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Confidence Intervals for the Overall Effect Size in

Random-Effects Meta-Analysis
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One of the main objectives in meta-analysis is to estimate the overall effect size by calculating
a confidence interval (CI). The usual procedure consists of assuming a standard normal
distribution and a sampling variance defined as the inverse of the sum of the estimated
weights of the effect sizes. But this procedure does not take into account the uncertainty due
to the fact that the heterogeneity variance (1°) and the within-study variances have to be
estimated, leading to Cls that are too narrow with the consequence that the actual coverage
probability is smaller than the nominal confidence level. In this article, the performances of
3 alternatives to the standard CI procedure are examined under a random-effects model and
8 different 7> estimators to estimate the weights: the ¢ distribution CI, the weighted variance
CI (with an improved variance), and the quantile approximation method (recently proposed).
The results of a Monte Carlo simulation showed that the weighted variance CI outperformed
the other methods regardless of the 72 estimator, the value of 72, the number of studies, and
the sample size.
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Meta-analysis is a research methodology that aims to
integrate, by applying statistical methods, the results of a set
of empirical studies about a given topic. To accomplish its
purpose, a meta-analysis requires a thorough search of the
relevant studies, and the results of each individual study
have to be translated into the same metric (Cooper, 1998;
Lipsey & Wilson, 2001). Depending on such study charac-
teristics as the design type and how the variables implied
were measured, the meta-analyst has to select one of the
different effect-size indices and apply it to all of the studies
of the meta-analysis (Grissom & Kim, 2005). So, when the
dependent variable is continuous and the purpose of each
study is to compare the performance between two groups,
the standardized mean difference is the most usual effect-
size index (Cooper, 1998; Hedges & Olkin, 1985). If the
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dependent variable is dichotomous or has been dichoto-
mized, then effect-size indices such as an odds ratio (or its
log transformation), a risk ratio (or its log transformation),
or a risk difference can be applied (Egger, Smith, & Altman,
2001; Haddock, Rindskopf, & Shadish, 1998; Sanchez-
Meca, Marin-Martinez, & Chacén-Moscoso, 2003). If all of
the variables are continuous, then an effect-size index from
the r family can be applied, such as the Pearson correlation
coefficient or its Fisher’s Z transformation (Hunter &
Schmidt, 2004; Rosenthal, 1991; Rosenthal, Rosnow, &
Rubin, 2000).

In general, the statistical analysis usually applied in meta-
analysis has three main objectives: (a) to estimate the over-
all effect size of the population to which the studies pertain;
(b) to assess if the heterogeneity found among the effect
estimates can be explained by chance alone or if, on the
contrary, the individual studies exhibited true heterogeneity,
that is, variability produced by real differences among the
population effect sizes; and, (c) if heterogeneity cannot be
explained by sampling error alone, to search for study
characteristics that could operate as moderator variables of
the effect estimates. Our focus in this article was the first
objective, that is, to estimate the population effect size.

To estimate the population effect size from a set of
individual studies, an average of the effect estimates is
calculated by weighting each one of them by its inverse
variance, and a confidence interval (CI) is thus obtained
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around it. Most of the effect-size indices usually applied in
meta-analysis are approximately normally distributed and
their sampling variances can be easily estimated by simple
algebraic formulas (Fleiss, 1994; Rosenthal, 1994; Shadish
& Haddock, 1994). As a consequence, meta-analyses typi-
cally calculate a CI for the overall effect size assuming a
standard normal distribution to estimate the population ef-
fect size, with the sampling variance estimated as the in-
verse of the sum of the estimated weights. This procedure
performs well when the effect estimates obtained in the
studies differ among themselves only by sampling error,
that is, when the effect estimates assume a fixed-effects
model or the heterogeneity variance is small. However,
when the underlying statistical model in the meta-analysis is
a random-effects model, the empirical coverage probability
of this CI for the average effect size systematically under-
estimates the nominal confidence level (Brockwell & Gor-
don, 2001, 2007; Sidik & Jonkman, 2002).

In recent years, the random-effects model has been con-
sidered the most realistic statistical model in meta-analysis
(Field, 2001, 2003; Hedges & Vevea, 1998; Overton, 1998;
Raudenbush, 1994). Therefore, to obtain CIs for the overall
effect size with a good coverage probability is an important
issue. Our purpose in writing this article was to compare the
performances of three alternative CI procedures with that
based on the standard normal distribution to estimate the
overall effect size when the underlying statistical model is a
random-effects model. Moreover, we also examined
whether different heterogeneity variance estimators affect
the coverage probability of the CIs for the overall effect
size. Thus, we started from the idea that a good CI proce-
dure to estimate an overall effect size should offer good
coverage, that is, close to nominal, and the coverage should
not be affected by the value of the heterogeneity variance,
by the heterogeneity variance estimator used in the meta-
analysis, or by the number of studies. The four CI proce-
dures analyzed here are very simple to calculate, not requir-
ing iterative numerical computation. Other methods of
obtaining CIs that are computationally more complex and
are not addressed here are those of Biggerstaff and Tweedie
(1997) or the profile likelihood method of Hardy and
Thompson (1996).

The Random-Effects Model

Let k be a set of independent empirical studies about a
given topic and 6, be the effect-size estimate obtained in the
ith study. The underlying statistical model can be repre-
sented as

0,=0,+e, (1)

where e; is the sampling error of 6,. Usually e; is assumed
to be normally distributed, e; ~ N(0, o7), with o7 being the

within-study variance. The random-effects model assumes
that each single study estimates its own parametric effect
size 0, and, as a consequence, 0, constitutes a random
variable with mean p and between-studies variance 7°. The
between-studies variance, also named heterogeneity vari-
ance, represents the variability between the estimated effect
sizes due not to within-study sampling error but to true
heterogeneity among the studies. In other words, the heter-
ogeneity variance represents the variability produced by the
influence of the differential characteristics of the studies,
such as the design quality, the characteristics of the subjects
in the samples, or differences in the program implementa-
tion. This implies that each parametric effect size, 6;, can be
decomposed as

0,=pn +e¢, 2)

with g, representing the difference between the parametric
effect size of the ith study, 0,, and the parametric mean, .
The errors €, are usually assumed to be normally distributed,
with heterogeneity variance 7% g, ~ N(0, 7°). It is also
assumed that the errors e; and €; are independent. So, com-
bining Equations 1 and 2 enables us to formulate the ran-
dom-effects model as

éi:lJv"'ei"'gf» 3)

and, as a consequence, the estimated effect sizes (:)i are
assumed to be normally distributed with mean . and vari-
ance 7> + o7, 6, ~N(w, 7> + o?).

When there is not true heterogeneity, then the between-
studies variance is zero, 7 = 0, and the random-effects
model becomes a fixed-effects model, that is, all of the
individual studies estimate the same parametric effect size
8, =0, = ... =0, = = 0. In this case, Equation 3
simplifies to §; = 6 + e, and the effect estimates 6, are
assumed to be normally distributed with mean 6 and vari-
ance cr,?, 6 ;~N(0, 0'?). Thus, the fixed-effects model can be
considered a particular case of the random-effects model
when differences among the effect estimates are only due to
sampling error. Both models, those of random and fixed
effects, can be extended to include moderator variables.
They are not presented here, however, as our purpose is to
compare the performance of different procedures to calcu-
late a CI around the overall effect size.

CIs for the Overall Effect Size

One of the main objectives in meta-analysis is to obtain
an average effect-size estimate from a set of independent
effect-size estimates and to calculate a CI around it to
estimate the parametric effect size, . In practice, the stud-
ies included in a meta-analysis have different sample sizes
and, as a consequence, the precision of the effect-size esti-
mates varies among them. A good estimator of the mean
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parametric effect size should take into account the precision
of the effect estimates. The most usual procedure to achieve
this objective consists of weighting each effect-size estimate
by its inverse variance. In a random-effects model, the
uniformly minimum variance unbiased estimator (UMVU)
of w is given by

E Wiéi

Bumvu = W 4

(Viechtbauer, 2005), with w; being the optimal or true
weights w, = 1/(t* + o7). The sampling variance of
Aumvu is given by

1
V(Bumvu) = 27 . &)

i

i

If, in a meta-analysis, the population sampling variance of
each study, o7, and the population heterogeneity variance,
72, are known, then Pumvy can be calculated and, as it is
asymptotically normally distributed, a 100(1 — a)% CI
assuming a standard normal distribution can be calculated
by

N N
Bumvu £ 21 - w2 \J’V(MUMVU), (6)

where z,_, is the 100(1 — «/2) percentile of the standard
normal distribution, o being the significance level.

