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Abstract

This paper proposes a bootstrap-based procedure to build confidence intervals for
single components of a partially identified parameter vector, and for smooth functions of
such components, in moment (in)equality models. The extreme points of our confidence
interval are obtained by maximizing/minimizing the value of the component (or function)
of interest subject to the sample analog of the moment (in)equality conditions properly
relaxed. The novelty is that the amount of relaxation, or critical level, is computed so
that the component (or function) of θ, instead of θ itself, is uniformly asymptotically cov-
ered with prespecified probability. Calibration of the critical level is based on repeatedly
checking feasibility of linear programming problems, rendering it computationally attrac-
tive. Computation of the extreme points of the confidence interval is based on a novel
application of the response surface method for global optimization, which may prove of
independent interest also for applications of other methods of inference in the moment
(in)equalities literature.

The critical level is by construction smaller (in finite sample) than the one used if
projecting confidence regions designed to cover the entire parameter vector θ. Hence, our
confidence interval is weakly shorter than the projection of established confidence sets
(Andrews and Soares, 2010), if one holds the choice of tuning parameters constant. We
provide simple conditions under which the comparison is strict. Our inference method
controls asymptotic coverage uniformly over a large class of data generating processes.
Our assumptions and those used in the leading alternative approach (a profiling based
method) are not nested. We explain why we employ some restrictions that are not required
by other methods and provide examples of models for which our method is uniformly valid
but profiling based methods are not.
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form inference.
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1 Introduction

A growing body of literature in econometric theory focuses on estimation and inference in

partially identified models. For a given d-dimensional parameter vector θ characterizing the

model, much work has been devoted to develop testing procedures and associated confidence

sets in Rd that satisfy various desirable properties. These include coverage of each element of

the d-dimensional identification region, denoted ΘI , or coverage of the entire set ΘI , with a

prespecified –possibly uniform– asymptotic probability. From the perspective of researchers

familiar with inference in point identified models, this effort is akin to building confidence

ellipsoids for the entire parameter vector θ. However, applied researchers are frequently

interested in conducting inference for each component of a partially identified vector, or for

linear combinations of components of the partially identified vector, similarly to what is

typically done in multiple linear regression.

The goal of this paper is to provide researchers with a novel procedure to conduct such

inference in partially identified models. Our method yields confidence intervals whose cov-

erage is uniformly correct in a sense made precise below. It is computationally relatively

attractive because to compute critical levels, we check feasibility of a set of linear constraints

rather than solving a linear or even nonlinear optimization problem.

Given the abundance of inference procedures for the entire parameter vector θ, one might

be tempted to just report the projection of one of them as confidence interval for the pro-

jections of ΘI (e.g., for the bounds on each component of θ). Such a confidence interval

is asymptotically valid but typically conservative. The extent of the conservatism increases

with the dimension of θ and is easily appreciated in the case of a point identified parameter.

Consider, for example, a linear regression in R10, and suppose for simplicity that the limiting

covariance matrix of the estimator is the identity matrix. Then a 95% confidence interval for

each component of θ is obtained by adding and subtracting 1.96 to that component’s esti-

mate. In contrast, projection of a 95% Wald confidence ellipsoid on each component amounts

to adding and subtracting 4.28 to that component’s estimate. We refer to this problem as

projection conservatism.

The key observation behind our approach is that projection conservatism can be antic-

ipated. In the point identified case, this is straightforward. Returning to the example of

multiple linear regression, if we are interested in a confidence interval with a certain asymp-

totic coverage for a component of θ, we can determine the level of a confidence ellipsoid whose

projection yields just that confidence interval. When the limiting covariance matrix of the

estimator is the identity matrix and d = 2, projection of a confidence ellipsoid with asymp-

totic coverage of 85.4% yields an interval equal to the component’s estimate plus/minus 1.96,

and therefore asymptotic coverage of 95% for that component; when d = 5, the required

ellipsoid’s coverage is 42.8%; when d = 10, the required ellipsoid’s coverage is 4.6%.1

1The fast decrease in the required coverage level can be explained observing that the volume of a ball of
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The main contribution of this paper is to show how this insight can be generalized to

models that are partially identified through moment (in)equalities, while preserving com-

putational feasibility and desirable coverage properties. The main alternative procedure in

the literature, introduced in Romano and Shaikh (2008) and significantly advanced in Bugni,

Canay, and Shi (2014, BCS henceforth), is based on profiling out a test statistic.2 The classes

of data generating processes (DGPs) over which our procedure and profiling-based methods

are (pointwise or uniformly) valid are non-nested. The method proposed by Pakes, Porter,

Ho, and Ishii (2011, PPHI henceforth) is based on bootstrapping the sample distribution of

the projection.3 This controls asymptotic coverage over a significantly smaller class of models

than our approach.

Our approach ensures that asymptotic approximations to coverage are uniformly valid

over a large class of models that we describe below. The importance of such uniformity in

settings of partial identification was first pointed out by Imbens and Manski (2004), further

clarified in Stoye (2009), and fully developed for moment (in)equalities models by Romano

and Shaikh (2008), Andrews and Guggenberger (2009) and Romano and Shaikh (2010).4

These authors show that poor finite sample properties may result otherwise. For example,

consider an interval identified (scalar) parameter whose upper and lower bounds can be

estimated. Then a confidence interval that expands each of the estimated bounds by a one-

sided critical value controls the asymptotic coverage probability pointwise for any DGP at

which the length of the identified set is positive. This is because the sampling variation

becomes asymptotically negligible relative to the (fixed) length of the interval, making the

inference problem essentially one-sided. However, this approximation is misleading in finite

sample settings where sampling variation and the length of the interval are of comparable

order. In such settings, coverage of the true parameter can fail when the true parameter

falls below the lower bound of the confidence interval or above its upper bound; hence, a

uniformly valid procedure must take into account the two-sided nature of the problem. More

generally, uniformly valid inference methods need to account for inequalities that are close to

be binding if not perfectly binding at the parameter of interest (Andrews and Guggenberger,

2009; Andrews and Soares, 2010; Bugni, 2009; Canay, 2010).

In our problem, uniformity is furthermore desirable along a novel dimension. Across

DGPs, there can be substantial variation in the shape of the parameter set formed by the

radius r in Rd decreases geometrically in d.
2The profiling method provides uniformly valid confidence intervals also for nonlinear functions of θ. The

corresponding extension of our method is addressed in Section 6 with our concluding remarks.
3This is the working paper version of Pakes, Porter, Ho, and Ishii (2015). We reference it because the

published version does not contain the inference part.
4Universal uniformity is obviously unattainable (Bahadur and Savage, 1956). Other example of recent

literatures where uniformity over broad, though not universal, classes of models is a point of emphasis include
inference close to unit roots (Mikusheva, 2007), weak identification (Andrews and Cheng, 2012), and post-
model selection inference (see Leeb and Pötscher 2005 for a negative take). See also the discussion, with more
examples, in Andrews and Guggenberger (2009).
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moment (in)equalities around each point in the identification region. Our analysis reveals

that validity of inference and degree of projection conservatism depend crucially on the shape

of the constraints in relation to the projection direction of interest, which we call the local

geometry of the identification region. This is a novel dimension of uniformity which does not

arise when one’s interest is in the entire vector. We address this challenge by developing an

inference method that is uniformly valid across various shapes formed by the constraints. To

our knowledge, this is the first such effort.

This is also useful for achieving another desirable uniformity property. That is, holding

one (reasonably well-behaved) model fixed, confidence regions should be equally valid for

different directions of projection. It is surprisingly easy to fail this criterion. For example, if

one does not properly account for flat faces which are orthogonal to the direction of projection,

the resulting confidence interval will not be valid uniformly over directions of projection if

the true identified set is a polyhedron. A polyhedron is not only a simple shape but also

practically relevant: It arises for best linear prediction (BLP) with interval outcome data

and discrete regressors, as shown in Beresteanu and Molinari (2008). In this example, a

method that does not apply at (or near) flat faces is not equally applicable to all linear

hypotheses that one might want to test. This stands in stark contrast to point identified

BLP estimation: Barring collinearity, an F-test is applicable uniformly over simple linear

hypotheses. Under this latter condition and some others, our method too applies uniformly

over linear hypotheses, while other methods do not (PPHI assume away all flat faces that are

near orthogonal to the direction of projection; BCS assume away many such cases).

Overview of the method. We consider models for which the identified set can be

written as the set of parameter values that satisfy a finite number of moment equalities and

inequalities, ΘI = {θ : E(m(Xi, θ)) ≤ 0}.5 Here Xi is a dX × 1 vector of random variables

with distribution P and m = (m1, . . . ,mJ) : RdX ×Θ→ RJ is a known measurable function

of the finite dimensional parameter vector θ ∈ Θ ⊂ Rd. We are interested in the projection

p′θ of θ. We propose to report as confidence interval

CIn =

[
inf

θ∈Cn(ĉn)
p′θ, sup

θ∈Cn(ĉn)
p′θ

]
, (1.1)

where

Cn(ĉn) ≡

{
θ ∈ Θ : n−1

n∑
i=1

mj(Xi, θ)/σ̂n,j(θ) ≤ ĉn(θ), j = 1, . . . , J

}
, (1.2)

where σ̂n,j is a suitable estimator of the asymptotic standard deviation of n−1/2
∑

imj(Xi, θ).
6

5We write equalities as two opposing inequalities in what follows. See section 2.1 for further elaboration.
6Our confidence region is by construction an interval. Conceptually, our method is easily adapted so as

to capture gaps in the projection of the identified set. We recommend this only if one is genuinely interested
in those gaps. Also, CIn can be empty. We briefly discuss both matters in Section 6 with our concluding
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Here, ĉn(θ) is loosely analogous to a critical value, though the reader should keep in mind

that our confidence interval does not invert a hypothesis test. That said, one could use in

the above construction, e.g., critical values ĉCHTn (θ) or ĉASn (θ) from the existing literature

(Chernozhukov, Hong, and Tamer, 2007; Andrews and Soares, 2010, respectively). These

are calibrated so that Cn covers the entire vector θ and therefore any linear projection of it.

Clearly, this is more than needed, and so projecting Cn(c) with c = ĉCHTn (θ) or c = ĉASn (θ)

is conservative. As we show below, this conservatism is severe in relevant examples. We

(mostly) avoid it because we anticipate projection conservatism when calibrating ĉn(θ). In

particular, for each candidate θ, we calibrate ĉn(θ) so that across bootstrap repetitions, the

projection of θ is covered with at least some pre-specified probability. Computationally, this

bootstrap is relatively attractive for two reasons: We linearize all constraints around θ, so

that coverage corresponds to the projection of a stochastic linear constraint set covering

zero.7 We furthermore verify this coverage event without solving the linear program, but

simply checking that a properly constructed linear constraint set is feasible.

The end points of our confidence interval can be obtained by solving constrained opti-

mization problems for each direction of projection. The constraints of these problems involve

ĉn(·), which in general is an unknown function of θ and, therefore, gradients of constraints

are not available in closed form. When the dimension of the parameter is large, solving op-

timziation problems with such a component can be relatively expensive even if evaluating

ĉn(·) at each point is computationally cheap. This is because commonly used optimization

algorithms repeatedly evaluate the constraints and their (numerical) gradients. To overcome

this challenge, we propose an algorithm that is a contribution to the moment (in)equalities

literature in its own right and should also be helpful for implementing other approaches. Our

algorithm is based on the response surface method (Jones, 2001) and computes the confi-

dence interval as follows. First, it evaluates ĉn(·) on a coarse set of parameter values. Then,

it fits a flexible auxiliary model (response surface) to the map θ 7→ ĉn(θ) to obtain surro-

gate constraint functions whose values and gradients are provided in closed form. Finally, it

solves the optimization problems using the surrogate constraints. The algorithm then iterates

these steps until the optimal values converge, while adding evaluation points to the set that

contains parameter values that nearly attain the maximum (or minimum) and refining the

surrogate constraints in each iteration. Computational savings come from the fact that the

proposed method controls the number of evaluation points and the optimization problems

only involve functions that are cheap to evaluate. Our Monte Carlo experiments show that

this algorithm performs well even in a model with a moderately high number of parameters.

DGPs for which the method is uniformly valid. We establish uniform asymptotic

validity of our procedure over a large class of DGPs that can be related to the existing

remarks.
7Previously, Pakes, Porter, Ho, and Ishii (2011) had also proposed local linear approximation to the moment

inequalities.
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literature as follows. We start from the same assumptions as Andrews and Soares (2010,

AS henceforth), and similarly to the related literature, we ensure uniform validity in the

presence of drifting-to-binding inequalities by adopting Generalized Moment Selection (AS,

Bugni (2009), Canay (2010)). In addition, we impose some restrictions on the correlation

matrix of the sample moment (in)equalities. A simple sufficient condition is that this matrix

has eigenvalues uniformly bounded from below, an assumption that was considered in AS

(for a specific criterion function) but eliminated by Andrews and Barwick (2012). It can be

weakened substantially because we can allow for perfect or near perfect correlation of moment

inequalities that are known not to cross; this case is relevant as it naturally occurs with

missing-data bounds and static, simultaneous move, finite games with multiple equilibria.

That said, profiling-based methods do not require any such assumption. We also assume

that each individual constraint uniformly admits a local linear approximation that can be

uniformly consistently estimated.

However, and in contrast to the leading alternative approaches, we do not impose further

conditions that jointly restrict the inequality constraints, for example by restricting the local

geometry of ΘI . This is important because such assumptions, which are akin to constraint

qualifications in nonlinear programming, can be extremely challenging to verify. Moreover,

and again in contrast to leading alternative approaches, we do not impose restrictions on the

limit distribution of a test statistic, e.g. continuity at the quantile of interest, which again

can be challenging to verify. Our ability to dispense with such assumptions comes at the price

of an additional, non-drifting tuning parameter. In Section 4, we explain why this additional

parameter is needed and provide a heuristic for choosing it.

Going back to AS, our method can be directly compared to projection of their confidence

region if one uses comparable tuning parameters. By construction, our confidence intervals

are (weakly) shorter in any finite sample. They are asymptotically strictly shorter whenever

at least one of the binding constraints is not locally orthogonal to the direction of projection.

Other related papers that explicitly consider inference on projections include Andrews,

Berry, and Jia (2004), Beresteanu and Molinari (2008), Bontemps, Magnac, and Maurin

(2012), Chen, Tamer, and Torgovitsky (2011), Kaido (2012), Kitagawa (2012), Kline and

Tamer (2015) and Wan (2013). However, some are Bayesian, as opposed to our frequentist

approach, and none of them establish uniform validity of confidence sets.

Structure of the paper. Section 2 sets up notation and describes our approach in detail,

including computational implementation. Section 3 lays out our assumptions and presents

our main theoretical results, namely uniform validity and a formal comparison to projection

of the AS confidence region. Section 4 discusses the challenges posed by the local geometry

of ΘI for uniform inference and why we resolve them. In doing so, it further elucidates the

relation between our method and the existing literature. Section 5 reports the results of

Monte Carlo simulations. Section 6 offers concluding remarks and discusses a number of

extensions that are of interest in applications. All proofs are collected in the Appendix.
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2 Detailed Explanation of the Method

2.1 Setup and Definition of CIn

We start by introducing some basic notation. Let Xi ∈ X ⊆ RdX be a random vector

with distribution P , let Θ ⊆ Rd denote the parameter space, and let mj : X × Θ → R
for j = 1, . . . , J1 + J2 denote measurable functions characterizing the model, known up to

parameter vector θ ∈ Θ. The true parameter value θ is assumed to satisfy the moment

inequality and equality restrictions:

EP [mj(Xi, θ)] ≤ 0, j = 1, · · · , J1,

EP [mj(Xi, θ)] = 0, j = J1 + 1, · · · , J1 + J2. (2.1)

The identification region ΘI(P ) is the set of parameter values in Θ that satisfy these moment

restrictions. In what follows, we simply write ΘI whenever its dependence on P is obvious.

For a random sample {Xi, i = 1, · · · , n} of observations drawn from P , we let m̄n,j(θ) ≡
n−1

∑n
i=1mj(Xi, θ), j = 1, · · · , J1 + J2 denote the sample moments. Also, the population

moment conditions have standard deviations σP,j with estimators (e.g., sample analogs) σ̂n,j .

A key tool for our inference procedure is the support function of a set. We denote the unit

sphere in Rd by Sd−1 ≡ {p ∈ Rd : ‖p‖ = 1}, an inner product between two vectors x, y ∈ Rd

by x′y, and use the following standard definition of support function and support set:

Definition 2.1: Given a closed set A ⊂ Rd, its support function is

s(p,A) = sup{p′a, a ∈ A}, p ∈ Sd−1,

and its support set is

H(p,A) = {a ∈ Rd : p′a = s(p,A)} ∩A, p ∈ Sd−1.

It is useful to think of p′a as a projection of a ∈ Rd to a one-dimensional subspace spanned

by the direction p. For example, when p is a vector whose j-th coordinate is 1 and other

coordinates are 0s, p′a = aj is the projection of a to the j-th coordinate. The support function

of a set A gives the supremum of the projections of points belonging to this set.

The support function of the set Cn(ĉn) in equation (1.2) is, then, the optimal value of the

following nonlinear program (NLP):

s(p, Cn(ĉn)) = sup
θ∈Θ

p′θ

s.t.
√
nm̄n,j(θ)/σ̂n,j(θ) ≤ ĉn(θ), j = 1, · · · , J, (2.2)

where J = J1 + 2J2 and we define the last J2 moments as m̄n,J1+J2+k(θ) = −m̄J1+k(θ) for

[6]



k = 1, · · · , J2. That is, we split moment equality constraints into two opposing inequality

constraints relaxed by ĉn(θ) and impose them in addition to the first J1 inequalities relaxed

by the same amount. For a simple analogy, consider the point identified model defined by the

single moment equality EP (m1(Xi, θ)) = EP (Xi) − θ = 0, where θ is a scalar. In this case,

Cn(ĉn) = X̄ ± ĉnσ̂n/
√
n. The upper endpoint of the confidence interval can be written as

supθ {p′θ s.t. − ĉn ≤
√
n(X̄−θ)/σ̂n ≤ ĉn}, with p = 1, and similarly for the lower endpoint.

Define the asymptotic size of the confidence interval by

lim inf
n→∞

inf
P∈P

inf
θ∈ΘI(P )

P (p′θ ∈ CIn), (2.3)

with P a class of distributions that we specify below. Our two-sided confidence interval is

CIn ≡ [−s(−p, Cn(ĉn)), s(p, Cn(ĉn))], (2.4)

and our goal is to calibrate ĉn so that (2.3) is at least equal to a prespecified level while

projection conservatism is anticipated. Unlike the simple adjustment of the confidence level

for the Wald ellipsoid proposed in the introduction, however, the calculation of such a critical

level in the moment (in)equalities setting is nontrivial, and it requires a careful analysis of

the local behavior of the moment restrictions at each point in the identification region. This

is because calibration of ĉn(θ) depends on (i) the asymptotic behavior of the sample moments

entering the inequality restrictions, which can change discontinuously depending on whether

they bind at θ or not; and (ii) the local geometry of the identification region at θ. Here, by

local geometry, we mean the shape of the constraint set formed by the moment restrictions

and its relation to the level set of the objective function p′θ. These features can be quite

different at different points in ΘI(P ), which in turn makes uniform inference for the projection

challenging. In particular, the second issue does not arise if one only considers inference for

the entire parameter vector, and hence this new challenge requires a new methodology. The

core innovation of this paper is to provide a novel and computationally attractive procedure

to construct a critical level that overcomes these challenges.

To build intuition, fix (θ, P ) s.t. θ ∈ ΘI(P ), P ∈ P. The projection of θ is covered if

− s(−p, Cn(ĉn)) ≤ p′θ ≤ s(p, Cn(ĉn))

⇔

{
infϑ p

′ϑ

s.t. ϑ ∈ Θ,
√
nm̄n,j(ϑ)
σ̂n,j(ϑ) ≤ ĉn(ϑ),∀j

}
≤ p′θ ≤

{
supϑ p

′ϑ

s.t. ϑ ∈ Θ,
√
nm̄n,j(ϑ)
σ̂n,j(ϑ) ≤ ĉn(ϑ), ∀j

}

⇔

{
infλ p

′λ

s.t.λ ∈
√
n(Θ− θ),

√
nm̄n,j(θ+λ/

√
n)

σ̂n,j(θ+λ/
√
n)
≤ ĉn(θ + λ/

√
n),∀j

}
≤ 0

≤

{
supλ p

′λ

s.t.λ ∈
√
n(Θ− θ),

√
nm̄n,j(θ+λ/

√
n)

σ̂n,j(θ+λ/
√
n)
≤ ĉn(θ + λ/

√
n),∀j

}
(2.5)
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where the second equivalence follows from rewriting the problem which maximizes p′ϑ with

respect to ϑ localized as ϑ = θ+λ/
√
n by another problem which maximizes the same objec-

tive function with respect to the localization parameter λ. One could then control asymptotic

size by finding ĉn such that 0 asymptotically lies within the optimal values of the NLPs in

(2.5) with probability 1− α.

To reduce the computational cost of calibrating ĉn, we approximate the probability of the

event in equation (2.5) by taking a linear expansion in λ of the constraint set. In particular,

for the j-th constraint, adding and subtracting EP [mj(Xi, θ + λ/
√
n)] yields

√
nm̄n,j(θ + λ/

√
n)

σ̂n,j(θ + λ/
√
n)

=
√
n

(m̄n,j(θ + λ/
√
n)− EP [mj(Xi, θ + λ/

√
n)])

σ̂n,j(θ + λ/
√
n)

+
√
n
EP [mj(Xi, θ + λ/

√
n)]

σ̂n,j(θ + λ/
√
n)

= {Gn,j(θ + λ/
√
n) +DP,j(θ̄)λ+

√
nγ1,P,j(θ)}(1 + ηn,j(θn)), (2.6)

where Gn,j(·) ≡
√
n(m̄n,j(·)−EP [mj(Xi, ·)])/σP,j(·) is a normalized empirical process indexed

by θ ∈ Θ, DP,j(·) ≡ ∇θ{EP [mj(Xi, ·)]/σP,j(·)} is the gradient of the normalized moment (a

1 × d vector), γ1,P,j(·) ≡ EP [mj(Xi, ·)]/σP,j(·) is the studentized population moment, and

ηn,j(·) ≡ σP,j(·)/σ̂n,j(·)−1. The second equality follows from the mean value theorem, where

θ̄ represents a mean value that lies componentwise between θ and θ + λ/
√
n.

Under suitable regularity conditions set forth in Section 3.1 (which include differentiability

of EP [mj(Xi, θ)]/σP,j(θ) in θ for each j), we show that the probability that 0 asymptotically

lies within the optimal values of the NLPs in equation (2.5) is approximated by the prob-

ability that 0 asymptotically lies within the optimal values of a program linear in λ. The

constraint set of this linear program is given by the sum of (i) an empirical process GP,j(θ)

evaluated at θ (that we can approximate using the bootstrap) (ii) a rescaled gradient times

λ, DP,j(θ)λ (that we can uniformly consistently estimate on compact sets), and (iii) the pa-

rameter γ1,P,j(θ) that measures the extent to which each moment inequality is binding and

that we can conservatively estimate using insights from AS. This suggests a computationally

attractive bootstrap procedure based on linear programs. We further show that introduc-

ing an additional linear constraint allows us to simply check feasibility of a linear program,

without having to compute optimal values.

Our use of linearization to obtain a first-order approximation to the statistic of interest

can be related to standard techniques in the analysis of nonlinear models. In our setting, the

object of interest is the support function of the relaxed nonlinear constraint set. Calculating

this support function subject to the moment (in)equality constraints is similar to calculating

a nonlinear GMM estimator in the sense that both search for a particular parameter value

which “solves” a system of sample moment restrictions. The difference is that we search

for a parameter value satisfying suitably relaxed moment (in)equalities whose projection is

[8]



maximal, whereas GMM searches for a parameter value that minimizes the norm of sample

moments, or necessarily a value that solves its first-order conditions. Hence, the solution

concepts are different. However, the methodology for obtaining approximations is common.

Recall that one may obtain an influence function of the GMM estimator by linearizing the

moment restrictions in the first-order conditions around the true parameter value and by

solving for the estimator. In analogy to this example, calculating the optimal value of the

linear program discussed above can be interpreted as applying a particular solution concept

(the maximum value of the linear projections) to a system of moment (in)equality constraints

linearized around the parameter value of interest.

2.2 Computation of Critical Level

For a given θ ∈ Θ, we calibrate ĉn(θ) through a bootstrap procedure that iterates over linear

programs (LP). Define

Λbn(θ, ρ, c) = {λ ∈ ρBd : Gb
n,j(θ) + D̂n,j(θ)λ+ ϕj(ξ̂n,j(θ)) ≤ c, j = 1, . . . , J}, (2.7)

where Gb
n,j(·) = n−1/2

∑n
i=1(mj(X

b
i , ·)− m̄n,j(·))/σ̂n,j(·) is a normalized bootstrap empirical

process indexed by θ ∈ Θ,8 D̂n,j(·) is a consistent estimator of DP,j(·), ρ > 0 is a constant

chosen by the researcher (see Section 4 for suggestions on how to choose it), Bd = {x ∈ Rd :

|xj | ≤ 1,∀j} is a unit box in Rd, and ξ̂n,j is defined by

ξ̂n,j(θ) ≡

κ−1
n

√
nm̄n,j(θ)/σ̂n,j(θ) j = 1, . . . , J1

0 j = J1 + 1, . . . , J,
(2.8)

where κn is a user-specified thresholding sequence such that κn →∞, and ϕ : RJ[±∞] → RJ[±∞]

is one of the generalized moment selection (GMS) functions proposed by AS, and where

R[±∞] = R ∪ {±∞}. A common choice is given componentwise by

ϕj(x) =

0 if x ≥ −1

−∞ if x < −1.
(2.9)

Restrictions on ϕ and the rate at which κn diverges are imposed in Assumption 3.2.

Remark 2.1: For concreteness, in (2.9) we write out the “hard thresholding” GMS func-

tion; we also remark that this function simplifies computation as it completely removes non-

local-to-binding constraints. Under Assumption 3.3 below, our results apply to all but one

8Bugni, Canay, and Shi (2014) propose a different approximation to the stochastic process GP,j , namely
n−1/2 ∑n

i=1[(mj(Xi, ·)−m̄n,j(·))/σ̂n,j(·)]χi with {χi ∼ N(0, 1)}ni=1 i.i.d. This approximation is equally valid in
our approach, and can be computationally faster as it avoids repeated evaluation of mj(X

b
i , ·) across bootstrap

replications.
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of the GMS functions in AS, see Lemma B.3.9 Under Assumption 3.3′, our method requires

the use of hard thresholding GMS.

Heuristically, the random set Λbn(θ, ρ, c) in (2.7) is a local (to θ), linearized bootstrap

approximation to the random constraint set in (2.5). To see this, note first that the boot-

strapped empirical process and the estimator of the gradient approximate the first two terms

in the constraint in (2.5). Next, for θ ∈ ΘI , the GMS function conservatively approximates

the local slackness parameter
√
nγ1,P,j(θ). This is needed because

√
nγ1,P,j(θ) cannot be con-

sistently estimated due to its scaling. GMS resolves this by shrinking estimated intercepts

toward zero, thereby tightening constraints and hence increasing ĉn(θ). As with other uses

of GMS, the resulting conservative distortion vanishes pointwise but not uniformly. Finally,

restricting λ to the “ρ-box” ρBd has a strong regularizing effect: It ensures uniform validity

in challenging situations, including several that are assumed away in most of the literature.

We discuss this point in detail in Section 4.

