and

Hibbard (2010) found that Fisher’s and Bonett’s methods per-

formed better than the alternatives they investigated with regards

to the nominal and empirical confidence interval coverage. Padilla,

Divers, and Newton (2012), however, found that Fisher’s method

was not ideal because it had high coverage rates (i.e., 98% or

higher when the nominal coverage was 95%). Bonett’s method,

however, performed well in most situations.

The computation of the confidence interval based on the Fish-

er’s z! transformation requires several steps (Fisher, 1950).9 First,

the estimated value of the population reliability coefficient, gener-

ically denoted $̂ for whatever estimate one chooses (e.g., coeffi-

cient alpha or coefficient omega), is transformed to the z! scale by

ẑ! !
1
2

log!1 " $̂
1 ( $̂", (22)

where $̂ is an estimate of the population sample reliability coeffi-

cient and log() is the natural logarithm function. Second, the

confidence interval for the transformed variable is then formed as

Pr'ẑ! (z1((1(C) ⁄ 2* 1
N ( 3

. z!. ẑ!

"z1((1(C) ⁄ 2* 1
N ( 3( ) C, (23)

where z! is the population value of the transformed reliability

coefficient. The upper and lower bounds of the confidence interval

for the z! (i.e., the transformed confidence interval) are trans-

formed into the original reliability metric so that the limits are on

the appropriate scale. In particular, the upper and lower bounds of

the transformed confidence interval for reliability are transformed

back to the original reliability metric by

$̂ !
exp(2ẑ! ) ( 1
exp(2ẑ! ) " 1

. (24)

The method of Bonett (2002) is based on the transformation of

the intraclass correlation coefficient.10 Bonett’s transformation

formula is

ẑ!! ! log!1 ( $̂", (25)

where a double prime superscript is used to distinguish it from

Fisher’s transformation.11 The confidence interval for the Bonett’s

transformed reliability is

Pr'ẑ!! ( z1((1(C) ⁄ 2* 2J
(J ( 1)(N ( 2)

. z" . ẑ"

" z1((1(C) ⁄ 2* 2J
(J ( 1)(N ( 2)( ) C. (26)

Similar to the Fisher’s approach, the upper and lower bounds of

the transformed confidence interval are transformed back into the

original reliability metric.12

$̂ ! 1 ( exp(ẑ!!). (27)

Hakstian and Whalen’s (1976) approach to confidence intervals

for reliability coefficients uses the cube-root transformation of

1 ( $̂. The Hakstian and Whalen’s transformation formula is

ẑ!!! ! !1 ( $̂"1 ⁄ 3, (28)

8 Robust maximum likelihood estimation and ADF do not assume that
the item distribution is multivariate normal. However, the resulting confi-
dence interval assumes that the sampling distribution of estimated reliabil-
ity coefficients is normally distributed. That is, it is important to realize that
there are two types of normality in this context.

9 Fisher proposed this z! transformation in order to obtain a better
confidence interval for the population Pearson’s product-moment correla-
tion, yet it has been adapted to the context of reliability. Reliability can be
interpreted as the correlation between a composite score and another
measure of the composite score (e.g., McDonald, 1999, p. 66). Thus, using
a correlation transformation for a reliability coefficient does have a solid
grounding. However, unlike correlation, reliability cannot take negative
values.

10 Reliability is the proportion of observed score variance that is attrib-
uted to the variation of true score (Crocker & Algina, 1986), which is a
concept similar to intraclass correlation.

11 There are several proposed formulas similar to Bonett (2002) formula.
The first variation is that the standard error of the transformed variable is
2J/[N(J ! 1)] (e.g., Fisher, 1950; van Zyl et al., 2000). The second
variation is that the transformation formula is log!1 ( $̂" ( log'N⁄!N (
1"( (Bonett, 2010). These are within the same family of transformations.
Therefore, we consider only the Bonett (2002) formula.

12 Bonett (2002) noted that “unless computational ease is a primary
concern, the exact confidence interval (Feldt et al., 1987) would be used
instead” of the proposal Bonett (2002) offered (p. 337). Interestingly,
previous simulation studies revealed that Bonett’s approach worked better
than the Feldt’s approach in a variety of situations (Cui & Li, 2012; Padilla
et al., 2012; Romano et al., 2010).
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where a triple prime superscript is used to distinguish it from

Fisher’s and Bonett’s transformations. The confidence interval for

the Hakstian and Whalen’s transformed reliability is

Pr+ẑ!!! ( z1((1(C) ⁄ 2, 2J
9(n ( 1)(J ( 1)

(1 ( $̂)2 ⁄ 3

!1 (
2

9(n ( 1)"
2

. z!!! . ẑ!!!

" z1((1(C) ⁄ 2, 2J
9(n ( 1)(J ( 1)

(1 ( $̂)2⁄3

!1 (
2

9(n ( 1)"
2 -) C. (29)

Similar to Fisher’s and Bonett’s approaches, the upper and

lower bounds of the transformed confidence interval for reliability

are transformed into the original reliability metric with the follow-

ing transformation

$̂ ! 1 (%z!!!
1 (

2
9(n ( 1)

1 (
2

9(n ( 1)(J ( 1)
&3

. (30)

Finally, because reliability ranges from 0 to 1, the logistic link

can expand the range of the limits from 0 and 1 to !, and ,.

Unlike the previous transformations, the logistic transformation

takes both point estimate and standard error of reliability estimate

to find the confidence interval for population reliability. Thus, the

point estimate and standard errors from the delta method can be

used to build a nonsymmetic confidence interval. First, the point

estimate of reliability is transformed based on logistic transforma-

tion (Browne, 1982; Raykov & Marcoulides, 2013):

3̂ ! log($̂ ⁄ (1 ( $̂)), (31)

where 3̂ is the logistic-transformed reliability. Then, the confi-

dence interval for the logistic-transformed reliability is

Pr'3̂ ( z1((1(C) ⁄ 2! SE($̂)
$̂(1 ( $̂)" . 3 . 3̂ " z1((1(C) ⁄ 2! SE($̂)

$̂(1 ( $̂)"(
) C. (32)

Then, the confidence interval for $ can be obtained by the

inverse function of logistic transformation:

$̂ ! 1 ⁄ (1 " exp((3̂)). (33)

This method does not generally produce a symmetric confidence

interval, which is fine for a bounded quantity such as the reliability

coefficient.

Likelihood-Based Approach

When the delta-method confidence intervals are formed as an

estimate plus-and-minus a single value for the margin of error, as

those above, there is an assumption of symmetry of the sampling

distribution of the statistic. A way to avoid the assumption of

symmetry is using what can be termed the shifting method. The

confidence interval by the shifting method can be formed by

several steps: (a) the point estimate of reliability ($̂) is calculated;

(b) a hypothesized population reliability value is arbitrarily made

at the point where the estimated reliability is posited; (c) the

hypothesized reliability value is shifted to smaller and smaller

values until the appropriate test statistic “turns” from being not

being statistically significant to being statistically significant, with

this turning point used as the lower bound of confidence interval;

and (d) this process is repeated for the upper confidence interval

limit by shifting the hypothesized reliability value to the larger

value side. The distance between the lower bound and the param-

eter estimate may not be equal to the distance between the upper

bound and the parameter estimate (i.e., the confidence interval

need not be symmetric).

If the test statistic is obtained by a Wald test, the shifting method

is equivalent to the delta method and the confidence interval is

symmetric. However, rather than using the Wald test, the

likelihood-ratio (LR) statistic for nested model comparisons is

used. Let L!$̂!Y"" be the likelihood of the model when reliability is

estimated and L0($(Y)) be the likelihood of the model when reli-

ability is fixed. Likelihoods from both models will be compared by

using likelihood-ratio statistics, such as

LR ! 2(log[L0($(Y))] ( log[L($̂(Y))]). (34)

This likelihood-ratio statistic is (asymptotically) chi-square dis-

tributed with one degree of freedom. This test statistic is used to

find the upper and lower bounds of a confidence interval by

finding the turning points in which the test statistic turns from not

being statistically significant to being statistically significant.

Some structural equation modeling packages can be used to find

likelihood-based confidence intervals (we use OpenMx; Boker et

al., 2011). To find the confidence interval for population reliabil-

ity, nonlinear constraints are added in the model (see more details

in Cheung, 2009).

Bootstrap Approaches

Bootstrap approaches posit that it is better to base confidence

intervals on empirical distributions rather than theoretical distri-

butions (Efron & Tibshirani, 1993). If the sample distribution

deviates drastically from a normal distribution, provided sample

size is not small, there is thus some empirical evidence that the

distribution in the population differs from normality.13 Further, it

might be very clear that normality is suspect at best from a

theoretical perspective. The bootstrap approach uses an empirical

distribution of the estimate(s) in order to better approximate the

sampling distribution of the estimate that exists in reality, as

evidenced from the sample data, as opposed to a sampling distri-

bution based on a theoretical mathematical model, such as the

normal distribution. The sampling distribution of the estimate in a

bootstrap context is based on the idea of sampling a large number

of times (e.g., 10,000) N observations with replacement from the

original scores in order to form an empirical distribution of the

desired statistic(s). Then, a confidence interval can be obtained

from the empirical sampling distribution from the bootstrap pro-

cedure. Bootstrap approaches seem useful for confidence intervals

for reliability coefficients because, in practice, item distributions

are often not likely to be normally distributed, which is an assump-

tion normal-theory based methods (e.g., maximum likelihood)

make. Some have suggested using bootstrap approaches to find

confidence intervals for the reliability coefficient (e.g., Kelley &

13 Although the assumption of normality can be evaluated formally with
a significance test, we do not suggest such a two-stage procedure. See
(Rasch, Kubinger, & Moder, 2011, and the references contained therein)
for a discussion of pretesting assumptions for tests of statistical inference.
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Cheng, 2012; Raykov, 2002b; Yuan, Guarnaccia, & Hayslip,

2003) without formally evaluating the bootstrap methods’ effec-

tiveness against alternatives. Some researchers have conducted

simulation studies that showed the bootstrap approach outper-

formed certain alternatives (Cui & Li, 2012; Padilla & Divers,

2013a; Padilla et al., 2012; Romano et al., 2010). However, these

studies did not investigate the performance of all four of the

reliability coefficients we have discussed in as diverse situations.