The z Distribution CI

In practice, neither the parametric heterogeneity variance,
72, nor the parametric sampling variances of the single
studies, af, are known. Therefore, they have to be estimated
from the data reported in the studies. This means that
Equation 6 cannot ever be applied. For most of the effect-
size indices usually applied in meta-analysis, unbiased es-
timators of the sampling variance, (i'iz, have been derived,
and several estimators can be found in the literature to
estimate the heterogeneity variance in a meta-analysis, 4°
(Sidik & Jonkman, 2007; Viechtbauer, 2005).

Once we have an unbiased sampling variance estimator,
67, to be applied in each study and a heterogeneity variance
estimator, 4%, the optimal weights, w;, can be estimated by
W, = 1/(# + 67). Therefore, the formula for estimating
the parametric mean effect size, p, in meta-analysis is given

by

@:EW;" (7

and its sampling variance is usually estimated as

. 1
V(i) = S )

Wi

i

The typical procedure to calculate a CI around an overall
effect size assumes a standard normal distribution and es-
timates the sampling variance of L by Equation 8. Here we
refer to this procedure as the z distribution CI, which is
obtained by

[ \V(@) 9)

However, this procedure does not take into account the
uncertainty produced by the fact that the within-study and
the between-studies variances have to be estimated (Bigger-
staff & Tweedie, 1997). As Sidik and Jonkman (2003) have
contended, “The normality assumption for {L is not strictly
true in practice (nor is V(ji) the true variance), because the
W, values are estimates. Nonetheless, this is the commonly
used practice for constructing CIs” (p. 1196). The main
consequence of assuming a standard normal distribution to
obtain a CI for i with Equation 9 is that its actual coverage
probability is smaller than the nominal confidence level, the
width of the CI being too narrow. As Viechtbauer (2005)
has shown, estimating the optimal weights, w;, using unbi-
ased estimates of 7* and o;

i

results in an estimate of the sampling variance of [ that is
negatively biased. As a consequence of this negative bias, the
sampling variance of (i will be underestimated on average, and
researchers will attribute unwarranted precision to their estimate
of . (p. 263)

Moreover, several Monte Carlo studies have shown that the
underestimation of the nominal confidence level with the z
distribution CI is more severe as the between-studies vari-
ance increases and as the number of studies decreases. The
z distribution CI only presents good coverage probability in
meta-analyses with a large number of studies and very little
or zero heterogeneity variance (Brockwell & Gordon, 2001,
2007; Follmann & Proschan, 1999; Hartung & Makambi,
2003; Makambi, 2004; Sidik & Jonkman, 2002, 2003, 2005,
20006).

The t Distribution CI

To solve the problems of coverage probability with the z
distribution CI, it has been proposed in the literature (Foll-
mann & Proschan, 1999; Hartung & Makambi, 2002) to
assume a Student ¢ reference distribution with k — 1 degrees
of freedom, instead of the standard normal distribution, and
to estimate the sampling variance of [ in Equation 8 with

[y P —a/z\fv(@), (10
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with 7, |_,» being the 100(1 — «/2) percentile of the ¢
distribution with k — 1 degrees of freedom. Here we refer to
this procedure as the ¢ distribution CI. Using a t distribution
produces CIs that are wider than those of the standard
normal distribution, in particular for meta-analyses with a
small number of studies, and, consequently, this should
improve the coverage probability, as Follmann and Pros-
chan (1999) have found.

The Weighted Variance CI

One procedure that has not yet widely been used in
meta-analysis is that proposed by Hartung (1999), which
consists of calculating a CI for the overall effect size as-
suming a Student ¢ distribution with & — 1 degrees of
freedom and estimating the sampling variance of [L with a
weighted extension of the usual formula, V(fi):

E Wi(éi - @)2

i

NN

(1)

where W, = 1/(f2 + 67) and [i is the overall effect size
defined in Equation 7 assuming a random-effects model. It
can be shown that the statistic (i — w)/V'V (L) is approx-
imately distributed as a ¢ distribution with k — 1 degrees of
freedom (Hartung, 1999; Sidik & Jonkman, 2002). There-
fore, a CI around the overall effect size can be computed by

e N5 (12)

Following Sidik and Jonkman (2003, 2006), here we refer to
this procedure as the weighted variance CI. Previous sim-
ulations seem to offer good coverage of this procedure when
the effect-size index is the log odds ratio (Makambi, 2004;
Sidik & Jonkman, 2002, 2006), the standardized mean dif-
ference (Sidik & Jonkman, 2003), and the unstandardized
mean difference and the risk difference (Hartung & Maka-
mbi, 2003). In particular, the weighted variance CI offers a
better coverage probability than the z distribution CI except
when the between-studies variance is zero, > = 0 (Hartung,
1999; Hartung & Makambi, 2003; Sidik & Jonkman, 2002,
2003).

The Quantile Approximation (QA) Method

The fourth method of calculating a CI for the overall
effect size that is included in this study has been recently
proposed by Brockwell and Gordon (2007). The method
consists of approximating, by means of intensive computa-
tion, the quantiles of the distribution of the statistic M
= (& — w/\V(i) and then using the 100(1 — «/2)%
percentile of the M distribution to calculate a CI for the
overall effect size by

BED oo \V(@) (13)

(Brockwell & Gordon, 2007, p. 4538), where \7(@) is the
usual formula to estimate the sampling variance of [i, de-
fined in Equation 8, and b,__,, is the 100(1 — o/2)%
percentile of the distribution of M empirically approached
by Monte Carlo simulation. Unlike the other three proce-
dures for calculating a CI for the overall effect size in a
random-effects meta-analysis, the critical values in the
Brockwell and Gordon (2007) method are obtained by sim-
ulating thousands of meta-analyses from a random-effects
model and varying the number of studies between 2 and 30
and the heterogeneity variance between O and 0.5. The
effect-size index that they used in the simulations was the
log odds ratio, as it is a very common effect estimator in the
medical literature. Once Brockwell and Gordon (2007) ob-
tained the observed values for the quantiles 100(c/2)% and
100(1 — a/2)% of the M statistic, they adjusted a regression
equation for the quantiles as a function of the number of
studies, k:

4902 0.756
K K

0.958

b]*a/Z =2.061 + - ln(k)

(14)

(Brockwell & Gordon, 2007, p. 4538). Thus, the critical
values, b, _», to be used in the CI formula (Equation 13) of
Brockwell and Gordon (2007) are estimated from Equation
14. For example, if a meta-analysis has k = 10 studies, then
the corresponding critical value for a 95% nominal confi-
dence level is b ;5 = 2.374. Here we refer to this procedure
as the QA method. Brockwell and Gordon (2007) have
found a better performance of this procedure than those of
the z and ¢ distribution CIs, using the DerSimonian and
Laird (1986) estimator of the heterogeneity variance, but
they did not compare the QA method with the weighted
variance CI.

Heterogeneity Variance Estimators

To calculate a CI around the overall effect size in a
meta-analysis where a random-effects model is assumed, an
estimate of the heterogeneity variance is needed. Although
meta-analyses typically use the heterogeneity variance es-
timator proposed by DerSimonian and Laird (1986), alter-
native estimators have been proposed that seem to offer
better properties than the usual estimator. Some of the
alternatives are based on noniterative estimation proce-
dures, whereas others require iterative computations. Dif-
ferent heterogeneity variance estimators differ in respect to
such statistical properties as bias and mean square error
(Sidik & Jonkman, 2007; Viechtbauer, 2005, 2007), and an
issue that has not yet been widely studied is whether the
selection of the heterogeneity variance estimator has an
effect on the performance of different Cls for the overall
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effect size. Next, we present formulas to calculate eight
different heterogeneity variance estimators that could be
used to obtain Cls for the overall effect size under a ran-
dom-effects model.

