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One of the best-known estimators for the tail index of a heavy-tailed distribution is the Hill estimator.

In this paper, con®dence intervals based on the asymptotic normal approximation of Hill estimator are

studied. The coverage accuracy is evaluated and the theoretical optimal choice of the sample fraction

for the one-sided con®dence interval is given. One surprising ®nding is that the order of optimal

coverage accuracy for the one-sided con®dence interval depends on the sign of the second-order

regular variation.
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1. Introduction

Several estimators have been proposed for the tail index of a heavy-tailed distribution (for

example, Hill 1975; Pickands 1975; Hall 1982; CsoÈrg}o et al. 1985; Dekkers et al. 1989;

Drees 1995; CsoÈrg}o and Viharos 1997; de Haan and Peng 1998). Since we make inferences

about the tail quantity, we can only use the k upper order statistics of a sample of size n

(k=n ! 0) in the estimation procedure. When k is small the variance of the tail index

estimate is large, and the use of a large value of k introduces a large bias in the estimation.

Therefore the choice of k plays an important role in the applications of extremes, for

example, high quantile estimation (see de Haan and RootzeÂn 1993; Danielsson and de Vries

1997a), extreme tail probability estimation (see Hall and Weissman 1997), value-at-risk in

®nance (see Danielsson and de Vries 1997b; Danielsson et al. (1998); Embrechts et al.

(1998; 1999), and some areas of engineering (see Resnick 1997). Recently, several

procedures have been proposed for choosing the optimal value of k in the sense of

asymptotic minimal mean squared errors (see Hall 1990; Dekkers and de Haan 1993; Beirlant

et al. 1996; Drees and Kaufmann 1998; Danielsson et al. 2001). Moreover, some new

estimators have been proposed to reduce the bias of Hill estimator (see Beirlant et al. 1999;

Feuerverger and Hall 1999; Guillou and Hall 2001).

In this paper we are interested in the important statistical issue of obtaining the

con®dence interval for the tail index. We concentrate on the well-known tail index estimator

due to (Hill 1975), de®ned as

ã̂n �
1

k

X

k

i�1

log X n,nÿi�1 ÿ log X n,nÿk ,
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where X1, . . . , X n are independent and identically distributed observations with distribution

function F satisfying

lim
t!1

1ÿ F(tx)

1ÿ F(t)
� xÿ1=ã (1:1)

for all x . 0, and X n,1 < . . . < X n,n denote the order statistics of X 1, . . . , X n. The

parameter ã . 0 is termed the tail index. For the consistency of ã̂n we refer to Mason (1982).

In order to derive the limit of ã̂n we need a stricter condition than (1.1). Suppose, as x ! 1,

that

1ÿ F(x) � cxÿ1=ãf1� bxÿâ � o(xÿâ)g, (1:2)

where c . 0, â . 0 and b 6� 0. Note that (1.2) is a special case of the general second-order

regular variation (see de Haan and StadtmuÈller 1996).

The following proposition easily follows from Peng and Qi (1997) by noting the relation

between the second-order regular variation for 1ÿ F(x) and one for the inverse of

1=(1ÿ F(x)) ± see the proof of Proposition 2.

Proposition 1. Suppose (1.2) holds and k ! 1, k=n ! 0. Then

���

k
p

(ã̂n ÿ ã)!d N (0, ã2) (1:3)

if and only if k � o(n2âã=(1�2âã)).

Then nominal á-level con®dence intervals for ã, based on the normal approximation

(1.3), are

I1(á) � 0, ã̂n �
záã̂n
���

k
p

� �

and I2(á) � ã̂n ÿ
xáã̂n
���

k
p , ã̂n �

xáã̂n
���

k
p

� �

,

where xá and zá are de®ned by

P jN (0, 1)j < xá� � � á and P N (0, 1) < zá� � � á:

In Section 2 we study the coverage accuracy for con®dence intervals I1(á) and I2(á), and

give the theoretical optimal choice of sample fraction k for I1(á) in the sense of

minimizing the absolute coverage error. A data-driven method for choosing the optimal

sample fraction is given in Section 3 and a simulation study is presented in Section 4. All

proofs are deferred to Section 5.

2. Coverage accuracy

In the study of the coverage accuracy of a con®dence interval, one basic tool is the

Edgeworth expansion (see Hall 1992). The following Edgeworth expansion for the Hill

estimator follows from Cheng and Pan (1998).
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Proposition 2. Suppose (1.2) holds and k ! 1, k=n ! 0. Then

P

���

k
p

(ã̂n ÿ ã)

ã
< x

 !

� Ö(x)� ö(x)
1ÿ x2

3
���

k
p � bâã

(1� âã)câã

���

k
p n

k

� �ÿâã
� �

� o
1
���

k
p �

���

k
p n

k

� �ÿâã
� �

(2:1)

uniformly on R, where Ö(x) and ö(x) denote the standard normal distribution function and

density function, respectively.