Additionally, we evaluate three bootstrap approaches for all four

reliability coefficients under all of the conditions.

The first bootstrap approach is the bootstrap standard error

method. The variance of the estimated reliability across the boot-

strap samples is calculated. The variance of the estimate is used in

a typical Wald-type confidence interval (i.e., Equation 21), where

the square root of the variance of the bootstrap estimates is used

for the standard error. The assumption of this approach is that the

confidence interval is symmetric. However, an alternative is to use

the logistic transformation applied in the bootstrap standard error

method. The logistic transformation from Equation 31–33 can be

applied within the bootstrap standard error method. The transfor-

mation works by transforming the reliability estimate to the logis-

tic scale and with the estimated standard error being derived from

the standard deviation across bootstrap samples of the transformed

estimate. Note that this transformation does not assume that the

confidence interval is symmetric.

The second bootstrap approach is the percentile method. The

percentile method finds the values at the specified percentile from

the empirical distribution of the statistic so that upper and lower

confidence interval limits can be found. In particular, the percen-

tile method finds the values from the empirical distribution at the

(1 ! C)/2 and 1 ! (1 ! C)/2 percentiles to use as the lower and

upper bounds of the confidence interval.

The third bootstrap approach is the bias-corrected and acceler-

ated approach (BCa). The BCa is used to find a confidence interval

that corrects for bias in the point estimate and considers the

skewness of the sampling distribution (i.e., asymmetric sampling

distributions will get an adjustment in the confidence interval). The

difference between percentile and BCa approaches is that BCa uses

different percentiles to provide the lower and upper bounds of a

reliability coefficient. The lower and upper percentiles, %LBC a and

%UBCa, respectively, are used for the BCa confidence interval as

%LBCa ! 11%ẑ0 "
ẑ0 " z(1(C) ⁄ 2

1 ( â(ẑ0 " z(1(C) ⁄ 2)
& (35)

and

%UBCa ! 11%ẑ0 "
ẑ0 " z1((1(C) ⁄ 2

1 ( â(ẑ0 " z1((1(C) ⁄ 2)
&, (36)

where 11() is the standard normal cumulative distribution, z(1!C)/2 and

z1!(1!C)/2 are critical values of the desired confidence level coverage

from the standard normal distribution. The ẑ0 can be computed by first

finding the proportion of the number of bootstrap reliability estimates that

are less than the observed reliability estimate and then finding the inverse

standard normal cumulative distribution (11
(1) of the proportion from the

first step. â is the skewed sampling distribution adjustment (Efron &

Tibshirani, 1993) computed by

â !
#
i!1

N

!$̃(.) ( $̃i"3

6+#
i!1

N

($̃(.) ( $̃i)
2-3 ⁄ 2

, (37)

where $̃i is the jackknife estimate of reliability when the ith

individual’s set of scores is removed and $̃!." is the mean jackknife

estimate of $, which is !#i!1
N $̃i" ⁄N.

Monte Carlo Simulation Studies

We use our Monte Carlo simulation studies to compare the

performance of the different confidence interval methods in con-

junction with the four reliability coefficients we discussed. In

general, there is no known way to analytically derive the actual

confidence interval coverage, characteristics of the confidence

interval width (e.g., mean width), or the overall properties of the

estimation methods in finite sample sizes. Correspondingly, Monte

Carlo simulation studies were necessary to evaluate the various

confidence interval methods for the reliability coefficients under a

variety of conditions that we believe represent realistic scenarios

so as to be able to generalize our results to research in psychology

and related disciplines.

We conduct three studies. Study 1 replicates and extends previous

simulation studies evaluating the performance of confidence interval

methods for coefficient alpha and coefficient omega to estimate

population reliability. We found that coefficient alpha tends to under-

estimate the population reliability in situations where tau-equivalence

does not hold and that it does not tend to bracket population reliability

at the stated level of confidence. In Study 2 we study the perfor-

mances of different confidence interval methods for coefficient

omega and hierarchical omega in estimating population reliability.

Study 2 differs from Study 1 because the model does not have a

perfect fit at the population level (i.e., there is model misspecifica-

tion). In Study 2 we find that hierarchical omega outperforms coef-

ficient omega when the model fit is not perfect. In Study 3 we

compare the performances of confidence interval methods of hierar-

chical omega and categorical omega in estimating population reliabil-

ity when items are ordered categorical. We found that categorical

omega was better than hierarchical omega for a scale with ordered

categorical items. Table 1 provides an overview of the factors inves-

tigated in the three simulation studies (which we detail more fully

when we discuss the methods of each study).

All confidence intervals were computed using the ci.reli-

ability() function (Kelley & Cheng, 2012) in the MBESS

(Kelley, 2007b, 2007a, 2016) R (R Development Core Team,

2015) package. We used 1,000 bootstrap replications for construct-

ing the bootstrap confidence intervals.14 Our primary outcome

variable was the proportion of the computed confidence intervals

14 We used the OpenMx (Boker et al., 2011) package in R within the
MBESS ci.reliability() function to compute the likelihood-based
confidence intervals for the coefficient alpha and coefficient omega. For
the ADF method, we wrote a function in R to analyze the ADF confidence
interval for coefficient alpha using the equation given in the appendix of
Maydeu-Olivares et al. (2007). For the ADF confidence interval for coef-
ficient omega, we used the lavaan (Rosseel, 2012) package with the ADF
(also termed weighted least square; WLS) as the method of estimation to
run a one-factor CFA and used the model constraint command to estimate
the confidence interval for coefficient omega.
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that correctly bracketed the population parameter (i.e., empirical

confidence interval coverage). For 95% confidence intervals, the

average population coverage (i.e., the proportion of the computed

confidence intervals that correctly bracketed the population param-

eter) should be close to .95. We will highlight the methods and

conditions under which proportion coverage was within .925–.975

and .94–.96 ranges and labeled as “acceptable” and “good” cov-

erage, respectively. The range of .925–.975 is equivalent to the

Bradley (1978) liberal criterion (1 ! )= . .5)=) which was used

in Romano et al. (2010) and Padilla et al. (2012), among others.

The proportion of acceptable and good coverage, however, does

not account for the continuity of the coverage rate (e.g., the

coverage .949 should be better than the value of .941).

To determine which of the design factors contributed to the

coverage rate within each of the three studies, we used ANOVA

where design factors are used as fixed factors. Similar to Lüdtke et

al. (2008), ANOVA was conducted at the cell mean level where

the average of a coverage rate of each cell is used as a dependent

variable—one observation for each cell so the highest-level inter-

action (e.g., five-way interaction in Study 1) could not be separated

from the error. We used the proportion of variance explained ('2)

as a measure of effect size for each of the main effects and

interaction effects. We used two criteria to select the design factors

that influenced the results: '2 4 .01 (Lüdtke et al., 2008) and '2 4

.05 (Geldhof, Preacher, & Zyphur, 2014). We found that the design

factors with .01 . '2 / .05 did not provide meaningful differ-

ences in the coverage rates shown later. Therefore, we considered

the design factors with '2 greater than or equal to .05 only.

All data were generated using the R environment for statistical

computing and graphics (R Development Core Team, 2015). For

the multivariate normal data, we used the mvrnorm() function

from the MASS package (Venables & Ripley, 2015). Nonnormal

data were generated with the simulateData() function from

the lavaan package (Rosseel, 2012). We used 1,000 replications for

each condition investigated.15

Study 1: Confidence Intervals in Congeneric

Measurement Model Without Model Error at the

Population Level

The objective of this study is to compare different confidence

interval methods of coefficient alpha and coefficient omega in

estimating population reliability. Hierarchical omega is not con-

sidered here because it is equal to coefficient omega in the popu-

lation in perfectly fitting models. More specifically, the population

value of coefficient omega and hierarchical omega are both equal

to the population reliability. Categorical omega is not considered

in Study 1 because we focus on continuous items in this study.

We conducted a Monte Carlo simulation study to compare the

effectiveness of five classes of confidence interval methods that

can further be divided into 13 methods for coefficient alpha and 15

15 The 1,000 replications is large enough, such that the 95% confidence
interval for the population of confidence interval coverage is sufficiently
narrow. In particular, suppose that the observed proportion in a condition
was 95% (i.e., the empirical coverage was equal to the nominal coverage).
With 1,000 replications the 95% confidence interval for the population
proportion would be 93.65% to 96.35% (based on the usual formula for a
95% two-sided confidence interval for a population proportion). Thus, the
confidence interval for an observed proportion of .95 has a width of only
.027 units (on the proportion scale; or 2.7 percentage points), which we
regard as sufficiently small for evaluating the effectiveness of the various
methods.

Table 1

Types of Confidence Intervals Examined in Each Simulation Study for the Type of

Reliability Coefficient

Type of confidence intervals
Coefficient

alpha
Coefficient

omega
Hierarchical

omega
Categorical

omega

Feldt 1 1
Delta

Normal-theory maximum likelihood
Untransformed 1 1
Logistic transformation 1 1

Asymptotic distribution free
Untransformed 1 1
Logistic transformation 1 1

Robust maximum likelihood
Untransformed 1
Logistic transformation 1

Transformation
Fisher 1 1
Bonett 1 1
Hakstian & Whalen 1 1

Likelihood 1 1
Bootstrap

Bootstrap standard error
Untransformed 1 1 & 2 2 & 3 3
Logistic transformation 1 1 & 2 2 & 3 3

Percentile 1 1 & 2 2 & 3 3
Bias corrected and accelerated 1 1 & 2 2 & 3 3

Note. The tabled numbers represent the simulation study or studies in which the particular reliability coeffi-
cient—in combination with the confidence interval method—is investigated.
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methods for coefficient omega. Thirteen methods for coefficient

alpha included (a) Feldt’s approach, (b) the normal-theory delta

method, (c) the ADF delta method, (d) the normal-theory delta

method with logistic transformation, (e) the ADF delta method

with logistic transformation, (f) Fisher’s z transformation, (g)

Bonett’s (2002) transformation, (h) Hakstian and Whalen (1976)

transformation, (i) likelihood-based method, (j) the bootstrap stan-

dard error approach, (k) the bootstrap standard error approach with

logistic transformation, and (l) percentile bootstrap, and (m) BCa

bootstrap. All confidence interval methods for coefficient alpha are

applicable for coefficient omega. Two additional methods for

coefficient omega are (n) the normal-theory delta method esti-

mated by robust maximum likelihood estimation and (o) the

normal-theory delta method estimated by robust maximum likeli-

hood estimation with logistic transformation. We use a confidence

level of 95% because of its prevalence in the applied literature.