Hunter and Schmidt (HS) Estimator

Hunter and Schmidt (1990, pp. 285-286; see also Hunter
& Schmidt, 2004, pp. 287-288) proposed to estimate the
heterogeneity variance by calculating the difference be-
tween the total variance of the effect estimates and an
average of the estimated within-study variances, ¢7. A
simplified formula of this estimator is given by

0—k
TIZrIS = ZMA/FE’ (15)
where WI* = 1/G7 is the inverse variance of the ith study

assuming a fixed-effects model, with 67 being the within-
study variance estimate for the ith study. Q is the heteroge-
neity statistic usually applied to test the homogeneity hy-
pothesis (Hedges & Olkin, 1985):

0 = 2 Wi, — ), (16)

with [igs being the mean effect size, assuming a fixed-
effects model; that is,

l‘i'FE = AFE °* (17)

If Q < k, then 274 is negative and, as a consequence, it has
to be truncated to zero.

Hedges (HE) Estimator

The HE estimator of the population heterogeneity vari-
ance consists of calculating the difference between an un-
weighted estimate of the total variance of the effect sizes
and an unweighted estimate of the average within-study
variance (Hedges, 1983, p. 391; see also Hedges & Olkin,
1985, p. 194):

Z (éz - ﬁvUW)2

i

1
fﬁE:?—%E(ﬂz, (18)
where [Lyyw 1s an unweighted mean of the effect sizes
26

Huw = K (19)

As #% is not a nonnegative heterogeneity variance estima-
tor, it has to be truncated to zero when 47 < 0.

DerSimonian and Laird (DL) Estimator

The heterogeneity variance estimator usually applied in
the meta-analytic literature is that proposed by DerSimonian
and Laird’s (1986) estimator, which is based on the mo-
ments method, consists of estimating the population heter-
ogeneity variance by

0—(k—1)
’fzmzf, (20)

where Q is the heterogeneity statistic defined in Equation 16
and c is given by

> 0Py

i

When Q < (k — 1), then 43, is negative and, like 475 and
4 it has to be truncated to zero.

Malzahn, Bohning, and Holling (MBH) Estimator

Malzahn, Bohning, and Holling (2000) proposed a moment-
based nonparametric estimator of the population heteroge-
neity variance specifically designed to be used only with the
standardized mean difference, d. It is also based on the
difference of an estimate of the total variance of the d
indices and an estimate of the average within-study variance
of the d indices. It is obtained by

E (1- ‘Pi)(éi - @FE)Z
i 1 N; 1 .
'flz\/IBH: k—1 _k2< )_kE‘Pieiz

NgiNg;

(22)

(Malzahn et al., 2000, p. 622; see also Malzahn, 2003), with
N; = ng; + ng; being the total sample size of the ith study;

figs was defined in Equation 17, 6, is the d index for the ith
study, and ¢; is given by

I N —4 (23)
BT lem)P(N - 2)
with c(m;) being the correction factor of the d index for
small sample sizes, defined in Equation 33. Applications of
this estimator are limited to meta-analyses where the effect-
size index is the d index. When 47,5}, has a negative value,
it is truncated to zero.
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Hartung and Makambi (HM) Estimator

Hartung and Makambi (2003; see also Makambi, 2004)
proposed a positive heterogeneity variance estimator that
attempts to improve the performance of the usual DL esti-
mator. A simplified formula of this estimator is given by

2
. 0

™ R 1)+ O e

with O and ¢ defined in Equations 16 and 21, respectively.
An advantage of this estimator is that it cannot yield nega-
tive values.

Sidik and Jonkman (SJ) Estimator

Another estimator of the heterogeneity variance in meta-
analysis, recently proposed by Sidik and Jonkman (2005),
also yields nonnegative values. The SJ estimator is a simple
noniterative estimator of the heterogeneity variance that is
based on a reparametrization of the total variance in the
effect estimates, 6 ;- It is obtained by

@; l(éi - licr)2
=, (25)
(Sidik & Jonkman, 2005, p. 371; see also Sidik & Jonkman,
2007), where 9, = r, + 1,r, = 67/%, and 4 is an initial

estimate of the heterogeneity variance, which can be de-
fined, for example, as

E (éz - liUW)2

= (26)

fyw being the unweighted mean of the effect estimates,
defined in Equation 19, and [i; is given by

Evi_léi
i

lio = Eﬁil . (27)

Thus, in the SJ estimator, the weights are a function not only
of the within-study variances but also of a crude estimate of
the heterogeneity variance. Although other initial 47 esti-
mates can be proposed, we used the one originally recom-
mended by Sidik and Jonkman (2005).

Maximum Likelihood (ML) Estimator

The six heterogeneity variance estimators presented
above are noniterative. Two iterative estimators proposed in
the meta-analytic literature to estimate the heterogeneity
variance are based on maximum likelihood and restricted
maximum likelihood estimation (Brockwell & Gordon,

2001; DerSimonian & Laird, 1986; Hardy & Thompson,
1996; Raudenbush & Bryk, 1985). For a specified conver-
gence criterion, the formula that enables us to estimate the
population heterogeneity variance by maximum likelihood
under a random-effects model is given by

2 W6, — f)? — 67

i = S 28)

(Sidik & Jonkman, 2007; Viechtbauer, 2005, p. 268), with
W, = 1/(2 + 6?), where 47 is initially estimated by any of
the noniterative estimators of the heterogeneity variance or
setting 2 = 0 and [y, is given by

> Wb,
i

v, = S, (29

In each iteration of Equations 28 and 29, the estimate of 72
has to be checked to avoid having negative values truncat-
ing it to zero. Convergence is usually achieved within fewer
than 10 iterations.

Restricted Maximum Likelihood Estimator

The second iterative estimator of the heterogeneity vari-
ance in a random-effects model is based on restricted max-
imum likelihood estimation (REML). The REML estimator
of 7 compensates for the negative bias of the ML estimator
by applying a linear combination of the effect sizes. The
REML estimator of the heterogeneity variance is given by

E le[(éx - @ML)2 - 6','2]

W
i

A
2 _
TREML —

1
+ ST, (30)

i

(Viechtbauer, 2005, p. 269). The iterative procedure is
similar to that of the ML estimator. When 33y, < 0, it is
truncated to zero to avoid negative values.

An Example

To illustrate the calculations and the extent to which
different CI procedures and heterogeneity variance estima-
tors can yield differences in the interval estimations of the
overall effect size, we have selected the example cited in
Hedges and Olkin (1985, p. 25), composed of the results of
10 studies on the effectiveness of open versus traditional
education on student creativity. The effect-size index ap-
plied was the standardized mean difference, d. Table 1
presents the d value, d;; the sample size; and the estimated
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Table 1
Effect Estimates, Sample Sizes, and Estimated Within-Study
Variances for the Example Data

Study d; N = Ney 6?2
1 —0.581 90 0.023
2 0.530 40 0.052
3 0.771 36 0.060
4 1.031 20 0.113
5 0.553 22 0.094
6 0.295 10 0.202
7 0.078 10 0.200
8 0.573 10 0.208
9 —0.176 39 0.051

10 —0.232 50 0.040

within-study variance, 6',2, for each study. In total, we cal-
culated 32 CIs assuming a random-effects model, resulting
from the combination of four CI procedures (z distribution
CI with Equation 9, ¢ distribution CI with Equation 10,
weighted variance CI with Equation 12, and QA method
with Equation 13) with eight heterogeneity variance estima-
tors (Equations 15, 18, 20, 22, 24, 25, 28, and 30). Table 2
shows the results obtained with the different CI procedures.
A first interesting result is that the standard errors of [i
obtained with the usual formula, V V(ﬁ), were more de-
pendent on the 72 estimator than were those calculated with
the weighted sampling variance, V'V ({i). In particular,
standard errors obtained from the weighted variance,
\/VW(fL), varied from 0.166 to 0.169, whereas standard
errors from the usual variance, V V(m, ranged from 0.154
to 0.192; that is, the range for V V(ﬁ) was about 12 times
larger than that of V'V (fi). Moreover, a positive relation-
ship was found between the standard errors from the usual
formula and the 7> estimates. However, the overall effect
estimates, [i, varied as a function of the 72 estimator from
0.230 to 0.251. As expected, for common values of 22, the
width of the CIs based on the z distribution was narrower

Table 2

than the widths obtained with the ¢ distribution CI, the
weighted variance CI, and the QA method (except for the
DL heterogeneity variance estimator). On average, the
widths of the CIs based on the z distribution, ¢ distribution,
weighted variance, and QA method were 0.680, 0.784,
0.758, and 0.823, respectively. The width of the CI obtained
with the QA method was slightly larger than that of the ¢
distribution CI because of the different critical value used:
2.374 for b,_,, versus 2.262 for t,_, ,_,,. Furthermore,
the width of the CIs obtained with the weighted variance
procedure through the different heterogeneity variance es-
timators varied about 12 times less (SD = 0.004) than those
obtained with z distribution, ¢ distribution, and QA method
CIs (SDs = 0.046, 0.053, and 0.055, respectively). There-
fore, the weighted variance CI seems to be less dependent
on the 7> estimator than are the other three CI procedures.
This example illustrates how the selection of the 7° estima-
tor and the procedure for calculating a CI for the overall
effect size can affect the results.