Remark 1. Expansion (2.1) was used by Cheng and Pan (1998) to construct a more accur-

ate con®dence interval by taking account of ö(x)(1ÿ x2)=(3
���

k
p

), but ignoring

ö(x)(bâã=((1� âã)câã))
���

k
p

(n=k)ÿâã. In this paper we use both terms to choose the

optimal sample fraction in terms of minimizing the absolute coverage error.

Based on the Edgeworth expansion above, we may show our main results which give the

coverage probabilities for I1(á) and I2(á).

Theorem 1. Suppose (1.2) holds and k ! 1, k=n ! 0. Then

P ã 2 I1(á)� � � áÿ ö(zá)
1� 2z2á

3
���

k
p � bâã

(1� âã)câã

���

k
p n

k

� �ÿâã
� �

� o
1
���

k
p �

���

k
p n

k

� �ÿâã
� �

(2:2)

and

P ã 2 I2(á)� � � á� o
1
���

k
p �

���

k
p n

k

� �ÿâã
� �

: (2:3)

Hence the optimal value of k that minimizes the absolute value of the leading coverage

error term in (2.2) is

k� �

(1� 2z2á)(1� âã)câã

3bâã(1� 2âã)

� �

1=(1�âã)nâã=(1�âã) if b . 0,

(1� 2z2á)(1� âã)câã

ÿ3bâã

� �

1=(1�âã)nâã=(1�âã) if b , 0,

8

>

>

>

<

>

>

>

:

(2:4)

which automatically satis®es the condition k � o(n2âã=(1�2âã)) in Proposition 1. Furthermore,

the optimal coverage accuracy for I1(á) is
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P(ã 2 I1(á)) �

áÿ 2
(1� âã)(1� 2z2á)

3(1� 2âã)

� �(1�2âã)=(2(1�âã))
bâã

câã

� �1=(2(1�âã))

3 ö(zá)n
ÿâã=(2(1�âã))(1� o(1)) if b . 0

á� o(nÿâã=(2(1�âã))) if b , 0:

8

>

>

>

>

<

>

>

>

>

:

(2:5)

We remark from (2.4) and (2.5) that the order of the optimal coverage accuracy for I1(á)

depends on the sign of the second-order regular variation.

In order to obtain the optimal choice of k for I2(á), we may need a stricter condition

than (1.2) ± that is, third-order regular variation ± and we conjecture that the optimal

choice of k depends on the third-order parameter as well. Hence seeking a data-driven

method for the choice of k becomes much more dif®cult.

3. Choice of k

Since the optimal sample fraction, in terms of coverage probability, depends on some

unknown quantities, we propose a plug-in estimator for the optimal sample fraction by

focusing on the one-sided con®dence interval in this section. Put

M ( j)
n (k) � 1

k

X

k

i�1

flog X n,nÿi�1 ÿ log X n,nÿkg j, j � 1, 2,

r̂n � ÿ(log 2)ÿ1log

�

�

�

�

M (2)
n (n=(2

����������

log n
p

))ÿ 2 M (1)
n (n=(2

����������

log n
p

))
� �2

M (2)
n (n=

����������

log n
p

)ÿ 2[M (1)
n (n=

����������

log n
p

)]2

�

�

�

�

,

ä̂n � M (2)
n

n
����������

log n
p ÿ 2 M (1)

n

n
����������

log n
p

� �2
( )

(1� r̂n)(
����������

log n
p

)r̂n 2 M (1)
n

n
���������

logn
p
� �� �2

r̂n

( )ÿ1

:

Then it follows from the proof of Theorem 2.1 in Peng (1998) that

r̂n !
p
âã,

ä̂n !
p
bâã(1� âã)ÿ1cÿâã,

as n ! 1. Therefore the plug-in estimator for the optimal sample fraction k� given in (2.4)

is
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k̂ �

1� 2z2á

3ä̂n(1� 2r̂n)

( )

1=(1�r̂n)nr̂n=(1�r̂n) if ä̂n . 0,

1� 2z2á

ÿ3ä̂n

� �

1=(1�r̂n)nr̂n=(1�r̂n) if ä̂n , 0,

8

>

>

>

>

<

>

>

>

>

:

where zá satis®es P(N (0, 1) < zá) � á.

4. Simulation study

We consider two different distributions F(x) � expfÿxÿ1=ãg (x . 0) and F(x) �
1ÿ 1

2
xÿ1=ã ÿ 1

2
xÿ1=ãÿâ (x > 1), which have second-order regular variation of different sign,

that is different sign of b in (1.2).