Method

The factors we examine here (in Study 1) are (a) sample size

(five levels); (b) number of items (five levels); (c) factor loading

distributions (two levels); (d) population reliability (three levels);

and (e) item distributions (four levels). We fully crossed each of

these five factors and thus a total of 600 distinct conditions were

investigated. We briefly outline each of these five factors. There

are 13 and 15 types of confidence interval procedures for coeffi-

cients alpha and omega, respectively, in Study 1.

Sample size. Sample size values of 50, 100, 200, 400, and

1,000 are used in the Monte Carlo simulation study. The maximum

sample size of 1,000 is used to investigate what many researchers

might consider a large-sample size. The values of 100, 200, and

400 are a compromise between the small sample size of 50 and the

large sample size of 1,000.

Number of items. The number of items included on the

homogeneous scales were 4, 8, 12, 16, and 20. The minimum

number of items is 4 because confirmatory factor analysis will be

underidentified with two items and will provide only perfectly

fitting models in three items. The maximum number of items is 20,

which is used for homogeneous scales in some contexts, such as

ability tests.

Population reliability. The population reliability values we

used are .7, .8, and .9. The population reliability of .7 has histor-

ically been considered an “acceptable value” of reliability in most

areas in psychology. The reliability of .9 is generally considered to

be a “high value” of reliability in much psychological research.

Kline (2005) notes, although there is no “gold standard” to the

interpretation of reliability, “reliability around .90 are considered

‘excellent,’ values around .80 are ‘very good,’ and values around

.70 are ‘adequate’ (p. 50). We thus use values that we believe are

reasonable values in psychological research.

Factor loading distribution. Factor loadings can be equal or

unequal across items in a homogenous test. When factor loadings

are equal across items, the scale is tau-equivalent and coefficient

alpha estimates the population reliability. When factor loadings are

not equal across items, the scale is not tau-equivalent and coeffi-

cient alpha and coefficient omega have different population values

and coefficient alpha no longer estimates the population reliability.

The performance of the two reliability indices, however, are not

the same in the population with unequal factor loadings. In one

condition the population factor loadings are equal and fixed to .5.

To provide a range of values when factor loadings are not equal,

the factor loadings increase from .2 to .8 with a step size of .6/(J !

1), where J is the number of items. The population error variances

are calculated so that the population reliability is equal to the

desired value (.7, .8, or .9) in the specified condition. Note that

factor variance is always fixed to 1.

Item distribution. Data will be generated from four types of

distribution, labeled D1–D4, which closely aligned with Enders

(2001). D1 represents multivariate normality. D2–D4 are gener-

ated based on the Vale and Maurelli (1983) approach. All observed

variables are set to have skewness of 1.25 and kurtosis of 3.5 in

D2; skewness of 2.25 and kurtosis of 7 in D3; and skewness of

3.25 and kurtosis of 20 in D4. These can be nearly thought of as

mild, moderate, and severe deviations from normality.

Results

This section will compare the effectiveness of the confidence

interval methods for coefficient alpha and coefficient omega in

bracketing the value of the population reliability. By “bracketing”

we mean that the population value is contained within the lower

and upper confidence interval limit (i.e., the population value is

within the computed interval). There were some convergence

issues in the Monte Carlo simulation study. The ADF method for

omega estimation had convergence rates of less than 95% of the

replications in 27% of the conditions; 24% of the conditions had

no replications that converged. These problematic conditions

tended to have sample sizes among the lower values studied

(50–200) and for the high number of items of items studied

(12–20). For other methods of omega estimation, less than 3% of

the conditions had convergence rates of less than 95% of the

replications. These conditions tended to have sample size among

the lower value of those studied (50–100), among the lowest

number of items studied (4–8), population reliability values of

.7–.8, and with high levels of nonnormality. Therefore, the inter-

pretation based on these results in these conditions should be done

with an awareness of the nonconvergence issues. The table of

convergence rates are available upon request from the authors.

All confidence interval methods of coefficient alpha had a poor

performance in bracketing the value of the population reliability.

The best method in this context was the bootstrap standard error

method, which had only 50% the conditions that yielded accept-

able coverage rates. In particular, coverage rates were poor when

factor loadings were not equal and the number of items was low.

Thus, we did not report the effects of design conditions on the

confidence interval for coefficient alpha here (see the online sup-

plement for the results) and recommended that the confidence

interval for coefficient alpha should not be used in estimating

population reliability.

Table 2 shows '2 for all main and interaction effects of each

design factor on the coverage rates of the confidence intervals for

coefficient omega on population reliability. All three-way or

higher-order interactions had '2 lower than .05. The full table is

available upon request.

Feldt’s Approach. The '2 of the main effects of the number

of items and item distributions were greater than .05. The coverage

rates were better when the number of items was higher: .854, .877,

.888, .893, and .897 for 4, 8, 12, 16, and 20 items, respectively.
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However, the convergence rates did not reach what we considered

acceptable convergence levels (e.g., above 95%) regardless of the

number of items. The coverage rates were worse when the item

distributions were more deviated from normality: .945, .924, .827,

and .831 for D1, D2, D3, and D4, respectively, that represented

increasing levels of nonnormality (with D1 being multivariate

normal). Thus, this method was not recommended, particularly for

moderately to severely nonnormal item distributions.

Delta method. The delta method consists of three separate

estimation methods: normal theory, ADF, and robust maximum

likelihood, each using untransformed and logistic transformations.

Normal-theory (untransformed). The normal-theory ap-

proach was influenced by item distribution and the number of

items. The coverage rates were .944, .922, .828, and .832 for D1,

D2, D3, and D4, respectively, showing that there was a tendency

for larger deviations from normality to worsen coverage. When the

number of items was higher, the coverage rates were closer to .95

(i.e., .855, .876, .886, .893, and .897 for 4, 8, 12, 16, and 20 items,

respectively). Thus, this method is not recommended for nonnor-

mal item distributions.

Normal-theory with logistic transformation. This approach

was influenced by item distributions such that the coverage rates

were .946, .925, .829, and .833 for D1, D2, D3, and D4, respec-

tively. Logistic transformation slightly improved the coverage

rates.

ADF (untransformed). The main effects of sample size and

the number of items were impactful on the coverage rates. More

specifically, the coverage rates were better when sample size

increased: .652, .654, .709, .773, and .825 for sample sizes of 50,

100, 200, 400, and 1000, respectfully. Further, the coverage rates

were worse when the number of items increased: .909, .781, .673,

.601, and .587 for 4, 8, 12, 16, and 20 items, respectfully. Although

this method was not influenced much by the item distribution, the

coverage rates were not acceptable in most cases.

ADF with logistic transformation. Similar to the standard

ADF, the main effects of sample size and the number of items were

impactful on the coverage rates. More specifically, the coverage

rates were .681, .664, .712, .771, and .818 for sample sizes of 50,

100, 200, 400, and 1,000, respectively. Further, the coverage rates

were .919, .786, .671, .599, and .587 for 4, 8, 12, 16, and 20 items,

respectively. The logistic transformation did not always provide

better coverage rates (e.g., .771 vs .773 for sample size of 400).

Robust maximum likelihood (untransformed). The main ef-

fects of sample size, the number of items, population reliability,

and item distributions were impactful on the coverage rates. More

specifically, the coverage rates tended to be slightly better when

sample size increased: .923, .926, .924, .937, and .940 for sample

sizes of 50, 100, 200, 400, and 1,000, respectively. Further, the

coverage rates were .924, .928, .931, .933, and .934 when

the numbers of items were 4, 8, 12, 16, and 20, respectively. The

coverage rates decreased when population reliability was higher:

.935, .930, and .924 for .7, .8, and .9, respectively. Lastly, the

coverage rates were slightly lower when item distributions devi-

ated more from normality: .941, .936, .922, and .921 for D1, D2,

D3, and D4, respectively. Thus, robust maximum likelihood esti-

mation helped the confidence intervals to provide coverage rates

close to the acceptable range for nonnormal items and retained

good coverage rates for normally distributed items. Because the

main effects did not highly influence coverage rates (i.e., the

largest difference was .02) and the coverage rates were close to

the acceptable range in most cases, we find that robust maximum

likelihood is preferred to standard maximum likelihood (normal

theory).

A peculiarity in the above description of the results of the simulation

study was that the coverage rates decreased when the population reliabil-

ity was higher. We further investigated this issue and found that it

is, at least in part, due to the asymmetry of the sampling distribu-

tion of the sample reliability coefficient, which is theoretically

bounded at 1.0. For high values of reliability coefficients (which

also occurs for Pearson product–moment correlation coefficients),

the sampling distribution of sample estimates will be negatively

skewed (the extent to which depends on sample size and the true

Table 2

The '2 of the Effects of the Design Factors on the Coverage Rates of Coefficient Omega for Study 1

Factors Feldt NT NT-L ADF ADF-L NT-MLR NT-MLR-L Fisher Bonett HW LL BSE BSE-L PER BCa

N .001 .001 .002 .077 .058 .166 .065 .001 .002 .001 .003 .000 .010 .123 .149

J .056 .057 .046 .413 .429 .051 .017 .166 .051 .057 .049 .219 .131 .031 .093

LOAD .004 .003 .004 .000 .000 .001 .000 .004 .004 .004 .003 .003 .002 .000 .003
RELIA .042 .033 .048 .003 .005 .075 .189 .001 .043 .041 .044 .061 .167 .073 .040
DIST .642 .652 .644 .029 .037 .290 .228 .540 .644 .641 .641 .159 .178 .183 .407