The critical level ĉn(θ) to be used in (2.2) is the smallest value of c that makes the

bootstrap probability of the event

min
λ∈Λb

n(θ,ρ,c)
p′λ ≤ 0 ≤ max

λ∈Λb
n(θ,ρ,c)

p′λ (2.10)

at least 1− α. Furthermore, Lemma C.1 in the Appendix establishes that

min
λ∈Λb

n(θ,ρ,c)
p′λ ≤ 0 ≤ max

λ∈Λb
n(θ,ρ,c)

p′λ⇐⇒ Λbn(θ, ρ, c) ∩ {p′λ = 0} 6= ∅.

The intuition for this is simple: Λbn(θ, ρ, c) is a polyhedron, therefore it contains some λ with

p′λ ≥ 0 but also some λ with p′λ ≤ 0 if and only if it contains some λ with p′λ = 0. Our

bootstrap critical level is, therefore, defined as

ĉn(θ) ≡ inf{c ∈ R+ : P ∗(Λbn(θ, ρ, c) ∩ {p′λ = 0} 6= ∅) ≥ 1− α}, (2.11)

where P ∗ denotes the probability distribution induced by the bootstrap sampling process.

For a given θ ∈ Θ, coverage increases in c, and so ĉn(θ) can be quickly computed through a

bisection algorithm. To do so, let c̄n(θ) be an upper bound on ĉn(θ). For example, the asymp-

totic Bonferroni bound c̄n(θ) = Φ−1(1 − α/J) is trivial to compute and would be too small

only in very contrived cases which the algorithm would furthermore detect. Alternatively, in

view of Theorem 3.2 below, the critical value proposed by AS is a valid upper bound in finite

sample and typically much smaller, though harder to compute. By construction, ĉn(θ) ≥ 0.

Hence, one can quickly find ĉn(θ) by initially guessing c̄n(θ)/2, checking coverage, and then

9These are ϕ1−ϕ4 in AS, all of which depend on κ−1
n

√
nm̄n,j(θ)/σ̂n,j(θ). We do not consider GMS function

ϕ5 in AS, which depends also on the covariance matrix of the moment functions.
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moving up or down by c̄n(θ)/2t+1 in the t’th step of the algorithm. More formally, define

ψb(c) ≡ 1(Λbn(θ, ρ, c) ∩ {p′λ = 0} 6= ∅), (2.12)

so that the bootstrap probability to be calibrated is P ∗(ψb(c) = 1). We propose the following

algorithm:

Step 0

Set Tol equal to a chosen tolerance value or fix the number of iterations T.

Initialize C(0) = 0.

Initialize t = 1.

Initialize c = c̄n(θ)/2.

Initialize ϕj(ξ̂n,j(θ)) = 0, j = 1, . . . , J .

Compute ϕj(ξ̂n,j(θ)), j = 1, . . . , J1.

Compute D̂P,n(θ).

Compute Gb
n,j(θ) for b = 1, ..., B.

Compute ψb(c) for b = 1, ..., B.

Step 1

Compute C(t) = n−1
∑B

b=1 ψb(c).

Step 2

If C(t) > 1− α, set c← c− c̄n(θ)
2t+1 and recompute ψb(c) for each b such that ψb(c) = 1.

If C(t) < 1− α, set c← c+ c̄n(θ)
2t+1 and recompute ψb(c) for each b such that ψb(c) = 0.

Step 3

If |C(t)− C(t− 1)| > Tol, set t = t + 1 and return to Step 1.

If |C(t)− C(t− 1)| < Tol or t = T, set ĉn(θ) = c and exit.

Execution of this is further simplified by the following observation: W.l.o.g. let p =

(1, 0, . . . , 0)′, implying that p′λ = 0 if and only if λ1 = 0. Evaluation of ψb(c) thus entails

determining whether a constraint set comprised of J+2d−1 linear inequalities in d−1 variables

is feasible. This can be accomplished efficiently employing commonly used software.10 Also,

note that the B bootstrap draws remain fixed across iterations, and we know that for any

given bootstrap sample, coverage will obtain if and only if c is above some threshold. Hence,

one needs to recompute ψb(c) in Step 2 only for a subset of bootstrap draws that decreases

in t. Our algorithm reflects this insight.

10Examples of high-speed solvers for linear programs include CVXGEN, available from http://cvxgen.com,
and Gurobi, available from http://www.gurobi.com
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2.3 Computation of Outer Maximization Problem

The constrained optimization problem in (2.2) has nonlinear constraints involving a compo-

nent ĉn(θ) which in general is an unknown function of θ. Moreover, in all methods, including

ours and AS, the gradients of constraints are not available in closed form. When the dimen-

sion of the parameter is large, directly solving optimization problems with such a component

can be relatively expensive even if evaluating ĉn(θ) at each θ is computationally cheap. This

is because commonly used optimization algorithms repeatedly evaluate the constraints and

their (numerical) gradients.

To mitigate the computational cost, we suggest an algorithm that is a contribution to the

moment (in)equalities literature in its own right and should also be helpful for implementing

other approaches. The algorithm consists of three steps called E, A, and M below, and is

based on the response surface method used in the optimization literature (see e.g. Jones,

2001; Jones, Schonlau, and Welch, 1998, and references therein). In what follows, we assume

that computing the sample moments is less expensive than computing ĉn(θ).

E-step: (Evaluation) Evaluate ĉn(θ(`)) for ` = 1, · · · , L. Set Υ(`) = ĉn(θ(`)), ` = 1, · · · , L.

We suggest setting L = 20d+1, so L grows linearly with the dimensionality of parameter

space.

A-step: (Approximation) Approximate θ 7→ ĉn(θ) by a flexible auxiliary model. For

example, a Gaussian-process regression model (or kriging) is

Υ(`) = µ+ ε(θ(`)), ` = 1, · · · , L, (2.13)

where ε(·) is a mean-zero Gaussian process indexed by θ with a constant variance σ2

whose correlation functional is Corr(ε(θ), ε(θ′)) = exp(−δ(θ, θ′)) for some distance mea-

sure δ, e.g. δ(θ, θ′) =
∑d

k=1 βk|θk − θ′k|γk , βk ≥ 0, γk ∈ [1, 2]. The unknown parameters

(µ, σ2) can be estimated by running a GLS regression of Υ = (Υ(1), · · · ,Υ(L))′ on a

constant with the given correlation matrix. The unknown parameters in the correlation

matrix can be estimated by a (concentrated) MLE. The (best linear) predictor of the

critical value and its gradient at an arbitrary point are then given by

ĉAn (θ) = µ̂+ r(θ)′R−1(Υ− µ̂1), (2.14)

∇θ ĉAn (θ) = µ̂+ Q(θ)R−1(Υ− µ̂1), (2.15)

where r(θ) is a vector whose `-th component is Corr(ε(θ), ε(θ(`))) as given above with

estimated parameters, Q(θ) = ∇θr(θ)′, and R is an L-by-L matrix whose (`, `′) entry

is Corr(ε(θ(`)), ε(θ(`′))) with estimated parameters. This approximation (or surrogate)

model has the property that its predictor satisfies ĉAn (θ(`)) = ĉn(θ(`)), ` = 1, · · · , L.

Hence, it provides an analytical interpolation to the evaluated critical values together
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with an analytical gradient.11

M-step: (Maximization or Minimization): Solve the optimization problem

max /min
θ∈Θ

p′θ

s.t.
√
nm̄n,j(θ)/σ̂n,j(θ) ≤ ĉAn (θ), (2.16)

while using p and
√
nD̂n,j(θ) − ∇θ ĉAn (θ), j = 1, · · · , J as the gradients of the objec-

tive function and constraint functions respectively. This step can be implemented by

standard nonlinear optimization solvers (e.g. Matlab’s fmincon or KNITRO).

Once the optimal value from the M-step is obtained, draw L1 additional points in a subset of

the parameter space that contains parameter values that nearly attain the maximum. Add

them to the previously used evaluation points and update the total number of evaluation

points as L + L1. Iterate the E-A-M-steps until the maximized value converges.12 Report

the maximum and minimum values of the optimization problem as the endpoints of the

confidence interval.

Remark 2.2: The advantages of the proposed algorithm are twofold. First, we control

the number of points at which we evaluate ĉn(·). Since the evaluation of the critical value is

the relatively expensive step, controlling the number of evaluations is important. One should

also note that this step can easily be parallelized. Second, the proposed algorithm makes

the maximization step computationally cheap by providing constraints and their gradients

in closed form. It is well known that gradient-based algorithms solve optimization problems

more efficiently than those that do not use gradients. The price to pay is the additional

approximation step. According to our numerical exercises, this additional step is not costly.

3 Asymptotic Validity of Inference

In this section, we justify our procedure by establishing uniform (over an interesting class of

DGPs) asymptotic validity. Subsection 3.1 states and motivates our assumptions; subsection

3.2 states and discusses our main results.

3.1 Assumptions

Our first assumption is on the parameter space and the criterion function. Below, ε and M

are used to denote generic constants which may be different in different appearances.

Assumption 3.1: Θ ⊆ Rd is compact and convex with a nonempty interior.

11See details in Jones, Schonlau, and Welch (1998). We use the DACE Matlab kriging toolbox (http:
//www2.imm.dtu.dk/projects/dace/) for this step in the Monte Carlo experiments based on the entry game.

12One can make the subset to which one adds evaluation points smaller as one iterates.
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Compactness is a standard assumption on Θ for extremum estimation. In addition, we

require convexity as we use mean value expansions of EP [mj(Xi, θ)] in θ as shown in equation

(2.6).

The next assumption defines our moment (in)equalities model. It is based on AS, and

most of it is standard in the literature.13

Assumption 3.2: The function ϕj is continuous at all x ≥ 0 and ϕj(0) = 0; κn → ∞
and κ−1

n n1/2 →∞. The model P for P satisfies the following conditions:

(i) EP [mj(Xi, θ)] ≤ 0, j = 1, . . . , J1 and EP [mj(Xi, θ)] = 0, j = J1 + 1, · · · , J1 + J2 for

some θ ∈ Θ;

(ii) {Xi, i ≥ 1} are i.i.d. under P ;

(iii) σ2
P,j(θ) ∈ (0,∞) for j = 1, · · · , J for all θ ∈ Θ;

(iv) For some δ > 0 and M ∈ (0,∞) and for all j, EP [supθ∈Θ |mj(Xi, θ)/σP,j(θ)|2+δ] ≤M .

In what follows, for any sequence of random variables {Xn} and a positive sequence an,

we write Xn = oP(an) if for any ε, η > 0, there is N ∈ N such that supP∈P P (|Xn/an| > ε) <

η,∀n ≥ N . We write Xn = OP(an) if for any η > 0, there is a M ∈ R+ and N ∈ N such

that supP∈P P (|Xn/an| > M) < η,∀n ≥ N . Given a square matrix A, we write eig(A) for

its smallest eigenvalue.

Next, and unlike some other papers in the literature, we restrict the correlation matrix of

the moment conditions. Because our method is based on replacing a nonlinear program with

a linear one, it is intuitive that a Karush-Kuhn-Tucker condition (with uniformly bounded

Lagrange multipliers) is needed. Imposing this condition directly, however, would yield an

assumption that can be very hard to verify in a given application – as constraint qualification

conditions often are.14 On the other hand, we are able to show that restrictions on the

correlation matrix of the moments, together with imposition of the ρ-box constraints, yield

such constraint qualification conditions on the set Λbn(θ, ρ, c) defined in (2.7) with arbitrarily

high probability for n large enough. We provide additional details in Section 4.3, see in

particular footnote 27 for an illustration. Here we begin with an easy sufficient condition,

and then discuss an alternative condition that holds for some cases in which the first one

does not. For a reader interested in alternative assumptions, we note that Assumption 3.3

13The requirement that ϕj is continuous for x ≥ 0 is restrictive only for GMS function ϕ(2) in AS. We also
remark that one specific result, namely Lemma C.2 below, requires ϕj(x) ≤ 0 for all x. To keep the treatment
general, we do not impose this restriction throughout, but we only recommend functions ϕj with this feature
anyway. It is easy to see that for any ϕj that can take strictly positive values, substituting min{ϕj(x), 0}
attains the same asymptotic size but generates CIs that are weakly shorter for all and strictly shorter for some
sample realizations.

14Restrictions of this type are imposed both in PPHI and Chernozhukov, Hong, and Tamer (2007), as we
explain in Section 4
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(or Assumption 3.3′ below) is used exclusively to obtain the conclusions of Lemma B.6 and

Lemma B.7, hence any alternative assumption that delivers such results can be used.

Assumption 3.3: The model P for P satisfies the following additional conditions:

(i) There is a positive constant ε such that ΘI(P ) ⊂ Θ−ε ≡ {θ ∈ Θ : d(θ,Rd \ Θ) ≥ ε},
where d denotes Euclidean point-set distance.

(ii) For all θ ∈ Θ, ηn,j(θ) ≡ σP,j(θ)/σ̂n,j(θ)− 1 = oP(κn/
√
n).

(iii) Let m̃(Xi, θ) ≡ (m1(Xi, θ), · · · ,mJ1+J2(Xi, θ))
′. Let Ω̃P (θ) = CorrP (m̃(Xi, θ)). Then

infθ∈ΘI(P ) eig(Ω̃P (θ)) ≥ ω for some constant ω > 0.

Assumption 3.3 (i) requires that the identified set is in an ε-contraction of the parameter

space. This implies that the behavior of the support function of Cn(ĉn) is determined only by

the moment restrictions asymptotically under any P ∈ P. This assumption could be dropped

if the parameter space can be defined through a finite list of smooth nonstochastic inequality

constraints, e.g. if Θ = [0, 1]d.

Assumption 3.3 (ii) is a weak regularity condition requiring that each moment’s standard

deviation can be estimated at a rate faster than κn/
√
n.

The crucial part of Assumption 3.3 is (iii), which requires that the correlation matrix

of the sample moments has eigenvalues uniformly bounded from below. While it holds in

many applications of interest, we are aware of two examples in which it may fail. One are

missing data scenarios when the unconditional or some conditional proportion of missing data

vanishes. This is easiest to see for the scalar mean with missing data, where sample analogs of

upper and lower bound approach perfect correlation as the population probability of missing

data vanishes. The observation also applies to higher dimensional examples, e.g. best linear

prediction with missing outcome data. The other example is the Ciliberto and Tamer (2009)

entry game model when the solution concept is pure strategy Nash equilibrium, as illustrated

in the following example.

Example 3.1 (Two player entry game): Consider the simple case of a static two player

entry game of complete information with pure strategy Nash equilibrium as solution concept.

Suppose each player k = 1, 2 in market i = 1, . . . , n can choose to enter (Xik = 1) or to stay

out of the market (Xik = 0). Let εi1, εi2 be two random variables representing unobservable

payoff shifters, and for simplicity assume they are distributed i.i.d. U(0, 1). Let players’

payoffs be

uik = Xik(−θkXi,3−k + εik) , k = 1, 2,

with θ ∈ Θ = [0, 1]2 the parameter vector of interest. Each player enters the game if and only

if uik ≥ 0. This game admits multiple equilibria, and one can show that ΘI(P ) is defined by
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the following (in)equalities:

EP (m1(Xi, θ)) = EP [Xi1(1−Xi2)− θ2] ≤ 0,

EP (m2(Xi, θ)) = EP [θ2(1− θ1)−Xi1(1−Xi2)] ≤ 0,

EP (m3(Xi, θ)) = EP [Xi1Xi2 − (1− θ1)(1− θ2)] = 0.

Then moment functions 1 and 2 violate Assumption 3.3 (iii) because they are perfectly

correlated.15

These examples and more complex ones are covered by our next assumption. If it is

invoked, our procedure requires the use of the specific GMS function in equation (2.9).

Assumption 3.3′. The function ϕ used to obtain ĉn(θ) in (2.11) is given in equation (2.9);

κn = o(n1/4). The model P for P satisfies Assumption 3.3(i)-(ii), and in addition:

(iii-1) The first 2J11 moment functions, 0 ≤ 2J11 ≤ J1, are related as follows:

mj+J11(Xi, θ) = −mj(Xi, θ)− tj(Xi, θ), j = 1, . . . , J11

where for each θ ∈ Θ and j = 1, . . . , J11, tj : X × Θ → R+ is a measurable function

such that 0 ≤ tj(X, θ) ≤M a.s., j = 1, . . . , J11.

(iii-2) Let m̌(Xi, θ) be a J11-vector that selects exactly one of each pair of moment functions

{mj(Xi, θ),mj+J11(Xi, θ)}, j = 1, ..., J11. Let m̃(Xi, θ) ≡ (m̌(Xi, θ),m2J11+1(Xi, θ), · · · ,
mJ1+J2(Xi, θ))

′. Denote Ω̃P (θ) = CorrP (m̃(Xi, θ)). Then infθ∈ΘI(P ) eig(Ω̃P (θ)) ≥ ω

for some constant ω > 0, uniformly over all 2J11 possible vectors m̌(Xi, θ).

(iii-3) infθ∈ΘI(P ) σP,j(θ) > σ for j = 1, . . . , J11.

(iii-4) For θ ∈ Θ, limn→∞ P
(
m̄j+J11,n

(θ)

σ̂n,j+J11
(θ) ≤ −

m̄n,j(θ)
σ̂n,j(θ)

)
→ 1.

In words, Assumption 3.3′ allows for (drifting to) perfect correlation among moment

inequalities that cannot cross. Again, the scalar mean with missing data is perhaps the

easiest example. In the generalization of this example in Imbens and Manski (2004) and

Stoye (2009), parts (iii-1)-(iii-2) of Assumption 3.3′ are satisfied by construction, part (iii-3)

is directly assumed, and part (iii-4) can be verified to hold.

Regarding Ciliberto and Tamer (2009), inspection of Example 3.1 reveals that part (iii-1)

of the assumption is satisfied with tj(·, θ) = tj(θ) for each j = 1, . . . , J ; in more general in-

stances of the model, this follows because any pair of moment conditions that involve the same

outcome of the game differ by model predicted probabilities of regions of multiplicity. Part (iii-

2) of the assumption holds in the example provided that |Corr(Xi1(1−Xi2), Xi1Xi2)| < 1− ε
for some ε > 0; in more general instances, it follows if the multinomial distribution of outcomes

15One can show, however, that under a different solution concept, e.g. rationality of level 1, the resulting
moment inequalities would satisfy Assumption 3.3 (iii).
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of the game (reduced by one element) has a correlation matrix with eigenvalues uniformly

bounded away from zero.16 To see that part (iii-3) of the assumption also holds, note that

Assumption 3.2 (iv) yields that P (Xi1 = 1, Xi2 = 0) is uniformly bounded away from 0 and 1,

thereby implying that σ1 ≥ σ > 0 and similarly for σ2; the same holds for P (Xi1 = 1, Xi2 = 1)

and so σ3 ≥ σ > 0. An analogous reasoning holds in more general instances of the Ciliberto

and Tamer model. Finally, part (iii-4) of the assumption requires that the studentized sam-

ple moments are ordered with probability approaching one. This condition is immediately

implied by condition (iii-1) in any model in which for each j = 1, . . . , J1 + J2 the function

mj(Xi, θ) can be written as the sum of a function that depends on Xi only, and a function

that depends on θ only. General instances of the Ciliberto and Tamer (2009) model (and of

course Example 3.1) belong to this class of models.

In what follows, we refer to a pair of inequality constraints indexed by {j, j + J11} as

described in Assumption 3.3′ as “paired inequalities”. The presence of paired inequalities

requires that we modify our bootstrap procedure. All modifications are carried out within

Step 0 of the Algorithm in Section 2.2. If

ϕj(ξ̂n,j(θ)) = 0 = ϕj(ξ̂n,j+J11(θ)),

with ϕj as defined in (2.9), we replace Gb
P,j+J11,n

(θ) with −Gb
n,j(θ), and D̂P,j+J11,n(θ) with

−D̂n,j(θ), so that inequality

Gb
P,j+J11,n(θ) + D̂P,j+J11,n(θ)λ ≤ c

is replaced with

−Gb
n,j(θ)− D̂n,j(θ)λ ≤ c

in equation (2.7). In words, when hard threshold GMS indicates that both paired inequalities

bind, we pick one of them, treat it as an equality, and drop the other one. This tightens the

stochastic program because by Assumption 3.3′, each inequality if interpreted as equality

implies the other one. The rest of the procedure is unchanged.

Finally, we informally remark that if hard thresholding, i.e. expression (2.9), is used for

GMS, then two inequalities that are far from each other in the sense that GMS only picks at

most one of them at any given θ may be arbitrarily correlated. This condition could be used

to further weaken Assumption 3.3 or 3.3′ and is easy to pre-test for; we omit an elaboration.

We next lay out regularity conditions on the gradients of the moments.

Assumption 3.4: The model P for P satisfies the following additional conditions:

16In the Ciliberto and Tamer (2009) framework there is a single vector of moment functions m̃(Xi, θ) to
consider instead of 2J11 . If the game admits K possible outcome, the vector m̃(Xi, θ) includes one moment
function for each of K − 1 possible outcomes of the game.
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(i) For each j, there exist DP,j(·) ≡ ∇θ{EP [mj(X, ·)]/σP,j(·)} and its estimator D̂n,j(·)
such that supθ∈Θ ‖D̂n,j(θ) − DP,j(θ)‖ = oP(1). Further, there exists M̄ > 0 such that

‖DP,j(θ)‖ ≤ M̄ for all θ ∈ ΘI and j = 1, · · · , J ;

(ii) There exists M > 0 such that maxj=1,··· ,J supθ,θ̃∈Θ ‖DP,j(θ)−DP,j(θ̃)‖ ≤M‖θ − θ̃‖.

Assumption 3.4 requires that the normalized population moment is differentiable, that

its derivative is Lipschitz continuous, and that this derivative can be consistently estimated

uniformly in θ and P . We require these conditions because we use a linear expansion of

the population moments to obtain a first-order approximation to the support function of Cn
and our bootstrap procedure requires an estimator of the population gradient. We do not

assume that a criterion function that aggregates moment violations (e.g., Tn(θ) in equation

(3.7) below) is bounded from below by a polynomial function of θ outside a neighborhood

of the identification region. This is assumed in related work (see e.g. Chernozhukov, Hong,

and Tamer, 2007) but fails in relevant examples, e.g. when two moment inequalities form an

extremely acute corner of the identified set. We return to such examples in Section 4.

A final set of assumptions is on the normalized empirical process. For this, define the

variance semimetric %P by

%P (θ, θ̃) ≡
∥∥∥{V arP (σ−1

P,j(θ)mj(X, θ)− σ−1
P,j(θ̃)mj(X, θ̃)

)1/2}J
j=1

∥∥∥. (3.1)

For each θ, θ̃ ∈ Θ and P , let QP (θ, θ̃) denote a J-by-J matrix whose (j, k)-th element is the

covariance between mj(Xi, θ)/σP,j(θ) and mk(Xi, θ̃))/σP,k(θ̃) under P .

Assumption 3.5: (i) For every P ∈ P, and j = 1, · · · , J , {σ−1
P,j(θ)mj(·, θ) : X → R, θ ∈

Θ} is a measurable class of functions; (ii) The empirical process Gn with j-th component

Gn,j is asymptotically %P -equicontinuous uniformly in P ∈ P. That is, for any ε > 0,

lim
δ↓0

lim sup
n→∞

sup
P∈P

P ∗

(
sup

%P (θ,θ̃)<δ

‖Gn(θ)−Gn(θ̃)‖ > ε

)
= 0; (3.2)

(iii) QP satisfies

lim
δ↓0

sup
‖(θ1,θ̃1)−(θ2,θ̃2)‖<δ

sup
P∈P
‖QP (θ1, θ̃1)−QP (θ2, θ̃2)‖ = 0. (3.3)

Under this assumption, the class of normalized moment functions is uniformly Donsker

(Bugni, Canay, and Shi, 2015). This allows us to show that the first-order linear approxi-

mation to s(p, Cn(ĉn)) is valid and further establish the validity of our bootstrap procedure.
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3.2 Theoretical Results

Result 1: Uniform asymptotic validity.

The following theorem establishes the asymptotic validity of the proposed confidence

interval CIn ≡ [−s(−p, Cn(ĉn)), s(p, Cn(ĉn))], where ĉn was defined in equation (2.11).

Theorem 3.1: Suppose Assumptions 3.1, 3.2, 3.3 or 3.3′, 3.4, and 3.5 hold. Let 0 <

α < 1/2. Then,

lim inf
n→∞

inf
P∈P

inf
θ∈ΘI(P )

P (p′θ ∈ CIn) ≥ 1− α. (3.4)

Some brief remarks on proof strategy are as follows. Using equations (2.5) and (2.6)

and recalling that adding constraints can only make the coverage probability lower, we show

that asymptotic size control is ensured if we choose the function c to (asymptotically and

uniformly over P and ΘI(P )) guarantee that

P
(
ΛNLn (θ, ρ, c(θ)) ∩ {p′λ = 0} 6= ∅

)
≥ 1− α, (3.5)

where

ΛNLn (θ, ρ, c(θ)) =
{
λ ∈ ρBd :

(
Gn,j(θ + λ/

√
n) +DP,j(θ̄j)λ+

√
nγ1,P,j(θ)

)
(1 + ηn,j(θ)) ≤ c(θ)

}
and θ̄j lies component-wise between θ and θ + λ/

√
n. Our bootstrap procedure is based on

the feasible polyhedral set

Λbn(θ, ρ, ĉn(θ)) =
{
λ ∈ ρBd : Gb

n,j(θ) + D̂n,j(θ)λ+ ϕj(ξ̂n,j(θ)) ≤ ĉn(θ)
}
,

yielding as a bootstrap analog of equation (3.5),

P
(

Λbn(θ, ρ, ĉn(θ)) ∩ {p′λ = 0} 6= ∅
)
≥ 1− α. (3.6)

We do not establish that our bootstrap based critical level ĉn(θ) consistently estimates an

oracle level c(θ). Indeed, we allow that ĉn(θ) might not (uniformly) converge anywhere.

This is why, unlike the related literature, we avoid assumptions on limit distributions of test

statistics. What we do show is that, for n large enough, the probability in (3.5) weakly exceeds

(up to oP(1)) the one in (3.6) uniformly over arguments c and therefore, in particular, for

ĉn(θ). It is also worth noting that the proof contains a novel (to the best of our knowledge)

use of a fixed point theorem in the moment (in)equalities literature. This occurs in our

argument that, if the linear program Λbn is feasible, then the nonlinear program ΛNLn is very

likely to be feasible as well. In the presence of equality constraints, showing this requires to

show that a certain nonlinear system of equations can be solved, which is where the fixed
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point theorem comes in.

Remark 3.1: By replacing the constraint p′λ = 0 with p′λ ≥ 0 in calibrating ĉn:

ĉn(θ) = inf{c ∈ R+ : P ∗(Λbn(θ, ρ, c) ∩ {p′λ ≥ 0} 6= ∅) ≥ 1− α},

one obtains a critical level that yields a valid one-sided confidence interval (−∞, s(p, Cn(ĉn))]

(or [−s(−p, Cn(ĉn)),∞) if one uses p′λ ≤ 0 in the calibration of ĉn). This differentiates

our method from profiling methods and also from projection of AS, where the analogous

adaptation is not obvious.

Result 2: Improvement over projection of AS.

Our second set of results establish that for each n ∈ N, CIn is a subset of a confidence

interval obtained by projecting an AS confidence set.17 Moreover, we derive simple conditions

under which our confidence interval is a proper subset of the projection of AS’s confidence

set. Below we let ĉASn denote the critical value obtained applying AS with criterion function

Tn(θ) = max

{
max

j=1,··· ,J1

√
n[m̄n,j(θ)/σ̂n,j(θ)]+, max

j=J1+1,··· ,J1+J2

√
n|m̄n,j(θ)/σ̂n,j(θ)|

}
, (3.7)

and with the same choice as for ĉn of GMS function ϕ and tuning parameter κn. We also

note that for given function c, one can express Cn(c) in (1.2) as

Cn(c) = {θ ∈ Θ : Tn(θ) ≤ c(θ)}.