Monte Carlo Study

Although several Monte Carlo studies have compared the
coverage probability of the usual CI and that proposed by
Hartung (1999) under a random-effects model, the extent to
which different heterogeneity variance estimators can affect
their performance has not yet been widely examined. In
previous studies, the usual DL estimator was used (Sidik &
Jonkman, 2002, 2006), and its influence on the coverage
probability has been compared with one (Hartung & Maka-
mbi, 2003; Makambi, 2004) or two (Sidik & Jonkman,
2003) alternative estimators of the heterogeneity variance
only in some cases. Moreover, a comparison of the perfor-
mance of the four CI procedures has not yet been carried
out. However, only one of these simulation studies focused
on the standardized mean difference as the effect-size index
(Sidik & Jonkman, 2003). Finally, previous simulation stud-

Results Based on Different Heterogeneity Variance Estimators and Confidence Interval (CI) Procedures for the Example Data

Width of the 95% CI for

7% estimator 42 0 \/V (L) \,/VW () z distribution t distribution Weighted variance QA method
HS 0.229 0.245 0.179 0.167 0.702 0.810 0.756 0.850
HE 0.148 0.230 0.154 0.169 0.603 0.696 0.766 0.730
DL 0.277 0.251 0.192 0.166 0.754 0.871 0.752 0.914
MBH 0.204 0.235 0.160 0.169 0.629 0.725 0.763 0.761
HM 0.248 0.248 0.184 0.168 0.723 0.834 0.754 0.875
SJ 0.199 0.241 0.170 0.168 0.667 0.770 0.759 0.808
ML 0.200 0.241 0.170 0.168 0.668 0.771 0.759 0.809
REML 0.220 0.244 0.176 0.167 0.691 0.798 0.757 0.837

Note. CI = confidence interval; HS = Hunter and Schmidt estimator; HE = Hedges estimator; DL = DerSimonian and Laird estimator; MBH =
Malzahn, Bohning, and Holling estimator; HM = Hartung and Makambi estimator; SJ = Sidik and Jonkman estimator; ML = maximum likelihood

estimator; REML = restricted maximum likelihood estimator.
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ies have not manipulated the parametric mean effect size, .,
because it is expected that CIs calculated from z and ¢
distributions should be invariant to a location shift (Brock-
well & Gordon, 2001; Sidik & Jonkman, 2005). However,
as the weights used in the calculations of the overall effect
size, [i, and of the variances for [i are estimated weights, w,,
and not the true or “correct” weights, w;, changes in . could
affect the coverage probability of the CIs. This is of partic-
ular interest when the effect-size index is the standardized
mean difference, as the within-study variance of each study
is a function of the parametric effect size, 9,.

Therefore, we carried out Monte Carlo simulations to
determine whether (a) different assumptions about the un-
derlying sampling distribution of the overall effect size
(standard normal distribution, Student ¢ distribution, and
quantile approximation); (b) different estimators of the sam-
pling variance of [i (the usual or the weighted sampling
variance); (c) different heterogeneity variance estimators;
and (d) changes in the parametric mean effect size, ., can
affect the coverage probability when constructing a CI
around an overall standardized mean difference in a ran-
dom-effects meta-analysis. Moreover, the performance of
the different CI procedures was examined as a function of
such factors as the number of studies, the value of the
heterogeneity variance, and the average sample size. Fi-
nally, for comparison purposes, the four CI procedures were
also calculated from the optimal or correct weights, w,.

From the results of previous research, we had several
expectations. First, in respect to the z distribution CI, we
expected to find (a) a good adjustment of the empirical
coverage probability to the nominal confidence level only
when 72 = 0 and (b) an empirical coverage probability that
becomes increasingly less than the nominal coverage prob-
ability as 7% increases and the number of studies, k, de-
creases. Second, the ¢ distribution CI should offer better
coverage than that based on the standard normal distribution
(Follmann & Proschan, 1999). In respect to the weighted
variance CI, we expected to obtain a closer approximation
to the nominal coverage probability by the actual coverage
probability regardless of the values of 7> and k (Makambi,
2004; Sidik & Jonkman, 2003). The QA method should
offer better coverage as 7 and the number of studies in-
crease. Furthermore, Sidik and Jonkman (2003) found that
the coverage probability of the weighted variance CI is less
affected by the 7> estimator than is that based on the
standard normal distribution. In particular, they showed this
finding with three 72 estimators (DL, MBH, and HE esti-
mators). We expected to generalize this finding to the eight
7% estimators examined here and, thus, to show the higher
robustness to changes in the 7> estimator of the weighted
variance CI, in comparison with that of the z distribution, ¢
distribution, and QA method CIs. Finally, as expected from
the statistical theory, the z distribution CI applied on the

optimal or correct weights should offer the best adjustment
to the nominal level.

In our simulation study, the effect-size index was the
standardized mean difference. To simulate each individual
study, we defined a two-group design (e.g., experimental vs.
control) and a continuous outcome. Define (r%vi as the with-
in-study variance of observations for study i. Under a ran-
dom-effects model, the population standardized mean dif-
ference for each study, §,, was defined as

al:u, (31)

Ow;
where pg; and pe; were the population means for the
experimental and the control groups in the ith study and o,
was the common population standard deviation of the ith
study. For each study, normal distributions in the experi-
mental and the control groups were assumed for the con-
tinuous outcome.

The population standardized mean differences, 9, were
normally distributed with mean p and variance 72, that is,
8, ~ N(u, 7). Here, §, and . correspond with 0, and p,
respectively, in previous equations. From the normal distri-
bution of §, values, collections of k independent studies
were randomly generated to simulate a meta-analysis. Once
a 9, value was randomly selected, the ith study was simu-
lated by generating two normal distributions (for the exper-
imental and control groups) with means of wg; = §; and
e; = 0 and common standard deviation o, = 1. Then,
pairs of independent samples (experimental and control)
were randomly selected from the two distributions of the
continuous outcome with sample sizes ng; = ng;, and the
means, yg; and y¢, , and the standard deviations, Sg; and S¢;,
were calculated. Thus, for the ith study, 8, was estimated by
the d index

d = c(m) YVEi . Yei ’

(32)
where c(m;) is a correction factor for small sample sizes that
is approached by

c(m;) =1 (33)

B 4(ng; + ne;) — 9

(Hedges & Olkin, 1985), and S, is the pooled within-study
standard deviation, given by

/(nEi - 1)5125i + (n¢; — 1)5%1‘

5=

In this context, the d, values match the 6, estimates defined
in the equations in previous sections of this article. The
parametric within-study variance of d; is given by

(34)

ng; + ne; — 2
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ng; + N o7
or=— Oy (35)

NgiNci 2(ng; + ne;)

(Hedges & Olkin, 1985). As 9, is unknown in practice, d; is
substituted in Equation 35 for 3,. So the sampling variance
of d; is estimated by

ng + ng d;
Gr=—" (36)

NgNc; 2(ng; + ney)

For each one of the k studies in a meta-analysis, the d;
index and both the population (o7) and the estimated (67)
within-study variances were calculated by applying the
Equations 32, 35, and 36, respectively. Then, with the data
of each simulated meta-analysis, we performed the follow-
ing calculations:

1. The eight heterogeneity variance estimators pre-
sented above were computed (475, Equation 15;
4% Equation 18; 23, , Equation 20; A3y, Equa-
tion 22; 47\, Equation 24; 43;, Equation 25; 43, ,
Equation 28; and 3y, Equation 30).

2. For each study, eight estimated weights, W;, under
a random-effects model were calculated by apply-
ing w, = 1/(# + §?), with 67 given in Equation
36 and by substituting the eight heterogeneity vari-
ance estimators for 47,

3. Also, for each study, the optimal weights, w;,
defined as w, = 1/(7* + o7?), were computed for
comparison purposes.

4. For each of the eight estimated weights, a
weighted average effect size, i, was calculated
with Equation 7, as were both the corresponding
standard variance, V(pﬁ), and weighted variance,
V., (jL), by using Equations 8 and 11, respectively.