N:J .003 .003 .005 .038 .040 .021 .006 .005 .005 .003 .004 .094 .050 .016 .021
N:LOAD .000 .001 .000 .000 .000 .000 .000 .000 .000 .000 .000 .001 .001 .000 .000
N:RELIA .002 .004 .001 .004 .005 .018 .066 .002 .002 .002 .001 .009 .046 .020 .004
N:DIST .005 .007 .005 .003 .005 .006 .002 .002 .004 .004 .005 .000 .002 .000 .013
J:LOAD .000 .000 .000 .000 .000 .000 .001 .001 .001 .000 .000 .000 .001 .000 .000
J:RELIA .000 .000 .000 .001 .001 .005 .004 .000 .000 .000 .000 .033 .022 .000 .009
J:DIST .044 .040 .040 .017 .019 .007 .002 .075 .042 .044 .042 .007 .001 .022 .003
LOAD:RELIA .000 .000 .000 .000 .000 .000 .000 .000 .000 .000 .000 .000 .000 .001 .000
LOAD:DIST .002 .002 .002 .000 .000 .000 .000 .003 .002 .002 .002 .000 .000 .000 .000
RELIA:DIST .030 .029 .031 .005 .006 .028 .028 .010 .031 .030 .031 .014 .020 .011 .008

Note. The boldface numbers represent when '2 4 .05. All three-way and higher interactions are not tabled because their '2 / .05. NT " normal-theory
method; L " logistic-transformed Wald confidence interval; ADF " asymptotic distribution free; MLR " robust maximum likelihood estimation; HW "

Hakstian-Whalen method; LL " likelihood-based method; BSE " bootstrap standard error; PER " percentile bootstrap; BCa " bias-corrected-and-
accelerated bootstrap; N " sample size; J " number of items; LOAD " factor loading distribution; RELIA " population reliability; DIST " item
distributions.
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population value; recall Footnote 8). Although the robust maxi-

mum likelihood approach does not assume that the items are

multivariate normally distributed, it does assume that the sample

reliability coefficient is normally distributed. Yet, as noted, the

distribution of the sample reliability coefficient will be negatively

skewed and thus when the population reliability is high sample

values can be markedly lower than the population value (as com-

pared with a normally distributed quantity). The confidence inter-

val for the robust maximum likelihood estimator leads to a sym-

metric confidence interval whose upper bound does not extend as

far as it ideally would and there are more “misses” of the popu-

lation value on the high side for higher values of the population

reliability coefficient. In particular, we find in our simulation that

3.5% of the time for the population reliability of .90 condition that

the upper limit is less than the true value (i.e., high side misses).

However, when the population reliability value is .70, only 2.4%

of the intervals have upper limits less than the true value. For

reliability of .80, we find that 2.9% of the confidence intervals

have upper limits less than the true value (a value in between the

other two, which makes sense given that .80 is between the other

two population values). Separately, the lower limit of the confi-

dence interval excludes the true value (a) more than is ideal but (b)

essentially the same amount: 4.1%, 4.1%, and 4.0%, respectively,

for .70, .80, and .90 population reliability values. Thus, the .935

coverage rate for the lower reliability condition is due to the

proportion of lower confidence interval limits that are larger than

the true value (i.e., .041) and upper confidence interval limits that

are smaller than the true value (i.e., .024). Although the lower

confidence interval cover is not ideal (in that they are ideally .025),

the upper confidence interval limit misses more as population

reliability is higher.

Robust maximum likelihood with logistic transformation.

The main effect of item distribution and the interaction effect of

sample size and population reliability were impactful on the cov-

erage rates. Table 3 shows the coverage rates illustrating the

interaction between sample size and population reliability. When

sample size was low and population reliability was high, the

coverage rates were not acceptable. Item distributions slightly

influenced coverage rates: .942, .939, .925, and .926 for D1, D2,

D3, and D4, respectively. However, note that the coverage was

acceptable across the four distributions studied. The coverage rates

were slightly better when logistic transformation was used.

Transformation-based approaches. The transformation based

approaches consist of three separate transformations: Fisher,

Bonett, and Hakstian, and Whalen.

Fisher’s transformation. The interaction between the number

of items and item distributions was impactful. Specifically, as

shown in Table 4, the coverage rates were lower when items

deviated from normality and higher when the number of items

increased. However, the coverage rates in most conditions were

higher than .975 or lower than .925. Because of the inconsistency

of its performance, the Fisher’s method is not recommended.

Bonett’s transformation. The main effects of the number of

items and item distributions were impactful. Specifically, when the

number of items increased, the coverage rates were better: .856,

.879, .888, .894, and .897 for 4, 8, 12, 16, and 20 items, respect-

fully. None of which, however, were in the acceptable range.

When items were not normally distributed, the coverage rates were

worse (i.e., .946, .925, .828, and .831 for D1, D2, D3, and D4,

respectively). Thus, the Bonett’s transformation was not robust to

nonnormality.

Hakstian and Whalen’s transformation. Similar to Bonett’s

transformation, the main effects of the number of items and item

distributions had '2 greater than .05 and were thus impactful.

Specifically, the coverage rates were .854, .877, .887, .894, and

.897 for 4, 8, 12, 16, and 20 items, respectively. Although the

coverage rates improved for more items, none of which were

acceptable. The coverage rates were .945, .924, .827, and .831 for

D1, D2, D3, and D4, respectively. Thus, Hakstian and Whalen’s

transformation was not robust to nonnormality.

Likelihood-based approach. The main effect of item distri-

butions was impactful. Specifically, when items deviated more

from normality, the coverage rates tended to decrease: .946, .925,

.829, and .834 for D1, D2, D3, and D4, respectively. The

likelihood-based approach was thus not robust to nonnormality.

Bootstrap approach. The bootstrap approach consists of

three separate types: bootstrap standard error, percentile, and BCa.

Bootstrap standard error (untransformed). The main effects

of population reliability and item distribution and the interaction

effect between sample size and the number of items had '2 higher

than .05. The coverage rates were slightly decreased when popu-

lation reliability was higher (i.e., .944, .940, and .935 for .7, .8, and

.9, respectively). The coverage rates were .947, .943, .936, and

.932 for D1, D2, D3, and D4, respectively. Table 5 shows the

interaction between the number of items and sample size. Most

conditions had acceptable ranges of coverage rates except one with

four items and a sample size of 50 or 100. Because the effects of

design factors were not large, the bootstrap standard error was

recommended for both normal and nonnormal data.

Bootstrap standard error with logistic transformation.

Similar to the bootstrap standard error (directly above), the main

effects of population reliability and item distribution and the

interaction effect between sample size and the number of items had

'2 higher than .05. The logistic transformation provided better

coverage rates than the bootstrap standard error without logistic

transformation (e.g., see Table 5 of the online supplement). How-

ever, coverage, rates were not acceptable for the equal factor

loading conditions with four items, and for the unequal factor

loading conditions rates were not acceptable for 4, 8, or 12 items

(yet they were acceptable for 16 and 20 items).

Table 3

The Coverage Rates of Confidence Intervals for Coefficient

Omega Using the Normal-Theory Method With Robust

Maximum Likelihood With Logistic Transformation Classified by

Sample Size and Population Reliability for Study 1

Sample size

Population reliability

.7 .8 .9

50 .953 .936 .915
100 .942 .926 .917
200 .929 .924 .921
400 .941 .938 .934

1,000 .941 .940 .938
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Percentile bootstrap. The main effects of population reliabil-

ity and item distributions had '2 greater than .05. When the

population reliability was higher, the coverage rates were slightly

lower (.938, .933, and .930 for population reliability of .7, .8, and

.9, respectively). The coverage rates were .942, .938, .926, and

.930 for D1, D2, D3, and D4, respectively. In general, percentile

bootstrap had an acceptable coverage rate in both normal and

nonnormal item distributions.

BCa bootstrap. The main effects of sample size, the number

of items, and item distributions were impactful. Specifically, when

sample size increased, the coverage rates became (slightly) better:

.918, .923, .922, .933, and .937 for sample sizes of 50, 100, 200,

400, and 1,000, respectively. When the number of items increased,

the coverage rates were also slightly better (.918, .924, .927, .931,

and .933 for 4, 8, 12, 16, and 20 items). The coverage rates were

.942, .925, .920, and .913 for D1, D2, D3, and D4, respectively.

Thus, the BCa method had an acceptable coverage rate for most

conditions with both normal and nonnormal items; however, the

coverage rates were not as good as the bootstrap standard error and

percentile bootstrap.

In conclusion, all methods except ADF and Fisher’s approaches

provided acceptable coverage rates for normal items. However,

only normal-theory approach with robust standard error and all

bootstrap methods provided acceptable coverage rates for most

conditions of nonnormal items. Logistic transformation slightly

improved the coverage rates for the normal-theory approach with

robust standard error and bootstrap standard error.

Study 2: Confidence Intervals for Congeneric

Measurement Model With Small Model Error at the

Population Level

In the congeneric measurement model with small model error, not

coefficient omega but rather hierarchical omega represents population

reliability. In this study, the performance of confidence intervals for

coefficient omega and hierarchical omega is investigated in terms of

whether they appropriately bracket the population reliability. From

the previous study, bootstrap methods performed well in both normal

and nonnormal items so we evaluate bootstrap methods in this study.

The normal-theory approach was not used in this study because it is

not available for hierarchical omega, as hierarchical omega cannot be

derived from the CFA model parameters (it requires the observed

covariance matrix of the items or the observed variance of Y). That is,

only bootstrap confidence intervals for coefficient omega and hierar-

chical omega, including (a) the bootstrap standard error approach,

(b) the bootstrap standard error approach with logistic transformation,

(c) percentile bootstrap, and (d) BCa bootstrap, are compared in this

study. We use a confidence level of 95% because of its prevalence in

the applied literature.

Method

We designed the simulation of Study 2 similarly to Study 1 but

with four design factors used: sample size, number of items,

population coefficient omega, and model error. However, here we

only investigate bootstrap methods.

Sample size. Sample sizes used (N) are 50, 100, 200, 400, and

1,000.

Number of items. The number of items (J) included on the

homogeneous scales were 4, 8, and 12. We removed the 16 and 20

items because three levels of the number of items were sufficient

to investigate the influence of the number of items. The coverage

rate differences between 12, 16, and 20 items in the previous study

were not large in bootstrap confidence intervals.

Population coefficient omega. The population coefficient

omega includes .7, .8, and .9. We used the unequal factor loading

specified in Study 1 such that the factor loadings increase from .2

to .8 with a step size of.6/(J ! 1) (we did not include the equal

loading distribution condition because its influence on the cover-

age rates of confidence intervals for coefficient omega was not

high in Study 1). Then, measurement error variances of each item

were calculated such that the coefficient omega was equal to the

specified condition. The factor variance was always fixed to 1.

Model error. The amount of model error is quantified by the

population root mean square error of approximation (RMSEA).