Theorem 3.2: Suppose Assumptions 3.1, 3.2, 3.3 or 3.3′, 3.4, and 3.5 hold. Let 0 <

α < 1/2. Then for each n ∈ N

CIn ⊆ [−s(−p, Cn(ĉASn )), s(p, Cn(ĉASn ))]. (3.8)

The result in Theorem 3.2 is due to the following fact. Recall that AS’s confidence region

calibrates its critical value so that, at each θ, the following event occurs with probability at

least 1− α:

max
j=1,...,J

{
Gb
n,j(θ) + ϕj(ξ̂n,j(θ))

}
≤ c. (3.9)

On the other hand, we determine ĉn using the event (2.10). If c satisfies (3.9), it also

satisfies (2.10) because in that case λ = 0 is in the feasibility set Λbn(θ, λ, c) defined in (2.7).18

Therefore, by construction, our critical level ĉn is weakly dominated by ĉASn , and hence our

CIn is a subset of the projection of AS’s confidence region that uses the same statistic and

GMS function.

17Of course, AS designed their confidence set to uniformly cover each vector in ΘI with prespecified asymp-
totic probability, a different inferential problem than the one considered here.

18Indeed, ĉAS
n can be seen as the special case of ĉn where ρ was set to 0.
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A natural question is, then, whether there are conditions under which CIn is strictly

shorter than the projection of AS’s confidence region. Heuristically, this is the case with

probability approaching 1 when ĉn(θ) is strictly less than ĉASn (θ) at each θ that is relevant

for projection. For this, restrict ϕ(·) to satisfy ϕj(x) ≤ 0 for all x, fix θ and consider the

pointwise limit of (3.9):

GP,j(θ) + ζP,j(θ) ≤ c, j = 1, · · · , J, (3.10)

where {GP,j(θ), j = 1, · · · , J} follows a multivariate normal distribution, and ζP,j(θ) ≡
(−∞)1(

√
nγ1,P,j(θ) < 0) is the pointwise limit of ϕj(ξ̂n,j(θ)) (with the convention that

(−∞)0 = 0). Under mild regularity conditions, ĉASn (θ) then converges in probability to a

critical value c = cAS(θ) such that (3.10) holds with probability 1−α. Similarly, the limiting

event that corresponds to our problem (2.10) is

Λ(θ, ρ, c) ∩ {p′λ = 0} 6= ∅, (3.11)

where the limiting feasibility set Λ(θ, ρ, c) is given by

Λ(θ, ρ, c) = {λ ∈ ρBd : GP,j(θ) +DP,j(θ)λ+ ζP,j(θ) ≤ c, j = 1, · · · , J}. (3.12)

Note that if the gradientDP,j(θ) is a scalar multiple of p, i.e. DP,j(θ)/‖DP,j(θ)‖ ∈ {p,−p},
for all j such that ζP,j(θ) = 0, the two problems are equivalent because (3.10) implies (3.11)

(again by arguing that λ = 0 is in Λ(θ, ρ, c)), and for the converse implication, whenever

(3.11) holds, there is λ such that GP,j(θ) + DP,j(θ)λ + ζP,j(θ) ≤ c and p′λ = 0. Since

DP,j(θ)λ = 0 for all j such that ζP,j(θ) = 0, one has GP,j(θ) + ζP,j(θ) ≤ c for all j.19 In

this special case, the limits of the two critical values coincide asymptotically, but any other

case is characterized by projection conservatism. Lemma C.2 in the Appendix formalizes this

insight. Specifically, for fixed θ, the limit of ĉn(θ) is strictly less than the limit of ĉASn (θ) if

and only if there is a constraint that binds or is violated at θ and has a gradient that is not

a scalar multiple of p.20

The parameter values that are relevant for the lengths of the confidence intervals are the

ones whose projections are in a neighborhood of the projection of the identified set. Therefore,

a leading case in which our confidence interval is strictly shorter than the projection of AS

asymptotically is that in which at any θ (in that neighborhood of the projection of the

identified set) at least one local-to-binding or violated constraint has a gradient that is not

parallel to p. We illustrate this case with an example based on Manski and Tamer (2002).

19The gradients of the non-binding moment inequalities do not matter here because GP,j(θ) + ζP,j(θ) ≤ c
holds due to ζP,j(θ) = −∞ for such constraints.

20The condition that all binding moment inequalities have gradient collinear with p is not as exotic as one
might think. An important case where it obtains is the “smooth maximum,” i.e. the support set is a point of
differentiability of the boundary of ΘI .
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Example 3.2 (Linear regression with an interval valued outcome): Consider a linear

regression model:

E[Y |Z] = Z ′θ, (3.13)

where Y is an unobserved outcome variable, which takes values in the interval [YL, YU ] with

probability one, and YL, YU are observed. The vector Z collects regressors taking values in

a finite set SZ ≡ {z1, · · · , zK},K ∈ N. We then obtain the following conditional moment

inequalities:

EP [YL|Z = zj ] ≤ z′jθ ≤ EP [YU |Z = zj ], j = 1, · · · ,K, (3.14)

which can be converted into unconditional moment inequalities with J1 = 2K and

mj(X, θ) =

YL1{Z = zj}/g(zj)− z′jθ, j = 1, · · · ,K

z′j−Kθ − YU1{Z = zj−K}/g(zj−K) j = K + 1, · · · , 2K,
(3.15)

where g denotes the marginal distribution of Z, which is assumed known for simplicity.

Consider making inference for the value of the regression function evaluated at a counter-

factual value z̃ /∈ SZ . Then, the projection of interest is z̃′θ. Note that the identified

set is a polyhedron whose gradients are given by DP,j(θ) = −zj/σj , j = 1, · · · ,K and

DP,j(θ) = zj−K/σj−K , j = K + 1, · · · , 2K. This and z̃ /∈ SZ imply that for any θ not in

the interior of the identified set, there exists a binding or violated constraint whose gradient

is not a scalar multiple of p. Hence, for all such θ, our critical value is strictly smaller than

cASn (θ) asymptotically. In this case, our confidence interval becomes strictly shorter than

that of AS asymptotically. We also note that the same argument applies even if the marginal

distribution of Z is unknown. In such a setting, one needs to work with a sample constraint

of the form n−1
∑n

i=1 YL,i1{Zi = zj}/n−1
∑n

i=1 1{Zi = zj}− zjθ (and similarly for the upper

bound). This change only alters the (co)variance of the Gaussian process in our limiting

approximation but does not affect any other term.

We conclude this section with a numerical illustration. Assume that p = (d−1/2, ..., d−1/2) ∈
Rd and that there are d binding moment inequalities whose gradients are known and corre-

spond to rows of the identity matrix. Assume furthermore that G is known to be exactly

d-dimensional multivariate standard Normal. (Thus, ΘI is the negative quadrant. Its un-

boundedness from below is strictly for simplicity.) Also ignore the ρ-box; if our heuristic for

choosing ρ were followed, the influence of the ρ-box in this example would remain small as d

grows.

Under these simplifying assumptions (which can, of course, be thought of as asymptotic
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Table 3.1: Conservatism from projection in a one-sided testing problem as a function of d

d 1 2 3 4 5 6 7 8 9 10 100 ∞
ĉn 1.64 1.16 0.95 0.82 0.74 0.67 0.62 0.58 0.55 0.52 0.16 0
ĉASn 1.64 1.95 2.12 2.23 2.32 2.39 2.44 2.49 2.53 2.57 3.28 ∞
1− α∗ .95 .77 .57 .40 .27 .18 .11 .07 .04 .03 10−25 0

approximations), it is easy to calculate in closed form that

ĉn = d−1/2Φ−1(1− α),

ĉASn = Φ−1
(

(1− α)1/d
)
.

Furthermore, for any α < 1/2, one can compute α∗ s.t. applying ĉn with target coverage

(1−α) yields the same confidence interval as using ĉASn with target coverage (1−α∗).21 Some

numerical values are provided in Table 3.1 (with α = 0.05).

So, to cover p′θ in R10 with probability 95%, it suffices to project an AS-confidence region

of size 3%. The example is designed to make a point; our Monte Carlo analyses below

showcase less extreme cases. We note, however, that the core defining feature of the example

– namely, the identified set has a thick interior, and the support set is the intersection of d

moment inequalities – frequently occurs in practice, and all such examples will qualitatively

resemble this one as d grows large.

4 Local Geometry of ΘI(P ) and Uniform Inference

As we discussed in the introduction, the main alternative to our method is based on a profiled

test statistic as introduced in Romano and Shaikh (2008) and significantly advanced in BCS.

We now explain in more detail how the class of DGPs over which our procedure and theirs

are asymptotically uniformly valid are non-nested. We also compare our method with that

of PPHI, which is based on directly bootstrapping the support function of a sample analog

of the identified set.

As explained in Section 3.1, our method imposes Assumption 3.3 (or 3.3′), which is not

imposed by either BCS nor PPHI, and uses an additional (non-drifting) tuning parameter

ρ. From this, we reap several important benefits. We are able to establish validity of our

method even when the local geometry of the set ΘI(P ) poses challenges to uniform inference

as described below, and without imposing restrictions on the limit distribution of a test

21Equivalently, (1 − α∗) is the probability that Cn(ĉAS
n ) contains {0}, the true support set in direction p

which furthermore, in this example, minimizes coverage within ΘI(P ). The closed-form expression is 1−α∗ =
Φ(d−1/2Φ−1(1 − α))d. AS prove validity of their method only for α < 1/2, but this is not important for the
point made here.
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statistic, e.g. that it is continuous at the quantile of interest.

In particular, we allow for an extreme point of ΘI in direction of projection to be (i) a

point of differentiability of the boundary of ΘI , (ii) a point on a flat face that is orthogonal to

the direction of projection, or (iii) a point on a flat face that is drifting-to-orthogonal to the

direction of projection. Case (iii) is excluded by Romano and Shaikh (2008) and BCS, and all

three cases are excluded by PPHI. As already discussed in the introduction, drifting-to-flat

faces occur, for example, in best linear prediction with interval outcome data and discrete

regressors. They may also occur when ΘI is drifting to be lower dimensional in the direction

of projection, i.e. when the component of interest is drifting to being point identified. Our

method remains valid also when ΘI locally exhibits corners with extremely acute angles,

meaning that the interior of ΘI locally vanishes and that the joint linear approximation of

constraints is not a good approximation to the local geometry of ΘI . This case is again

excluded by PPHI and also by Chernozhukov, Hong, and Tamer (2007).

We further illustrate these observations through a sequence of examples illustrating some

key challenges faced by the existing alternative methods and how our approach handles them.

4.1 A Simple Example to Set the Stage

We begin with a one-sided testing problem similar to the one explored in Table 3.1.

Example 4.1: Let Θ = [−K,K]2 for some K > 0 and moment functions be given by

m1(x, θ) = x(1)(θ1 − 1)2 + θ2 − x(2) (4.1)

m2(x, θ) = x(3)(θ1 + 1)2 + θ2 − x(4), (4.2)

where we assume X(l), l = 1, · · · , 4 are i.i.d. random variables with mean µx ≥ 0 and variance

σ2
x. The parameter of interest is θ2. So, we let p = (0, 1)′.

The projection of θ ∈ ΘI is maximized at a unique point θ∗ = 0. For simplicity, consider

constructing a one-sided confidence interval CIn = (−∞, s(p, Cn(ĉn))], where s(p, Cn(ĉn)) is

defined as in (2.2) with J1 = 2 inequality restrictions with the moment functions in (4.1)-(4.2)

and no equality restrictions. Then, θ∗ represents the least favorable case for coverage by this

one-sided confidence interval.

Now consider the linear program

sup
λ∈R2

p′λ

s.t. Gn(θ∗) +DP (θ∗)λ+
√
nγ1,P,n(θ∗) ≤ c, (4.3)
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Figure 4.1: Moment inequalities (left) and linearized constraints (right)

where

Gn(θ∗) =

(√
n(X̄(1) + X̄

(2)
n )/

√
2σx√

n(X̄(3) + X̄
(4)
n )/

√
2σx

)
, (4.4)

DP (θ∗) =

(
−2µx/

√
2σx 1/

√
2σx

2µx/
√

2σx 1/
√

2σx

)
, (4.5)

γ1,P,n(θ∗) =
(

0 0
)′
. (4.6)

This program is infeasible in the sense that it uses unknown population objects, in particular,

the knowledge that both population moment inequalities bind at θ∗, hence γ1,P,n(θ∗) = (0, 0)′.

Though infeasible, it gives useful insights. Figure 4.1 shows the original nonlinear constraints

and linearized constraints around θ∗ perturbed by Gn. The key idea of our procedure is to

find ĉn(θ∗) such that the optimal value of the perturbed linear program in (4.3) is greater

than or equal to 0 with probability 1− α, and use it in the original nonlinear problem upon

projecting Cn(·).
In Example 4.1, the value of the linear program in (4.3) has a closed form, namely

p′D−1
P ([c c]′ −Gn) =

√
2σx(c−Wn), where Wn = (Gn,1 + Gn,2)/2 has a limiting distribution

N(0, 1/2) (under a fixed (θ∗, P )). Therefore, by setting ĉn(θ∗) to 1.16, the 95%-quantile of

N(0, 1/2), one can ensure the optimal value in (4.3) is nonnegative with probability 95%

asymptotically.22 This infeasible critical value is the baseline of our method. In practice, the

researcher does not know whether a given θ is on the boundary of the identification region

nor the population objects: the distribution of Gn(θ) and (DP (θ), γ1,P,n(θ)). Our bootstrap

22This argument is based on a pointwise asymptotics, which fixes (θ∗, P ) and sends n to ∞. This is done
only for illustration purposes to obtain a specific value for ĉn(θ∗). Our proof does not use this argument. Note
that the critical value calculated under this pointwise asymptotics depends on the covariance matrix of Gn.
For example, if corr(Gn,1,Gn,2)=-0.9, it suffices to set ĉn(θ∗) to 0.37.
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procedure therefore replaces them with suitable estimators.

In this extremely well-behaved example and when ignoring the ρ-box constraint, one can

show that leading alternative approaches (BCS, PPHI) asymptotically agree with each other

and with ours. Indeed, the support function here equals p′θ∗ and is estimated by p′θ̂, where

θ∗ is the intersection of two constraints and θ̂ is its sample analog. Under assumptions

maintained throughout the literature, θ̂ is asymptotically normal. Thus, if one knew a priori

that this situation obtains, one could use a one-sided t-statistic based (bootstrap or plug-

in asymptotic) confidence interval in this special case. Indeed, all of the aforementioned

approaches asymptotically recover this interval. They can be thought of as generalizing it in

different directions.

A caveat to this is that adding the ρ-box constraints conservatively distorts our confidence

interval. Our proposal, explained later, for selecting ρ is designed to make the distortion small

in well-behaved cases, but it is a distortion nonetheless.23

The similarity breaks down if the example is changed to an “overidentified” corner, e.g. a

corner in R2 at which 3 constraints intersect. Note that GMS with hard thresholding makes

such scenarios generic in the sense that their realization in sample is not knife-edge. Simula-

tion of the support function, as advocated in PPHI, now leads to (potentially much) longer

confidence intervals than our method. For a drastic but simple example, consider the mini-

mum of two means in R: We want to estimate min{µ1, µ2} and observe two signals [µ̂1, µ̂1]′

that have a bivariate Normal distribution with mean [µ1, µ2]′, covariance equal to zero, and

variances, respectively, 1 and σ2. Assume that µ1 = µ2 = 0; this setting could, of course, re-

flect recentering by a hard thresholding GMS procedure. Then the bootstrap sample support

function is min{µ̂1, µ̂2}. If σ � 1, the left tail of the distribution of min{µ̂1, µ̂2} is essentially

determined by the distribution of µ̂2, and the PPHI confidence interval is approximately

(−∞,min{µ̂1, µ̂2} + 1.645σ]. (The approximation is favorable since tail probabilities of the

more precise signal were ignored.) In contrast, AS and our method agree (because there is

no projection in this example in R) and approximately recover Bonferroni, thus our interval

is similar to (−∞,min{µ̂1 + 1.96, µ̂2 + 1.96σ}]. (The approximation is unfavorable because

our method actually exploits independence of µ̂1 and µ̂2.) For σ = 10, numerical evaluation

without these approximations reveals that the upper bounds of the intervals have expected

values 12.4 and 1.8, respectively, to be compared with a true value min{µ1, µ2} = 0 and an

expected value of the estimator E(min{µ̂1, µ̂2}) = −4. The difference between the confidence

intervals can be made arbitrarily large by increasing σ.

4.2 Flat Faces and Drifting-to-Flat Faces

Next, we consider a setting where the projection is maximized at multiple points. For this,

we add, to the constraints in Example 4.1, one more inequality restriction whose moment

23In the present example, we would recommend ρ ≈ 2.8, with negligible effect on c and on true coverage.
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Figure 4.2: Flat face (left) and a near flat face (right)

function is given by

m3(x, θ) = x(5)θ1 + θ2 + x(6), (4.7)

where X(5) and X(6) are independent random variables independent from X(1), · · · , X(4)

with mean EP [X(5)] = 0, EP [X(6)] = µx and variance V arP (X(5)) = V arP (X(6)) = σ2
x. (See

Figure 4.2, left panel.)

The projection of θ ∈ ΘI is then maximized over the following set:

H(p,ΘI) = {θ ∈ Θ : θ1 ∈ [1−
√

2,−1 +
√

2], θ2 = −µx}. (4.8)

In other words, the identification region has a flat face toward direction p. At each θ ∈
H(p,ΘI), one can study the infeasible linear program. For example, at θ∗ = (1−

√
2,−µx),

the first and third moment inequalities bind, but not the second one. Then, the approxi-

mating linear program in (4.3) holds with
√
nγ1,P,n(θ∗) = (0,−

√
n(4 − 2

√
2)µx, 0)′. If the

magnitude of the second component of
√
nγ1,P,n(θ∗) is large, or along any sequence (θn, Pn)

such that
√
nγ1,Pn,2,n(θn)→ −∞, the second moment inequality becomes negligible. Solving

for the optimal value using the two remaining constraints then yields
√

2σx(c −Wn), where

Wn = Gn,3(θ∗) approximately follows the standard normal distribution, which suggests that

ĉn(θ∗) = 1.645, the usual one-sided critical value, can be used. However, if
√
nγ1,P,2,n(θ∗)

is close to 0, the second constraint is also relevant. In such cases, GMS will asymptotically

replace
√
nγ1,P,2,n(θ∗) with 0 and thus add the second inequality as an additional constraint.

Like any tightening of constraints, this will increases ĉn(θ∗). The same argument applies to

every θ in the support set. For example at θ = (0,−µx), the third moment inequality is

the only one that binds, which again defines another approximating linear program with a

different local slackness parameter. Hence, the amount of relaxation needed to ensure the
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one-sided coverage differs across points in H(p,ΘI) due to different values of the slackness

parameter.24 Furthermore, the analysis also extends to settings where the identification re-

gion has a face whose normal vector is nearly aligned with p as shown in Figure 4.2, right

panel. We come back to this case later in this section.

The presence of a flat face or more generally a non-singleton support set does not com-

plicate our inference procedure because we calibrate the level at each θ. On the other

hand, these features raise a nontrivial challenge for methods that use test statistics whose

limiting distributions depend on H(p,ΘI). For example, consider again the method that

constructs a confidence interval from the support function of the estimated identified set.

If the support set is not a singleton, the distribution of the normalized support function

Sn =
√
n[s(p, Cn(0)) − s(p,ΘI(P ))] can be shown to be approximated by the supremum of

the optimal value in (4.3) over H(p,ΘI); see, e.g., Kaido (2012). Hence, the support set

becomes a nuisance parameter that affects the distribution of the statistic. Uniform size

control then becomes challenging. In particular, for a sequence of DGPs Pn along which

the support sets are singletons (i.e. H(p,ΘI(Pn)) = {θn} for all n) but non-singleton in

the limit, the limiting distribution of the statistic changes discontinuously. We call such a

setting “drifting-to-flat face”. In the present example, one can construct such a sequence Pn

by letting EPn [X(5)] > 0 for all n and letting it drift to 0 (see Figure 4.2, right panel). To

handle this issue, one must either assume away flat faces (toward direction p) or introduce a

conservative distortion. Beresteanu and Molinari (2008, Assumption 4.5), PPHI, and Kaido

and Santos (2014, Assumption 4.1) take the first approach, rendering them inapplicable to

some commonly studied examples.25

Drifting-to-flat faces are also assumed away in the recent work of BCS. They consider

testing the hypothesis H0 : p′θ = β0 and constructing a confidence interval through a test in-

version. Their method is based on bootstrapping a profiled test statistic inf{θ:p′θ=β0} anQn(θ),

where Qn is a sample criterion function which includes the use of GMS. A key role in profil-

ing is played by the subset of elements of ΘI(P ) that satisfy the null hypothesis H0. When

β0 = s(p,ΘI(P )), this set coincides with the support set H(p,ΘI(P )). Although BCS’s

inference is valid over a class of distributions under which H(p,ΘI(P )) is not necessarily

singleton-valued, they require that the population criterion function increases as a polyno-

mial function of the distance from θ to H(p,ΘI(P )) when θ deviates from this set along

the hyperplane {θ : p′θ = s(p,ΘI(P ))}.26 This requirement, however, excludes DGPs that

24In this specific example, ĉn converges to 1.645 at all points in the support set because the constraint whose
gradient is orthogonal to p reduces the problem to a one-sided testing problem. Finite sample critical levels
will differ across H(p,ΘI), though.

25For example, Beresteanu and Molinari (2008) show that the identification region for the best linear pre-
dictor of an interval-valued outcome variable with discrete covariates has flat faces. See also Freyberger and
Horowitz (2015) for a nonparametric IV example with discrete variables.

26Without this requirement, their estimator of H(p,ΘI(P )) may include points at which population moment
(in)equalities are violated but by not much. At such points, the sample moment inequalities may even realize
as slack constraints, and hence replacing the (violated) population local slackness parameter with the GMS
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exhibit drifting-to-flat faces. For example, in the right panel of Figure 4.2, consider deviating

from θ∗ toward direction (−1, 0). Because of the third constraint drifting to a flat face, one

can make the population criterion function increase arbitrarily slowly along such a deviation.

4.3 Role of the ρ-Box Constraint

We next discuss why we impose the additional constraint λ ∈ ρBd. To do so, we return to

Example 4.1 (without the additional constraint (4.7)). Recall that

DP (θ∗) =

(
−2µx/

√
2σx 1/

√
2σx

2µx/
√

2σx 1/
√

2σx

)
(4.9)

and consider a sequence of DGPs such that µx → 0. As we saw before, under each DGP

with µx > 0, the infeasible linear program calibrates ĉn(θ∗) = 1.16. In the limit, however,

the moment inequalities reduce to

θ2 − EP [X(2)] ≤ 0 (4.10)

θ2 − EP [X(4)] ≤ 0. (4.11)

In other words, θ2’s upper bound is given by the minimum of the two means: EP [X(2)]

and EP [X(4)]. This structure is also known as “intersection bounds” (Hirano and Porter,

2012). The value of the linear program in (4.3) is then min{c − Gn,1, c − Gn,2}. To ensure

coverage, one needs a critical level of ĉn(θ∗) = 1.95 instead of 1.16 (the slight difference to

1.96 is because we exploit independence of error terms). This discontinuity presents another

challenge for uniform validity of inference. For any setting where the constraints are close

to the minimum of the two means, an inference method that does not take into account this

feature would have poor size control.

This type of example is the main reason why we restrict the localization parameter λ into

the ρ-box. To see the benefit, consider Figure 4.3. The figure shows the DGP on the left

panel and a realization of a constraint in the bootstrap problem on the right panel. Due to

sampling variation, the estimated gradients D̂n,1 and D̂n,2 differ slightly from the population

gradients. Without the ρ-box constraint, the maximum is attained at λ∗. Since the estimated

gradients are fixed across bootstrap replications, p′λ∗ behaves as approximately normal, and

by the previous argument we would end up with ĉn(θ∗) = 1.16. With the ρ-box, however,

the optimum is attained at λ∗∗ whose projection is the minimum of the projections of two

points at which the two constraints intersect with the right boundary of ρBd. Therefore,

our bootstrap procedure mimics the minimum of the two-means problem. This scenario is

very likely to occur in bootstrap samples whenever the population gradients are close to this

function does not necessarily provide conservative approximations. For details, we refer to discussions provided
in Bugni, Canay, and Shi (2015, page 265).
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Figure 4.3: Minimum of two means and a ρ-box

situation, and hence restricting λ to the ρ-box is key to uniform validity of our procedure.27

The drifting-to-flat face example in Figure 4.2, right panel, can be handled analogously.

For example, for some points such as θ∗∗, the relevant constraint is the third constraint,

which is drifting-to-flat. A linearized problem around θ∗∗ then looks akin to the right panel

of Figure 4.3 without the dotted line. Calculating a bootstrap critical value then yields a

one-sided critical value ĉn(θ) = 1.645 as before.

In practice, the choice of ρ requires trading off how much conservative bias one is willing to

bear in well-behaved cases (e.g., Example 4.1) against how much finite-sample size distortion

one is willing to bear in ill-behaved cases such as the minimum of two means example just

described. We propose a heuristic approach to calibrate ρ focusing on conservative bias in

well behaved cases. In these cases, the optimal value is distributed asymptotically normal

as a linear combination of d binding inequalities. When in fact J1 + J2 = d, constraining

λ ∈ ρBd increases the coverage probability by at most β = 1− [1−2Φ(−ρ)]d. The parameter

ρ can therefore be calibrated to achieve a conservative bias of at most β. When J1 + J2 > d,

we propose to calibrate ρ using the benchmark

β = 1− [1− 2Φ(−ρ)]d(
J1+J2

d ),

again inferring ρ so as to achieve a target conservative bias (in well-behaved cases) of β. A

few numerical examples with β = 0.01 yield, with J1 + J2 = 10 and d = 3 a value of ρ = 4.2;

with J1 + J2 = 100 and d = 10, ρ = 8.4.

27This reasoning does not go through if the two constraints are perfectly correlated; their bootstrap resamples
might then always intersect inside the ρ-box despite the very acute angle formed. This is precisely why we
restrict the correlation matrix of moments, but also why we only need this restriction for moment conditions
whose boundaries may intersect.
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Table 5.1: DGPs used in the Monte Carlo experiments 1-4

DGP Moment Conditions Projections of ΘI Description

DGP-1

θ1 + θ2 ≤ EP [X1]

−θ1 + θ2 ≤ EP [X2]

θ1 − θ2 ≤ EP [X3] + 2

−θ1 − θ2 ≤ EP [X4] + 2

θ1 ∈ [−1, 1]

θ2 ∈ [−2, 0]
ΘI is a square.

DGP-2

θ1

√
n+ θ2 ≤ EP [X1]− 1 + 1/

√
n

−θ1

√
n+ θ2 ≤ EP [X2]− 1 + 1/

√
n

θ1

√
n− θ2 ≤ EP [X3] + 1 + 1/

√
n

−θ1

√
n− θ2 ≤ EP [X4] + 1 + 1/

√
n

θ1 ∈ [−1, 1]

θ2 ∈ [−1− 1√
n
,−1 +

1√
n

]

ΘI is local to
a thin face.

DGP-3

θ1 + θ2 ≤ EP [X1] + 1/
√
n

−θ1 + θ2 ≤ EP [X2] + 1/
√
n

θ1 − θ2 ≤ EP [X3] + 1/
√
n

−θ1 − θ2 ≤ EP [X4] + 1/
√
n

θ1 ∈ [− 1√
n
,

1√
n

]

θ2 ∈ [− 1√
n
,

1√
n

]

ΘI is local to
point identification.