5. With the optimal weights, the UMVU mean effect
size, Pymvus its variance, V(Rypvy): and the
weighted variance adapted to the w; weights,
Vo(lumvu), were also calculated by using Equa-
tions 4, 5, and 11, respectively.

6. For each of the nine average effect sizes (the eight
pu versions and fiyyvy) and their corresponding
standard and weighted variances, four CI proce-
dures were calculated: z distribution CI (with
Equation 9 for the eight i versions and Equation 6
for lypvu), ¢ distribution CI (with Equation 10),
weighted variance CI (with Equation 12), and the
QA method (with Equation 13). In all cases, the
nominal confidence level was fixed at 100(1 —
o) = 95%.

To examine the performance of the different CI proce-
dures, we manipulated the following factors in the simula-
tions. First, the heterogeneity variance, 72, was manipulated
with values 0, 0.04, 0.08, 0.16, and 0.32. Note that for 7> =
0, the assumed model is not a random- but a fixed-effects
model. The values for T> were selected in an attempt to
reflect those usually found in real meta-analyses with the d
index. Second, the average parametric standardized mean
difference, |, was manipulated with values 0.5 and 0.8,
which can be considered to be effects of medium and high
magnitude, respectively (Cohen, 1988). Third, the number
of studies, k, in each meta-analysis was manipulated, with
values 5, 10, 20, 40, and 100. Finally, the average sample
size of the studies included in the meta-analyses was ma-
nipulated with values 30, 50, 80, and 100. The sample size
distribution used in our simulations was obtained from a
review of the meta-analyses published in 18 international
psychological journals, with a Pearson skewness index of
+1.464 (for more details, see Sanchez-Meca & Marin-
Martinez, 1998). Thus, four vectors of five sample sizes
each were selected, averaging 30, 50, 80, or 100, using the
skewness index given above to approximate real data, with
the following values for N;: (12, 16, 18, 20, 84), (32, 36, 38,
40, 104), (62, 66, 68, 70, 134), and (82, 86, 88, 90, 154).
Each vector of five samples was then replicated either 2, 4,
8, or 20 times to generate meta-analyses of k = 5, 10, 20,
40, and 100 studies, respectively. For each simulated study,
the sample sizes for experimental and control groups were
equal (ng = ng), with N = ng + ne. For example, the
sample size vector (12, 16, 18, 20, 84) meant that the
experimental and control groups had sample sizes of np =
ne = 6, 8,9, 10, and 42, respectively.

The simulation study was programmed in GAUSS
(Aptech Systems, 2001). In total, 200 conditions were ma-
nipulated [5 (7 values) X 2 (p values) X 5 (k values) X 4
(N values)] and, for each of them, 10,000 replicates (meta-
analyses) were performed. From the 10,000 replicates for
each condition, the empirical coverage probability was cal-
culated for the 36 CIs by computing the proportion of
interval estimates that included the parametric effect size, .

Results and Discussion

Table 3 presents the average empirical coverage proba-
bilities and their standard deviations through the 100 sim-
ulated conditions for each of the 36 CIs calculated when
p = 0.5: 32 ClIs resulting from the application of eight
heterogeneity variance estimators and four CI procedures
(normal distribution with the usual variance of [i, ¢ distri-
bution with the usual variance of [i, # distribution with the
weighted variance of [i, and the QA method) and 4 ClIs
obtained for the UMVU average effect size, Lyyyy, that is,
with the optimal or correct weights, w;. Although in practice
the w; weights are unknown, these 4 CIs were included in
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Table 3

Average Empirical Coverage Probabilities With Standard Deviations Through the 100 Simulated Conditions for Each Confidence

Interval Procedure and v° Estimator (. = 0.5)

Confidence interval procedure

Weighted
z distribution t distribution variance QA method

Weights 0 M SD M SD M SD M SD
Optimal 0.496 950 .002 968 015 950 .002 971 .016
7 estimator

HS 0.490 924 .029 950 .017 945 .008 954 .017

HE 0.491 935 .021 958 015 946 .007 961 .015

DL 0.490 933 .020 955 .016 946 .007 .959 .016

MBH 0.491 935 .020 957 .016 946 .007 .960 .016

HM 0.490 941 .025 961 .020 949 .005 964 .020

SJ 0.491 957 .023 974 014 951 .004 977 .013

ML 0.490 924 .029 950 .017 945 .008 954 .017

REML 0.490 933 .020 955 .016 945 .008 .959 .016
Note. QA = quantile approximation; HS = Hunter and Schmidt estimator; HE = Hedges estimator; DL = DerSimonian and Laird estimator; MBH =

Malzahn, Bohning, and Holling estimator; HM = Hartung and Makambi estimator; SJ = Sidik and Jonkman estimator; ML = maximum likelihood

estimator; REML = restricted maximum likelihood estimator.

our simulations purely for comparison purposes with the
CIs obtained from the estimated between-studies and with-
in-study variances. In the table, the mean effect size, fi, is
also presented. This was obtained when using the optimal
weights and when the optimal weights were estimated by
applying eight different 7> estimators.

Table 3 shows that the estimated mean effect size using
the optimal weights was practically unbiased through the
100 simulated conditions (figpyy = 0.496), whereas the
mean effect sizes obtained with the estimated weights
showed a slight negative bias, with average values ranging
from 0.490 to 0.491. We can therefore consider that the
mean effect estimates were very similar among themselves
as well as being practically unbiased and, as a consequence,
differences found among the estimated coverage probabili-
ties of the different CIs cannot be due to a differential bias
in the mean effect estimates but must be due rather to the
different CI procedures and heterogeneity variance estima-
tors.

With respect to the coverage probabilities of the CIs, the
first result from Table 3 that should be noted is that, as
expected from statistical theory, the z distribution CI calcu-
lated with the optimal weights was very close to the nominal
confidence level of 0.95 (mean observed coverage = .950),
as well as that obtained with the weighted variance CI
(mean observed coverage = .950). However, the CI calcu-
lated assuming an approximate ¢ distribution with the usual
variance of Ly Overstated the nominal confidence level
(mean observed coverage = .968), as did the CI obtained by
the QA method (mean observed coverage = .971). There-
fore, good coverage may be obtained when using the opti-
mal weights by assuming an approximate normal distribu-

tion with the usual variance, V({iiypvy), or from an
approximate ¢ distribution with the weighted variance,
ValBomvo):

However, in real meta-analyses, the only weights that can
be obtained are the estimated weights, W;, which have been
calculated here for eight different heterogeneity variance
estimators. As Table 3 shows, Cls based on the normal
distribution and the usual variance (V(1) = 1/3W;) pre-
sented empirical coverage probabilities clearly under the
nominal confidence level (mean estimated coverage proba-
bility through the eight 7% estimators: .935), whereas Cls
based on the ¢ distribution and the usual variance obtained
empirical coverages slightly over the nominal confidence
level (mean estimated coverage probability = .957). On the
one hand, the understatement of the nominal confidence
level found for the z distribution CI coincided with the
results of previous simulation studies (Brockwell & Gor-
don, 2007; Follmann & Proschan, 1999; Hartung & Maka-
mbi, 2003; Makambi, 2004; Sidik & Jonkman, 2002, 2003,
2005, 2006). On the other hand, the slight overstatement of
the nominal confidence level found with the ¢ distribution CI
was similar to that obtained by Follmann and Proschan
(1999) but did not coincide with the slight understatement
found by Brockwell and Gordon (2007).