The values of the population RMSEA used are .02, .05, .08, and

.10. The population RMSEA (ε) is calculated by

ε ! *F0 ⁄ df , (38)

with F0 defined as

F0 ! tr!!'!M((1" ( log 5!'!M((15 ( J, (39)

where ! is the observed population covariance matrix, !M is the

model-implied covariance matrix, and df is the model’s degree of

freedom. To find ! that yields a specified RMSEA, we do the

following multiple step procedure: (a) Let RE be the J - J

Table 4

The Coverage Rates of Confidence Intervals for Coefficient

Omega Using Fisher’s Method Classified by the Number of

Items and Item Distributions for Study 1

Item distributions

Number of items

4 8 12 16 20

D1 .965 .980 .980 .982 .981
D2 .939 .966 .972 .975 .977
D3 .848 .889 .904 .912 .916
D4 .805 .884 .912 .926 .935

Note. D1–D4 in the item distributions column represents the particular
distributional form. D1 is multivariate normal. D2 has a skewness of 1.25
and kurtosis of 3.5. D3 has a skewness of 2.25 and kurtosis of 7. D4 has
a skewness of 3.25 and kurtosis of 20.

Table 5

The Coverage Rates of Confidence Intervals for Coefficient

Omega Using the Bootstrap Standard Error Method

(Untransformed) Classified by the Number of Items and Sample

Size for Study 1

Sample size

Number of items

4 8 12 16 20

50 .929 .943 .953 .961 .967
100 .928 .937 .945 .951 .955
200 .932 .932 .934 .937 .939
400 .939 .939 .939 .940 .944

1,000 .938 .942 .941 .943 .941
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correlation matrix of errors and VE be a J - J diagonal matrix of

measurement error variances. The goal is to find RE such that !

provides the specified RMSEA. (b) ! is calculated by ""! "

VE
1 ⁄ 2REVE

1 ⁄ 2. (c) ! is fitted using the congeneric measurement

model so !M is obtained. (d) ε is calculated from Equation 38. A

numerical method is used to solve for RE, which provides the

specified population RMSEA.16 Note that there are many sets of

RE that provide the same population RMSEA. We picked one

solution by using a random number seed.

In conclusion, there are a total of (5 - 3 - 3 - 5) 225 distinct

conditions for each of the four types of confidence interval pro-

cedures for coefficients omega and hierarchical omega. For each of

the 225 conditions, 1,000 replications were used. Note that popu-

lation reliability is equal to hierarchical omega, which is not

exactly equal to, although close to, coefficient omega specified in

the previous design factors. We check whether each confidence

interval is bracketing the value of the population reliability (i.e.,

hierarchical omega) and not the population coefficient omega.

Results

This section will compare the effectiveness of the confidence

interval methods for coefficient omega and hierarchical omega in

bracketing the value of the population reliability. Based on each of

the confidence interval methods evaluated in the 225 conditions,

15 conditions had convergence rates less than 95%. These condi-

tions tend to have low sample size (50–100) and 4 items. The table

of convergence rates is available upon request from the authors.

All confidence interval methods of coefficient omega had poor

performances in bracketing the value of the population reliability.

Only 52%, 71%, 72%, and 64% of all conditions from the confi-

dence intervals for coefficient omega using bootstrap standard

error, bootstrap standard error with logistic transformation, per-

centile bootstrap, and BCa bootstrap had acceptable coverage rates

(compared with 93%, 92%, 99%, and 96% in confidence intervals

for hierarchical omega). In particular, the differences between the

coverage rates of coefficient omega and hierarchical omega were

the largest when sample size was small and the population coef-

ficient omega was .9. Thus, we did not report the effects of design

conditions on the confidence intervals for coefficient omega here

(see the online supplement for those results) and recommend that

the confidence intervals for coefficient omega not be used in

estimating population reliability when a CFA model does not

perfectly fit data.

Table 6 shows '2 for all main and interaction effects of each

design condition on the coverage rates of the confidence intervals

for hierarchical omega on population reliability.

Bootstrap standard error. The interactions between (a) sam-

ple size and the number of items and (b) population reliability and

the number of items had '2 values greater than .05. As shown in

Table 7, when sample size is small, the coverage rates were lower

than .95 for four items but higher than .95 for 12 items. The

coverage rates were closer to .95 when sample size increased. As

also shown in Table 7, when population reliability is .7, the

coverage rates were lower than .95 in the four-item conditions but

higher than .95 in the 12-item conditions. The coverage rates were

closer to .95 when population reliability was .9. All conditions had

coverage rates in the acceptable range.

Bootstrap standard error with logistic transformation. The

interaction between sample size and the number of items had '2

greater than .05. The pattern is similar to one in bootstrap standard

error without logistic transformation (directly above): interactions

between (a) sample size and the number of items and (b) popula-

tion reliability and the number of items had '2 values greater than

.05. The transformation made the coverage rates closer to .95, as

compared with the untransformed approach, in most conditions.

However, in the sample size of 50 and 12 items, the coverage rate

was farther from .95 and was not in the acceptable range. There-

fore, logistic transformation is recommended except in small sam-

ple size conditions and large number of items.

Percentile bootstrap. The main effects of sample size and

population reliability were impactful. Specifically, when the cov-

erage rates were .947, .942, .939, .948, and .948 for sample sizes

of 50, 100, 200, 400, and 1,000, respectively. Further, the coverage

rates were .948, .945, and .942 when population reliability was .7,

.8, and .9, respectively. All conditions had coverage rates in the

acceptable range and most of them had coverage rates in the

“good” range.

BCa bootstrap. The interaction effects between (a) sample

size and the number of items and (b) population reliability and the

number of items were greater than .05. As shown in Table 8, when

sample size is low, the coverage rates were closer to .95 as the

number of items increased. However, the number of items did not

affect coverage rates in large sample size. For four items, the

coverage rates increased when population reliability increased. For

12 items, however, the coverage rates decreased when population

16 Note that our method of simulating data for misspecified models is
similar to Cudeck and Browne (1992) but there is a distinction. Consider
a population covariance matrix defined as ! ! C " E, where C is the
population covariance matrix without model errors and E is the population
model error. Let !M be the model-implied covariance matrix after fitting !

to the model. Cudeck and Browne (1992) use a numerical method to find the
model error that f!!M, C" ! c, where c is a constant. This is not the same as
the definition of RMSEA based on f!!, !M". Our method uses a numerical
method to model error such that f!!, !M" ! c, which is consistent with the
definition of RMSEA.

Table 6

The '2 of the Effects of the Design Factors on the Coverage

Rates of Hierarchical Omega for Study 2

Factors BSE BSE-L PER BCa

N .004 .070 .051 .152

J .383 .262 .000 .187

RELIA .008 .041 .102 .003
RMSEA .018 .011 .006 .002
N:J .090 .090 .008 .051

N:RELIA .006 .009 .042 .000
N:RMSEA .001 .000 .000 .003
J:RELIA .062 .044 .001 .064

J:RMSEA .001 .001 .007 .002
RELIA:RMSEA .001 .000 .000 .001

Note. The boldface numbers represent the '2 4 .05. All interactions
higher than two way are not presented here because their '2 / .05. L "

logistic-transformed Wald confidence interval; BSE " bootstrap standard
error; PER " percentile bootstrap; BCa " bias-corrected-and-accelerated
bootstrap; N " sample size; J " number of items; RELIA " population
coefficient omega; RMSEA " root mean square error of approximation.

T
h
is

d
o
cu

m
en

t
is

co
p
y
ri

g
h
te

d
b
y

th
e

A
m

er
ic

an
P

sy
ch

o
lo

g
ic

al
A

ss
o
ci

at
io

n
o
r

o
n
e

o
f

it
s

al
li

ed
p
u
b
li

sh
er

s.

T
h
is

ar
ti

cl
e

is
in

te
n
d
ed

so
le

ly
fo

r
th

e
p
er

so
n
al

u
se

o
f

th
e

in
d
iv

id
u
al

u
se

r
an

d
is

n
o
t

to
b
e

d
is

se
m

in
at

ed
b
ro

ad
ly

.

83CONFIDENCE INTERVALS FOR POPULATION RELIABILITY COEFFICIENTS



reliability increased. Most conditions had coverage rates in the

acceptable range.

In conclusion, all of the methods we studied for forming con-

fidence intervals for hierarchical omega tended to have good

coverage rates for bracketing the population reliability value. The

different confidence interval methods tended to produce rather

trivial differences in coverage rates for hierarchical omega. Nev-

ertheless, the percentile bootstrap method had more instances of

good coverage and no issues of poor performance for the condi-

tions investigated. Thus, we recommend the use of the percentile

bootstrap method when forming confidence intervals for the pop-

ulation reliability coefficient when using hierarchical omega in the

context of misspecified models. Additionally, we remind readers

that the performance of coefficient omega when the model is

misspecified produced poor results and thus coefficient omega is

not recommend for use with misspecified models.

Study 3: Confidence Intervals for Congeneric

Measurement Model With Categorical Items

When items are ordered categorical, the relationship between

factor and observed item scores is not linear. Rather, the factor is

thought to have a linear relationship with continuous latent vari-

ables underlying each item, which are categorized via thresholds to

yield scores for each category. Instead of coefficient omega or

hierarchical omega, categorical omega is appropriate to represent

scale reliability for ordered categorical items. This simulation

study will investigate the performance of confidence intervals for

hierarchical omega and categorical omega in bracketing the value

of the population reliability for categorical items. Coefficient

omega is not considered here because we assume that all models

have some degree of model misspecification, correspondingly,

model error is added in this simulation. Bootstrap confidence

intervals are tested in this simulation because they are available for

both hierarchical and categorical omega. That is, four methods are

compared in this study: (a) the bootstrap standard error, (b) the

bootstrap standard error with logistic transformation, (c) percentile

bootstrap, and (d) BCa bootstrap. We use a confidence level of

95% because of its prevalence in the applied literature.

Factors

We designed the simulation conditions to be similar to Study 1

and 2. Five design factors were used in this study: sample size,

number of items, number of categories, threshold symmetry, and

population categorical omega (for perfectly fitting model). How-

ever, we only investigate hierarchical omega and categorical

omega.

Sample size. The sample sizes (N) included 50, 100, 200, 400,

and 1,000.