DGP-4

θ1 + θ2 ≤ EP [X5]

−θ1 + θ2 ≤ EP [X6]

θ1 − θ2 ≤ EP [X7] + 2

−θ1 − θ2 ≤ EP [X8] + 2

and the inequalities in DGP-1.

θ1 ∈ [−1, 1]

θ2 ∈ [−2, 0]

The corners of ΘI

are overidentified.

Table notes: (1) For each DGP, the projection of interest is defined by p′θ : θ ∈ ΘI with p = (0, 1)′

and θ = (θ1, θ2)′; (2) X1, · · · , X8 are i.i.d. Normal random variables, with V ar(Xk) = 1, k = 1, . . . , 4,
V ar(X5) = V ar(X7) = 4 and V ar(X6) = V ar(X8) = 9.

5 Monte Carlo Simulations

We evaluate the performance of our confidence intervals in two sets of Monte Carlo experi-

ments. The first set examines linear restrictions in a two-dimensional parameter space. This

illustrates the performance of our procedure under DGPs that make inference for projections

nontrivial, but where our method is still easy to visualize. The second set of experiments is

about a two-player entry game commonly studied in the literature. With d = J1 = J2 = 8,

the DGPs considered there have interesting complexity.

Another important class of models are moment inequalities that arise from revealed pref-

erence considerations in games, as laid out in Pakes, Porter, Ho, and Ishii (2015). We refer

the reader to Mohapatra and Chatterjee (2015) for an empirical application of our method

in such a model with d = 5, J1 = 44, and J2 = 0.

5.1 Linear Restrictions in R2

All DGPs in this subsection are parameterized by θ = (θ1, θ2) ∈ R2. We take the second com-

ponent to be the projection of interest, thus p = (0, 1)′. Further details of the specifications

are listed in Table 5.1.

DGP-1 has a square-shaped identified set defined by four linear inequalities, with length
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Table 5.2: Simulation result for DGPs 1-4 with n = 3000, MCs = 1000.

1− α Average CI KMS Coverage AS Coverage Average ĉ Excess Length
KMS AS Upper Lower Upper Lower KMS AS KMS AS

DGP-1

95% [-2.021,0.021] [-2.041,0.040] 94.5% 94.9% 100% 99.9% 1.161 1.955 0.042 0.071
90% [-2.017,0.016] [-2.036,0.035] 89.6% 90.8% 99.8% 99.6% 0.906 1.634 0.033 0.059
85% [-2.013,0.013] [-2.032,0.032] 84.4% 85.3% 99.5% 98.9% 0.732 1.419 0.026 0.052
80% [-2.011,0.010] [-2.029,0.029] 78.2% 79.7% 99.2% 98.0% 0.595 1.251 0.021 0.045
75% [-2.009,0.008] [-2.027,0.027] 74.0% 75.5% 98.6% 97.4% 0.476 1.108 0.017 0.040

DGP-2

95% [-1.058,-0.942] [-1.059,-0.941] 100% 99.9% 100% 99.9% 2.175 2.236 0.079 0.081
90% [-1.053,-0.948] [-1.054,-0.947] 99.7% 99.3% 99.8% 99.6% 1.888 1.945 0.069 0.071
85% [-1.049,-0.951] [-1.050,-0.950] 99.4% 98.6% 99.5% 98.9% 1.699 1.755 0.062 0.064
80% [-1.047,-0.954] [-1.048,-0.953] 99.0% 97.8% 99.2% 98.0% 1.552 1.607 0.056 0.058
75% [-1.044,-0.956] [-1.045,-0.955] 98.2% 96.8% 98.6% 97.4% 1.429 1.482 0.052 0.054

DGP-3

95% [-0.042,0.041] [-0.055,0.055] 98.4% 96.9% 100% 99.9% 1.305 2.074 0.047 0.073
90% [-0.038,0.037] [-0.050,0.049] 95.6% 94.7% 99.7% 99.5% 1.087 1.785 0.039 0.063
85% [-0.035,0.035] [-0.046,0.046] 92.2% 93.0% 99.4% 98.4% 0.945 1.598 0.034 0.056
80% [-0.033,0.033] [-0.044,0.043] 89.4% 90.0% 98.6% 97.7% 0.831 1.452 0.030 0.050
75% [-0.031,0.031] [-0.041,0.041] 85.6% 87.6% 98.1% 96.9% 0.736 1.330 0.026 0.046

DGP-4

95% [-2.024,0.024] [-2.038,0.038] 95.0% 94.2% 99.8% 99.5% 1.610 2.234 0.048 0.076
90% [-2.019,0.018] [-2.032,0.031] 89.0% 89.2% 98.7% 98.5% 1.373 1.940 0.037 0.063
85% [-2.014,0.014] [-2.027,0.027] 83.5% 84.1% 97.3% 96.3% 1.211 1.746 0.029 0.055
80% [-2.011,0.011] [-2.024,0.024] 77.4% 79.7% 95.4% 93.9% 1.082 1.595 0.022 0.048
75% [-2.008,0.008] [-2.021,0.021] 72.3% 74.6% 92.0% 91.8% 0.974 1.468 0.016 0.042

Table notes: (1) The projection of interest is θ2 for (θ1, θ2) ∈ ΘI . (2) “Upper” coverage refers to
coverage of max{p′θ : θ ∈ ΘI}, and similarly for “Lower”. (3) The excess length of a confidence
interval (CI) is computed as length of CI - length of population projection. (4) B = 2001 bootstrap
draws.

of the projection of interest equal to 2. DGP-2 is similar, but the slope of each constraint

equals n−1/2 in absolute value so the length of projection is 2/
√
n. Therefore, as n grows, the

identified set converges to the line segment spanned by {(−1,−1), (1,−1)}. This specification

is used to examine the performance of the confidence intervals when the identified set is local

to a thin face in the direction of projection. In particular, note that DGP-2 converges to

point identification of p′θ but not of θ. DGP-3 is again similar to DGP-1, but shrinks toward

the singleton {(0,−1)} as n grows, so that point identification of θ is approached; length of

projection is again 2/
√
n. Finally, DGP-4 adds four additional inequalities to DGP-1. These

have exactly the same form as the ones in DGP-1, hence the length of projection stays at

2, but differ in their variances. This specification is used to evaluate the performance of the

confidence interval when some of the boundary points of ΘI are overidentified.

Table 5.2 reports the results of the Monte Carlo experiments under alternative nominal

coverage levels (95%, 90%, 85%, 80%, 75%). The DGPs are simple enough so that this table

can be computed using Matlab’s fmincon command as well as our E-A-M algorithm. We

did both, with identical results. We report separate coverage probabilities for the upper and

lower bound on p′θ, average critical levels ĉn at the upper and lower support point of Cn, and

average excess lengths of confidence intervals. By “excess length,” we mean the difference

between the length of the confidence interval and that of the projection of the identified set.
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For simplicity, we refer to “AS confidence intervals” below when we mean the projections of

AS confidence regions.

DGP-1 is the benchmark specification. In this setting, the coverage probabilities of our

confidence intervals are very close to nominal levels, while those of the AS confidence intervals

are much higher and close to 100% in most cases. This is also reflected in the higher critical

levels and larger excess lengths displayed in the table. The comparison of ĉn and ĉASn also

provides an example of the theoretical result presented in Section 3.2, where we showed

that our critical level is strictly lower than AS’s unless all constraints are orthogonal to the

direction of projection. In this well-behaved example, the difference is large and would be even

larger if the example were extended to higher dimensions.28 Results are similar under DGP-

4, suggesting that our confidence interval performs well in the presence of overidentifying

moment restrictions.

A notable specification in which our CI and AS’s CI perform similarly is DGP-2. Recall

that, in this setting, the identified set is local to a thin face in the direction of projection; at

our sample size of n = 3000, the numerical value of the slope is ±.018. In the presence of

the ρ-box, this makes our linearization of the inference problem similar to an overidentified

two-sided test. Therefore, ĉn and ĉASn are close to each other and also to Bonferroni correction

(not displayed). They also have similar coverage properties.29

Under DGP-3, where the identified set is local to point identification, the coverage prob-

abilities of our CIs are again strictly above the nominal levels. This conservatism reflects

GMS and is shared by both reported, and other uniformly valid, approaches. Projection of

AS incurs considerable additional conservatism.

In sum, these experiments confirm that our confidence interval controls size well under

various DGPs and is substantially less conservative than AS, except for the special case

where the DGP is statistically indistinguishable from one that does not involve projection

conservatism.

5.2 An Entry Game in R8

Consider the following variation on Example 3.1:

Y2 = 0 Y2 = 1

Y1 = 0 0, 0 0, Z ′2β1 + u2

Y1 = 1 Z ′1β1 + u1, 0 Z ′1(β1 + ∆1) + u1, Z
′
2(β2 + ∆2) + u2

28To get an idea, compare the average values of critical levels for 1− α = 95% to the corresponding entries
for n = 2 in Table 3.1. This comparison also corroborates numerical accuracy of our simulations, as well as
minimal influence of the ρ-box constraints in well-behaved examples.

29They are conservative because, as long as inequalities are not exactly parallel, our ĉn for DGP-1 would
actually do, but this fact is not knowable to the researcher. Compare the discussion of Figure 4.3.
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where Yk ∈ {0, 1}, Zk, and uk denote, respectively, player k′s binary action, observed charac-

teristics, and unobserved characteristics. The strategic interaction effects Z ′k∆k < 0, k = 1, 2

measure the impacts of the opponent’s entry into the market. In what follows, we let

X ≡ (Y1, Y2, Z
′
1, Z

′
2)′ and θ ≡ (β′1, β

′
2,∆

′
1,∆

′
2)′. We generate Z = (Z1, Z2) as an i.i.d. random

vector taking values in a finite set whose distribution pz = P (Z = z) is assumed known. We

then generate u = (u1, u2) as standard bivariate Normal random variables independent of

Z. The outcome Y = (Y1, Y2) is generated as a pure strategy Nash equilibrium of the game.

For some value of Z and u, the model predicts monopoly outcomes Y = (0, 1) and (1, 0) as

multiple equilibria. When this is the case, we select Y by independent Bernoulli trials with

fixed parameter τ ∈ [0, 1].

The model gives rise to the following moment equality and inequality restrictions (Tamer,

2003; Ciliberto and Tamer, 2009):

P ((0, 0)|Z) = P (u1 ≤ −Z ′1β1, u2 ≤ −Z ′2β2) (5.1)

P ((1, 1)|Z) = P (u1 > −Z ′1(β1 + ∆1), u2 > −Z ′2(β2 + ∆2)) (5.2)

P ((0, 1)|Z) ≤ P (u1 ≤ −Z ′1(β1 + ∆1), u2 > −Z ′2β2) (5.3)

P ((0, 1)|Z) ≥ P (u1 ≤ −Z ′1(β1 + ∆1), u2 > −Z ′2(β2 + ∆2)) (5.4)

+ P (u1 ≤ −Z ′1β1, − Z ′2β2 ≤ u2 ≤ −Z ′2(β2 + ∆2)).

The inequality restrictions (5.3)-(5.4) bound the probability of an outcome that can be se-

lected from multiple equilibria. Using our specification, it is straightforward to rewrite the

restrictions as follows:

E[1{Y = (0, 0)}1{Z = z}]− Φ(−z′1β1)Φ(−z′2β2)pz = 0 (5.5)

E[1{Y = (1, 1)}1{Z = z}]− (1− Φ(−z′1(β1 + ∆1)))(1− Φ(−z′2(β2 + ∆2)))pz = 0 (5.6)

E[1{Y = (0, 1)}1{Z = z}]− Φ(−z′1(β1 + ∆1))(1− Φ(−z′2β2))pz ≤ 0 (5.7)

− E[1{Y = (0, 1)}1{Z = z}]

+
[
Φ(−z′1(β1 + ∆1))(1− Φ(−z′2(β2 + ∆2))) + Φ(−z′1β1)(Φ(−z′2(β2 + ∆2))− Φ(−z′2β2))

]
pz ≤ 0,

(5.8)

where Φ is the CDF of the standard normal distribution.

The complexity of this model depends on the support of Z. We work with a constant

and a player specific, binary covariate, so Z1 ∈ {(1,−1), (1, 1)} and Z2 ∈ {(1,−1), (1, 1)}.
Z therefore takes four different values, giving rise to 8 moment equalities and 8 moment

inequalities, i.e. J = 24 restrictions. The standard deviation of each moment takes the form(
E[1{Y = y}1{Z = z}](1 − E[1{Y = y}1{Z = z}])

)1/2
, which we estimate by its sample

analog. The gradients of each moment can be computed analytically using (5.5)-(5.8). The
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Table 5.3: Simulation result for DGP-5 with n = 4000, MCs = 1000.

1− α Median CI Coverage Average CI Length
KMS AS KMS AS KMS AS

β
[1]
1 = 0.50

0.95 [0.344,0.763] [0.125,0.941] 95.7% 100.0% 0.425 0.815
0.90 [0.368,0.723] [0.169,0.903] 92.2% 100.0% 0.356 0.735
0.85 [0.381,0.698] [0.194,0.880] 88.3% 99.7% 0.326 0.685

β
[2]
1 = 0.25

0.95 [0.098,0.367] [-0.003,0.490] 96.6% 100.0% 0.275 0.508
0.90 [0.117,0.349] [0.021,0.465] 93.1% 99.8% 0.236 0.455
0.85 [0.128,0.340] [0.035,0.449] 90.5% 99.6% 0.217 0.423

∆
[1]
1 = −1

0.95 [-1.386,-0.701] [-1.717,-0.292] 96.3% 100.0% 0.692 1.432
0.90 [-1.327,-0.744] [-1.654,-0.367] 92.3% 100.0% 0.588 1.291
0.85 [-1.291,-0.775] [-1.614,-0.412] 88.4% 99.9% 0.522 1.207

∆
[2]
1 = −1

0.95 [-1.183,-0.753] [-1.445,-0.494] 96.6% 100.0% 0.438 0.955
0.90 [-1.154,-0.787] [-1.400,-0.541] 93.1% 99.9% 0.375 0.862
0.85 [-1.134,-0.811] [-1.371,-0.570] 88.7% 99.9% 0.337 0.805

Table notes: (1) Population projection length is zero in this DGP. (2) B = 2001 bootstrap draws.

estimator of the normalized gradients can then be computed by dividing each gradient by

the corresponding estimated standard deviation.

In our DGP-5, we set β1 = (.5, .25)′ and ∆1 = (−1,−1)′. DGP-6 differs by setting

∆1 = (−1,−.75)′. In both cases, (β2,∆2) = (β1,∆1) and the equilibrium selection probability

is τ = 0.5; we only report results for (β1,∆1). Although parameter values are similar, there is

a qualitative difference: In DGP-5, parameters turn out to be point identified. In DGP-6, they

are not but the identified set is still not large compared to sampling uncertainty, specifically:

for β
[1]
1 , the projection of the identified set is [0.405, 0.589]; for β

[2]
1 , it is [0.236, 0.26]; for ∆

[1]
1 ,

it is [−1.158,−0.832]; for ∆
[2]
1 , it is [−0.790,−0.716]. We therefore expect all methods that

use GMS to be conservative in DGP-6. Finally, the marginal distribution of (Z
[2]
1 , Z

[2]
2 ) on

its support {(−1,−1), (−1, 1), (1,−1), (1, 1)} is specified as (0.1, 0.2, 0.3, 0.4).

An interesting feature of this model is that despite being (in general, and in one of our

specifications) partially identified, it is also testable because moment conditions are overiden-

tifying in some dimensions. More specifically, it can be verified that one of the four constraints

corresponding to (5.5), and similarly one of the four constraints in (5.6), can be expressed as

nonlinear function of the others. Indeed, this is one reason why DGP-6 is partially identified

despite the presence of 8 equalities in R8. The additional constraints do, however, restrict

the distribution of observables and therefore make the models testable.

“Supernumerary” or “partially overidentifying” moment conditions raise interesting ques-

tions. For one thing, their presence means that the sample analog of ΘI is generically empty,

a frequent feature of empirical applications but one that makes consistent estimation of iden-

tified sets difficult. Also, in our framework, they increase ĉn because they act like implicit

specification tests: Their rejection will cause the confidence interval to be empty. Ceteris
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Table 5.4: Simulation result for DGP-6 with n = 4000, MCs = 1000.

1− α Median CI KMS Coverage AS Coverage Excess Length
KMS AS Lower Upper Lower Upper KS AS

β
[1]
1 = 0.50

0.95 [0.218,0.819] [-0.009,1.002] 98.3% 98.2% 100.0% 100.0% 0.424 0.828
0.90 [0.253,0.787] [0.039,0.968] 95.8% 95.8% 100.0% 100.0% 0.351 0.748
0.85 [0.272,0.762] [0.069,0.947] 92.3% 92.9% 100.0% 100.0% 0.308 0.697

β
[2]
1 = 0.25

0.95 [0.100,0.389] [-0.003,0.524] 98.1% 98.2% 100.0% 100.0% 0.268 0.515
0.90 [0.119,0.368] [0.021,0.498] 95.1% 95.2% 99.8% 100.0% 0.229 0.460
0.85 [0.131,0.355] [0.035,0.481] 92.3% 91.2% 99.8% 99.7% 0.204 0.428

∆
[1]
1 = −1

0.95 [-1.525,-0.470] [-1.867,-0.015] 98.3% 98.3% 100.0% 100.0% 0.730 1.501
0.90 [-1.472,-0.529] [-1.803,-0.101] 95.9% 95.9% 100.0% 100.0% 0.616 1.374
0.85 [-1.436,-0.565] [-1.764,-0.156] 92.9% 92.1% 100.0% 100.0% 0.546 1.281

∆
[2]
1 = −0.75

0.95 [-0.986,-0.490] [-1.277,-0.230] 98.0% 98.0% 100.0% 100.0% 0.430 0.981
0.90 [-0.956,-0.522] [-1.226,-0.275] 95.9% 95.6% 100.0% 100.0% 0.368 0.884
0.85 [-0.937,-0.543] [-1.194,-0.304] 92.6% 92.4% 100.0% 100.0% 0.326 0.824

Table notes: (1) Population projections are as follows: for β
[1]
1 , [0.405, 0.589]; for β

[2]
1 , [0.236, 0.26];

for ∆
[1]
1 , [−1.158,−0.832]; for ∆

[2]
1 , [−0.790,−0.716]. (2) “Upper” coverage refers to coverage of

max{p′θ : θ ∈ ΘI}, and similarly for “Lower”. (3) The excess length of a confidence interval (CI) is
computed as length of CI - length of population projection. (4) B = 2001 bootstrap draws.

paribus, this makes confidence intervals larger, but it has to be traded off against potentially

more efficient estimation. Unlike with the point identified case, the trade-off is not obvious,

and we leave its analysis for future research.

Tables 5.3-5.4 summarize our findings. DGP-5 is characterized by moderate, and DGP-6

by considerable, conservatism due to GMS contracting several constraints in most samples.30

In both examples, we decisively outperform AS both in terms of finite sample size as well as

length of confidence interval. Last but not least, Tables 5.3-5.4 serve as proof of feasibility:

With 3 different coverage probabilities and 1000 MC replications, we computed the confidence

interval for each component and for each method (our own and AS) 3000 times. Our ability

to do so in a speedy manner critically relies on the E-A-M algorithm.

6 Conclusions

This paper introduces a bootstrap-based confidence interval for linear functions of parameter

vectors that are partially identified through finitely many moment (in)equalities. The extreme

points of our confidence interval are obtained by minimizing and maximizing p′θ subject to

the sample analog of the moment (in)equality conditions properly relaxed. This relaxation

amount, or critical level, is computed to insure that p′θ, rather than θ itself, is uniformly

asymptotically covered with a prespecified probability. Calibration of the critical levels is

computationally attractive because it is based on repeatedly checking feasibility of (bootstrap)

30This diagnosis is corroborated by: (i) closed-form analysis of simple high-dimensional models, which
indicates that GMS can have a strong effect; (ii) simulations with κn ≈ 0, in which we encountered slight
undercoverage. Details are available from the authors.
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linear programming problems. Computation of the extreme points of the confidence intervals

is also computationally attractive thanks to an application, novel to this paper, of the response

surface method for global optimization that can be of independent interest in the partial

identification literature.

The class of DGPs over which we can establish validity of our procedure is non-nested with

the class over which the main alternative to our method (Romano and Shaikh, 2008; Bugni,

Canay, and Shi, 2014) is asymptotically valid. For example, our method yields asymptotically

uniformly valid confidence intervals for linear functions of best linear predictor parameters in

models with interval valued outcomes and discrete covariates, while profiling based methods

do not. The price to pay is the use of one additional (non-drifting) tuning parameter.

The confidence region that we propose is by construction an interval. As such, it does not

pick up gaps in the projection. To do so, one could replace our proposed confidence interval

with the mathematical projection of Cn(ĉn), that is, with{
p′θ : n−1

n∑
i=1

mj(Xi, θ)/σ̂n,j(θ) ≤ ĉn(θ), j = 1, . . . , J

}
.

Theorems 3.1 and 3.2 apply to this object, including if the projection of the AS confidence

region is defined analogously to the above (and therefore also captures gaps). However,

computation of this object is much harder, and so we recommend it only if possible gaps in

the identified set for p′θ are genuinely interesting.

Also, and similarly to confidence regions proposed in AS, Stoye (2009), and elsewhere,

our confidence interval can be empty, namely if the sample analog of the identified set is

empty and if violations of moment inequalities exceed ĉn(θ) at each θ. Emptiness of CIn

can be interpreted as rejection of maintained assumptions. See Stoye (2009) and especially

AS for further discussion and Bugni, Canay, and Shi (2015) for a paper that focuses on

this interpretation and improves on ĉASn for the purpose of specification testing. We leave a

detailed analysis of our implied specification test to future research.

In applications, a researcher might wish to obtain a confidence interval for a nonlinear

function f : Θ 7→ R. Examples might include policy analysis and counterfactual estimation

in the presence of partial identification or demand extrapolation subject to rationality con-

straints. While our results are formally derived for the case that f is linear in θ, the extension

to uniformly continuously differentiable functions f is immediate. In particular, we propose

to calibrate ĉn as

ĉn(θ) ≡ inf{c ≥ 0 : P (Λbn(θ, ρ, c) ∩ {∇θf(θ)λ = 0} 6= ∅) ≥ 1− α}, (6.1)

where ∇θf(θ) is the gradient of f(θ). The lower and upper points of the confidence interval
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are then obtained solving

min
θ∈Θ

/max
θ∈Θ

f(θ) s.t.
√
nm̄n,j(θ)/σ̂n,j(θ) ≤ ĉn(θ), j = 1, · · · , J.

A related extension is inference on EP (f(Xi, θ)) for some known function f . Note that,

while f is known, the expectation needs to be estimated even if θ is known. To handle

this situation, we propose to apply our method to the augmented parameter vector θ̃ =

(E(f(Xi, θ)), θ
′)′ and direction of optimization p = (1, 0, ..., 0).31

Another extension that is of interest in applications is one where the moment conditions

depend on a point identified parameter vector Π for which a consistent and asymptotically

normal estimator Π̂n(θ0) exists when θ0 is the true value of θ. The sample moment functions

are then of the form m̄n,j(θ) = m̄n,j(θ, Π̂n(θ)). As explained in AS, the estimator of the

asymptotic variance of
√
nm̄n,j(θ) needs to be adjusted to reflect that Π is replaced by

an estimator. With this modification, and in line with AS, our results remain valid under

conditions provided by AS to guarantee that n−1
∑n

i=1mj(Xi, θ, Π̂n(θ)) is asymptotically

Normal.

Yet another extension considers projection in a direction p that is unknown but is
√
n-

consistently estimated by p̂.32 Our method applies without modification, treating the es-

timator p̂ as if it were the true direction p, by retilting the gradients of the constraints.

Combinations of each of these extensions are of course possible.

While our analysis is carried out with the criterion function in equation (3.7), it is also

easy to show that our method (including the bootstrap procedure described in Section 2.2)

applies similarly to a criterion function of the form

T̃n(θ) =
∑

j=1,··· ,J1

√
n[m̄n,j(θ)/σ̂n,j(θ)]+ +

∑
j=J1+1,··· ,J1+J2

√
n|m̄n,j(θ)/σ̂n,j(θ)|, (6.2)

Criterion function Tn corresponds to criterion function S3 in AS; criterion function T̃n is akin

to criterion function S1 in AS. In addition, AS consider a QLR based test statistic previously

proposed in Rosen (2008). This test statistic does not lend itself easily to linearization, and

as such we do not consider it in this paper.

Finally, our method employs generalized moment selection in order to conservatively

determine which inequalities bind at a given θ. Implementation of GMS requires the use of

a tuning parameter κn = o(n1/2), which can be difficult to choose in practice. An interesting

avenue for future research would combine the method proposed in this paper with the method

proposed by Romano, Shaikh, and Wolf (2014) for the choice of κn.

31We thank Kei Hirano for suggesting this adaptation of our method.
32This case occurs in Gafarov and Montiel-Olea (2015), who study inference for maximum and minimum

responses to impulses in structural vector autoregression models. Bounds on treatment effects frequently
have this form as well: Demuynck (2015) rewrites numerous such bounds as values of a linear program with
estimated direction p and varying, estimated constraints.
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Appendix A Proof of Main Results

This Appendix is organized as follows. Section A.1 provides in Table A.0 a summary of the notation

used throughout, and in Figure A.1 and Table A.1 a flow diagram and heuristic explanation of how

each lemma contributes to the proof of Theorem 3.1. Section A.2 contains proofs of our two main

results, Theorem 3.1 and Theorem 3.2. Section B contains the statements and proofs of the lemmas

used to establish Theorem 3.1. Section C contains the statements and proofs of two auxiliary lemmas

used in the main text (Sections 2.2 and 3.2). Throughout the Appendix we use the convention∞0 = 0.

A.1 Notation and Structure of Proofs

Table A.0: Important notation. Here ρ > 0 is fixed as described in Section 4, (Pn, θn) ∈ {(P, θ) : P ∈ P, θ ∈ ΘI(P )} is a
subsequence as defined in (A.3)-(A.4) below, θ′n ∈ θn + ρ/

√
nBd, and λ ∈ Rd.

Gn,j(·) =
√
n(m̄n,j(·)−EP (mj(Xi,·)))

σP,j(·) , j = 1, . . . , J Sample empirical process.

Gb
n,j(·) =

√
n(m̄b

n,j(·)−m̄n,j(·))
σ̂n,j(·) , j = 1, . . . , J Bootstrap empirical process.

ηn,j(·) =
σP,j(·)
σ̂n,j(·) − 1, j = 1, . . . , J Estimation error in sample moments’ asymptotic standard deviation.

DP,j(·) = ∇θ
(
EP (mj(Xi,·))

σP,j(·)

)
, j = 1, . . . , J Gradient of population moments w.r.t. θ, with estimator D̂n,j(·).

γ1,Pn,j(·) =
EPn (mj(Xi,·))

σPn,j(·) , j = 1, . . . , J Studentized population moments.

π1,j = limn→∞ κ
−1
n

√
nγ1,Pn,j(θ

′
n) Limit of rescaled population moments, constant ∀θ′n ∈ θn + ρ√

n
Bd

by Lemma B.5.

π∗1,j =

{
0, if π1,j = 0,
−∞, if π1,j < 0.

“Oracle” GMS.

ξ̂n,j(·) =

{
κ−1
n

√
nm̄n,j(·)/σ̂n,j(·), j = 1, . . . , J1

0, j = J1 + 1, . . . , J
Rescaled studentized sample moments, set to 0 for equalities.

un,j,θn(λ) = {Gn,j(θn + λ/
√
n) +DPn,j(θ̄n)λ+ π∗1,j}(1 + ηn,j(θn)) Mean value expansion of nonlinear constraints with sample empirical process

and “oracle” GMS, with θ̄n componentwise between θn and θn + λ/
√
n.