The ClIs obtained by the quantile approximation method
showed, in general, coverage probabilities slightly over the
nominal confidence level (mean estimated coverage proba-
bility: .961). In particular, the mean actual coverage prob-
ability obtained with the QA method when 72 was estimated
by the DL estimator was .959, a result slightly over that
reported by Brockwell and Gordon (2007, p. 4540, Table
IIT) of .951. The CIs based on the ¢ distribution and the
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weighted variance of (i, V(ji), showed better coverage
than that of the other CI procedures, with a mean estimated
coverage probability through the eight 7> estimators of .947.
The weighted variance CI however, showed a slight but
systematic understatement of the nominal level for all of the
72 estimators (with the exception of the SJ estimator). The
good coverage achieved by the weighted variance CI was
coherent with the results obtained in previous studies (Sidik
& Jonkman, 2002, 2003, 2006). Furthermore, the variability
in the coverage probabilities of the weighted variance Cls
through the eight 7> estimators was clearly smaller (SD =
.002) than those found with the z distribution, the r distri-
bution, and the QA method CIs (SDs = .010, .008, and .007,
respectively). This finding means that the weighted variance
CI was less affected by changes in the 7> estimator used to
calculate the weights than the z distribution, ¢ distribution,
and QA method ClIs. In fact, the mean coverage probabili-
ties for the eight t> estimators with the weighted variance CI
only ranged from .945 to .951, whereas z distribution, #
distribution, and QA method CIs obtained mean coverage
probabilities that ranged from .924 (HS and ML estimators)
to .957 (SJ estimator), from .950 (HS and ML estimators) to
.974 (SJ estimator), and from .954 (HS and ML estimators)
to .977 (SJ estimator), respectively. In the same way, Table
3 shows how the coverage probabilities of the weighted
variance CIs obtained with a given 7> estimator through the
100 conditions were also less variable among them (with
standard deviations between .004 and .008) than were those
obtained for the z distribution, the ¢ distribution, and the QA
method CIs (with standard deviations between .020 and
.029, between .014 and .020, and between 0.013 and .020,
respectively). These results confirm and extend those ob-

Table 4

Average Empirical Coverage Probabilities With Standard Deviations

Interval Procedure and v° Estimator (. = 0.8)

tained by Sidik and Jonkman (2003), who used only three 72
estimators (HE, DL, and MBH estimators) versus the eight
7% estimators examined here. Therefore, on average, the
weighted variance CI yielded coverage probabilities closer
to the nominal confidence level with a lower variability and
was less dependent on the 72 estimators as compared with
the z distribution, ¢ distribution, and QA method ClIs.
Whereas Table 3 shows the results for w = 0.5, Table 4
presents the same results for w = 0.8. Thus, by comparing
the empirical coverage probabilities in both tables, it is
possible to assess whether changes in the location parameter
have an effect on the performance of the different CI pro-
cedures. For the four CI procedures, the empirical coverage
probabilities found for p = 0.8 were slightly lower than
were those obtained for w = 0.5. The mean estimated
coverage probabilities through the eight 72 estimators for
w = 0.8 were .931, .954, 942, and .957 for the z distribu-
tion, ¢ distribution, weighted variance, and QA method Cls,
respectively. Thus, for w = 0.8, the best coverage was
achieved by the ¢ distribution CI, followed by the QA
method and the weighted variance CI. The systematic de-
crease in the coverage probabilities for p = 0.8 with respect
to those for p = 0.5 may be due to the slight negative bias
exhibited by the estimated mean effect sizes, L. The in-
crease in the negative bias of [i as . increases is consistent
with the results found by Viechtbauer (2005) and could be
the reason for the decrease in the coverage probabilities.
Apart from this result, the weighted variance CI showed
coverage probabilities that were less variable and less de-
pendent on the 72 estimator (standard deviation through the
eight 7° estimators = .002) than were those for the z

Through the 100 Simulated Conditions for Each Confidence

Confidence interval procedure

Weighted
z distribution t distribution variance QA method

Weights 0 M SD M SD M SD M SD
Optimal 0.794 .949 .003 967 016 .949 .003 970 .017
7 estimator

HS 0.783 919 .028 .945 021 940 .013 .949 .021

HE 0.785 931 .021 954 018 942 .011 957 .018

DL 0.784 928 .020 951 .020 941 .012 954 .021

MBH 0.786 930 .021 953 .020 941 .012 .956 .021

HM 0.784 937 .025 958 .023 944 .009 961 .023

SJ 0.787 .956 021 973 015 947 .007 975 .014

ML 0.783 919 .028 .945 .021 940 .013 .949 .021

REML 0.784 928 .021 951 .021 940 .013 .954 .021

Note.

QA = quantile approximation; HS = Hunter and Schmidt estimator; HE = Hedges estimator; DL = DerSimonian and Laird estimator; MBH =

Malzahn, Bohning, and Holling estimator; HM = Hartung and Makambi estimator; SJ = Sidik and Jonkman estimator; ML = maximum likelihood

estimator; REML = restricted maximum likelihood estimator.
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distribution, ¢ distribution, and QA method CIs (SDs =
.012, .009, and .008, respectively).

In our simulations, we manipulated the heterogeneity
variance, 72, with values 0, 0.04, 0.08, 0.16, and 0.32. One
of the main problems of the z distribution CI is that its
coverage probability decreases under the nominal level as
the heterogeneity variance increases. Figure 1 shows the
empirical coverage probabilities of the 36 CI procedures as
a function of 7 for w = 0.5, and Table 5 presents the
empirical coverage probabilities for the two most extreme
72 values tested here: 0 and 0.32. As expected from previous
studies, Figure 1A shows how the empirical coverage prob-
ability for CIs calculated assuming a normal distribution
and estimated weights systematically decreased as 7> in-
creased, regardless of the heterogeneity variance estimator
used in calculating the weights. As Table 5 shows, the mean
coverage probability through the eight 7° estimators for
7> = 0.32 was .920. Only when 7> = 0 did this CI procedure
yield good coverage for all of the 7> estimators (mean
estimated coverage = .963), with the exception of the HM
and SJ estimators, which overstated the nominal confidence
level (Ms = .977 and .984, respectively). The overstatement
of the nominal confidence level obtained with the HM and
SJ estimators was due to the fact that both of them are
nonnegative estimators of 7% and, as a consequence, when
72 = 0, they are positively biased, leading to CIs that are too
wide. For 1% = 0.04 and with the exception of the SJ
estimator, the coverage probabilities for this CI procedure
were inadmissibly under .94. Therefore, as 72 increases, the
width of the CIs for the z distribution method becomes too
narrow, with the consequence that the actual coverage is
under the nominal level.

The ¢ distribution CI yielded coverage probabilities that
also decreased as 7> increased for all the heterogeneity
variance estimators (Figure 1B and Table 5). In contrast to
the z distribution CIL, however, as 72 increased, the actual
coverage probability got closer to the nominal level. The
unadjustment of the empirical coverage to the nominal level
was more pronounced for small 72 values. Thus, for 72 = 0,
the 7 distribution CI obtained coverage probabilities inad-
missibly larger than the nominal level (mean estimated
coverage through the eight 72 estimators = .977). For 7* =
0.32, the ¢ distribution CI showed good coverage (mean
estimated coverage probability = .947). Therefore, assum-
ing a ¢ distribution and the usual formula for the sampling
variance seems to offer good coverage for large 7> values.

The results found for the QA method were very similar to
those of the ¢ distribution CI: a better adjustment of the
empirical coverage to the nominal level as 72 increased
(Figure 1C and Table 5). In particular, for 7 = 0.32, the QA
method achieved very good coverage (mean empirical cov-
erage through the eight 7> estimators = .950), even slightly
better than that of the 7 distribution CL. For 7> = 0, the mean
coverage was clearly over the nominal level (mean esti-
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Figure 1. Average empirical coverage probabilities as a function
of the 7> parameter, for the four confidence interval (CI) proce-
dures with the eight heterogeneity variance estimators and the
optimal weights (w = 0.5). A: z distribution CI. B: ¢ distribution
CI. C: quantile approximation method. D: weighted variance CI.
HS = Hunter and Schmidt estimator; HE = Hedges estimator;
DL = DerSimonian and Laird estimator; MBH = Malzahn,
Bohning, and Holling estimator; HM = Hartung and Makambi
estimator; SJ = Sidik and Jonkman estimator; ML = maximum
likelihood estimator; REML = restricted maximum likelihood
estimator.
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Table 5

Average Empirical Coverage Probabilities With Standard Deviations Through the 100 Simulated Conditions for Each Confidence

Interval Procedure and Two Values of 7° (p. = 0.5)

Confidence interval procedure

z distribution t distribution Weighted variance QA method
Weights M SD M SD M SD M SD
=0