Number of items. The number of items (J) included on the

homogeneous scales were 4, 8, and 12.

The number of categories. The numbers of categories con-

sidered are two or five, both of which are commonly used in

applied research.

Threshold symmetry. We used five levels of threshold sym-

metry following Rhemtulla, Brosseau-Liard, and Savalei (2012):

symmetry, moderate asymmetry, extreme asymmetry, moderate

asymmetry-alternating, and extreme asymmetry-alternating. In the

symmetry conditions, thresholds are distributed evenly around 0

and spaced evenly to divide the distance between !2.5 and 2.5. In

the moderate asymmetry conditions, the thresholds are created

such that the peak category is on the left near the center. In the

extreme asymmetry conditions, the thresholds are created such that

the peak category is in the lowest category. See Figure 2 for the

distributions of each category when different threshold symmetries

are imposed. The alternating conditions are that the odd-number

items had the reversed distributions.

Population categorical omega for perfectly fitting model.

The population categorical omega values included .7, .8, and .9.

Similar to the previous studies, the factor variance is always fixed

to 1 and the factor loadings are unequal using the same values as

in Study 1 and 2. Then, the error variances of each latent variable

underlying each item are calculated such that the population cat-

egorical omega value is equal to the value noted in the condition.

Note that the scale of the model-implied covariance matrix of the

hypothesized latent variable underlying each item is transformed

to have a total variance of 1 before calculating categorical omega

following delta parameterization. Thus, the rescaled factor load-

ings and measurement error variances that provide total variances

of 1 are used for data generation.

Table 7

The Coverage Rates of Confidence Intervals for Hierarchical

Omega Using the Bootstrap Standard Error Method Classified

by (a) the Number of Items and Sample Size (Top Section) and

(b) the Number of Items and Population Coefficient Omega

(Bottom Section) for Study 2

Factors Levels

Number of items

4 8 12

Sample size 50 .931 .958 .972
100 .933 .956 .963
200 .945 .943 .948
400 .948 .953 .957

1,000 .944 .951 .951
Population coefficient omega .7 .937 .954 .964

.8 .940 .952 .958

.9 .944 .950 .953

Table 8

The Coverage Rates of Confidence Intervals for Hierarchical

Omega Using the Bias-Corrected-and-Accelerated Bootstrap

Classified by (a) the Number of Items and Sample Size (Top

Section) and (b) the Number of Items and Population Coefficient

Omega (Bottom Section) for Study 2

Factors Levels

Number of items

4 8 12

Sample size 50 .924 .938 .950
100 .936 .943 .948
200 .940 .939 .941
400 .944 .947 .949

1,000 .946 .951 .949
Population coefficient omega .7 .935 .945 .951

.8 .939 .944 .948

.9 .941 .941 .944
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Then, measurement error correlations of latent variables under-

lying categorical items are added such that the population RMSEA

is .05. Thus, the actual categorical omega is not exactly equal but

close to .7, .8, or .9. In conclusion, there are a total of (5 - 3 -

2 - 5 - 3) 450 distinct conditions for each of the four types of

confidence interval procedures for hierarchical omega and cate-

gorical omega. In each of the 600 conditions, 1,000 replications

were used.

Results

This section will compare the effectiveness of the confidence

interval methods for hierarchical omega and categorical omega in

bracketing the value of the population reliability. Based on each of

the confidence interval methods evaluated in the 450 conditions,

193 conditions of hierarchical omega (43%) and 168 conditions of

categorical omega (37%) had convergence rates less than 95%. We

did not find systematic patterns in the proportion of nonconvergent

results across design conditions. The most influential design con-

dition was sample size. Sample size slightly decreased the propor-

tion of nonconvergent results in both types of confidence intervals.

When sample sizes were 50, 100, 200, 400, and 1,000, the pro-

portion of nonconvergence results were 15%, 12%, 11%, 11%, and

11% for hierarchical omega and 13%, 12%, 11%, 11%, and 11%

for categorical omega. The table of convergence rates is available

upon request from the authors.

The performances of the confidence interval methods for hier-

archical omega were slightly worse than the performance of con-

fidence interval methods for categorical omega with regards to

bracketing the value of the population reliability. That is, 68%,

62%, 57%, and 53% of all conditions from the confidence intervals

for hierarchical omega using bootstrap standard error, bootstrap

standard error with logistic transformation, percentile bootstrap,

and BCa bootstrap bracketed the population reliability, compared

with 40%, 51%, 36%, and 74% from the confidence intervals for

categorical omega. We will provide the results for both types of

confidence intervals.

Table 9 shows '2 for all main and interaction effects of each

design factors on the coverage rates of the confidence intervals for

hierarchical omega and categorical omega on population reliabil-

ity.

Confidence intervals for hierarchical omega.

Bootstrap standard error. Three two-way interaction effects

had '2 higher than .05. These two-way interaction effects involved

with threshold patterns with other design factors: (a) population

categorical omega for perfectly fitting model (see Table 10); (b)

the number of categories (see Table 11); and (c) the number of

items (see Table 12. In threshold patterns 4 and 5, the coverage

rates were low and out of the acceptable range when population

reliability was high or items were dichotomous or the number of

items was low. Therefore, the bootstrap standard error confidence

interval for hierarchical omega is not recommended for scales

containing items with different threshold patterns.

Bootstrap standard error with logistic transformation. The

results were similar to bootstrap standard error (see directly

above). Logistic transformation did not improve the coverage rate

so this method is not recommended.

Figure 2. The item distributions of each level of threshold pattern (symmetry, moderate asymmetry, or extreme

asymmetry) and the number of categories (two or five).
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Percentile bootstrap. The interactions between (a) threshold

patterns and population categorical omega for perfectly fitting

model, and (b) threshold patterns and the number of categories had

'2 higher than.05. As shown in Table 10 and 11, in threshold

patterns 4 and 5, the coverage rates were low and out of acceptable

range when population reliability was high or items were dichot-

omous. This method is not recommended for scale containing

items with different threshold patterns.

BCa bootstrap. The results were similar to percentile boot-

strap so we do not repeat it again.

Confidence intervals for categorical omega.

Bootstrap standard error. The interaction between population

reliability and the number of items had '2 greater than .05. As

shown in Table 13, when population reliability was .7, the cover-

age rates were relatively constant across the number of items.

However, with the population reliability of .9, the coverage rates

were lower when the number of items increased. The coverage

rates were not acceptable when population reliability and the

number of items were both high.

Table 9

The '2 of the Effects of the Design Factors on the Coverage Rates of Hierarchical Omega and Categorical Omega for Study 3

Factors

Hierarchical omega Categorical omega

BSE BSE-L PER BCa BSE BSE-L PER BCa

N .021 .014 .003 .004 .001 .065 .019 .015
J .050 .050 .022 .047 .093 .028 .154 .020
RELIA .048 .065 .072 .066 .162 .088 .203 .048
NCAT .037 .038 .052 .040 .010 .007 .077 .055

THRES .280 .298 .336 .324 .013 .006 .008 .020
N:J .001 .001 .004 .001 .003 .016 .004 .012
N:RELIA .001 .000 .001 .000 .004 .016 .007 .000
N:NCAT .001 .001 .000 .001 .000 .000 .008 .011
N:THRES .022 .018 .010 .014 .000 .000 .005 .000
J:RELIA .003 .002 .002 .002 .102 .073 .119 .063

J:NCAT .002 .001 .000 .001 .005 .005 .017 .000
J:THRES .054 .049 .032 .045 .008 .034 .007 .021
RELIA:NCAT .001 .001 .001 .001 .000 .000 .021 .016
RELIA:THRES .063 .063 .055 .062 .014 .015 .010 .005
NCAT:THRES .061 .061 .074 .061 .014 .003 .023 .030

Note. The boldface numbers represent when '2 4 .05. All interactions higher than two ways are not presented here because their '2 / .05. L "

logistic-transformed Wald confidence interval; BSE " bootstrap standard error; PER " percentile bootstrap; BCa " bias-corrected-and-accelerated
bootstrap; N " sample size; J " number of items; RELIA " population categorical omega for perfectly fitting model; NCAT " number of categories;
THRES " threshold pattern.

Table 10

The Coverage Rates of Confidence Intervals For Hierarchical

Omega Using Four Bootstrap Methods Classified by Population

Coefficient Omega and Threshold Patterns for Study 3

Methods

Population categorical
omega for perfectly

fitting models

Threshold patterns

1 2 3 4 5

BSE .7 .960 .957 .955 .943 .725
.8 .958 .956 .957 .890 .543
.9 .954 .948 .965 .694 .223

BSE-L .7 .962 .958 .956 .942 .709
.8 .953 .952 .953 .874 .505
.9 .930 .927 .946 .645 .185

PER .7 .951 .947 .943 .932 .650
.8 .940 .940 .936 .857 .403
.9 .902 .900 .910 .584 .147

BCa .7 .944 .941 .940 .922 .673
.8 .939 .939 .940 .852 .455
.9 .910 .912 .926 .610 .161

Note. L " Logistic-transformed Wald confidence interval; BSE " Boot-
strap standard error; PER " Percentile bootstrap; BCa " Bias-corrected-
and-accelerated bootstrap. The threshold patterns 1–5 represent, symmetry,
moderate asymmetry, extreme asymmetry, moderate asymmetry-
alternating, and extreme asymmetry-alternating, respectively. For the
“asymmetry-alternating” conditions the odd-numbered items had reversed
distributions (i.e., the skew alternated). See Figure 2 for visual represen-
tations of the threshold patterns.

Table 11

The Coverage Rates of Confidence Intervals for Hierarchical

Omega Using Four Bootstrap Methods Classified by the

Number of Categories and Threshold Patterns for Study 3

Methods
Number of
categories

Threshold patterns

1 2 3 4 5

BSE 2 .959 .957 .963 .777 .297
5 .956 .951 .955 .914 .699

BSE-L 2 .948 .947 .956 .748 .262
5 .948 .943 .947 .898 .672

PER 2 .928 .927 .927 .708 .161
5 .933 .931 .932 .881 .640

BCa 2 .930 .931 .940 .722 .223
5 .932 .930 .931 .874 .639

Note. L " logistic-transformed Wald confidence interval; BSE " boot-
strap standard error; PER " percentile bootstrap; BCa " bias-corrected-
and-accelerated bootstrap. The threshold patterns 1–5 represent, symmetry,
moderate asymmetry, extreme asymmetry, moderate asymmetry-
alternating, and extreme asymmetry-alternating, respectively. For the
“asymmetry-alternating” conditions the odd-numbered items had reversed
distributions (i.e., the skew alternated). See Figure 2 for visual represen-
tations of the threshold patterns.
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Bootstrap standard error with logistic transformation. The

interaction effect between population reliability and the number of

items and the main effect of sample size had '2 greater than .05.