Un(θn, c) =
{
λ ∈ ρBd : p′λ = 0 ∩ un,j,θn(λ) ≤ c, ∀j = 1, . . . , J

}
Feasible set for nonlinear sample problem intersected with p′λ = 0.

vbn,j,θ′n(λ) = Gb
n,j(θ

′
n) + D̂n,j(θ

′
n)λ+ ϕj(ξ̂n,j(θ

′
n)) Linearized constraints with bootstrap empirical process and sample GMS.

V b
n (θ′n, c) =

{
λ ∈ ρBd : p′λ = 0 ∩ vbn,j,θ′n(λ) ≤ c, ∀j = 1, . . . , J

}
Feasible set for linearized bootstrap problem with sample GMS and p′λ = 0.

vn,j,θ′n(λ) = Gb
n,j(θ

′
n) + D̂n,j(θ

′
n)λ+ π∗1,j Linearized constraints with bootstrap empirical process and “oracle” GMS.

Vn(θ′n, c) =
{
λ ∈ ρBd : p′λ = 0 ∩ vn,j,θ′n(λ) ≤ c, ∀j = 1, . . . , J

}
Feasible set for linearized bootstrap problem with “oracle” GMS and p′λ = 0.

wj,θ′n(λ) = GP,j(θ
′
n) +DP,j(θ

′
n)λ+ π∗1,j Linearized constraints with limit Gaussian process and “oracle” GMS.

W (θn, c) =
{
λ ∈ ρBd : p′λ = 0 ∩ wj,θn(λ) ≤ c, ∀j = 1, . . . , J

}
Feasible set for linearized Gaussian problem with p′λ = 0.

ĉn(θ) = inf{c ∈ R+ : P ∗(V b
n (θ, c) 6= ∅) ≥ 1− α} Bootstrap critical level.

ĉ∗n(θ) = infλ∈ρBd ĉn(θ + λ√
n

) Smallest value of the bootstrap critical level in a ρ√
n
Bd neighborhood of θ.
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Figure A.1: Structure of Lemmas used in the proof of Theorem 3.1.

Theorem 3.1

Lemma B.1

Lemma B.3Lemma B.2

Lemma B.4 Lemma B.5

Lemma B.6

Lemma B.9Lemma B.8Lemma B.7

Table A.1: Heuristics for the role of each Lemma in the proof of Theorem 3.1. Notes: (i) Uniformity in Theorem 3.1 is enforced
arguing along subsequences; (ii) When needed, random variables are realized on the same probability space as shown in Lemma
B.1; (iii) Here (Pn, θn) ∈ {(P, θ) : P ∈ P, θ ∈ ΘI(P )} is a subsequence as defined in (A.3)-(A.4) below; (iv) All results hold for any
θ′n ∈ θn + ρ/

√
nBd.

Theorem 3.1 Pn(p′θn ∈ CI) ≥ Pn (Un(θn, ĉ
∗
n(θn)) 6= ∅) + oP(1).

Coverage is conservatively estimated by the probability that Un is nonempty.

Lemma B.1 Pn (Un(θn, ĉ
∗
n(θn)) 6= ∅) ≥ 1− α+ oP(1).

Lemma B.2 Pn(U(θn, ĉ
∗
n(θn)) 6= ∅, Vn(θ′n, ĉn(θ′n)) = ∅) + Pn(U(θn, ĉ

∗
n(θn)) = ∅, V (θ′n, ĉn(θ′n)) 6= ∅) = oP(1).

Argued by comparing both U and V to their common limit W (after coupling).

Lemma B.3 Pn(Vn(θ′n, ĉn(θ′n)) 6= ∅) ≥ 1− α+ oP(1).
Vn differs from V b

n by substituting “oracle” GMS (π∗1) for sample GMS; any resulting distortion is conservative.

Lemma B.4 max
{

supλ∈ρBd |maxj(un,j,θn(λ)− ĉ∗n)−maxj(wj,θ′n(λ)− ĉn), supλ∈ρBd |maxj wj,θ′n(λ)−maxj vn,j,θ′n(λ)|
}

= oP(1).

The criterion functions entering U , V , and W , converge to each other.

Lemma B.5 Local-to-binding constraints are selected by GMS uniformly over the ρ-box (intuition: ρn−1/2 = oP(κ−1
n )),

and ‖ξ̂n(θ′n))− κ−1
n

√
nσ−1

Pn,j
(θ′n)EPn [mj(Xi, θ

′
n)]‖ = oP(1).

Lemma B.6 ∀η > 0 ∃δ > 0, N ∈ N : Pn({W (θ′n, c) 6= ∅} ∩ {W−δ(θ′n, c) = ∅}) < η, ∀n ≥ N , and similarly for Vn.
It is unlikely that these sets are nonempty but become empty upon slightly tightening stochastic constraints.

Lemma B.7 Intersections of constraints whose gradients are almost linearly dependent are unlikely to realize inside W .
Hence, we can ignore irregularities that occur as linear dependence is approached.

Lemma B.8 If there are weakly more equality constraints than parameters, then c is uniformly bounded away from zero.
This simplifies some arguments.

Lemma B.9 If two paired inequalities are local to binding, then they are also asymptotically identical up to sign.
This justifies “merging” them.
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A.2 Proof of Theorems 3.1 and 3.2

Proof of Theorem 3.1

Following Andrews and Guggenberger (2009), we index distributions by a vector of nuisance

parameters relevant for the asymptotic size. For this, let γP ≡ (γ1,P , γ2,P , γ3,P ), where γ1,P =

(γ1,P,1, · · · , γ1,P,J) with

γ1,P,j(θ) = σ−1
P,j(θ)EP [mj(Xi, θ)], j = 1, · · · , J, (A.1)

γ2,P = (s(p,ΘI(P )), vech(ΩP (θ)), vec(DP (θ))), and γ3,P = P . We proceed in steps.

Step 1. Let {Pn, θn} ∈ {(P, θ) : P ∈ P, θ ∈ ΘI(P )} be a sequence such that

lim inf
n→∞

inf
P∈P

inf
θ∈ΘI(P )

P (p′θ ∈ CIn) = lim inf
n→∞

Pn(p′θn ∈ CIn), (A.2)

with CIn = [−s(−p, Cn(ĉn)), s(p, Cn(ĉn))]. We then let {ln} be a subsequence of {n} such that

lim inf
n→∞

Pn(p′θn ∈ CIn) = lim
n→∞

Pln(p′θln ∈ CIln). (A.3)

Then there is a further subsequence {an} of {ln} such that

lim
an→∞

κ−1
an

√
anσ

−1
Pan ,j

(θan)EPan [mj(Xi, θan)] = π1,j ∈ R[−∞], j = 1, . . . , J. (A.4)

To avoid multiple subscripts, with some abuse of notation we write (Pn, θn) to refer to (Pan , θan)

throughout this Appendix. We let

π∗1,j =

{
0 if π1,j = 0,

−∞ if π1,j < 0.
(A.5)

The projection of θn is covered when

− s(−p, Cn(ĉn)) ≤ p′θn ≤ s(p, Cn(ĉn))

⇔

{
inf p′ϑ

s.t. ϑ ∈ Θ,
√
nm̄n,j(ϑ)
σ̂n,j(ϑ) ≤ ĉn(ϑ),∀j

}
≤ p′θn ≤

{
sup p′ϑ

s.t. ϑ ∈ Θ,
√
nm̄n,j(ϑ)
σ̂n,j(ϑ) ≤ ĉn(ϑ),∀j

}

⇔

{
infλ p

′λ

s.t.λ ∈
√
n(Θ− θn),

√
nm̄n,j(θn+λ/

√
n)

σ̂n,j(θn+λ/
√
n)
≤ ĉn(θn + λ/

√
n),∀j

}
≤ 0

≤

{
supλ p

′λ

s.t.λ ∈
√
n(Θ− θn),

√
nm̄n,j(θn+λ/

√
n)

σ̂n,j(θn+λ/
√
n)
≤ ĉn(θn + λ/

√
n),∀j

}

⇔


infλ p

′λ

s.t.λ ∈
√
n(Θ− θn),

{Gn,j(θn + λ/
√
n) +DPn,j(θ̄n)λ+

√
nγ1,Pn,j(θn)}(1 + ηn,j(θn)) ≤ ĉn(θn + λ/

√
n),∀j

 ≤ 0

≤


supλ p

′λ

s.t.λ ∈
√
n(Θ− θn),

{Gn,j(θn + λ/
√
n) +DPn,j(θ̄n)λ+

√
nγ1,Pn,j(θn)}(1 + ηn,j(θn)) ≤ ĉn(θn + λ/

√
n),∀j

 ,

(A.6)
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with ηn,j(·) ≡ σP,j(·)/σ̂n,j(·)− 1 and where we took a mean value expansion yielding ∀j
√
nm̄n,j(θn + λ/

√
n)

σ̂n,j(θn + λ/
√
n)

= {Gn,j(θn + λ/
√
n) +DPn,j(θ̄n)λ+

√
nγ1,Pn,j(θn)}(1 + ηn,j(θn)). (A.7)

The event in (A.6) is implied by
infλ p

′λ

s.t.λ ∈
√
n(Θ− θn) ∩ ρBd,

{Gn,j(θn + λ/
√
n) +DPn,j(θ̄n)λ+

√
nγ1,Pn,j(θn)}(1 + ηn,j(θn)) ≤ ĉn(θn + λ/

√
n),∀j

 ≤ 0

≤


supλ p

′λ

s.t.λ ∈
√
n(Θ− θn) ∩ ρBd,

{Gn,j(θn + λ/
√
n) +DPn,j(θ̄n)λ+

√
nγ1,Pn,j(θn)}(1 + ηn,j(θn)) ≤ ĉn(θn + λ/

√
n),∀j

 ,

(A.8)

with Bd = {x ∈ Rd : |xi| ≤ 1, i = 1, . . . , d}.
Step 2. This step is used only when Assumption 3.3′ is invoked. For each j = 1, . . . , J11 such that

π∗1,j = π∗1,j+J11 = 0, (A.9)

where π∗1 is defined in (A.5), let

µ̃j =

{
1 if γ1,Pn,j(θn) = 0 = γ1,Pn,j+J11(θn),

γ1,Pn,j+J11 (θn)(1+ηn,j+J11 (θn))

γ1,Pn,j+J11 (θn)(1+ηn,j+J11 (θn))+γ1,Pn,j(θn)(1+ηn,j(θn)) otherwise,

(A.10)

µ̃j+J11 =

{
0 if γ1,Pn,j(θn) = 0 = γ1,Pn,j+J11(θn),

γ1,Pn,j(θn)(1+ηn,j(θn))
γ1,Pn,j+J11 (θn)(1+ηn,j+J11 (θn))+γ1,Pn,j(θn)(1+ηn,j(θn)) otherwise,

(A.11)

For each j = 1, . . . , J11, replace the constraint indexed by j, that is
√
nm̄n,j(θn + λ/

√
n)

σ̂n,j(θn + λ/
√
n)

≤ ĉn(θn + λ/
√
n), (A.12)

with the following weighted sum of the paired inequalities

µ̃j

√
nm̄n,j(θn + λ/

√
n)

σ̂n,j(θn + λ/
√
n)

− µ̃j+J11
√
nm̄j+J11,n(θn + λ/

√
n)

σ̂n,j+J11(θn + λ/
√
n)

≤ ĉn(θn + λ/
√
n), (A.13)

and for each j = 1, . . . , J11, replace the constraint indexed by j + J11, that is
√
nm̄j+J11,n(θn + λ/

√
n)

σ̂n,j+J11(θn + λ/
√
n)

≤ ĉn(θn + λ/
√
n), (A.14)

with

−µ̃j
√
nm̄n,j(θn + λ/

√
n)

σ̂n,j(θn + λ/
√
n)

+ µ̃j+J11

√
nm̄j+J11,n(θn + λ/

√
n)

σ̂n,j+J11(θn + λ/
√
n)

≤ ĉn(θn + λ/
√
n), (A.15)

It then follows from Assumption 3.3′ (iii-4) that these replacements are conservative with probability

approaching one because

Pn

(
m̄j+J11,n(θn + λ/

√
n)

σ̂n,j+J11(θn + λ/
√
n)
≤ −m̄n,j(θn + λ/

√
n)

σ̂n,j(θn + λ/
√
n)

)
→ 1,
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and therefore with probability approaching one, (A.13) implies (A.12) and (A.15) implies (A.14).

Step 3. Next, we make the following comparisons:

π∗1,j = 0⇒ π∗1,j ≥
√
nγ1,Pn,j(θn), (A.16)

π∗1,j = −∞⇒
√
nγ1,Pn,j(θn)→ −∞. (A.17)

For any constraint j for which π∗1,j = 0, (A.16) yields that replacing
√
nγ1,Pn,j(θn) in (A.8) with π∗1,j

introduces a conservative distortion. Under Assumption 3.3′, for any j such that (A.9) holds, the

substitutions in (A.13) and (A.15) yield µ̃j
√
nγ1,Pn,j(θn)(1 + ηn,j(θn))− µ̃j+J11

√
nγ1,Pn,j+J11(θn)(1 +

ηn,j+J11(θn)) = 0, and therefore replacing this term with π∗1,j = 0 = π∗1,j+J11 is inconsequential.

For any j for which π∗1,j = −∞, (A.17) yields that for n large enough,
√
nγ1,Pn,j(θn) can be

replaced with π∗1,j . To see this, note that by the Cauchy-Schwarz inequality, Assumption 3.4 (i)-(ii),

and λ ∈ ρBd, it follows that

DPn,j(θ̄n)λ ≤ ρ
√
d(‖DPn,j(θ̄n)−DPn,j(θn)‖+ ‖DPn,j(θn)‖) ≤ ρ

√
d(M̄ + ρM/

√
n), (A.18)

where M̄ and M are as defined in Assumption 3.4-(i) and (ii) respectively, and we used that θ̄n lies

component-wise between θn and θn + λ/
√
n. Using that Gn,j is asymptotically tight by Assumption

3.5, we have that for any τ > 0, there exists a T > 0 and N1 ∈ N such that

Pn

(
max

j:π∗1,j=−∞
{Gn,j(θn + λ/

√
n) +DPn,j(θ̄n)λ+

√
nγ1,Pn,j(θn)}(1 + ηn,j(θn)) ≤ 0, ∀λ ∈ ρBd

)
≥ Pn

(
max

j:π∗1,j=−∞
{T + ρ(M̄ + ρM/

√
n) +

√
nγ1,Pn,j(θn)}(1 + ηn,j(θn)) ≤ 0 ∩ max

j:π∗1,j=−∞
Gn,j(θn + λ/

√
n) ≤ T

)

=Pn

(
max

j:π∗1,j=−∞
Gn,j(θn + λ/

√
n) ≤ T

)
> 1− τ/2, ∀n ≥ N1. (A.19)

We therefore have that for n ≥ N1,

Pn

(
infλ p

′λ

s.t.λ ∈
√
n(Θ− θn) ∩ ρBd,

{Gn,j(θn + λ/
√
n) +DPn,j(θ̄n)λ+

√
nγ1,Pn,j(θn)}(1 + ηn,j(θn)) ≤ ĉn(θn + λ/

√
n),∀j

 ≤ 0

≤


supλ p

′λ

s.t.λ ∈
√
n(Θ− θn) ∩ ρBd,

{Gn,j(θn + λ/
√
n) +DPn,j(θ̄n)λ+

√
nγ1,Pn,j(θn)}(1 + ηn,j(θn)) ≤ ĉn(θn + λ/

√
n),∀j


)

(A.20)

≥Pn

(
infλ p

′λ

s.t.λ ∈
√
n(Θ− θn) ∩ ρBd,

{Gn,j(θn + λ/
√
n) +DPn,j(θ̄n)λ+ π∗1,j}(1 + ηn,j(θn)) ≤ ĉn(θn + λ/

√
n),∀j

 ≤ 0

≤


supλ p

′λ

s.t.λ ∈
√
n(Θ− θn) ∩ ρBd,

{Gn,j(θn + λ/
√
n) +DPn,j(θ̄n)λ+ π∗1,j}(1 + ηn,j(θn)) ≤ ĉn(θn + λ/

√
n),∀j


)
− τ/2.

(A.21)

Since the choice of τ is arbitrary, the limit of the term in (A.20) is not smaller than the limit of the

first term in (A.21). Hence, we continue arguing for the event whose probability is evaluated in (A.21).

Finally, by definition ĉn(θ) ≥ 0 and therefore infλ∈ρBd ĉn(θn +λ/
√
n) exists. Therefore, the event
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whose probability is evaluated in (A.21) is implied by the event
infλ p

′λ

s.t.λ ∈
√
n(Θ− θn) ∩ ρBd,

{Gn,j(θn + λ/
√
n) +DPn,j(θ̄n)λ+ π∗1,j}(1 + ηn,j(θn)) ≤ infλ∈ρBd ĉn(θn + λ/

√
n),∀j

 ≤ 0

≤


supλ p

′λ

s.t.λ ∈
√
n(Θ− θn) ∩ ρBd,

{Gn,j(θn + λ/
√
n) +DPn,j(θ̄n)λ+ π∗1,j}(1 + ηn,j(θn)) ≤ infλ∈ρBd ĉn(θn + λ/

√
n),∀j


(A.22)

For each λ ∈ Rd, define

un,j,θn(λ) ≡ {Gn,j(θn + λ/
√
n) +DPn,j(θ̄n)λ+ π∗1,j}(1 + ηn,j(θn)), (A.23)

where under Assumption 3.3′ when π∗1,j = 0 and π∗1,j+J11 = 0 the substitutions of equation (A.12)

with equation (A.13) and of equation (A.14) with equation (A.15) have been performed. Let

Un(θn, c) ≡
{
λ ∈ ρBd : p′λ = 0 ∩ un,j,θn(λ) ≤ c, ∀j = 1, . . . , J

}
, (A.24)

and define

ĉ∗n(θ) ≡ inf
λ∈ρBd

ĉn(θ + λ/
√
n). (A.25)

Then by (A.22) and the definition of Un, we obtain

Pn(p′θn ∈ CIn) ≥ Pn (Un(θn, ĉ
∗
n(θn)) 6= ∅) , (A.26)

because whenever Un(θn, ĉ
∗
n(θn)) 6= ∅, the event in (A.22) attains. By Lemma B.1,

lim
n→∞

Pn (Un(θn, ĉ
∗
n(θn)) 6= ∅) ≥ 1− α. (A.27)

The conclusion of the theorem then follows from (A.2), (A.3), (A.26), and (A.27).

Proof of Theorem 3.2

For given θ, the event

max
j=1,...,J

{
Gbn,j(θ) + ϕj(ξ̂n,j(θ))

}
≤ c (A.28)

implies the event

max
λ∈Λbn(θ,ρ,c)

p′λ ≥ 0 ≥ min
λ∈Λbn(θ,ρ,c)

p′λ, (A.29)

with Λbn defined in (2.7). This is so because if maxj=1,...,J

{
Gbn,j(θ) + ϕj(ξ̂n,j(θ))

}
≤ c, λ = 0 is

feasible in both optimization problems in (A.29), hence the event in (A.29) is implied. In turn this

yields that for each n ∈ N and θ ∈ Θ,

cASn (θ) ≥ ĉn(θ), (A.30)

and therefore the result follows.
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Appendix B Main Lemmas

Throughout this Appendix, we maintain Assumptions 3.1, 3.2, 3.3 or 3.3′, 3.4, and 3.5. We let

(Pn, θn) ∈ {(P, θ) : P ∈ P, θ ∈ ΘI(P )} be a subsequence as defined in (A.3)-(A.4).

Fix ρ > 0 as discussed in Section 4 and c ≥ 0. For each λ ∈ Rd and θ ∈ θn + ρ√
n
Bd, let

vn,j,θ(λ) ≡ Gbn,j(θ) + D̂n,j(θ)λ+ π∗1,j , (B.1)

wj,θ(λ) ≡ GP,j(θ) +DP,j(θ)λ+ π∗1,j , (B.2)

where π∗1,j is defined in (A.5) and we used Lemma B.5. Under Assumption 3.3′ if

π∗1,j = 0 = π∗1,j+J11 , (B.3)

we replace the constraints

Gbn,j(θ) + D̂n,j(θ)λ ≤ c, (B.4)

GP,j(θ) +DP,j(θ)λ ≤ c, (B.5)

Gbn,j+J11(θ) + D̂n,j+J11(θ)λ ≤ c, (B.6)

GP,j+J11(θ) +DP,j+J11(θ)λ ≤ c, (B.7)

respectively with

µj{Gbn,j(θ) + D̂n,j(θ)λ} − µj+J11{Gbn,j+J11(θ) + D̂n,j+J11(θ)λ} ≤ c, (B.8)

µj{GP,j(θ) +DP,j(θ)λ} − µj+J11{GP,j+J11(θ) +DP,j+J11(θ)λ} ≤ c, (B.9)

−µj{Gbn,j(θ) + D̂n,j(θ)λ}+ µj+J11{Gbn,j+J11(θ) + D̂n,j+J11(θ)λ} ≤ c, (B.10)

−µj{GP,j(θ) +DP,j(θ)λ}+ µj+J11{GP,j+J11(θ) +DP,j+J11(θ)λ} ≤ c. (B.11)

where

µj =

{
1 if γ1,Pn,j(θ) = 0 = γ1,Pn,j+J11(θ),

γ1,Pn,j+J11 (θ)

γ1,Pn,j+J11 (θ)+γ1,Pn,j(θ)
otherwise,

(B.12)

µj+J11 =

{
0 if γ1,Pn,j(θ) = 0 = γ1,Pn,j+J11(θ),

γ1,Pn,j(θ)
γ1,Pn,j+J11 (θ)+γ1,Pn,j(θ)

otherwise,
(B.13)

Let the level sets associated with the so defined functions vn,j,θ(λ) and wj,θ(λ) be

Vn(θ, c) ≡
{
λ ∈ ρBd : p′λ = 0 ∩ vn,j,θ(λ) ≤ c, ∀j = 1, . . . , J

}
, (B.14)

W (θ, c) ≡
{
λ ∈ ρBd : p′λ = 0 ∩ wj,θ(λ) ≤ c, ∀j = 1, . . . , J

}
. (B.15)

Due to the substitutions in equations (B.8)-(B.11), the paired inequalities (i.e., inequalities for

which (B.3) holds under Assumption 3.3′) are now genuine equalities relaxed by c. With some abuse

of notation, we index them among the j = J1 +1, . . . , J . With that convention, for given δ ∈ R, define

V δn (θ, c) ≡
{
λ ∈ ρBd : p′λ = 0 ∩ vn,j,θ(λ) ≤ c+ δ, ∀j = 1, . . . , J1,

∩ vn,j,θ(λ) ≤ c, ∀j = J1 + 1, . . . , J
}
. (B.16)
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and

W δ(θ, c) ≡
{
λ ∈ ρBd : p′λ = 0 ∩ wj,θ(λ) ≤ c+ δ, ∀j = 1, . . . , J1,

∩ wj,θ(λ) ≤ c, ∀j = J1 + 1, . . . , J
}
. (B.17)

Define the (J + 2d+ 2)× d matrix

KP (θ) ≡



[DP,j(θ)]
J1+J2
j=1

[−DP,j−J1(θ)]Jj=J1+J2+1

Id

−Id
p′

−p′


. (B.18)

Given a square matrix A, we let eig(A) denote its smallest eigenvalue. In all Lemmas below, α is

assumed less than 1/2.

Lemma B.1: For each θ ∈ ΘI(Pn), let ĉ∗n(θ) ≡ infλ∈ρBd ĉn(θ + λ/
√
n). Then

lim
n→∞

Pn (Un(θn, ĉ
∗
n(θn)) 6= ∅) ≥ 1− α. (B.19)

Proof. For any ε > 0, there exists λε ∈ ρBd such that

ĉn(θn + λε/
√
n) ≤ inf

λ∈ρBd
ĉn(θn + λ/

√
n) + ε. (B.20)

In what follows, let

θεn ≡ θn + λε/
√
n (B.21)

denote the value at which ĉn is evaluated in equation (B.20).

By simple addition and subtraction,

Pn

(
Un(θn, ĉ

∗
n(θn)) 6= ∅

)
= P ∗n

(
Vn(θεn, ĉn(θεn)) 6= ∅

)
+

[
Pn

(
Un(θn, ĉ

∗
n(θn)) 6= ∅

)
− Pn

(
Wn(θεn, ĉn(θεn)) 6= ∅

)]

+

[
Pn

(
Wn(θεn, ĉn(θεn)) 6= ∅

)
− P ∗n

(
Vn(θεn, ĉn(θεn)) 6= ∅

)]
. (B.22)

By passing to a further subsequence {n}, we may assume that

DPn(θn)→ D (B.23)

for some J × d matrix D such that ‖D‖ ≤M .

By Lemma D.1 in Bugni, Canay, and Shi (2015), Gn
d→ GP in l∞(Θ) uniformly in P. Using

the same argument as in the proof of Theorem 3.2 with all moments binding, one can show that for

any sequence {θn} ⊂ Θ, ĉn(θn) and ĉ∗n(θn) are asymptotically bounded by the (1 − α/J) quantile

of the standard Normal distribution, and hence are asymptotically tight. Therefore, the sequence

{(Gn, ĉn(θεn), ĉ∗n(θn))} is asymptotically tight. By Prohorov’s theorem and passing to a further sub-
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sequence, we may then assume that

(Gn, ĉn(θεn), ĉ∗n(θn))
d→ (G, ĉ, ĉ∗). (B.24)

for some tight Borel random element (G, ĉ, ĉ∗) ∈ `∞(Θ)×R+×R+. Moreover, by Assumption 3.3-(ii)

(or Assumption 3.3′-(ii)) supθ∈Θ ‖ηn(θ)‖ p→ 0 uniformly in P, so that

(Gn, ηn(θn), ĉn(θεn), ĉ∗n(θn))
d→ (G, 0, ĉ, ĉ∗). (B.25)

In what follows, using Lemma 1.10.4 in van der Vaart and Wellner (2000) we take (G∗n, η∗n, cn, c∗n)

to be the almost sure representation of (Gn, ηn(θn), ĉn(θεn), ĉ∗n(θn)) defined on some probability space

(Ω,F ,P) such that (G∗n, η∗n, cn, c∗n)
a.s.→ (G∗, 0, c, c∗), where (G∗, c, c∗) d

= (G, ĉ, ĉ∗).
Similarly, again by Lemma D.2.8 in Bugni, Canay, and Shi (2015), Gbn

d→ GP in l∞(Θ) uniformly

in P conditional on {X1, · · · , Xn}, and by Assumption 3.4 |D̂n(θεn)−DPn(θn)‖ p→ 0. Hence, by (B.23)

and (B.24),

(Gbn, D̂n(θεn), ĉn(θεn), ĉ∗n(θn))
d→ (G, D, ĉ, ĉ∗). (B.26)

We take (G̃b,∗n , D̃∗n, c̃n, c̃
∗
n) to be the almost sure representation of (Gbn, D̂n(θεn), ĉn(θεn), ĉ∗n(θn)) de-

fined on another probability space (Ω̃, F̃ , P̃) such that (G̃b,∗n , D̃∗n, c̃n, c̃∗n)
a.s.→ (G̃∗, D, c̃, c̃∗), where

(G̃∗, c̃, c̃∗) d
= (G, ĉ, ĉ∗).