Optimal .948 .002 967 .016 950 .002 970 .017

72 estimator
HS .956 .006 972 .017 948 .006 974 .017
HE 960 .006 975 .016 949 .005 977 .016
DL 958 .007 973 .017 948 .006 975 .018
MBH .960 .007 974 .016 949 .005 976 .017
HM 977 .003 986 .008 952 .004 988 .008
SJ .984 .004 992 .005 954 .005 993 .005
ML 955 .006 971 .017 948 .006 974 .018
REML 957 .007 972 .017 948 .006 975 .018

™ =032

Optimal 950 .002 969 .016 950 .002 972 .016

7% estimator
HS .907 .034 938 .004 947 .007 942 .005
HE .926 .026 951 .003 948 .006 954 .005
DL 920 .022 946 .005 947 .006 950 .007
MBH .926 .023 951 .004 948 .006 954 .005
HM 914 .018 942 .012 948 .004 946 .012
SJ 936 .021 959 .008 949 .003 962 .008
ML 910 .036 940 .006 946 .008 944 .007
REML 922 .023 948 .005 947 .006 952 .006

Note. QA = quantile approximation; HS = Hunter and Schmidt estimator; HE = Hedges estimator; DL = DerSimonian and Laird estimator; MBH =

Malzahn, Bohning, and Holling estimator; HM = Hartung and Makambi estimator; SJ = Sidik and Jonkman estimator; ML = maximum likelihood

estimator; REML = restricted maximum likelihood estimator.

mated coverage = .979) and slightly worse than that of the
t distribution CI. The results for the QA method are similar
to those found by Brockwell and Gordon (2007). The sim-
ilarity of the results found for the ¢ distribution and the QA
method CIs is due to the fact that they only differ in the
critical value used to calculate the CI: a critical value from
a Student ¢ distribution with k — 1 degrees of freedom and a
quantile estimated from Equation 14 that is a function of %,
respectively. For example, for k = 10, the respective critical
values are 2.262 and 2.374. As both procedures propose the
same sampling variance for the overall effect size, the width
of the corresponding CIs is very similar and, as a conse-
quence, the estimated coverage probabilities are also very
close to each other. In any case, as 7% increases, the QA
method seems to offer slightly better coverage than that of
the ¢ distribution CIL.

Whereas the z distribution, ¢ distribution, and QA method
CIs exhibited empirical coverages that were affected by the
value of 72, the weighted variance CI achieved good cov-
erage regardless of the value of 7> and the 7> estimator
(Figure 1D), although always with a coverage probability
slightly under the nominal confidence level. Even for 1 =

0, the weighted variance CI outperformed the z distribution,
t distribution, and QA method ClIs. In fact, as Table 5
shows, for 72 = 0, the mean estimated coverage probability
of weighted variance CIs through the eight 7> estimators
was .949, whereas those of z distribution, ¢ distribution, and
QA method CIs were .963, .977, and .979, respectively. As
a consequence, the weighted variance CI may be applied
even for small values of 72. For 7> = 0.32, the mean
empirical coverage for the weighted variance CI was .947,
similar to that of the ¢ distribution CI and slightly under that
of the QA method. As Table 5 shows, the observed cover-
age probability with the weighted variance CI was less
variable for each 7> estimator and through the eight 7°
estimators than were those of the other three CI procedures.
It seems that the improved formula for estimating the sam-
pling variance proposed by Hartung (1999), together with
the use of critical values from a Student ¢ distribution,
enables one to appropriately accommodate the uncertainty
due to estimating the between-studies and within-study vari-
ances.

With the optimal weights, the coverage probability of the
four CI procedures was not affected by the value of 72 but,
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whereas z distribution and weighted variance CIs showed
good coverage, the ¢ distribution and the QA method CI
overstated the nominal confidence level. This was an ex-
pected result, as to assume a ¢ distribution for L or to
simulate the empirical distribution of L when the optimal
weights are known does not have a theoretical justification.

Figure 2 shows the empirical coverage probabilities as a
function of the number of studies in the meta-analysis (ks =
5, 10, 20, 40, and 100) for the 36 CIs. For small ks (5 and
10), the z distribution, ¢ distribution, and QA method CIs
showed a clear unadjustment of the empirical coverage
probability to the nominal confidence level but, whereas the
z distribution—based procedure showed empirical coverage
probabilities under the nominal level, the 7 distribution and
the QA method ClIs presented coverage over the nominal
level (see Figures 2A, 2B, and 2C). However, the weighted
variance CI was able to maintain good coverage through the
different values of k, regardless of the 7 estimator used
(Figure 2D). A more detailed analysis enables us to distin-
guish the different performances of the four CI procedures.
For k = 40 studies, p. = 0.5; 7% = 0.32; and, using the DL
estimator of 72, the empirical coverage probabilities of the z
distribution, ¢ distribution, weighted variance, and QA
method CIs were .935, .942, .949, and .945, respectively.
With the REML 12 estimator, the observed probabilities
were .939, .946, .949, and .949, respectively. That is, the
weighted variance CI and the QA method showed the best
adjustment to the nominal confidence level. Therefore, the
QA method had a good performance for k = 40, in spite of
the fact that the equation proposed by Brockwell and Gor-
don (2007) to estimate the critical values was obtained
assuming k values not larger than 30. For £ = 100 studies,
p = 0.5; 72 = 0.32; and, using the DL estimator of 72, the
empirical coverage probabilities of the z distribution, ¢ dis-
tribution, weighted variance, and QA method CIs were
slightly lower than they were for k = 40, with the exception
of the z distribution CI: .938, .940, .946, and .940, respec-
tively. The same trend was found with the REML 7° esti-
mator: .941, .944, 946, and .944 for the empirical coverage
probabilities of the z distribution, ¢ distribution, weighted
variance, and QA method CIs, respectively. Thus, the per-
formance of the QA method for k values larger than 30 was
reasonably good, in spite of using k values over 30. In
general, as k increased, the weighted variance CI performed
better than the other three CI procedures.

Finally, as Figure 3 shows, the average sample size of the
meta-analyzed studies (Ns = 30, 50, 80, and 100) scarcely
affected the performance of the CI procedures. As expected
from the statistical theory, the CIs obtained with the optimal
weights maintained good coverage through both the number
of studies and the average sample size, regardless of the 7°
estimator.
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Figure 2. Average empirical coverage probabilities as a function
of the number of studies, k, for the four confidence interval (CI)
procedures with the eight heterogeneity variance estimators and
the optimal weights (u = 0.5). A: z distribution CI. B: ¢ distribu-
tion CI. C: quantile approximation method. D: weighted variance
CI. HS = Hunter and Schmidt estimator; HE = Hedges estimator;
DL = DerSimonian and Laird estimator; MBH = Malzahn,
Bohning, and Holling estimator; HM = Hartung and Makambi
estimator; SJ = Sidik and Jonkman estimator; ML = maximum
likelihood estimator; REML = restricted maximum likelihood
estimator.
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Figure 3. Average empirical coverage probabilities as a function
of the average sample size, N, for the four confidence interval (CDnH
procedures with the eight heterogeneity variance estimators and
the optimal weights (u = 0.5). A: z distribution CI. B: 7 distribu-
tion CI. C: quantile approximation method. D: Weighted variance
CI. HS = Hunter and Schmidt estimator; HE = Hedges estimator;
DL = DerSimonian and Laird estimator; MBH = Malzahn,
Bohning, and Holling estimator; HM = Hartung and Makambi
estimator; SJ = Sidik and Jonkman estimator; ML = maximum
likelihood estimator; REML = restricted maximum likelihood
estimator.

Conclusions

In meta-analysis, one of the main objectives is to estimate
the parametric effect size by calculating an average effect
size from the selected studies, .. When the underlying
statistical model is a random-effects model, the average
effect size is calculated by weighting each effect estimate by
its inverse variance, the variance being the sum of the
heterogeneity variance and the within-study variance. As
both variances have to be estimated, the optimal weights, w;,
are unknown in practice and so are substituted by estimated
weights, W;, by estimating both types of variances. Then,
with the estimated weights, an average effect size is ob-
tained and a CI for i is calculated assuming that i follows
a standard normal distribution and that its sampling variance
is defined by the usual formula, V(ji) = 1/ w,. However,
this CI does not take into account the variability of the
estimated variances of each study and, as a consequence, the
width of the CIs is too narrow, leading to empirical cover-
age probabilities that are under the nominal confidence level
unless the heterogeneity variance is null or very small. In
spite of this problem, this CI procedure is the one applied
most often in real meta-analyses. Our purpose in this article
was to compare the performance of three alternative CI
procedures with that of the standard one, in terms of the
observed coverage probability. All of them are simple to
calculate, not requiring intensive computation. Two of the
three alternative CI procedures are based on the ¢ distribu-
tion, but they differ in the formula to estimate the sampling
variance of i: The procedure called here ¢ distribution CI
applies the usual sampling variance, V(ji), whereas the
other one, the weighted variance CI, assumes a less-known
formula to estimate a weighted sampling variance of fi,
V,({v), proposed by Hartung (1999). The third alternative
procedure, the QA method, assumes the usual sampling
variance, V(@), but it proposes the estimation of the critical
values for the CI, b, __», via Monte Carlo simulation of the
quantiles of the M statistic (Brockwell & Gordon, 2007).
Additionally, we examined the robustness of the four CI
procedures to changes in the heterogeneity variance estima-
tor, 72, as well as the influence of the value of 7%; the number
of studies, k; and the average sample size on the actual
coverage probabilities of the Cls.