For the interaction, as shown in Table 13, the pattern is similar to

the one in bootstrap standard error without logistic transformation.

When sample size increased, the coverage rates were lower: .967,

.930, .916, .918, and .914 for 50, 100, 200, 400, and 1,000,

respectively. The correction made the coverage rates closer to .95

in most conditions. However, the coverage rates were still not

acceptable when both population reliability and the number of

items were high.

Percentile bootstrap. The interaction effect between the num-

ber of items and population reliability was impactful. Specifically,

as shown in Table 13, the pattern of coverage was similar to that

in bootstrap standard error; however, the coverage rates were

worse than when using bootstrap standard error, especially in the

conditions in which the number of items and population reliability

were both high. The main effect of the number of categories was

also impactful, such that the coverage rate was better with five

categories (.891) than in two categories (.810), although, coverage

was not at acceptable levels in either case.

BCa bootstrap. The interaction effect between the number of

items and population reliability and the main effect of the number

of categories had '2 greater than .05. As shown in Table 13, when

the number of items increased, the coverage rates increased for

population reliability of .7 and for population reliability of .8, but

decreased for population reliability of .9. The coverage rate for

five categories (.954) was better than the coverage rate for two

categories (.933). Most conditions had coverage rates in the ac-

ceptable range except when both the number of items and popu-

lation reliability were high. The coverage rate in this condition was

still better than it would have been using other methods.

In conclusion, the BCa confidence interval method for categor-

ical omega is recommended for estimating population reliability

for scales with categorical items. Confidence intervals for hierar-

chical omega are appropriate in conditions in which the threshold

patterns are the same across items. In our experience these condi-

tions are rare in practice.

Discussion

In this article we discussed four different reliability coefficients

for quantifying the reliability of a composite score. We then

acknowledge that the population reliability coefficient is what is

ultimately desired, not the sample value, and that a confidence

interval should accompany the estimated reliability coefficient.

However, there are many methods of confidence interval forma-

tion that can accompany a variety of reliability coefficients. We

evaluate the various confidence interval methods in a variety of

conditions with three Monte Carlo simulation studies in order to

make recommendations to researchers about which confidence

interval methods perform most effectively.

Researchers frequently use coefficient alpha to quantify the

reliability of composite scores. However, when coefficient alpha is

used to estimate the population reliability coefficient alpha as-

sumes, in addition to the standard classical test theory assump-

tions, that (a) the factor loadings of each item are equal (i.e.,

tau-equivalence holds); (b) one-factor CFA model must perfectly

fit the item covariances; and (c) items are continuous. If these

conditions do not hold in the population, the population value for

coefficient alpha is not the population value of reliability.

Many methodologists have promoted coefficient omega, which

relaxes the assumption of equal factor loadings (e.g., Kelley &

Cheng, 2012; Marcoulides & Saunders, 2006; Padilla & Divers,

2013a; Raykov, 1997; Raykov & Shrout, 2002). In this article we

go further than just recommending coefficient omega. In particu-

lar, we encourage researchers to use hierarchical omega for con-

tinuous items. Hierarchical omega does not require a perfectly

fitting CFA model. As MacCallum and Austin (2000) stated, “all

models are wrong to some degree, even in the population, and that

the best one can hope for is to identify a parsimonious substantively

meaningful model that fits observed data adequately well” (p. 218).

That is, a perfect homogeneous model is not reasonable to assume for

a set of items, even in the population. There are other relationships

among items that are not explained by the common factor (e.g.,

correlated errors or minor factors). If the size of the unexplained

relationships is not high (which is usually quantified by model eval-

uation methods in structural equation modeling; e.g., see West, Tay-

lor, & Wu, 2012), a one-factor CFA model is assumed to be a

Table 13

The Coverage Rates of Confidence Intervals for Categorical

Omega Using Four Bootstrap Methods Classified by the

Number of Items and Population Reliability for Study 3

Methods Number of items

RELIA

.7 .8 .9

BSE 4 .931 .929 .930
8 .923 .906 .870

12 .937 .902 .830
BSE-L 4 .939 .936 .945

8 .941 .931 .906
12 .952 .930 .879

PER 4 .931 .925 .928
8 .907 .861 .741

12 .919 .838 .603
BCa 4 .927 .929 .937

8 .960 .956 .940
12 .970 .961 .908

Note. L " logistic-transformed Wald confidence interval; BSE " boot-
strap standard error; PER " percentile bootstrap; BCa " bias-corrected-
and-accelerated bootstrap; RELIA " population categorical omega for
perfectly fitting model.

Table 12

The Coverage Rates of Confidence Intervals for Hierarchical

Omega Using Bootstrap Standard Error Classified by the

Number of Items and Threshold Patterns for Study 3

Number of items

Threshold patterns

1 2 3 4 5

4 .947 .943 .954 .689 .267
8 .961 .956 .961 .898 .505

12 .964 .962 .963 .949 .731

Note. The threshold patterns 1–5 represent, symmetry, moderate asym-
metry, extreme asymmetry, moderate asymmetry-alternating, and extreme
asymmetry-alternating, respectively. For the “asymmetry-alternating” con-
ditions the odd-numbered items had reversed distributions (i.e., the skew
alternated). See Figure 2 for visual representations of the threshold pat-
terns.
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parsimonious explanation of the population. However, coefficient

omega does not account for the existence of correlated errors that are

not included in the model because the formula for coefficient omega

relies on parameter estimates derived from the CFA model. Coeffi-

cient omega could overestimate or underestimate the population reli-

ability if errors are correlated. Instead of basing all estimates on the

assumed correctly fitting CFA model, hierarchical omega calculates

the total observed variance from the observed scores directly (i.e., the

variance of Y). Thus, we recommend that researchers use hierarchical

omega, a coefficient that builds on others in the literature that has

more relaxed assumptions.17

For categorical items, we encourage using categorical omega

because it does not require a perfectly fitting CFA model and it

accounts for the appropriate relationship between the factor and

categorical items. The CFA model for categorical items uses a

probit link function to model the theorized underlying continuous

scale into ordered categorical items. Coefficient omega and hier-

archical omega both assume a linear relationship between items

and factors, which is not valid when items are categorical.

Additionally, and importantly, we encourage researchers to report

not only the point estimate of the reliability coefficient, but also the

confidence interval for the population reliability. The confidence

interval limits, as well as width, should be considered when discussing

the reliability of a composite measure. Wide confidence intervals

illustrate the uncertainty with which a population value has been

estimated (e.g., Kelley & Maxwell, 2003; Kelley & Preacher, 2012;

Maxwell, Kelley, & Rausch, 2008). Even if a composite measure has

a high estimate for reliability, its confidence interval may be so wide

that the population reliability could actually be very low. Without this

knowledge, which is directly communicated with a confidence inter-

val, users of the estimate are left unaware of the plausible range of

parameter values (i.e., the values contained within the confidence

interval). Thus, confidence intervals for reliability coefficients, we

believe, are always necessary.18

The issue that remains once a researcher decides that he or she

wants to report a confidence interval for the population reliability

value is, “which confidence interval procedure should be used—

there are many?” This article seeks to shed light on this question by

comparing more than 10 previously proposed methods of confidence

interval formation for reliability coefficients. In particular, we evalu-

ated 12 confidence interval formation procedures (see Table 1) for

coefficient alpha, coefficient omega, hierarchical omega, and categor-

ical omega in a variety of realistic situations, such as both CFA

models with and without model error, and both CFA models with

continuous and categorical items. Our study is the most comprehen-

sive study that examined topics in which we are aware, with regards

to the number of confidence interval methods for four types of

reliability measures across a wide variety of realistic situations. Re-

liability is one of the central tenants of psychometrics and the use of

psychometric measures that are composite scores should always come

with an estimate of reliability and the corresponding confidence

interval. Without a clear rationale for knowing which of the compet-

ing methods should, or should not, be used to form a confidence

interval for population reliability coefficients, researchers are at a loss

for which of the many methods to use.

Throughout this article, the treatment of reliability is focused on

homogeneous measurement instruments. If a measurement instrument

measures multiple constructs (i.e., it is heterogeneous), the present

article still is useful because the set of items measuring each construct

may themselves be homogeneous (i.e., for purposes of using the items

as their own homogenous scale). For example, a scale may measure

three constructs and thus, by definition, not be homogeneous. How-

ever, a different composite score could be used for each of the three

subscales and thus our discussion of homogeneous composites would

apply to each of the three scales individually.

The simulation studies were designed to consider the effective-

ness of different methods of confidence intervals from different

types of models and to provide comparisons. In Study 1, CFA

model without model error was considered. We found that confi-

dence intervals for coefficient alpha did not perform well in most

conditions compared to confidence intervals for coefficient omega.

In particular, with the exception of the Fisher and ADF ap-

proaches, the other methods worked reasonably well and similarly

to one another for normal items. For nonnormal items, only

normal-theory method with robust maximum likelihood and all

bootstrap methods performed well.

The results of comparing the effectiveness of different ap-

proaches for coefficient alpha and coefficient omega partially

support the previous simulation studies on the confidence interval

for coefficient alpha. Although previous studies (e.g., Cui & Li,

2012; Duhachek & Iacobucci, 2004; Maydeu-Olivares, Coffman,

& Hartmann, 2007; Padilla et al., 2012; Romano et al., 2010)

recommended some types of confidence interval for coefficient

alpha, it was for estimating the population coefficient alpha, which

is not the target parameter. That is, the previous studies evaluated

if confidence intervals for coefficient alpha bracketed population

coefficient alpha—not if the confidence intervals bracketed pop-

ulation reliability. Population coefficient alpha and population

reliability are not generally the same. Therefore, we do not rec-

ommend using coefficient alpha and its confidence interval for

estimating population reliability. Regarding coefficient omega,

normal-theory method with robust maximum likelihood and the

bootstrap methods provided the best performance regardless of the

item distributions. Using the logistic transformation approach im-

proved the coverage rates for both normal-theory method with

robust maximum likelihood and bootstrap standard error.