For each λ ∈ Rd, we define analogs to the quantities in (A.23), (B.1) and (B.2) as

u∗n,j,θn(λ) ≡ {G∗n,j(θn + λ/
√
n) +DPn,j(θ̄n)λ+ π∗1,j}(1 + η∗n,j(θn)), (B.27)

v∗n,j,θεn(λ) ≡ G̃b,∗n,j(θ
ε
n) + D̃∗n,jλ+ π∗1,j , (B.28)

w∗j,θεn(λ) ≡ G∗j (θεn) +DPn,j(θ
ε
n)λ+ π∗1,j , (B.29)

w̃∗j,θεn(λ) ≡ G̃∗j (θεn) +DPn,j(θ
ε
n)λ+ π∗1,j , (B.30)

where we used that by Lemma B.5 κ−1
n

√
nγ1,P,j(θn)−κ−1

n

√
nγ1,P,j(θ

′
n) = o(1) uniformly over θ′n ∈ θn+

ρ/
√
nBd and therefore π∗1,j is constant over this neighborhood, and we applied a similar replacement

as described in equations (B.4)-(B.11) for the case that π∗1,j = 0 = π∗1,j+J11 . Similarly, we define

analogs to the sets in (A.24), (B.14) and (B.15) as

U∗n(θn, c
∗
n) ≡

{
λ ∈ ρBd : p′λ = 0 ∩ u∗n,j,θn(λ) ≤ c∗n, ∀j = 1, . . . , J

}
, (B.31)

V ∗n (θεn, c̃n) ≡
{
λ ∈ ρBd : p′λ = 0 ∩ v∗n,j,θεn(λ) ≤ c̃n, ∀j = 1, . . . , J

}
, (B.32)

W ∗(θεn, cn) ≡
{
λ ∈ ρBd : p′λ = 0 ∩ w∗j,θεn(λ) ≤ cn, ∀j = 1, . . . , J

}
, (B.33)

W̃ ∗(θεn, c̃n) ≡
{
λ ∈ ρBd : p′λ = 0 ∩ w̃∗j,θεn(λ) ≤ c̃n, ∀j = 1, . . . , J

}
. (B.34)

It then follows that equation (B.22) can be rewritten as

Pn

(
Un(θn, ĉ

∗
n(θn)) 6= ∅

)
= P̃

(
V ∗n (θεn, c̃n) 6= ∅

)
+

[
P
(
U∗n(θn, c

∗
n) 6= ∅

)
−P

(
W ∗(θεn, cn) 6= ∅

)]

+

[
P̃
(
W̃ ∗(θεn, c̃n) 6= ∅}

)
− P̃

(
V ∗n (θεn, c̃n) 6= ∅

)]
. (B.35)
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By the Skorokhod representation and by Lemma B.3,

lim
n→∞

P̃ (V ∗n (θεn, c̃n) 6= ∅) = lim
n→∞

P ∗n ({Vn(θεn, ĉn(θεn)) 6= ∅) ≥ 1− α. (B.36)

We are left to show that the two terms in square brackets in (B.35) converge to zero as n→∞. Define

J ∗ ≡ {j = 1, · · · , J : π∗1,j = 0}. (B.37)

Case 1. Suppose first that J ∗ = ∅, which implies J2 = 0 and π∗1,j = −∞ for all j. Then we have

U∗n(θn, c
∗
n) = W ∗(θεn, cn) = W̃ ∗(θn, c̃

∗
n) = V ∗n (θεn, c̃n) = {λ ∈ ρBd : p′λ = 0}, (B.38)

with probability 1, and hence

P
(
{U∗n(θn, c

∗
n) 6= ∅} ∩ {W ∗(θεn, cn) 6= ∅}

)
= 1. (B.39)

This in turn implies that ∣∣∣∣∣P(U∗n(θn, c
∗
n) 6= ∅}

)
−P

(
W ∗(θεn, cn) 6= ∅}

)∣∣∣∣∣ = 0, (B.40)

where we used |P(A)−P(B)| ≤ P(A∆B) ≤ 1−P(A∩B) for any pair of events A and B. Hence, the

first term in square brackets in (B.35) is 0.

We now turn to the second term in square brackets in (B.35). By (B.38), the same argument

yielding to (B.39) applies, now for the sets W̃ ∗(θn, c
∗
n) and V ∗n (θεn, c̃n), yielding∣∣∣∣∣P̃(W̃ ∗(θn, c∗n) 6= ∅

)
− P̃

(
V ∗n (θεn, c̃n) 6= ∅

)∣∣∣∣∣ = 0. (B.41)

Hence, the second term in square brackets in (B.35) is also 0. The claim of the Lemma then follows

by (B.36).

Case 2. Now consider the case that J ∗ 6= ∅. We show that the terms in square brackets in (B.35)

converge to 0. To that end, note that for any events A,B,∣∣∣P(A 6= ∅)−P(B 6= ∅)
∣∣∣ ≤ ∣∣∣P({A = ∅} ∩ {B 6= ∅}) + P({A 6= ∅} ∩ {B = ∅})

∣∣∣ (B.42)

Hence, we aim to establish that for A = U∗n(θn, c
∗
n), B = W ∗(θεn, cn), and for A = W̃ ∗(θεn, c̃n),

B = V ∗n (θεn, c̃n), the right hand side of equation (B.42) converges to zero. But this is guaranteed by

Lemma B.2.

Lemma B.2: Let (Pn, θn) have the almost sure representations given in Lemma B.1, and let J ∗

be defined as in (B.37). Assume that J ∗ 6= ∅. Let θεn be as defined in (B.21). Then for any η > 0,

there exists N ∈ N such that

P̃
(
{W̃ ∗(θεn, c̃n) 6= ∅} ∩ {V ∗n (θεn, c̃n) = ∅}

)
≤ η/2, (B.43)

P̃
(
{W̃ ∗(θεn, c̃n) = ∅} ∩ {V ∗n (θεn, c̃n) 6= ∅}

)
≤ η/2, (B.44)

P
(
{U∗n(θn, c

∗
n) 6= ∅} ∩ {W ∗(θεn, cn) = ∅}

)
≤ η/2, (B.45)

P
(
{U∗n(θn, c

∗
n) = ∅} ∩ {W ∗(θεn, cn) 6= ∅}

)
≤ η/2, (B.46)

for all n ≥ N , where the sets in the above expressions are defined in equations (B.31), (B.32), (B.33),
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and (B.34)

Proof. We begin by observing that for j /∈ J ∗, π∗1,j = −∞, and therefore the corresponding inequalities

(G∗n,j(θn + λ/
√
n) +DPn,j(θ̄n)λ+ π∗1,j)(1 + η∗n,j(θn)) ≤ c∗n,

G̃b,∗n,j(θ
ε
n) + D̃∗n,jλ+ π∗1,j ≤ c̃n,

G∗j (θεn) +DPn,j(θ
ε
n)λ+ π∗1,j ≤ cn,

G̃∗j (θεn) +DPn,j(θ
ε
n)λ+ π∗1,j ≤ c̃n,

are satisfied with probability approaching one by similar arguments as in (A.19). Hence, we can

redefine the sets of interest as

U∗n(θn, c
∗
n) ≡

{
λ ∈ ρBd : p′λ = 0 ∩ u∗n,j,θn(λ) ≤ c∗n, ∀j ∈ J ∗

}
, (B.47)

V ∗n (θεn, c̃n) ≡
{
λ ∈ ρBd : p′λ = 0 ∩ v∗n,j,θεn(λ) ≤ c̃n, ∀j ∈ J ∗

}
, (B.48)

W ∗(θεn, cn) ≡
{
λ ∈ ρBd : p′λ = 0 ∩ w∗j,θεn(λ) ≤ cn, ∀j ∈ J ∗

}
, (B.49)

W̃ ∗(θεn, c̃n) ≡
{
λ ∈ ρBd : p′λ = 0 ∩ w̃∗j,θεn(λ) ≤ c̃n, ∀j ∈ J ∗

}
. (B.50)

We first show (B.43). For this, we start by defining the events

An ≡

{
sup
λ∈ρBd

max
j∈J ∗

∣∣∣(v∗n,j,θεn(λ)− w̃∗j,θεn(λ)
∣∣∣ ≥ δ} , (B.51)

with v∗n,j,θεn(λ) and w̃∗j,θεn(λ) as defined in equations (B.28) and (B.30), respectively. Then by Lemma

B.4, using the assumption that J ∗ 6= ∅, for any η > 0 there exists N ′ ∈ N such that

P̃(An) < η/2, ∀n ≥ N ′. (B.52)

Define the sets of λs, W̃ ∗,+δ and V ∗,+δn by relaxing the constraints shaping W̃ ∗ and V ∗n by δ:

V ∗,+δn (θεn, c) ≡ {λ ∈ ρBd : p′λ = 0 ∩ v∗n,j,θεn(λ) ≤ c+ δ, j ∈ J ∗}, (B.53)

W̃ ∗,+δ(θεn, c) ≡ {λ ∈ ρBd : p′λ = 0 ∩ w̃∗j,θεn(λ) ≤ c+ δ, j ∈ J ∗}. (B.54)

Compared to the sets in equations (B.16) and (B.17), here we replace v∗n,j,θεn(λ) for vn,j,θεn(λ) and

w̃∗j,θεn(λ) for wj,θεn(λ), we retain only constraints in J ∗, and we relax all such constraints by δ > 0

instead of relaxing only those in {1, . . . , J1}. Next, define the event Ln ≡ {W̃ ∗(θεn, c̃n) ⊂ V ∗,+δn (θεn, c̃n)}
and note that Acn ⊆ Ln.

We may then bound the left hand side of (B.43) as

P̃
(
{W̃ ∗(θεn, c̃n) 6= ∅} ∩ {V ∗n (θεn, c̃n) = ∅}

)
≤ P̃

(
{W̃ ∗(θεn, c̃n) 6= ∅} ∩ {V ∗,+δn (θεn, c̃n) = ∅}

)
+ P̃

(
{V ∗,+δn (θεn, c̃n) 6= ∅} ∩ {V ∗n (θεn, c̃n) = ∅}

)
, (B.55)

where we used P (A ∩B) ≤ P (A ∩C) + P (B ∩Cc) for any events A,B, and C. The first term on the

right hand side of (B.55) can further be bounded as

P̃
(
{W̃ ∗(θεn, c̃n) 6= ∅} ∩ {V ∗,+δn (θεn, c̃n) = ∅}

)
≤ P̃

(
{W̃ ∗(θεn, c̃n) 6⊆ V ∗,+δn (θεn, c̃n)}

)
= P̃(Lcn) ≤ P̃(An) < η/2, ∀n ≥ N ′ , (B.56)

where the penultimate inequality follows from Acn ⊆ Ln as argued above, and the last inequality
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follows from (B.52). For the second term on the left hand side of (B.55), by Lemma B.6, there exists

N ′′ ∈ N such that

P̃
(
{V ∗,+δn (θεn, c̃n) 6= ∅} ∩ {V ∗n (θεn, c̃n) = ∅}

)
≤ η/2, ∀n ≥ N ′′. (B.57)

Hence, (B.43) follows from (B.55), (B.56), and (B.57). The result in (B.44) follows similarly.

To establish (B.45), define

Bn ≡

{
sup
λ∈ρBd

max
j∈J ∗

∣∣∣(w∗j,θεn(λ)− cn)− (u∗n,j,θn(λ)− c∗n)
∣∣∣ ≥ δ} . (B.58)

Then by Lemma B.4, for any η > 0 there exists N ′ ∈ N such that

P(Bn) < η/2, ∀n ≥ N ′. (B.59)

Define

W ∗,+δ(θεn, c) ≡ {λ ∈ ρBd : p′λ = 0 ∩ w∗j,θεn(λ) ≤ c+ δ, j ∈ J ∗}. (B.60)

Further define the event R1n ≡ {U∗n(θn, c
∗
n) ⊂ W ∗,+δ(θεn, cn)}, and note that Bcn ⊆ R1n. The result

in equation (B.45) then follows using similar steps to (B.55)-(B.57).

To establish (B.46), we distinguish three cases.

Case 1. Suppose first that J2 = 0 (recalling that under Assumption 3.3′ this means that there is no

j = 1, . . . , J11 such that π∗1,j = 0 = π∗1,j+J11), and hence one has only moment inequalities. In this

case, by (B.47) and (B.49), one may write

U∗n(θn, c) ≡
{
λ ∈ ρBd : p′λ = 0 ∩ u∗n,j,θn(λ) ≤ c, j ∈ J ∗

}
, (B.61)

W ∗,−δ(θεn, c) ≡
{
λ ∈ ρBd : p′λ = 0 ∩ w∗j,θεn(λ) ≤ c− δ, j ∈ J ∗

}
, (B.62)

where W ∗,−δ, δ > 0, is obtained by tightening the inequality constraints shaping W ∗. Define the

event

R2n ≡ {W ∗,−δ(θεn, cn) ⊂ U∗n(θn, c
∗
n)}, (B.63)

and note that Bcn ⊆ R2n. The result in equation (B.46) then follows by Lemma B.6 using again similar

steps to (B.55)-(B.57).

Case 2. Next suppose that J2 ≥ d. In this case, we define W ∗,−δ to be the set obtained by tightening

by δ the inequality constraints as well as each of the two opposing inequalities obtained from the

equality constraints. That is,

W ∗,−δ(θεn, c) ≡ {λ ∈ ρBd : p′λ = 0 ∩ w∗j,θεn(λ) ≤ c− δ, j ∈ J ∗}, (B.64)

that is, the same set as in (B.112) with w∗j,θεn(λ) replacing wj,θεn(λ) and defining the set using only

inequalities in J ∗. Note that, by Lemma B.8, there exists N ∈ N such that for all n ≥ N ĉn(θ)

is bounded from below by some c > 0 with probability approaching one uniformly in P ∈ P and

θ ∈ ΘI(P ). This ensures the limit c of cn is bounded from below by c > 0. This in turn allows us

to construct a non-empty tightened constraint set with probability approaching 1. Namely, for δ < c,

W ∗,−δn (θ, cn) is nonempty with probability approaching 1 by Lemma B.6, and hence its superset

W ∗n(θ, cn) is also non-empty with probability approaching 1. However, note that Bcn ⊆ R2n, where

R2n is in (B.63) now defined using the tightened constraint set W ∗,−δn (θ, cn) being defined as in (B.64),
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and therefore the same argument as in the previous case applies.

Case 3. Finally, suppose that 1 ≤ J2 < d. Recall that

c = lim
n→∞

cn, (B.65)

and note that by construction c ≥ 0. Consider first the case that c > 0. Then, by taking δ < c, the

argument in Case 2 applies.

Next consider the case that c = 0. Observe that

P
(
{U∗n(θn, c

∗
n) = ∅} ∩ {W ∗(θεn, cn) 6= ∅}

)
≤ P

(
{U∗n(θn, c

∗
n) = ∅} ∩ {W ∗,−δ(θεn, 0) 6= ∅}

)
+ P

(
{W ∗,−δ(θεn, 0) = ∅} ∩ {W ∗(θεn, 0) 6= ∅}

)
+ P

(
{W ∗(θεn, 0) = ∅} ∩ {W ∗(θεn, cn) 6= ∅}

)
, (B.66)

with W ∗,−δ(θεn, 0) defined as in (B.17) with c = 0 and with w∗j,θεn(λ) replacing wj,θεn(λ).

By Lemma B.6, for any η > 0 there exists δ > 0 and N ∈ N such that

P
(
{W ∗,−δ(θεn, 0) = ∅} ∩ {W ∗(θεn, 0) 6= ∅}

)
< η/3 ∀n ≥ N. (B.67)

Moreover, because cn
a.s.→ 0, an easy adaptation of the proof of Lemma B.6 yields that, for any η > 0,

there exists δ > 0 and N ∈ N such that

P
(
{W ∗(θεn, 0) = ∅} ∩ {W ∗(θεn, cn) 6= ∅}

)
< η/3 ∀n ≥ N. (B.68)

In particular, W ∗(θεn, 0) relates to W ∗(θεn, cn) by tightening each constraint j ∈ J ∗ and not only

constraints j ∈ J ∗ ∩ {1, . . . , J1}. Consequently, τ in the proof of Lemma B.6 must be defined to

have entries of 1 corresponding to all elements of J ∗, followed by 2d + 2 entries of 0. Then most

steps go through immediately. Case 2-(b) needs to be slightly modified: In that case, one now

has
∑
j∈J ∗ ν

t
jgP,j(θ) = cn

∑
j∈{J1+1,··· ,J}∩J ∗ ν

t
j and

∑
j∈J ∗ ν

t
jτj = cn

∑
j∈{J1+1,··· ,J}∩J ∗ ν

t
j , so the

argument for case 1 applies. In sum, the last two terms on the right hand side of (B.66) are arbitrarily

small.

We now consider the first term on the right hand side of (B.66). Let gPn(θεn) be a J + 2d + 2

vector with

gPn,j(θ
ε
n) ≡


−G∗j (θεn), if j ∈ J ∗,
ρ, if j = J + 1, . . . , J + 2d,

0, if j = J + 2d+ 1, J + 2d+ 2

0, otherwise,

(B.69)

where we used that π∗1,j = 0 for j ∈ J ∗ and where the last assignment is without loss of generality

because of the considerations leading to the sets in (B.47)-(B.50). For a given set C ⊂ {1, . . . , J +

2d + 2}, let the vector gCPn(θεn) collect the entries of gPn(θεn) corresponding to indexes in C, and let

the matrix KC
Pn

(θεn) collect the rows of KPn(θεn) corresponding to indexes in C and KPn as defined in

(B.18) with Pn replacing P .

Let C̃ collect all size d subsets C of {1, ..., J + 2d+ 2} ordered lexicographically by their smallest,

then second smallest, etc. elements. Let the random variable C(θ) (dependence on many other

quantities is suppressed) equal the first element of C̃ s.t. detKC
P (θ) 6= 0 and λC =

(
KC
P (θ)

)−1
gCP (θ) ∈

W ∗,−δ (θ, 0) if such an element exists; else, let C(θ) = {J + 1, ..., J + d} and λC = ρ1d, where
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1d denotes a d vector with each entry equal to 1. Recall that W ∗,−δ (θ, 0) is a (possibly empty)

measurable random polyhedron in a compact subset of Rd, see, e.g., Molchanov (2005, Definition

1.1.1). Thus, ifW ∗,−δ (θ, 0) 6= ∅, thenW ∗,−δ (θ, 0) has extreme points, each of which is characterized as

the intersection of d (not necessarily unique) linearly independent constraints interpreted as equalities.

Therefore, W ∗,−δ (θ, 0) 6= ∅ implies that λC(θ) ∈W ∗,−δ (θ, 0) and therefore also that C(θ) ⊂ J ∗∪{J +

1, . . . , J+2d+2}. Note that the associated random vector λC(θ) is a measurable selection of a random

closet set that equals W ∗,−δ(θ, 0) if W ∗,−δ(θ, 0) 6= ∅ and equals ρBd otherwise, see, e.g., Molchanov

(2005, Definition 1.2.2).

Lemma B.7 establishes that for any η > 0, there exist αη > 0 and N s.t. n ≥ N implies

P
(
W ∗,−δ (θεn, 0) 6= ∅,

∣∣∣detK
C(θεn)
P (θεn)

∣∣∣ ≤ αη) ≤ η, (B.70)

which in turn, given our definition of C(θεn), yields that there is M > 0 and N such that

P
( ∣∣∣∣det

(
K
C(θεn)
Pn

(θεn)
)−1

∣∣∣∣ ≤M) ≥ 1− η, ∀n ≥ N. (B.71)

For each n and λ ∈ ρBd, define the mapping φn : ρBd → Rd[±∞] by

φn(λ) ≡
(
K
C(θεn)
Pn

(θ̄(θn, λ))
)−1

g̃
C(θεn)
n (θn + λ/

√
n), (B.72)

where the notation θ̄(θ, λ) emphasizes that θ̄ depends on θ and λ because it lies component-wise

between θ and θ + λ/
√
n, and where the vector g̃

C(θεn)
n (θn + λ/

√
n) collects the entries corresponding

to indexes in C(θεn) of a J + 2d+ 2 vector g̃n(θn + λ/
√
n) with

g̃n,j(θ + λ/
√
n) ≡


c∗n/(1 + η∗n,j)−G∗n,j(θ + λ/

√
n) if j ∈ J ∗,

ρ, if j = J + 1, . . . , J + 2d,

0, if j = J + 2d+ 1, J + 2d+ 2,

0, otherwise,

(B.73)

using again that π∗1,j = 0 for j ∈ J ∗ and that the last assignment is without loss of generality.

We show that φn is a contraction mapping and hence has a fixed point. To simplify notation, in

what follows we omit the dependence of C on θεn.

For any λ, λ′ ∈ ρBd write

‖φn(λ)− φn(λ′)‖

=
∥∥∥(KCPn(θ̄(θn, λ))

)−1
g̃Cn(θn + λ/

√
n)−

(
KCPn(θ̄(θn, λ

′))
)−1

g̃Cn(θn + λ′/
√
n)
∥∥∥

≤
∥∥∥(KCPn(θ̄(θn, λ))

)−1
∥∥∥
op

∥∥∥g̃Cn(θn + λ/
√
n)− g̃Cn(θn + λ′/

√
n)
∥∥∥

+
∥∥∥(KCPn(θ̄(θn, λ))

)−1 −
(
KCPn(θ̄(θn, λ

′))
)−1
∥∥∥
op

∥∥∥g̃Cn(θn + λ′/
√
n)
∥∥∥, (B.74)

where ‖ · ‖op denotes the operator norm.

By Assumption 3.5 (i), for any η > 0, k > 0, there is N ∈ N such that

P
(∥∥g̃Cn(θn + λ/

√
n)− g̃Cn(θn + λ′/

√
n)
∥∥ ≤ k‖λ− λ′‖)

= P
(
‖G∗,Cn (θn + λ/

√
n)−G∗,Cn (θn + λ′/

√
n)‖ ≤ k‖λ− λ′‖

)
≥ 1− η, ∀n ≥ N. (B.75)
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Moreover, by arguing as in equation (A.19), for any η there exist 0 < L <∞ and N ∈ N such that

P
(

sup
λ′∈ρBd

∥∥g̃Cn(θn + λ′/
√
n)
∥∥ ≤ L) ≥ 1− η, ∀n ≥ N. (B.76)

For any invertible matrix K, ‖K−1‖op ≤ |det(K)−1|‖adj(K)‖op. Hence, by Assumption 3.4-(i) and

equation (B.71), for any η > 0, there exist 0 < L <∞ and N ∈ N such that

P
(∥∥(KCPn(θεn)

)−1∥∥
op
≤ L

)
≥ P

(∣∣det
(
KCPn(θεn)

)−1∣∣b(M̄ + ρM/
√
n) ≤ L

)
≥ 1− η, ∀n ≥ N, (B.77)

where b > 0 is a constant that depends only on d, M̄ is defined in Assumption 3.4-(i) and M is defined

in Assumption 3.4-(ii). By Horn and Johnson (1985, ch. 5.8), for any invertible matrices K, K̃ such

that ‖K̃−1(K − K̃)‖op < 1,

‖K−1 − K̃−1‖op ≤
‖K̃−1(K − K̃)‖op

1− ‖K̃−1(K − K̃)‖op
‖K̃−1‖op. (B.78)

By (B.78), ‖K−1‖op ≤ | det(K)−1|‖adj(K)‖op, and the triangle inequality, for any η > 0, there exist

0 < L <∞ and N ∈ N such that

P
(

sup
λ∈ρBd

∥∥(KCPn(θ̄(θn, λ))
)−1∥∥

op
≤ 2L

)
≥ P

(∥∥(KCPn(θεn)
)−1∥∥

op
+ sup
λ∈ρBd

‖KCPn(θ̄(θn, λ))−1 −KCPn(θεn)−1‖op ≤ 2L
)

≥ P
(∥∥(KCPn(θεn)

)−1∥∥
op
≤ L,

∣∣ det
(
KCPn(θεn)

)−1∣∣b(M̄ + ρM/
√
n) sup

λ∈ρBd
‖KCPn(θ̄(θn, λ))−KCPn(θεn)‖op ≤ L

)
≥ P

(∥∥(KCPn(θεn)
)−1∥∥

op
≤ L,

∣∣ det
(
KCPn(θεn)

)−1∣∣b(M̄ + ρM/
√
n)ρM/

√
n ≤ L

)
≥ 1− 2η, ∀n ≥ N,

(B.79)

where the last inequality follows from ‖KCPn(θ̄(θn, λ)) − KCPn(θεn)‖op ≤ ‖D(θ̄(θn, λ)) − D(θεn)‖op ≤
Mρ/

√
n by Assumption 3.4 (ii), (B.71) and (B.77). Again by applying (B.78), for any k > 0, there

exists N ∈ N such that

P
(∥∥(KCPn(θ̄(θn, λ))

)−1 −
(
KCPn(θ̄(θn, λ

′))
)−1∥∥

op
≤ k‖λ− λ′‖

)
≥ P

(
sup
λ∈ρBd

∥∥(KCPn(θ̄(θn, λ))
)−1∥∥2

op
M‖θ̄(θn, λ)− θ̄(θn, λ′)‖ ≤ k‖λ− λ′‖

)
≥ 1− η, ∀n ≥ N, (B.80)

where the first inequality follows from ‖KCPn(θ̄(θn, λ))−KCPn(θ̄(θn, λ
′))‖op ≤M‖θ̄(θn, λ)− θ̄(θn, λ′)‖ ≤

M/
√
n‖λ− λ′‖ by Assumption 3.4 (ii), and the last inequality follows from (B.79).