With respect to the standard CI procedure (z distribution
CI), our results coincided with those of previous simulation
studies, showing coverage probabilities clearly under the
nominal confidence level, unless 7> = 0 (Brockwell &
Gordon, 2001, 2007; Follmann & Proschan, 1999; Hartung
& Makambi, 2003; Makambi, 2004; Sidik & Jonkman,
2002, 2003, 2005, 2006; Viechtbauer, 2005). The perfor-
mance of the standard procedure improved as the number of
studies in the meta-analysis and the average sample size
increased. The ¢ distribution CI showed coverage probabil-
ities over the nominal confidence level, in particular when
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the value of 7° and the number of studies were small. The
failure of the z and ¢ distribution CIs with the usual variance
for [L to achieve a good adjustment to the nominal confi-
dence level is due to the fact that estimated values of 7> and
o? are used in place of the true values in the weights,
implying that L follows neither an exact normal nor a ¢
distribution. Moreover, both CI procedures present cover-
age probabilities that clearly depend on the heterogeneity
variance estimator used in the computation of the weights,
as well as on the value of 7> and the number of studies in the
meta-analysis. Therefore, applying the usual sampling vari-
ance for i, V({i), with the estimated weights leads to CIs
with empirical coverage probabilities that are not close to
the nominal confidence level.

Our results showed that the QA method and the weighted
variance CI present good coverage, in general. The
weighted variance CI, however, was more robust to changes
in the 7° estimator than was the QA method. Thus, using
eight different T2 estimators in our simulations enabled us to
confirm the robustness of the weighted variance CI to
changes in the 7> estimator and to extend the findings
obtained in previous studies that only used two or three 7>
estimators (Hartung & Makambi, 2003; Makambi, 2004;
Sidik & Jonkman, 2003). Moreover, and in contrast to the
QA method, the weighted variance CI yielded CIs that were
affected neither by the value of 72 nor by the number of
studies, k. Through all of the simulated conditions, this CI
procedure achieved a good adjustment to the nominal con-
fidence level and, in general, outperformed the z distribu-
tion, ¢ distribution, and QA method CIs. If we consider that
a good CI procedure to estimate the overall effect size in a
meta-analysis, when the statistical model assumed is a ran-
dom-effects model, should exhibit a good adjustment to the
nominal confidence level regardless of the value of 72, the
number of studies, the average sample size, and the heter-
ogeneity estimator, then the weighted variance CI is clearly
a better option than the usual CI procedure based on the
normal distribution and than the ¢ distribution CI. The
results of our simulations coincide with those of previous
Monte Carlo studies in showing a better performance of the
weighted variance CI than of the z and ¢ distribution Cls.

With respect to the performances of the weighted vari-
ance CI and the QA method, our simulation study is the first
one that compares these with each other. Our results show
that although both of them exhibit, in general, good cover-
age in most of the conditions considered here, the weighted
variance CI is less dependent on the value of 72, the number
of studies in the meta-analysis, and the 72 estimator. In
particular, the QA method offers deficient coverage when
the heterogeneity variance and the number of studies are
small, and it is more affected by the 1> estimator used to
estimate the weights than is the weighted variance CI.
Therefore, we recommend the use of the weighted variance
CI in future meta-analyses.

Although we have focused on how to obtain a CI for the
overall effect size, another advantage of assuming a ¢ dis-
tribution for L with k — 1 degrees of freedom and the
weighted sampling variance, V(ji), is that it is possible to
test the null hypothesis of a parametric effect size equal to
zero (Hy: w = 0) with the test statistic T = @/ \st(@)~
Previous simulations have shown a better adjustment of this
test statistic to the nominal significance level than that of the
usual z statistic, based on the standard normal distribution
and the usual sampling variance of [i, z = [/ \]\Tﬂ) (Har-
tung, 1999; Hartung & Makambi, 2003; Makambi, 2004).

Our study has some limitations. On the one hand, note
that the results of our study can only be generalized to the
simulated conditions in terms of 7> values, number of stud-
ies, and average sample sizes. On the other hand, we have
examined the performance of the different CI procedures
only for the standardized mean difference as the effect-size
index. It is expected that the performance of the weighted
variance CI obtained with the d index will be similar to that
of meta-analyses that use other effect-size indices, provided
they are relatively unbiased and follow an approximately
normal distribution. In fact, previous simulation studies
have found good performance of the weighted variance CI
with such effect-size indices as the log odds ratio (Maka-
mbi, 2004; Sidik & Jonkman, 2002, 2006), the unstandard-
ized mean difference (Hartung & Makambi, 2003), and the
risk difference (Hartung & Makambi, 2003). Therefore, the
good performance of the weighted variance CI seems to be
robust to changes in the effect-size index.

Finally, it is necessary to make some comments about the
way we have applied the QA method. First, Brockwell and
Gordon (2007) applied the QA method to the log odds ratio
as the effect-size index, whereas we used the standardized
mean difference. As Brockwell and Gordon (2007) stated,
“the method is developed primarily for meta-analyses in
which the effect of intervention is measured as a log odds
ratio” (p. 4533). Changing the effect-size index can affect
the performance of Brockwell and Gordon’s equation in
estimating the critical values that are used in the QA
method. However, as Brockwell and Gordon (2007) sug-
gested, their equation for estimating the critical values could
be applied provided the effect-size index is approximately
normally distributed:

While it is not firmly established that the QA method is suitable
for meta-analyses on other scales, the development here relies
on a structure which is not specific to log odds ratios, since the
essence is estimators that are approximately normally distrib-
uted. (p. 4542)

Therefore, using their equation to estimate the critical val-
ues with standardized mean differences can be considered a
sound practice.

Second, in our simulation study, we used the equation
proposed by Brockwell and Gordon (2007) to estimate the
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quantiles of the M statistic (our Equation 14). They obtained
the quantiles for M by means of a Monte Carlo simulation
in which they varied the number of studies, k, between 2 and
30, and the heterogeneity variance, 72, between 0 and 0.5. In
our simulation study, the number of studies ranged from 5
to 100, and the heterogeneity variance ranged from 0 to
0.32. Although our 7> values are in the range of those used
by Brockwell and Gordon, we have applied their equation to
meta-analyses with more than 30 studies, and this circum-
stance may produce suboptimal results for the QA method.
It is not clear if using the equation proposed by Brockwell
and Gordon (2007) for estimating the critical values is
appropriate when the number of studies in a meta-analysis is
larger than 30. Brockwell and Gordon (2007) considered
that the range of k that they used “is likely to include the
scope of almost all meta-analyses” (p. 4537), but they were
referring to the medical literature. In psychology, meta-
analyses have more than 30 studies relatively frequently
and, as a consequence, this is not a trivial issue.

If Brockwell and Gordon’s (2007) equation for calculat-
ing the critical values is only appropriate for the range of k
values considered in their simulations, then the QA method
loses generalizability. An alternative solution might be to
find the equation to estimate the critical values by carrying
out a Monte Carlo simulation to obtain the quantiles of the
M statistic fixing the values of k (e.g., between 5 and 100)
and 72 to be appropriate in a given research field. But in this
case, the QA method loses simplicity because prior to the
calculation of the CI (with our Equation 13), it is necessary
to develop a Monte Carlo simulation to estimate the critical
values. Our results showed a reasonably good coverage of
the QA method for k£ > 30, but more research is needed to
determine the generalizability of the QA method for differ-
ent ranges of k and effect-size indices.
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