In the simulation we take ã � 1:0, â � 1:0=ã, sample size n � 400, 1000, 5000 and

simulate 500 times for each case. The empirical coverage probabilities of con®dence

intervals I1(0:95) and I2(0:95) are plotted against different values of sample fraction k in

Figures 1 and 2. Figure 2 clearly shows that coverage accuracy for I2(0:95) is better than

that for I1(0:95), and the optimal coverage probability for I1(0:95) in Figure 1 is much

better than that in Figure 2. The reason is that the second-order regular variation in Figure

2 has positive sign.

Next we examine the behaviour of our plug-in estimator, proposed in Section 3, for the

optimal sample fraction in terms of minimizing absolute coverage error. In Table 1 we

report the ratio of the empirical coverage probability with estimated optimal sample fraction

k̂ to the empirical coverage probability with theoretical optimal sample fraction k�. We ®nd

that the ratio becomes close to 1 as the sample size increases. However, a more accur-

ate estimator for the theoretical optimal sample fraction k� is needed.

5. Proofs

Proof of Proposition 2. Let U (x) denote the inverse function of 1=(1ÿ F(x)). Note that (1.2)

implies that

lim
t!1

(1ÿ F(tx))=(1ÿ F(t))ÿ xÿ1=ã

ÿbâtÿâ
� xÿ1=ã x

ÿâ ÿ 1

ÿâ
, x . 0,

which is equivalent to

lim
t!1

U (tx)=U (t)ÿ xã

ÿã2bâ(U (t))ÿâ
� xã

xÿâã ÿ 1

ÿâã
, x . 0,

that is

lim
t!1

U (tx)=U (t)ÿ xã

ÿã2bâcÿâã tÿâã
� xã

xÿâã ÿ 1

ÿâã
, x . 0:
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Figure 1. Coverage probabilities for I2(0:95) (solid line) and I1(0:95) (dashed line) with distribution

function F(x) � expfÿxÿ1g, x . 0. The star point stands for the theoretical optimal choice of k and

its corresponding empirical coverage probability.
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Figure 2. Coverage probabilities for I2(0:95) (solid line) and I1(0:95) (dashed line) with distribution

function F(x) � 1ÿ 1
2
xÿ1 ÿ 1

2
xÿ2, x . 1. The star point stands for the theoretical optimal choice of k

and its corresponding empirical coverage probability.
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The rest of proof is similar to the proof of Theorem 1.1 in Cheng and Pan (1998). h

Proof of Theorem 1. It follows from Proposition 2 that

P(ã 2 I1(á)) � P(ã , ã̂n � záã̂n=
���

k
p

)

� P ã̂n .
ã

1� zá=
���

k
p

 !

� P
���

k
p (ã̂n ÿ ã)

ã
.

ÿzá

1� zá=
���

k
p

 !

� 1ÿ P
���

k
p (ã̂n ÿ ã)

ã
<

ÿzá

1� zá=
���

k
p

 !

� 1ÿÖ ÿzá

1� zá=
���

k
p

 !

ÿ ö
ÿzá

1� zá=
���

k
p

 !

3
1ÿ (ÿzá=(1� zá=

���

k
p

))2

3
���

k
p � bâã

(1� âã)câã

���

k
p n

k

� �ÿâã

( )

� o
1
���

k
p �

���

k
p n

k

� �ÿâã
� �

� áÿ ö(zá)
1� 2z2á

3
���

k
p � bâã

(1� âã)câã

���

k
p n

k

� �ÿâã
� �

� o
1
���

k
p �

���

k
p n

k

� �ÿâã
� �

:

Note that as xá=
���

k
p

, 1,

Table 1. Ratio of the empirical coverage probability with estimated optimal sample fraction k̂ to the

empirical coverage probability with theoretical optimal sample fraction k�

F(x)

n exp(ÿxÿ1) 1ÿ 1
2
xÿ1 ÿ 1

2
xÿ2

400 0.93 0.87

1000 0.97 0.90

5000 0.99 0.93
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P(ã 2 I2(á)) � P ã , ã̂n �
xáã̂n
���

k
p

� �

ÿ P ã < ã̂n ÿ
xáã̂n
���

k
p

� �

� P ã̂n .
ã

1� xá=
���

k
p

 !

ÿ P ã̂n >
ã

1ÿ xá=
���

k
p

 !

� P
���

k
p (ã̂n ÿ ã)

ã
.

ÿxá

1� xá=
���

k
p

 !

ÿ P
���

k
p (ã̂n ÿ ã)

ã
>

xá

1ÿ xá=
���

k
p

 !

� P
���

k
p (ã̂n ÿ ã)

ã
,

xá

1ÿ xá=
���

k
p

 !

ÿ P
���

k
p (ã̂ÿ ã)

ã
<

ÿxá

1� xá=
���

k
p

 !

:

Thus, (2.3) follows from Proposition 2. h

Acknowledgement

We thank two reviewers for their helpful comments.