By (B.74)-(B.76) and (B.79)-(B.80), it then follows that there exists β ∈ [0, 1) such that for any

η > 0, there exists N ∈ N such that

P
(
|φn(λ)− φn(λ′)| ≤ β‖λ− λ′‖, ∀λ, λ′ ∈ ρBd

)
≥ 1− η, ∀n ≥ N. (B.81)

This implies that with probability approaching 1, each φn(·) is a contraction, and therefore by the

Contraction Mapping Theorem it has a fixed point (e.g., Pata (2014, Theorem 1.3)). This in turn

implies that for any η > 0 there exists a N ∈ N such that

P
(
∃λfn : λfn = φn(λfn)

)
≥ 1− η, ∀n ≥ N. (B.82)
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Next, define the mapping

ψn(λ) ≡
(
KCPn(θεn)

)−1
gCPn(θεn). (B.83)

This map is constant in λ and hence is uniformly continuous and a contraction with Lipschitz constant

equal to zero. It therefore has λCn as its fixed point. Moreover, by (B.72) and (B.83) arguing as in

(B.74), it follows that for any λ ∈ ρBd,

‖ψn(λ)− φn(λ)‖ ≤
∥∥∥(KCPn(θ̄(θn, λ))

)−1
∥∥∥
op

∥∥∥gCPn(θεn)− g̃Cn(θn + λ/
√
n)
∥∥∥

+
∥∥∥(KCPn(θεn)

)−1 −
(
KCPn(θ̄(θn, λ))

)−1
∥∥∥
op

∥∥∥gCPn(θεn)
∥∥∥. (B.84)

By (B.69) and (B.73)∥∥∥gCPn(θεn)− g̃Cn(θn + λ/
√
n)
∥∥∥ ≤ max

j∈J ∗
| −G∗j (θεn)− c∗n/(1 + η∗n,j) + G∗n,j(θn + λ/

√
n)|

≤ max
j∈J ∗

|G∗j (θεn)−G∗n,j(θn + λ/
√
n)|+ max

j∈J ∗
|c∗n/(1 + η∗n,j)|. (B.85)

We note that when Assumption 3.3′ is used, for each j = 1, . . . , J11 such that π∗1,j = 0 = π∗1,j+J11
we have that |µ̃j − µj | = oP(1) because supθ∈Θ |ηj(θ)| = oP(1), where µ̃j and µj were defined in

(A.10)-(A.11) and (B.12)-(B.13) respectively. Moreover, Assumption 3.5 (ii) implies G∗n
a.s.→ G∗ in

l∞(Θ) and (B.65) implies c∗n → 0, so that we have

sup
λ∈ρBd

‖gCPn(θεn)− g̃Cn(θn + λ/
√
n)‖ a.s.→ 0. (B.86)

Further, by (B.78) and Assumption 3.4-(ii),

sup
λ∈ρBd

∥∥∥(KCPn(θεn)
)−1 −

(
KCPn(θ̄(θn, λ))

)−1
∥∥∥
op
≤M sup

λ∈ρBd
‖θ̄(θn, λ)− θεn‖ ≤Mρ/

√
n. (B.87)

In sum, by (B.76), (B.79), and (B.85)-(B.87), for any η, ν > 0, there exists N ≥ N such that

P

(
sup
λ∈ρBd

‖ψn(λ)− φn(λ)‖ < ν

)
≥ 1− η, ∀n ≥ N. (B.88)

Hence, for a specific choice of ν = κ(1 − β), where β is defined in equation (B.81), we have that

supλ∈ρBd ‖ψn(λ)− φn(λ)‖ < κ(1− β) implies

‖λCn − λfn‖ = ‖ψn(λCn)− φn(λfn)‖

≤ ‖ψn(λCn)− φn(λCn)‖+ ‖φn(λCn)− φn(λfn)‖

≤ κ(1− β) + β‖λCn − λfn‖ (B.89)

Rearranging terms, we obtain ‖λCn − λfn‖ ≤ κ. Note that by Assumptions 3.4 (i) and 3.5 (i), for any

δ > 0, there exists κδ > 0 and N ∈ N such that

P
(

sup
‖λ−λ′‖≤κδ

|u∗n,j,θn(λ)− u∗n,j,θn(λ′)| < δ
)
≥ 1− η, ∀n ≥ N, (B.90)

For λCn ∈W ∗,−δ(θεn, 0), one has

w∗j,θεn(λCn) + δ ≤ 0, j ∈ {1, · · · , J1} ∩ J ∗. (B.91)
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Hence, by (B.59), (B.65), and (B.90)-(B.91), ‖λCn−λfn‖ ≤ κδ/4, for each j ∈ {1, · · · , J1}∩J ∗ we have

u∗n,j,θn(λfn)− c∗n(θn) ≤ u∗n,j,θn(λCn)− c∗n(θn) + δ/4 ≤ w∗j,θn(λCn) + δ/2 ≤ 0. (B.92)

For j ∈ {J1 + 1, · · · , 2J2} ∩ J ∗, the inequalities hold by construction given the definition of C.
In sum, for any η > 0 there exists δ > 0 and N ∈ N such that for all n ≥ N we have

P
(
{U∗n(θn, c

∗
n) = ∅} ∩ {W ∗,−δ(θεn, 0) 6= ∅}

)
≤ P

(
@λfn ∈ U∗n(θn, c

∗
n),∃λCn ∈W ∗,−δ(θεn, 0)

)
≤ P

({
sup
λ∈ρBd

‖ψn(λ)− φn(λ)‖ < κδ(1− β) ∩Bn

}c)
≤ η/3, (B.93)

where Ac denotes the complement of the set A, and the last inequality follows from (B.59) and (B.88).

Combining equations (B.67), (B.68), and (B.93) yields the desired result for Case 3.

Lemma B.3: Let θεn be as defined in (B.21). Then

lim
n→∞

P ∗n (Vn(θεn, ĉn(θεn)) 6= ∅) ≥ 1− α. (B.94)

Proof. Let

V bn (θ, c) ≡ {λ ∈ ρBd : Gbn,j(θ) + D̂n,j(θ)λ+ ϕj(ξ̂n,j(θ)) ≤ c, j = 1, . . . , J} ∩ {p′λ = 0}

= Λbn(θ, ρ, c) ∩ {p′λ = 0}, (B.95)

with Λbn(θ, ρ, c) defined in (2.7). By construction, see (2.11), for all θ ∈ Θ,

P ∗n
(
{V bn (θ, ĉn(θ)) 6= ∅

)
≥ 1− α. (B.96)

Inspection of equations (2.7) and (B.14) shows that V bn (θ, c) and Vn(θ, c) differ exclusively in that

the first set features sample GMS, ϕj(ξ̂n,j(θ
ε
n)), in the stochastic inequalities, whereas the second set

features π∗1,j . Observe that

P ∗n(Vn(θεn, ĉn(θεn)) 6= ∅) ≥ P ∗n
(
V bn (θεn, ĉn(θεn)) 6= ∅

)
− P ∗n

(
{V bn (θεn, ĉn(θεn)) 6= ∅} ∩ {Vn(θεn, ĉn(θεn)) = ∅}

)
,

(B.97)

where we used that given any two events A,B,

P (A 6= ∅) ≥ P (B 6= ∅)− P ({B 6= ∅} ∩ {A = ∅})

We now establish that the last term in (B.97) is oP(1). We have

P ∗n

(
{V bn (θεn, ĉn(θεn)) 6= ∅} ∩ {Vn(θεn, ĉn(θεn)) = ∅}

)
≤ P ∗n

(
{V bn (θεn, ĉn(θεn)) 6= ∅} ∩ {V b,−δn (θεn, ĉn(θεn)) = ∅}

)
+ P ∗n

(
{V b,−δn (θεn, ĉn(θεn)) 6= ∅} ∩ {Vn(θεn, ĉn(θεn)) = ∅}

)
. (B.98)

By Lemma B.6, for any η > 0 there exists δ > 0 and N ∈ N such that

P ∗n

(
{V bn (θεn, ĉn(θεn)) 6= ∅} ∩ {V b,−δn (θεn, ĉn(θεn)) = ∅}

)
< η/2, ∀n ≥ N. (B.99)

Consider first the case that Assumption 3.3 holds. The result then follows from (B.99) and the

fact that by Lemma B.5, if π∗j = 0 then ξ̂n,j(θ
ε
n) = oP(1), so that for n large enough, with probability
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at least 1 − η/2, by Assumption 3.2 |ϕj(ξ̂n,j(θεn))| < δ. Observing that π∗j ∈ {0,−∞}, we have that

for all η > 0 there is δ > 0 and N ∈ N such that

P ∗n

(
V b,−δn (θεn, ĉn(θεn)) ⊆ Vn(θεn, ĉn(θεn))

)
≥ 1− η/2, ∀n ≥ N, (B.100)

yielding the result.

Consider next the case that Assumption 3.3′ holds. In this case, the set V bn (θεn, c) is defined with

hard threshold GMS as in equation (2.9). The same argument of proof as just provided applies. The

only case that might create concern is one in which

π∗1,j = −∞, and π∗j+J11 = 0,

ϕj(ξ̂n,j(θ
ε
n) = 0, and ϕj+J11(ξ̂n,j+J11(θεn) = 0,

so that in the set V bn (θεn, c) inequality j + J11, which is

Gbn,j+J11(θεn) + D̂n,j+J11(θεn)λ ≤ c,

is replaced with inequality

−Gbn,j(θεn)− D̂n,j(θ
ε
n)λ ≤ c,

as explained in Section 3.1. For this case, Lemma B.9 establishes that

‖Gbn,j+J11(θεn) + D̂n,j+J11(θεn) + Gbn,j(θεn) + D̂n,j(θ
ε
n)λ‖ = oP(1). (B.101)

Note that (B.96) continues to hold if inequality

Gbn,j(θεn) + D̂n,j(θ
ε
n)λ ≤ c,

is dropped from the set V bn (θεn, c), because the program is thereby relaxed. We can then define set

V b,−δn (θεn, c) with inequality j dropped, and including a delta contraction of the inequality that replaces

inequality j + J11, namely

−Gbn,j(θεn)− D̂n,j(θ
ε
n)λ ≤ c− δ.

Therefore, using (B.101) the same argument of proof applies as for the case that Assumption 3.3

holds.

Lemma B.4: Let (Pn, θn) have the almost sure representations given in Lemma B.1, let J ∗ be

defined as in (B.37), and assume that J ∗ 6= ∅. Let θεn be as defined in (B.21). Then, for any ε, η > 0,

there exists N ′ ∈ N and N
′′ ∈ N such that

P

(
sup

λ∈ρBd∩
√
n(Θ−θn)

∣∣∣∣ max
j=1,··· ,J

(u∗n,j,θn(λ)− c∗n)− max
j=1,··· ,J

(w∗j,θεn(λ)− cn)

∣∣∣∣ ≥ ε
)
< η, (B.102)

for all n ≥ N ′ and

P̃

(
sup

λ∈ρBd∩
√
n(Θ−θn)

∣∣∣∣ max
j=1,··· ,J

w̃∗j,θεn(λ)− max
j=1,··· ,J

v∗n,j,θεn(λ)

∣∣∣∣ ≥ ε
)
< η, (B.103)

for all n ≥ N
′′

, where the functions u∗, v∗, w∗, w̃∗ are defined in equations (B.27),(B.28),(B.29) and

(B.30).
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Proof. We first establish (B.102). By definition, π∗1,j = −∞ for all j /∈ J ∗, and therefore

P( sup
λ∈ρBd∩

√
n(Θ−θn)

| max
j=1,··· ,J

(u∗n,j,θn(λ)− c∗n)− max
j=1,··· ,J

(w∗j,θεn(λ)− cn)| ≥ ε)

= P( sup
λ∈ρBd∩

√
n(Θ−θn)

|max
j∈J ∗

(u∗n,j,θn(λ)− c∗n)− max
j∈J ∗

(w∗j,θεn(λ)− cn)| ≥ ε). (B.104)

Hence, for the conclusion of the lemma, it suffices to show

lim
n→∞

P( sup
λ∈ρBd∩

√
n(Θ−θn)

|max
j∈J ∗

(u∗n,j,θn(λ)− c∗n)− max
j∈J ∗

(w∗j,θεn(λ)− cn)| ≥ ε) = 0.

For each λ ∈ Rd, define rn,j,θn(λ) ≡ (u∗n,j,θn(λ)−c∗n)−(w∗j,θεn(λ)−cn). Using the fact that π∗1,j = 0

for j ∈ J ∗, and the triangle and Cauchy-Schwarz inequalities, for any λ ∈ ρBd ∩
√
n(Θ − θn) and

j ∈ J ∗, we have

|rn,j,θn(λ)| ≤ |G∗n,j(θn + λ/
√
n)−G∗j (θεn)|+ ‖DPn,j(θ̄n)−DPn,j(θ

ε
n)‖‖λ‖

+ |G∗n,j(θn + λ/
√
n) +DPn,j(θ̄n)λ|ηn,j(θn + λ/

√
n) + |c∗n − cn|

≤ |G∗n,j(θn + λ/
√
n)−G∗j (θεn)|+ oP(1) + {OP(1) +O(1)})oP(1) + oP(1), (B.105)

where the last inequality follows using the fact that ‖θn− θεn‖ = O(1/
√
n) together with the Lipschitz

continuity of DP,j (Assumption 3.4-(ii)) and θ̄n being a mean value between θn and θn + λ/
√
n,

‖λ‖ ≤ ρ, ‖Gn,j(θ + λ/
√
n)‖ = OP(1), ‖DP,j(θ)‖ being uniformly bounded (Assumption 3.4-(i)),

supθ∈Θ |ηn,j(θ)| = oP(κn/
√
n) by Assumption 3.3-(ii) (or Assumption 3.3′-(ii)), and equation (B.20).

We note that when Assumption 3.3′ is used, for each j = 1, . . . , J11 such that π∗1,j = 0 = π∗1,j+J11
we have that |µ̃j − µj | = oP(1) because supθ∈Θ |ηj(θ)| = oP(1), where µ̃j and µj were defined in

(A.10)-(A.11) and (B.12)-(B.13) respectively.

By (B.105) and the uniform stochastic equicontinuity of {Gn,j} (Assumption 3.5) inherited by its

almost sure representation, and the fact that j ∈ J ∗, we have

sup
λ∈ρBd∩

√
n(Θ−θn)

|max
j∈J ∗

(u∗n,j,θn(λ)− c∗n)− max
j∈J ∗

(w∗j,θεn(λ)− cn)|

≤ sup
λ∈ρBd∩

√
n(Θ−θn)

max
j∈J ∗

|rn,j,θn(λ)| = oP(1). (B.106)

The conclusion of the lemma then follows from (B.104) and (B.106).

The result in (B.103) follows from similar arguments.

Lemma B.5: Given a sequence {Qn, ϑn} ∈ {(P, θ) : P ∈ P, θ ∈ ΘI(P )} such that limn→∞ κ−1
n

√
nγ1,Qn,j(ϑn)

exists for each j = 1, . . . , J , let χj({Qn, ϑn}) be a function of the sequence {Qn, ϑn} defined as

χj({Qn, ϑn}) ≡

{
0, if limn→∞ κ−1

n

√
nγ1,Qn,j(ϑn) = 0,

−∞, if limn→∞ κ−1
n

√
nγ1,Qn,j(ϑn) < 0.

(B.107)

Then for any θ′n ∈ θn + ρ√
n
Bd for all n, one has: (i) κ−1

n

√
nγ1,Pn,j(θn) − κ−1

n

√
nγ1,Pn,j(θ

′
n) = o(1);

(ii) χ({Pn, θn}) = χ({Pn, θ′n}) = π∗1,j; and (iii) κ−1
n

√
nm̄n,j(θ

′
n)

σ̂n,j(θ′n) − κ−1
n

√
nEPn [mj(Xi,θ

′
n)]

σPn,j(θ
′
n) = oP(1).
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Proof. For (i), the mean value theorem yields

sup
P∈P

sup
θ∈ΘI(P ),θ′∈θ+ρ/

√
nBd

∣∣∣∣∣
√
nEP (mj(X, θ))

κnσP,j(θ)
−
√
nEP (mj(X, θ

′))

κnσP,j(θ′)

∣∣∣∣∣
≤ sup
P∈P

sup
θ∈ΘI(P ),θ′∈θ+ρ/

√
nBd

√
n‖DP,j(θ̃)‖‖θ′ − θ‖

κn
= o(1), (B.108)

where θ̃ represents a mean value that lies componentwise between θ and θ′ and where we used the

fact that DP,j(θ) is Lipschitz continuous and supP∈P supθ∈ΘI(P ) ‖DP,j(θ)‖ ≤ M̄ .

Result (ii) then follows immediately from (B.107).

For (iii), note that

sup
θ′n∈θn+ρ/

√
nBd

∣∣∣κ−1
n

√
nm̄n,j(θ

′
n)

σ̂n,j(θ′n)
− κ−1

n

√
nEPn [mj(Xi, θ

′
n)]

σPn,j(θ
′
n)

∣∣∣
≤ sup
θ′n∈θn+ρ/

√
nBd

∣∣∣κ−1
n

√
n(m̄n,j(θ

′
n)− EPn [mj(Xi, θ

′
n)])

σn,j(θ′n)
(1+ηn,j(θ

′
n))+κ−1

n

√
nEPn [mj(Xi, θ

′
n)]

σPn,j(θ
′
n)

ηn,j(θ
′
n)
∣∣∣

≤ sup
θ′n∈θn+ρ/

√
nBd
|κ−1
n Gn(θ′n)(1 + ηn,j(θ

′
n))|+

∣∣∣√nEPn [mj(Xi, θ
′
n)]

κnσPn,j(θ
′
n)

ηn,j(θ
′
n)
∣∣∣ = oP(1), (B.109)

where the last equality follows from supθ∈Θ |Gn(θ)| = OP(1) due to asymptotic tightness of {Gn}
(uniformly in P ) by Lemma D.1 in Bugni, Canay, and Shi (2015), Theorem 3.6.1 and Lemma 1.3.8

in van der Vaart and Wellner (2000), and supθ∈Θ |ηn,j(θ)| = oP(κn/
√
n) by Assumption 3.3 (ii)

respectively 3.3′ (ii).

Lemma B.6: For any θ′n ∈ θn + ρ√
n
Bd,

(i) For any η > 0, there exist δ > 0 and N ∈ N such that

sup
c≥0

Pn({W (θ′n, c) 6= ∅} ∩ {W−δ(θ′n, c) = ∅}) < η, ∀n ≥ N. (B.110)

Moreover, for any η > 0, there exist δ > 0 and N ∈ N such that

sup
c≥0

P ∗n({Vn(θ′n, c) 6= ∅} ∩ {V −δn (θ′n, c) = ∅}) < η, ∀n ≥ N. (B.111)

(ii) Fix c > 0 and redefine

W−δ(θ′n, c) ≡
{
λ ∈ ρBd : p′λ = 0 ∩ wj,θ′n(λ) ≤ c− δ, ∀j = 1, . . . , J

}
, (B.112)

and

V −δn (θ′n, c) ≡
{
λ ∈ ρBd : p′λ = 0 ∩ vn,j,θ′n(λ) ≤ c− δ, ∀j = 1, . . . , J

}
. (B.113)

Then for any η > 0, there exist δ > 0 and N ∈ N such that

sup
c≥c

Pn({W (θ′n, c) 6= ∅} ∩ {W−δ(θ′n, c) = ∅}) < η, ∀n ≥ N, (B.114)

with W−δ(θ′n, c) defined in (B.112). Moreover, for any η > 0, there exist δ > 0 and N ∈ N such
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that

sup
c≥c

P ∗n({Vn(θ′n, c) 6= ∅} ∩ {V −δn (θ′n, c) = ∅}) < η, ∀n ≥ N, (B.115)

with V −δn (θ′n, c) defined in (B.113).

Proof. We first show (B.110). If J ∗ = ∅, with J ∗ as defined in (B.37), then the result is immediate.

Assume then that J ∗ 6= ∅. Any inequality indexed by j /∈ J ∗ is satisfied with probability approaching

one by similar arguments as in (A.19) (both with c and with c− δ). Hence, one could argue for sets

W (θ′n, c),W
−δ(θ′n, c) defined as in equations (B.15) and (B.17) but with j ∈ J ∗. To keep the notation

simple, below we argue as if all j = 1, . . . , J belong to J ∗.
Let c ≥ 0 be given. Let gPn(θ′n) be a J + 2d+ 2 vector with entries

gPn,j(θ
′
n) =


c−GPn,j(θ′n)− π∗1,j , j = 1, . . . , J,

ρ, j = J + 1, . . . , J + 2d,

0, j = J + 2d+ 1, J + 2d+ 2,

(B.116)

recalling that π∗1,j = 0 for j = J1 + 1, · · · , J . Let τ be a (J + 2d+ 2) vector with entries

τj =

{
1, j = 1, . . . , J1,

0, j = J1 + 1, . . . , J + 2d+ 2.
(B.117)

Then we can express the sets of interest as

W (θ′n, c) = {λ : KPn(θ′n)λ ≤ gPn(θ′n)}, (B.118)

W−δ(θ′n, c) = {λ : KPn(θ′n)λ ≤ gPn(θ′n)− δτ}. (B.119)

By Farkas’ Lemma, e.g. Rockafellar (1970, Theorem 22.1), a solution to the system of linear in-

equalities in (B.118) exists if and only if for all µ ∈ RJ+2d+2
+ such that µ′KPn(θ′n) = 0, one has

µ′gPn(θ′n) ≥ 0. Similarly, a solution to the system of linear inequalities in (B.119) exists if and only if

for all µ ∈ RJ+2d+2 such that µ′KPn(θ′n) = 0, one has µ′(gPn(θ′n)− δτ) ≥ 0. Define

M(θ′n) ≡ {µ ∈ RJ+2d+2
+ : µ′KPn(θ′n) = 0}. (B.120)

Then, one may write

Pn({W (θ′n, c) 6= ∅} ∩ {W−δ(θ′n, c) = ∅})

=Pn({µ′gPn(θ′n) ≥ 0,∀µ ∈M(θ′n)} ∩ {µ′(gPn(θ′n)− δτ) < 0,∃µ ∈M(θ′n)})

=Pn({µ′gPn(θ′n) ≥ 0,∀µ ∈M(θ′n)} ∩ {µ′gPn(θ′n) < δµ′τ,∃µ ∈M(θ′n)}). (B.121)

Note that the set M(θ′n) is a non-stochastic polyhedral cone. Hence, by Minkowski-Weyl’s theorem

(see, e.g. Rockafellar and Wets (2005, Theorem 3.52)), there exist {νt ∈ M(θ′n), t = 1, · · · , T}, with

T <∞ a constant that depends only on J and d, such that any µ ∈M(θ′n) can be represented as

µ = b

T∑
t=1

atν
t, (B.122)

where b > 0 and at ≥ 0, t = 1, . . . , T,
∑T
t=1 at = 1. Hence, if µ ∈ M(θ′n) satisfies µ′gPn(θ′n) < δµ′τ ,
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denoting νt′ the transpose of vector νt, we have

T∑
t=1

atν
t′gPn(θ′n) < δ

T∑
t=1

atν
t′τ. (B.123)

However, due to at ≥ 0,∀t and νt ∈ M(θ′n), this means νt′gPn(θ′n) < δνt′τ for some t ∈ {1, . . . , T}.
Furthermore, since νt ∈M(θ′n), we have 0 ≤ νt′gPn(θ′n). Therefore,

Pn({µ′gPn(θ′n) ≥ 0,∀µ ∈M(θ′n)} ∩ {µ′gPn(θ′n) < δµ′τ,∃µ ∈M(θ′n)})

≤ Pn(0 ≤ νt′gPn(θ′n) < δνt′τ,∃t ∈ {1, · · · , T}) ≤
T∑
t=1

Pn
(
0 ≤ νt′gPn(θ′n) < δνt′τ

)
. (B.124)

Case 1. Consider first any t = 1, . . . , T such that νt assigns positive weight only to constraints in

{J + 1, . . . , J + 2d+ 2}. Then

νt′gPn(θ′n) = ρ

J+2d∑
j=J+1

νtj ,

δνt′τ = δ

J+2d+2∑
j=J+1

νtjτj = 0,

where the last equality follows by (B.117). Therefore Pn (0 ≤ νt′gPn(θ′n) < δνt′τ) = 0.

Case 2. Consider now any t = 1, . . . , T such that νt assigns positive weight also to constraints

in {1, . . . , J}. Recall that indexes j = J1 + 1, . . . , J1 + 2J2 correspond to moment equalities, each

of which is written as two moment inequalities, therefore yielding a total of 2J2 inequalities with

DPn,j+J2(θ′n) = −DPn,j(θ
′
n) for j = J1 + 1, . . . , J1 + J2, and:

gPn,j(θ
′
n) =

{
c−GPn,j(θ′n) j = J1 + 1, . . . , J1 + J2,

c+ GPn,j−J2(θ′n) j = J1 + J2 + 1, . . . , J.
(B.125)

For each νt, (B.125) implies

J1+2J2∑
j=J1+1

νtjgPn,j(θ
′
n) = c

J1+2J2∑
j=J1+1

νtj +

J1+J2∑
j=J1+1

(νtj − νtj+J2)GPn,j(θ′n). (B.126)

For each j = 1, · · · , J1 + J2, define

ν̃tj ≡

νtj j = 1, · · · , J1

νtj − νtj+J2 j = J1 + 1, · · · , J1 + J2.
. (B.127)

We then let ν̃t ≡ (ν̃t1, · · · , ν̃tJ1+J2
)′ and have

νt′gPn(θ′n) =

J1+J2∑
j=1

ν̃tjGPn,j(θ′n) + c

J∑
j=1

νtj +

J1∑
j=1

νtjπ
∗
1,j + ρ

J+2d∑
j=J+1

νtj . (B.128)

Case 2-a. Suppose ν̃t 6= 0. Then, by (B.128),
νt′gPn (θ′n)

νt′τ is a normal random variable with variance

(ν̃t′τ)−2ν̃′tΩPn(θ′n)ν̃t. By Assumption 3.3 (or Assumption 3.3′), there exists a constant ω > 0 that

does not depend on θ′n such that the smallest eigenvalue of ΩPn(θ′n) is bounded from below by ω for
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all θ′n. Hence, letting ‖ · ‖p denote the p-norm in RJ+2d+2, we have

ν̃′tΩPn(θ′n)ν̃t

(ν̃t′τ)2
≥ ω‖ν̃t‖22

(J + 2d+ 2)2‖ν̃t‖22
≥ ω

(J + 2d+ 2)2
. (B.129)

Therefore, the variance of the normal random variable in (B.124) is uniformly bounded away from 0,

which in turn allows one to find δ > 0 such that Pn(0 ≤ νt′gPn (θ′n)
νt′τ < δ) ≤ η/T .

Case 2-b. Next, consider the case ν̃t = 0. Because we are in the case that νt assigns positive weight

also to constraints in {1, . . . , J}, this must be because νtj = 0 for all j = 1, · · · , J1 and νtj = νtj+J2
for all j = J1 + 1, · · · , J1 + J2, while νtj 6= 0 for some j = J1 + 1, · · · , J1 + J2. Then we have∑J
j=1 ν

t
jgPn,j(θ

′
n) ≥ 0, and

∑J
j=1 ν

t
jτj = 0 because τj = 0 for each j = J1 + 1, . . . , J . Hence, the

argument for the case that νt assigns positive weight only to constraints in {J + 1, . . . , J + 2d + 2}
applies and again Pn (0 ≤ νt′gPn(θ′n) < δνt′τ) = 0. This establishes equation (B.110).

To see why equation (B.111) holds, observe that the bootstrap distribution is conditional on

X1, . . . , Xn, and therefore K̂n can be treated as non-stochastic, where K̂n is the matrix in equation

(B.18) with D̂n replacing DPn . This implies that the set M̂n(θ′n) can also be treated as non-stochastic,

where M̂n is the set in equation (B.120) with K̂n replacing KPn . The result then follows because by

Lemma D.2.8 in Bugni, Canay, and Shi (2015), Gbn
d→ GPn in l∞(Θ) uniformly in P conditional on

{X1, · · · , Xn}.

The results in (B.114)-(B.115) follow by similar arguments, with proper redefinition of τ in equa-

tion (B.117).

Lemma B.7: Let (Pn, θn) have the almost sure representations given in Lemma B.1, let J ∗ be

defined as in (B.37), and assume that J ∗ 6= ∅. Let C̃ collect all size d subsets C of {1, ..., J + 2d+ 2}
ordered lexicographically by their smallest, then second smallest, etc. elements. Let θεn be as defined

in (B.21). Let the random variable C(θεn) equal the first element of C̃ s.t. det
(
KC
P (θεn)

)
6= 0 and

λC =
(
KC
P (θεn)

)−1
gCP (θεn) ∈W ∗,−δ (θεn, 0) if such an element exists; else, let C(θεn) = {J+1, ..., J+d}.

Here KC
P (θεn), gCP (θεn) and W ∗,−δ (θεn, 0) are as defined in Lemma B.2. Then for any η > 0, there exist

αη > 0 and N s.t. n ≥ N implies

P
{
W ∗,−δ (θεn, 0) 6= ∅,

∣∣∣detK
C(θεn)
Pn

(θεn)
∣∣∣ ≤ αη} ≤ η. (B.130)

Proof. We establish (B.130) as corollary of the following statement: For each η > 0, there exist αη > 0

and N s.t. n ≥ N implies

P
{
W ∗,−δ (θ′n, 0) 6= ∅,

∣∣∣detK
C(θ′n)
Pn

(θ′n)
∣∣∣ ≤ αη} ≤ η

for all θ′n ∈ θn + ρ√
n
Bd. To show this, write

P
{
W ∗,−δ (θ′n, 0) 6= ∅,

∣∣∣detK
C(θ′n)
Pn

(θ′n)
∣∣∣ ≤ αη}

≤ P
{
∃C ∈ C̃ : λC ∈ ρBd,

∣∣∣detK
C(θ′n)
Pn

(θ′n)
∣∣∣ ≤ αη}

≤
∑

C∈C̃:|detKC
Pn

(θ′n)|≤αη
P
(
λC ∈ ρBd

)
.