The normal-theory method did not perform well for nonnormal

data because maximum likelihood estimation assumes normal item

distributions. Using robust maximum likelihood much improved

the coverage rates of population reliability for nonnormal distri-

17 Coefficient omega requires a just-identified latent variable. Hierarchi-
cal omega requires overidentified latent variable to have a potentially
different value from coefficient omega. A just-identified latent variable
cannot distinguish between the target construct and minor constructs,
which is an issue that arises with categorical omega. To separate minor
factors, an overidentified latent variable is needed.

18 Terry and Kelley (2012) develop sample size planning methods in
order to obtain narrow confidence intervals when using coefficients alpha
or omega. These sample size planning methods can be thought of as
approximations to the bootstrap confidence intervals for hierarchical
omega and are available in MBESS. The methods of Terry and Kelley
(2012) are approximations in this context because Terry and Kelley (2012)
did not consider hierarchical omega or categorical omega and they only
considered one approach each for forming confidence intervals based on coeffi-
cient alpha or coefficient omega. However, with an a priori Monte Carlo
simulation study to evaluate sampling characteristics for a particular con-
dition, the simulation-based approach they consider (specifically in section
5.1.3 of Terry & Kelley, 2012) could be extended to the situation of interest
for any coefficient for any confidence interval method.

T
h
is

d
o
cu

m
en

t
is

co
p
y
ri

g
h
te

d
b
y

th
e

A
m

er
ic

an
P

sy
ch

o
lo

g
ic

al
A

ss
o
ci

at
io

n
o
r

o
n
e

o
f

it
s

al
li

ed
p
u
b
li

sh
er

s.

T
h
is

ar
ti

cl
e

is
in

te
n
d
ed

so
le

ly
fo

r
th

e
p
er

so
n
al

u
se

o
f

th
e

in
d
iv

id
u
al

u
se

r
an

d
is

n
o
t

to
b
e

d
is

se
m

in
at

ed
b
ro

ad
ly

.

88 KELLEY AND PORNPRASERTMANIT



bution. The Fisher’s method tended to provide overcoverage (be-

cause of widths that were larger than necessary). The ADF meth-

od’s coverage was far lower than.95 in this simulation study for

coefficient omega. The reason is that the estimated coefficient

omega by the ADF method has larger bias than the coefficient omega

estimated from the maximum likelihood (see the online supplement),

which is used to find the confidence interval for other approaches.

This result is consistent to Olsson, Foss, Troye, and Howell’s (2000)

suggestion that the ADF estimator will provide parameter estimates

close to the maximum likelihood estimator only when the sample size

is extremely large (e.g., 4 2,000). The sample size used in this

simulation study was apparently not large enough to use the ADF

approach for coefficient omega. The likelihood-based approach is not

recommended for the formation of the confidence interval for coef-

ficient omega for nonnormal items. Similar to Padilla and Divers

(2013a) and Padilla and Divers (2013b), all bootstrap approaches

performed well. Because data in applied research rarely follow normal

distribution, these methods are preferred.

Although previous simulation studies supported coefficient

omega, they created data from perfectly fitting models. In practice,

data do not usually come from a population in which the one-factor

CFA model fits perfectly. Although researchers do not know

whether the misfit is attributed to sampling error or population

model error, it is likely that population model error exists. All

models are designed to be a simplified explanation of reality.

Assuming that a model fits perfectly, and therefore using coeffi-

cient omega, is not ideal. Thus, in Study 2, we generated data with

population model error. As shown in Study 2, confidence intervals

for coefficient omega did not perform as well as hierarchical

omega, especially when sample size is low and population reli-

ability is high. Although the percentile bootstrap had the best

coverage rates, it had only a slight difference from other bootstrap

methods. A discussion on the particular method for computing a

confidence bootstrap confidence interval is less pressing than

actually computing a bootstrap confidence interval for the popu-

lation reliability coefficient, so long as the bootstrap methods for

hierarchical omega are used.

Previous simulation studies defined population reliability of

categorical items by using coefficient omega. For example,

Maydeu-Olivares et al. (2007) calculated observed item covari-

ances and used a one-factor CFA model for continuous items to fit

the observed item covariances and calculate coefficient omega.

This coefficient omega was used as the population reliability.

Coefficient omega does not represent population reliability in this

situation, however, because the relationship between the factor and

items is not linear. Recently, Green and Yang (2009a) proposed a

method of calculating population reliability for categorical items.

Study 3 evaluated the performances of hierarchical omega and

categorical omega for models with categorical items accounting

for the nonlinear relationship between items and factor. In this

simulation study, we also simulated data that does not fit the

one-factor model perfectly, as in Study 2, mimicking what we

consider to be realistic scenarios in practice. We found that con-

fidence intervals for hierarchical omega performed well only when

threshold patterns were similar across all items. When threshold

patterns were different across items, hierarchical omega had a

different value from categorical omega, so the coverage rates were

not acceptable. However, BCa confidence intervals for categorical

omega had good coverage rates in all threshold patterns, thus the

BCa method is recommended for categorical items.

These simulation studies showed the effectiveness of the differ-

ent approaches to confidence interval formation for coefficient

alpha, coefficient omega, hierarchical omega, and categorical

omega in real-world situations. Although this simulation cannot be

generalized to all situations that are of potential interest, we hope

that this article will help researchers understand implications of

using different reliability coefficients and different confidence

interval formation methods for the population reliability. The

choice of confidence interval approach is very influential for

appropriate confidence interval coverage (i.e., of obtaining an

empirical coverage rate similar to the nominal coverage rate).

In conclusion, we have several recommendations. First, avoid

using coefficient alpha and thereby computing confidence inter-

vals for coefficient alpha. We understand that in many settings

using coefficient alpha is expected, if not literally required, when

using composite scores. From a practical standpoint, if coefficient

alpha is being required, it can be included along with a more

appropriate reliability coefficient. We suggest avoiding coefficient

alpha as an estimate of the population reliability because it only

estimates the population reliability under the rather unrealistic

assumption that true-score equivalence holds; otherwise it pro-

vides a systematic underestimate of the population reliability (in

situations in which classical test assumptions hold). Coefficient

omega has its own potentially unrealistic limitation, namely that it

assumes a perfectly fitting single factor model. In situations in

which minor factors (or correlated errors) exist, coefficient omega

does not estimate population reliability. Therefore, our second

recommendation is, when items are continuous, estimate popula-

tion reliability with hierarchical omega. Hierarchical omega pro-

vides a generalization of coefficient omega by using the variance

of the composite as the denominator, which maps on perfectly to

the idea of reliability being defined as the “true variance” to the

“total variance.” Unless the model fits the one factor model per-

fectly, coefficient omega provides an incorrect value for the total

variance. Our third recommendation is for categorical items, where

we recommend categorical omega. Fourth, we recommend any of

the bootstrap confidence interval procedures discussed when form-

ing confidence intervals for population reliability using hierarchi-

cal omega as an estimate. If coefficient omega is used, we also

recommend bootstrap confidence intervals. Fifth, we recommend

using BCa confidence intervals for categorical omega. Addition-

ally, we have provided software to implement all of the estimation

and confidence interval procedures with the ci.reliabil-

ity() function provided in the MBESS Kelley (2016, 2007b,

2007a) R (R Development Core Team, 2015) package.
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Appendix

Coefficient Omega and the Variance of a Composite

The goal of this appendix is to show how to derive the formula

of coefficient omega. First, recall that the population coefficient

omega was given as

- !

%#
j!1

J

+j&2

%#
j!1

J

+j&2

" #
j!1

J

)j
2

. (Equation 11, repeated)

Second, recall that the observed score on the jth component for

the ith individual from Equation 1 is

Xij ! Tij " #ij . (Equation 1, repeated)

Third, recall that the true score on an item for an individual

(from Equation 1) can be represented in the factor analytic per-

spective as

Tij ! *j " +j,i . (Equation 10, repeated)

We denote the &j'i part of Equation 10 (i.e., the true part and

shown above) as +ij:

/ij ! +j,i. (40)

Thus, Equation 10 can be rewritten as

Tij ! *j " /ij. (41)

Over items for the ith individual the second component of the

right-hand-side of Equation 41 generalizes to

/i ! #
j!1

J

/ij ! %#
j!1

J

+j&,i, (42)

and represents the true part of the ith individual’s composite, with

the variance of +i across individuals denoted &/
2 (i.e., true vari-

ance). The error of individual i’s composite score is

#i ! #
j!1

J

#ij, (43)

with the variance of #i across individuals denoted &#
2 (i.e., error

variance). That is, Equation 2 (the composite for the ith individual)

can be rewritten in a factor analytic framework as

Yi ! #
j!1

J

*j " /i " #i. (44)

Further, consider the variance of y written in the factor analytic

framework:

Var(Y) ! Var%#
j!1

J

*j " /i " #i& (45)

!Var%#
j!1

J

*j&" Var!/i" " Var!#i", (46)

which reduces to

Var(Y) ! Var!/i" " Var!#i" (47)

because #j!1
J *j is a constant. Equation 47 can be rewritten (by

replacing +i with ,i#j!1
J +j, from Equation 40) as

Var(Y) ! Var%,i#
j!1

J

+j&" Var!#i". (48)

Due to the errors being uncorrelated and letting )j
2 denotes the

error variance of the jth item, Var(#i) can be written as the sum of

the variances:

Var(Y) ! Var%,i#
j!1

J

+j&" #
j!1

J

)j
2. (49)

Because #j!1
J +j is a constant, Equation 49 reduces to:

Var(Y) ! %#
j!1

J

+j&2

Var!,i" " #
j!1

J

)j
2. (50)

Recalling that we fixed Var('i) to 1 for model identification

purposes (i.e., it is a constant), the variance of the composite is

thus

Var(Y) ! %#
j!1

J

+j&2

" #
j!1

J

()j
2). (51)

Notice that the first component on the right-hand-side of Equa-

tion 51 is the variance of Y due to the model (i.e., the true part),

whereas the second component on the right-hand-side of Equation

51 is the variance of Y due to the errors. These two variances are

how the terms in Equation 6 can be operationalized in a factor

analytic conceptualization of reliability (e.g., McDonald, 1999).
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