References

Beirlant, J., Vynckier, P. and Teugels, J.L. (1996) Tail index estimation, Pareto quantile plots, and

regression diagnostics. J. Amer. Statist. Assoc., 91, 1659±1667.

Beirlant, J., Dierckx, G., Goegebeur, Y. and Matthys, G. (1999) Tail index estimation and an

exponential regression model. Extremes, 2(2), 177±200.

Cheng, S. and Pan, J. (1998) Asymptotic expansions of estimators for the tail index with applications.

Scand. J. Statist., 25, 717±728.

CsoÈrg}o, S. and Viharos, L. (1997) Asymptotic normality of least-squares estimators of tail indices.

Bernoulli, 3(3), 351±370.

CsoÈrg}o, S., Deheuvels, P. and Mason, D. (1985) Kernel estimates of the tail index of a distribution.

Ann. Statist., 13, 1050±1077.

Danielsson, J. and de Vries, C. (1997a) Tail index and quantile estimation with very high frequency

data. J. Empir. Finance, 4, 241±257.

Danielsson, J. and de Vries, C. (1997b) Value-at-risk and extreme returns. FMG Discussion Paper No.

273, Financial Markets Group, London School of Economics.

Danielsson, J., Hartmann, P. and de Vries, C. (1998) The cost of conservatism. RISK, 11(1), 101±103.

Danielsson, J., de Haan, L., Peng, L. and de Vries, C.G. (2001) Using a bootstrap method to choose

the sample fraction in tail index estimation. J. Multivariate Anal., 76, 226±248.

de Haan, L. and Peng, L. (1998) Comparison of tail index estimators. Statist. Neerlandica, 52(1),

60±70.

de Haan, L. and RootzeÂn, H. (1993) On the estimation of high quantiles. J. Statist. Plann. Inference,

35, 1±13.

de Haan, L. and StadtmuÈller, U. (1996) Generalized regular variation of second order. J. Austral.

Math. Soc. Ser. A, 61, 381±395.

Con®dence intervals for the tail index 759



Dekkers, A.L.M. and de Haan, L. (1993) Optimal choice of sample fraction in extreme-value

estimation. J. Multivariate Anal., 47(2), 173±195.

Dekkers, A.L.M., Einmahl, J.H.J. and de Haan, L. (1989) A moment estimator for the index of an

extreme-value distribution. Ann. Statist., 17, 1833±1855.

Drees, H. (1995) Re®ned Pickands estimators of the extreme value index. Ann. Statist., 23, 2059±

2080.

Drees, H. and Kaufmann, E. (1998) Selecting the optimal sample fraction in univariate extreme value

estimation. Stochastic Process. Appl., 75, 149±172.

Embrechts, P., Resnick, S.I. and Samorodnitsky, G. (1998) Living on the edge. RISK, 11(1), 96±100.

Embrechts, P., Resnick, S.I. and Samorodnitsky, G. (1999) Extreme value theory as a risk management

tool. North Amer. Actuar. J., 3(2), 30±41.

Feuerverger, A. and Hall, P. (1999) Estimating a tail exponent by modelling departure from a Pareto

distribution. Ann. Statist., 27, 760±781.

Guillou, A. and Hall, P. (2001) A diagnostic for selecting the threshold in extreme value analysis.

J. Roy. Statist. Soc. Ser. B, 63, 293±305.

Hall, P. (1982) On some simple estimates of an exponent of regular variation. J. Roy. Statist. Soc. Ser.

B, 44, 37±42.

Hall, P. (1990) Using the bootstrap to estimate mean squared error and select smoothing parameter in

nonparametric problems. J. Multivariate Anal., 32, 177±203.

Hall, P. (1992) The Bootstrap and Edgeworth Expansion. Berlin: Springer-Verlag.

Hall, P. and Weissman, I. (1997) On the estimation of extreme tail probabilities. Ann. Statist., 25,

1311±1326.

Hill, B.M. (1975) A simple general approach to inference about the tail of a distribution. Ann. Statist.,

3, 1163±1174.

Mason, D. (1982) Laws of large numbers for sums extreme values. Ann. Probab., 10, 754±764.

Peng, L. (1998) Asymptotically unbiased estimators for the extreme-value index. Statist. Probab. Lett.,

38, 107±115.

Peng, L. and Qi, Y. (1997) Asymptotic normality of Hill estimator in a second-order submodel of

regular variation. Chinese Ann. Math. Ser. A, 18(5), 539±544.

Pickands, J. III (1975) Statistical inference using extreme order statistics. Ann. Statist., 3, 119±131.

Resnick, S. (1997) Heavy tail modeling and teletraf®c data (with discussion). Ann. Statist., 25, 1805±

1869.

Received January 2000 and revised March 2001

760 S. Cheng and L. Peng