Here, the first inequality holds because W ∗,−δ (θ′n, 0) ⊆ ρBd and so the event in the first probability

implies the event in the next one; the second inequality is Boolean algebra. Noting that C̃ has
(
J+2d+2

d

)
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elements, it suffices to show that∣∣detKC
Pn(θ′n)

∣∣ ≤ αη =⇒ P
(
λC ∈ ρBd

)
≤ η ≡ η(

J+2d+2
d

) .
Thus, fix θ′n ∈ θn+ ρ√

n
Bd and C ∈ C̃. To simplify expressions, omit dependence on θ′n in the remainder

of this proof. Let qC denote the eigenvector associated with the smallest eigenvalue of KC
Pn
KC′
Pn

and

recall that because KC
Pn
KC′
Pn

is symmetric,
∥∥qC∥∥ = 1. Thus the claim is equivalent to:

|qC′KC
PnK

C′
Pnq

C | < αη =⇒ P((KC
Pn)−1gCPn ∈ ρB

d) ≤ η. (B.131)

Now, if |qC′KC
Pn
KC′
Pn
qC | < αη and (KC

Pn
)−1gCPn ∈ ρB

d, then the Cauchy-Schwarz inequality yields∣∣qC′gCPn ∣∣ =
∣∣∣qC′KC

Pn

(
KC
Pn

)−1
gCPn

∣∣∣ < ρ
√
dαη, (B.132)

hence

P((KC
Pn)−1gCPn ∈ ρB

d) ≤ P
(
|qC′gCPn | < ρ

√
dαη

)
. (B.133)

If qC assigns non-zero weight only to non-stochastic constraints, then the result follows immediately.

Hence, suppose that qC assigns non-zero weight also to stochastic constraints. Assumptions 3.3 (iii)

(or 3.3′ (iii)) and 3.5 (iii) yield that there exists N ∈ N and ω > 0 such that for all n ≥ N and

θ′n ∈ θn + ρ√
n
Bd,

eig(Ω̃Pn) ≥ ω

=⇒ V arP(qC′gCPn) ≥ ω

=⇒ P
(
|qC′gCPn | < ρ

√
αη
)

= P
(
−ρ√αη < qC′gCPn < ρ

√
αη
)
<

2ρ
√
αη√

2ωπ
, (B.134)

where the result in (B.134) uses that the density of a normal r.v. is maximized at the expected value.

The result follows by choosing

αη =
η2ωπ

2ρ2
.

Lemma B.8: If J2 ≥ d, then ∃c > 0 s.t. lim infn→∞ infP∈P infθ∈ΘI(P ) P (ĉn(θ) ≥ c) = 1.

Proof. Fix any c ≥ 0 and restrict attention to constraints {J1+1, ..., J1+d, J1+J2+1, ..., J1+J2+d}, i.e.

the inequalities that jointly correspond to the first d equalities. We separately analyze the case when

(i) the corresponding estimated gradients {D̂n,j(θ) : j = J1 + 1, ..., J1 + d} are linearly independent

and (ii) they are not. If {D̂n,j(θ) : j = J1 + 1, ..., J1 + d} converge to linearly independent limits, then

only the former case occurs infinitely often; else, both may occur infinitely often, and we conduct the

argument along two separate subsequences if necessary.

For the remainder of this proof, because the sequence {θn} is fixed and plays no direct role in the

proof, we suppress dependence of D̂n,j(θ) and Gbn,j(θ) on θ. Also, if C is an index set picking certain

constraints, then D̂C
n is the matrix collecting the corresponding estimated gradients, and similarly for

Gb,Cn .

Suppose now case (i), then there exists an index set C̄ ⊂ {J1+1, ..., J1+d, J1+J2+1, . . . , J1+J2+d}
picking one direction of each constraint s.t. p is a positive linear combination of the rows of D̂C̄

P . (This

choice ensures that a Karush-Kuhn-Tucker condition holds, justifying the step from (B.136) to (B.137)
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below.) Then the bootstrap coverage probability induced by c is asymptotically bounded above by

P ∗
(

sup
{
p′λ : D̂n,jλ ≤ c−Gbn,j , j ∈ J ∗

}
≥ 0
)

(B.135)

≤ P ∗
(

sup
{
p′λ : D̂n,jλ ≤ c−Gbn,j , j ∈ C̄

}
≥ 0
)

(B.136)

= P ∗
(

sup
{
p′λ : D̂n,jλ = c−Gbn,j , j ∈ C̄

}
≥ 0
)

(B.137)

= P ∗
(
p′(D̂C̄

n )−1(c1d −Gb,C̄n ) ≥ 0
)

(B.138)

= P ∗

 p′(D̂C̄
n )−1(c1d −Gb,C̄n )√

p′(D̂C̄
n )−1ΩCP (D̂C̄

n )−1p
≥ 0

 (B.139)

= P ∗

 p′adj(D̂C̄
n )(c1d −Gb,C̄n )√

p′(adj(D̂C̄
n )ΩCP adj(D̂

C̄
n )p
≥ 0

 (B.140)

= Φ

 p′adj(D̂C̄
n )c1d√

p′(adj(D̂C̄
n )ΩCP adj(D̂

C̄
n )p

+ oP(1) (B.141)

≤ Φ
(
dω−1/2c

)
+ oP(1). (B.142)

Here, (B.136) removes constraints and hence enlarges the feasible set; (B.137) uses that by construc-

tion, the remaining problem is solved at the intersection of its constraints; (B.138) solves in closed

form; (B.139) divides through by a positive scalar; (B.140) eliminates the determinant of D̂C̄
n , using

that rows of D̂C̄
n can always be rearranged so that the determinant is positive; (B.141) follows by

Assumption 3.5, using that the term multiplying Gb,C̄n is OP(1); and (B.142) uses that by Assumption

3.3 (iii) (or Assumption 3.3′ (iii-2)), there exists a constant ω > 0 that does not depend on θ such

that the smallest eigenvalue of ΩP is bounded from below by ω. The result follows for any choice of

c ∈ (0,Φ−1(1− α)× ω1/2/d).

In case (ii), there exists an index set C̄ ⊂ {J1 + 2, ..., J1 + d, J1 + J2 + 2, ..., J1 + J2 + d} collecting

d − 1 or fewer linearly independent constraints s.t. D̂n,J1+1 is a positive linear combination of the

rows of D̂C̄
P . (Note that C̄ cannot contain J1 + 1 or J1 + J2 + 1.) One can then write

P ∗
(

sup
{
p′λ : D̂n,jλ ≤ c−Gbn,j , j ∈ C̄ ∪ {J1 + J2 + 1}

}
≥ 0
)

(B.143)

≤ P ∗
(
∃λ : D̂n,jλ ≤ c−Gbn,j , j ∈ C̄ ∪ {J1 + J2 + 1}

)
(B.144)

≤ P ∗
(

sup
{
D̂n,J1+1λ : D̂n,jλ ≤ c−Gbn,j , j ∈ C̄

}
≥ inf

{
D̂n,J1+1λ : D̂n,J1+J2+1λ ≤ c−Gbn,J1+J2+1

})
(B.145)

= P ∗
(
D̂n,J1+1D̂

C̄′
n (D̂C̄

n D̂
C̄′
n )−1(c1d̄ −Gb,C̄n ) ≥ −c+ Gbn,J1+J2+1

)
. (B.146)

Here, the reasoning from (B.143) to (B.145) holds because we evaluate the probability of increasingly

larger events; in particular, if the event in (B.145) fails, then the constraint sets corresponding to the

sup and inf can be separated by a hyperplane with gradient D̂n,J1+1 and so cannot intersect. The last

step solves the optimization problems in closed form, using (for the sup) that a Karush-Kuhn-Tucker

condition again holds by construction and (for the inf) that D̂n,J1+J2+1 = −D̂n,J1+1. Expression

(B.146) resembles (B.139), and the argument can be concluded in analogy to (B.140)-(B.142).

Lemma B.9: Suppose that both π1,j and π1,j+J11 are finite, with π1,j , j = 1, . . . , J , defined in
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(A.4). Then for any θ′n ∈ θn + ρ√
n
Bd,

(1) σ2
Pn,j

(θ′n)/σ2
Pn,j+J11

(θ′n)→ 1 for j = 1, · · · , J11.

(2) CorrPn(mj(Xi, θ
′
n),mj+J11(Xi, θ

′
n))→ −1 for j = 1, · · · , J11.

(3) G∗j (θ′n) + G∗j+J11(θ′n)→ 0 almost surely.

(4) ‖DPn,j+J11(θ′n) +DPn,j(θ
′
n)‖ → 0.

Proof. By Lemma B.5, for each j, limn→∞ κ−1
n

√
nEPn [mj(Xi,θ

′
n)]

σPn,j(θ
′
n) = π1,j , and hence the condition that

π1,j , π1,j+J11 are finite is inherited by the limit of the corresponding sequences κ−1
n

√
nEPn [mj(Xi,θ

′
n)]

σPn,j(θ
′
n)

and κ−1
n

√
nEPn [mj+J11(Xi,θ

′
n)]

σPn,j+J11(θ′n) .

We first establish Claims 1 and 2. We consider two cases.

Case 1.

lim
n→∞

κn√
n
σPn,j(θ

′
n) > 0, (B.147)

which implies that σPn,j(θ
′
n)→∞ at rate

√
n/κn or faster. Claim 1 then holds because

σ2
Pn,j+J11

(θ′n)

σ2
Pn,j

(θ′n)
=
σ2
Pn,j

(θ′n) + V arPn(tj(Xi, θ
′
n)) + 2CovPn(mj(Xi, θ

′
n), tj(Xi, θ

′
n))

σ2
Pn,j

(θ′n)
→ 1, (B.148)

where the convergence follows because V arPn(tj(Xi, θ
′
n)) is bounded due to Assumption 3.3′ (iii-1),

|CovPn(mj(Xi, θ
′
n), tj(Xi, θ

′
n))/σ2

Pn,j(θ
′
n)| ≤ (V arPn(tj(Xi, θ

′
n)))1/2/σPn,j(θ

′
n),

and the fact that σPn,j(θ
′
n)→∞. A similar argument yields Claim 2.

Case 2.

lim
n→∞

κn√
n
σPn,j(θ

′
n) = 0. (B.149)

In this case, π1,j being finite implies that EPnmj(Xi, θ
′
n) → 0. Again using the upper bound on

tj(Xi, θ
′
n) similarly to (B.148), it also follows that

lim
n→∞

κn√
n
σPn,j+J11(θ′n) = 0, (B.150)

and hence that EPn(tj(Xi, θ
′
n))→ 0. We then have, using Assumption 3.3′ (iii-1) again,

V arPn(tj(Xi, θ
′
n)) =

∫
tj(x, θ

′
n)2dPn(x)− EPn [tj(Xi, θ

′
n)]2

≤M
∫
tj(x, θ

′
n)dPn(x)− EPn [tj(Xi, θ

′
n)]2 → 0. (B.151)

Hence,

σ2
Pn,j+J11

(θ′n)

σ2
Pn,j

(θ′n)
=
σ2
Pn,j

(θ′n) + V arPn(tj(Xi, θ
′
n)) + 2CovPn(mj(Xi, θ

′
n), tj(Xi, θ

′
n))

σ2
Pn,j

(θ′n)

≤
σ2
Pn,j

(θ′n) + V arPn(tj(Xi, θ
′
n))

σ2
Pn,j

(θ′n)
+

2(V arPn(tj(Xi, θ
′
n)))1/2

σPn,j(θ
′
n)

→ 1, (B.152)

and the first claim follows.
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To obtain claim 2, note that

CorrPn(mj(Xi, θ
′
n),mj+J11(Xi, θ

′
n)) =

−σ2
Pn,j

(θ′n)− CovPn(mj(Xi, θ
′
n), tj(Xi, θ

′
n))

σPn,j(θ
′
n)σPn,j+J11(θ′n)

→ −1, (B.153)

where the result follows from (B.151) and (B.152).

To establish Claim 3, consider Gn below. Note that, for j = 1, · · · , J11,[
Gn,j(θ′n)

Gn,j+J11(θ′n)

]
(B.154)

=

 1√
n

∑n
i=1(mj(Xi,θ

′
n)−EPn [mj(Xi,θ

′
n)])

σPn,j(θ
′
n)

− 1√
n

∑n
i=1(mj(Xi,θ

′
n)−EPn [mj(Xi,θ

′
n)])+ 1√

n

∑n
i=1(tj(Xi,θ

′
n)−EPn [tj(Xi,θ

′
n)])

σPn,j+J11 (θ′n)

 . (B.155)

Under the conditions of Case 1 above, we immediately obtain

|Gn,j(θ′n) + Gn,j+J11(θ′n)| p→ 0. (B.156)

Under the conditions in Case 2 above, 1√
n

∑n
i=1(tj(Xi, θ

′
n) − EPn [tj(Xi, θ

′
n)] = oP(1) due to the

variance of this term being equal to V arPn(tj(Xi, θ
′
n)) → 0 and Chebyshev’s inequality. Therefore,

(B.156) obtains again.

Note that Gn has an asymptotic almost sure representation such that G∗n
a.s.→ G∗ in `∞(Θ). This

therefore implies

|G∗j (θ′n) + G∗j+J11(θ′n)| ≤ |G∗j (θ′n)−G∗n,j(θ′n)|

+ |G∗n,j(θ′n) + G∗n,j+J11(θ′n)|+ |G∗j+J11(θ′n)−G∗n,j+J11(θ′n)| → 0, (B.157)

with probability 1 (under P) where the convergence is due to G∗n
a.s.→ G∗ and |G∗n,j(θ′n)+G∗n,j+J11(θ′n)| →

0 with probability 1 implied by (B.156) and G∗n
d
= Gn.

To establish Claim 4, finiteness of π1,j and π1,j+J11 implies that

EPn

(
mj(X, θ

′
n)

σPn,j(θ
′
n)

+
mj+J11(X, θ′n)

σPn,j+J11(θ′n)

)
= OP(

κn√
n

). (B.158)

Suppose by contradiction that

DPn,j+J11(θ′n) +DPn,j(θ
′
n)→ q 6= 0. (B.159)

Write

r̃ = arg max
s:‖s‖=1

qs, (B.160)

yielding qr̃ > 0. Let

rn = r̃κ2
n/
√
n. (B.161)

Using a mean value expansion (where θ̄n and θ̃n in the expressions below are two potentially different
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vectors that lie component-wise between θ′n and θ′n + rn) we obtain

EPn

(
mj(X, θ

′
n + rn)

σPn,j(θ
′
n + rn)

+
mj+J11(X, θ′n + rn)

σPn,j+J11(θ′n + rn)

)
=EPn

(
mj(X, θ

′
n)

σPn,j(θ
′
n)

+
mj+J11(X, θ′n)

σPn,j+J11(θ′n)

)
+
(
DPn,j(θ̄n) +DPn,j+J11(θ̃n)

)
rn

=OP(
κn√
n

) + (DPn,j(θ
′
n) +DPn,j+J11(θ′n)) rn +

(
DPn,j(θ̄n)−DPn,j(θ

′
n)
)
rn +

(
DPn,j+J11(θ̃n)−DPn,j+J11(θ′n)

)
rn

=OP(
κn√
n

) + qr̃
κ2
n√
n

+OP(
κ4
n

n
). (B.162)

It then follows that there exists N ∈ N such that for all n ≥ N , the right hand side in (B.162) is

strictly greater than zero.

Next, observe that

EPn

(
mj(X, θ

′
n + rn)

σPn,j(θ
′
n + rn)

+
mj+J11(X, θ′n + rn)

σPn,j+J11(θ′n + rn)

)
=EPn

(
mj(X, θ

′
n + rn)

σPn,j(θ
′
n + rn)

+
mj+J11(X, θ′n + rn)

σPn,j(θ
′
n + rn)

)
−
(
σPn,j+J11(θ′n + rn)

σPn,j(θ
′
n + rn)

− 1

)
EPn(mj+J11(X, θ′n + rn))

σPn,j+J11(θ′n + rn)

=EPn

(
mj(X, θ

′
n + rn)

σPn,j(θ
′
n + rn)

+
mj+J11(X, θ′n + rn)

σPn,j(θ
′
n + rn)

)
− oP(

κ2
n√
n

). (B.163)

Here, the last step is established as follows. First, using that σPn,j(θ
′
n + rn) is bounded away from

zero for n large enough by the continuity of σ(·) and Assumption 3.3′, we have

σPn,j+J11(θ′n + rn)

σPn,j(θ
′
n + rn)

− 1 =
σPn,j+J11(θ′n)

σPn,j(θ
′
n)

− 1 + oP(1) = oP(1), (B.164)

where we used Claim 1. Second, using Assumption 3.4, we have that

EPn(mj+J11(X, θ′n + rn))

σPn,j+J11(θ′n + rn)
=
EPn(mj+J11(X, θ′n))

σPn,j+J11(θ′n)
+DPn,j+J11(θ̃n)rn = oP(

κn√
n

) +OP(
κ2
n√
n

).

(B.165)

The product of (B.164) and (B.165) is therefore oP(
κ2
n√
n

) and (B.163) follows.

To conclude the argument, note that for n large enough, mj+J11(X, θ′n + rn) ≤ −mj(X, θ
′
n + rn)

a.s. because for any θ′n ∈ ΘI(Pn) + ρ/
√
nBd by Assumption 3.3′ (i) for n large enough, θ′n + rn ∈ Θ

and Assumption 3.3′ (iii-1) applies. Therefore, there exists N ∈ N such that for all n ≥ N , the left

hand side in (B.162) is strictly less than the right hand side, yielding a contradiction.

Appendix C Auxiliary Lemmas

Lemma C.1: The event

max
λ∈Λbn(θ,ρ,c)

p′λ ≥ 0 ≥ min
λ∈Λbn(θ,ρ,c)

p′λ

with Λbn(θ, ρ, c) defined in equation (2.7), is equivalent to the event

Λbn(θ, ρ, c) ∩ {p′λ = 0} 6= ∅. (C.1)

Proof. “If” is immediate. To see “only if,” note that if the first event obtains, then there exist

λ, λ̄ ∈ Λbn(θ, ρ, c) with p′λ̄ ≥ 0 ≥ p′λ. If either p′λ̄ = 0 or p′λ = 0, the result follows. Consider the
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case that both are different from zero. As Λbn(θ, ρ, c) is convex, it follows that

−p′λ
p′λ̄− p′λ

λ̄+
p′λ̄

p′λ̄− p′λ
λ ∈ Λbn(θ, ρ, c)

and hence the claim.

Lemma C.2: Fix θ ∈ Θ, P ∈ P and ρ. Suppose Assumptions 3.1, 3.2, 3.3 or 3.3′, 3.4 and 3.5

hold and also that ϕj(x) ≤ 0 for all x and j. Let 0 < δ < ρ. With a modification of notation, explicitly

highlight ĉn(θ)’s dependence on ρ through the notation ĉn(θ, ρ). Then

|ĉn(θ, ρ)− ĉn(θ, ρ− δ)| p→ 0 (C.2)

if and only if DP,j(θ)/‖DP,j(θ)‖ ∈ {p,−p} for all j ∈ J ∗(θ) ≡ {j : EP [mj(Xi, θ)] ≥ 0}.

Remark C.1: The lemma applies to any increase or decrease of ρ. The claims about ĉASn (θ) are

implied because in the lemma’s notation, ĉASn (θ) = ĉn(θ, 0).

Remark C.2: For θ such that J ∗(θ) = ∅, we have ĉn(θ, ρ)
p→ 0 but also ĉASn (θ)

p→ 0. This is

consistent with Lemma C.2 because the condition on gradients vacuously holds in this case.

Proof. Recall that θ and P are fixed, i.e. we assume a pointwise perspective. Then

ĉn(θ, ρ)
p→ inf{c ≥ 0 : P ({λ ∈ ρBd : GP,j(θ) +DP,j(θ)λ ≤ c, j ∈ J ∗(θ)} ∩ {p′λ = 0} 6= ∅) ≥ 1− α}.

(C.3)

Here, we used convergence of Gbj(θ) to GP,j(θ) and of D̂j(θ) to DP,j(θ), boundedness of gradients,

and the fact that

ϕj(κ
−1
n

√
nm̄j(Xi, θ)/σP,j(θ))

p→

0 if j ∈ J ∗(θ)

−∞ otherwise,
(C.4)

where the first of those cases uses nonpositivity of ϕj . It therefore suffices to show that the right hand

side of C.3 strictly decreases in ρ if and only if the conditions of the Lemma hold.

To simplify notation, henceforth omit dependence of GP,j(θ), DP (θ), and J ∗(θ) on P and θ.

Define the J vector e to have elements ej = c − Gj , j = 1, . . . , J . Suppose for simplicity that J ∗

contains the first J∗ inequality constraints. Let e[1:J∗] denote the subvector of e that only contains

elements corresponding to j ∈ J ∗, define D[1:J∗,:] correspondingly, and write

K =


D[1:J∗,:]

Id

−Id
p′

−p′

 , g =


e[1:J∗]

ρ · 1d
ρ · 1d

0

0

 , τ =


0 · 1J∗

1d

1d

0

0

 .

where Id denotes the d × d identity matrix. By Farkas’ Lemma (Rockafellar, 1970, Theorem 22.1),

the linear system Kλ ≤ g has a solution if and only if for all µ ∈ RJ
∗+2d+2

+ ,

µ′K = 0⇒ µ′g ≥ 0. (C.5)

To further simplify expressions, fix p = [1 0 . . . 0]. Let M = {µ ∈ RJ
∗+2d+2

+ : µ′K = 0}.
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Step 1. This step shows that

P ({λ ∈ ρBd : GP,j +DP,jλ ≤ c, j ∈ J ∗} ∩ {p′λ = 0} 6= ∅)

> P ({λ ∈ (ρ− δ)Bd : GP,j +DP,jλ ≤ c, j ∈ J ∗} ∩ {p′λ = 0} 6= ∅) (C.6)

if and only if the condition on gradients holds. This is done by showing that

P ({µ′g ≥ 0 ∀µ ∈M} ∩ {µ′g − δτ < 0 ∃µ ∈M}) > 0. (C.7)

under that same condition. The event {µ′g ≥ 0 ∀µ ∈M} obtains if and only if

min
µ∈RJ∗+2d+2

+

{µ′g : µ′K = 0} ≥ 0 (C.8)

and analogously for µ′ (g − δτ) ≥ 0. The values of these programs are not affected by adding a

constraint as follows:

min
µ∈RJ∗+2d+2

+

{
µ′g : µ′K = 0, µ ∈ arg min

µ̃∈RJ∗+2d+2
+

(µ̃′g : µ̃[1:J∗] = µ[1:J∗], µ̃′K = 0)

}
, (C.9)

That is, we can restrict attention to a concentrated out subset of vectors µ, where the last (2d + 2)

components of any µ minimize the objective function among all vectors that agree with µ in the first

J∗ components. The inner minimization problem in equation (C.9) can be written as

min
µ̃[J∗+1:J∗+2d+2]∈R2d+2

+

ρ

J∗+2d∑
j=J∗+1

µ̃j s.t.


µ̃J∗+1 − µ̃J∗+d+1 + µ̃J∗+2d+1 − µ̃J∗+2d+2

µ̃J∗+2 − µ̃J∗+d+2

...

µ̃J∗+d − µ̃J∗+2d

 = −µ[1:J∗]′D[1:J∗,:].

(C.10)

Thus, the solution of the problem is uniquely pinned down as

µ[J∗+1:J∗+2d+2] =



0

−
[
D[1:J∗,2:d]′µ[1:J∗] ∧ 0 · 1d−1

]
0

D[1:J∗,2:d]′µ[1:J∗] ∨ 0 · 1d−1

−
[
D[1:J∗,1]′µ[1:J∗] ∧ 0

]
D[1:J∗,1]′µ[1:J∗] ∨ 0


, (C.11)

whereD[1:J∗,2:d]′µ[1:J∗]∨0·1d−1 indicates a component-wise comparison. Now we consider the following

case distinction:

Case (i). If Dj/‖Dj‖ ∈ {p,−p} for all j ∈ J ∗, then µ[1:J∗]′D = (µ[1:J∗]′D[1:J∗,1], 0, ..., 0)′ and

therefore all but the last two entries of µ[J∗+1:J∗+2d+2] equal zero. One can, therefore, restrict attention

to vectors µ with µ[J∗+1:J∗+2d] = 0. But for these vectors, µ′τ = 0 and so the programs we compare

necessarily have the same value. The probability in equation (C.7) is therefore zero.

Case (ii). Suppose that at least one row of D, say its first row (though it can be one direction of an

equality constraint), is not collinear with p, so that ‖D[1,2:d]‖ 6= 0.
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Let

$ =



1

0 · 1J∗−1

0

−
[
(D[1,2:d]′) ∧ 0 · 1d−1

]
0

(D[1,2:d]′) ∨ 0 · 1d−1

−
[
(D[1,1]) ∧ 0

]
(D[1,1]) ∨ 0


(C.12)

and note that $[J∗+1:J∗+2d] 6= 0, hence $′τ > 0.

As in the proof of Lemma B.6, the setM can be expressed as positive span of a finite, nonstochastic

set of affinely independent vectors νt ∈ RJ
∗+2d+2

+ that are determined only up to multiplication by a

positive scalar. All of these vectors have the “concentrated out structure” in equation (C.11). But then

$ must be one of them because it is the unique concentrated out vector with $[1:J∗] = (1, 0, ..., 0)′,

and (1, 0, ..., 0)′ cannot be spanned by nonnegative J∗-vectors other than positive multiples of itself.

We now establish positive probability of the event

νt′g ≥ 0, all νt

νt′ (g − δτ) < 0, some νt

by observing that if we define

ιk =



−ρ ·
∑d
i=2

∣∣D[1,i]
∣∣

k · 1J∗−1

ρ · 1d
ρ · 1d

0

0


, (C.13)

then we have

0 = $′ιk = min
t
νt′ιk.

Any other spanning vector νt will not have $[2:J∗] = 0 and so for any such vector, νt′ιk strictly

increases in k. As there are finitely many spanning vectors, all of them have strictly positive inner

product with ιk if k is chosen large enough.

A realization of g = ιk would, therefore, yield

νt′g ≥ 0 ∀νt ∈M, and $t′ (g − δτ) < −ε, (C.14)

for some ε > 0. Let

Γk = {ι : ι = ιk + ε/2b, ‖b‖ ≤ 1 and $′b > 0}. (C.15)

Then

νt′ι ≥ 0 ∀νt ∈M, and $t′ (ι− δτ) < −ε/2, ∀ι ∈ Γk. (C.16)

The probability in equation (C.7) is therefore strictly positive.

Step 2. Next, we argue that

P ({λ ∈ ρBd : Gj +Djλ ≤ c, j ∈ J ∗} ∩ {p′λ = 0} 6= ∅) (C.17)
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strictly continuously increases in c. The rigorous argument is very similar to the use of Farkas’ Lemma

in step 1 and in Lemma B.6. We leave it at an intuition: As c increases, the set of vectors g fulfilling

the right hand side of (C.5) strictly increases, hence the set of realizations of Gj that render the

program feasible strictly increases, and Gj has full support.

Step 3. Steps 1 and 2 imply that

inf
c≥0
{P ({λ ∈ ρBd : Gj +Djλ ≤ c, j ∈ J ∗} ∩ {p′λ = 0} 6= ∅) ≥ 1− α}

> inf
c≥0
{P ({λ ∈ (ρ− δ)Bd : Gj +Djλ ≤ c, j ∈ J ∗} ∩ {p′λ = 0} 6= ∅) ≥ 1− α} (C.18)

and hence the result.
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