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CONFIDENCE INTERVALS FOR VARIANCE COMPONENTS

USING NON-NORMAL DISTRIBUTIONS

Brent D. Burch
Department of Mathematics and Statistics

Northern Arizona University
Flagstaff, Arizona 86011-5717
email: brent.burch@nau.edu

Abstract

Simulation studies are conducted to evaluate the performance of confidence intervals
for variance components under non-normal distribution assumptions. Confidence intervals
based on the pivotal quantity (PQ) method and the large-sample properties of the restricted
maximum likelihood (REML) estimator are considered. Of particular interest is the actual
coverage value of nominal 95% confidence intervals for a ratio of variance components. In
the context of unbalanced one-way random effects models, simulation results and an empir-
ical example involving arsenic concentrations in oyster tissue suggest that the REML-based
confidence interval is preferred.

1. Introduction

Confidence intervals provide information about plausible values of a parameter under
study. If the parameter is a variance component, then an interval estimate of the variability
associated with an underlying source of variation can be obtained. Furthermore, if measure-
ments depend on multiple sources of variation, then a confidence interval for a function of
variance components can be used to quantify the impact of a particular source of variation
on the measurements. Specifically, if σ2

1 and σ2
2 denote variances associated with two sources

of variation, then θ = σ2
1/σ

2
2 or ρ = σ2

1/(σ
2
1 + σ2

2) serve as ways to measure the importance
of one source compared to the other source.

The vast majority of the statistical literature on confidence intervals for variance com-
ponents presumes that the sources of variation are normally distributed. For instance, the
confidence intervals developed by Wald (1940), Thomas and Hultquist (1978), Harville and
Fenech (1985), and Burch and Iyer (1997) depend on normal distribution theory. In addition,
the commonly used method to construct confidence intervals for variance components under
normal theory relies on the pivotal quantity (PQ) approach. More recently, Jiang (1996,
2005) described the large-sample properties of restricted maximum likelihood (REML) es-
timators of θ or ρ. Using this approach, one can build asymptotic confidence intervals for
functions of variance components.

The objective of this paper is to compare the PQ and REML generated confidence in-
tervals in terms of their realized coverage probabilities. Burch (2011a) presented confidence
interval results for θ or ρ for the balanced one-way random effects model without assuming
normality. The work of Burch (2011a) was extended to confidence intervals for variance
components in non-normal unbalanced one-way random effects models. See Burch (2011b)
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for details. The current paper focuses on the PQ and REML methods to build confidence
intervals, as described by Burch (2011b), and provides further details about the application
involving arsenic in oyster tissue.

This paper is organized as follows. Section 2 provides background information about the
arsenic concentrations in oyster tissue application. Section 3 presents an overview of the
unbalanced one-way random effects model. Properties of the quadratic forms used to esti-
mate variance components are stated without relying on normal distribution assumptions.
Descriptions of the PQ and REML procedures used to construct confidence intervals for θ
or ρ are also given. Section 4 provides confidence interval simulation results for a variety of
scenarios and distributions. Also included are confidence interval results for the arsenic in
oyster tissue application. Summary comments are given in Section 5.

2. Arsenic Concentration in Oyster Tissue

The National Oceanic and Atmospheric Administration (NOAA) National Status and
Trends Program conducted ongoing comparisons of laboratory measurements of trace metals
in marine sediments and biological tissues. The original purpose of these annual exercises
was to assess the capabilities of laboratories to analyze the sediments and tissues for trace
metals. In the eighth round of these interlaboratory comparisons, Willie and Berman (1995)
reported that a total of 56 laboratories received materials to be analyzed. The materials
included freeze dried marine sediment collected from Nova Scotia, freeze dried Pacific oyster
tissue, and reference materials known as NRC CRM BCSS-1 and NIST SRM 1566a. The
data considered in this paper were collected from the National Institute of Standards and
Technology (NIST) Standard Reference Material (SRM) 1566a.

Altogether, 13 NIST SRM 1566a elements including arsenic, mercury, and lead were
under investigation. Each laboratory was requested to perform four replicate measurements
for each element. Not all laboratories provided results for all of the elements. In fact, 46
sets of results were received. In addition, six laboratories did not submit data for marine
sediments and four laboratories did not submit data for biological tissues. In this paper we
considered the NIST SRM 1566a arsenic concentration measurements.

Samples of the oyster material originated from a commercial source that had been ground
and freeze dried. The oyster tissue material was then processed at NIST and bottled. 31
laboratories measured the arsenic concentrations (mg/kg) in the oyster tissue samples. Out of
the 31 laboratories, 28 laboratories made four replicate arsenic concentration measurements,
one laboratory made two replicate arsenic concentration measurements, and two laboratories
made one arsenic concentration measurement. Figure 1 displays side-by-side dotplots of
arsenic measurements the for the 31 laboratories.

With continued exposure over time, there is concern about arsenic’s effect on chromo-
somes and increased risk of cancer. To help protect consumers, the FDA and EPA provide
safety guidelines in regards to fish and fishery products. The published level represents the
concentration of a toxic element at which point the agency will take legal action to remove
the product from the market. For oysters, the level is 68 ppm (or 68 mg/kg) of arsenic.
Table 1 displays the analysis of variance table for the arsenic concentration measurements.
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Figure 1: Dotplots of the arsenic concentration measurements for each of the 31 laboratories.

If σ2
1 denotes the variance between laboratories and σ2

2 denotes the variance within lab-
oratories, then ρ = σ2

1/(σ
2
1 + σ2

2) is the proportion of variation in arsenic concentrations
attributed to the laboratories. An unbalanced one-way random effects model is used for
this data and confidence intervals for θ or ρ are of primary concern. In the next Section we
discuss the details underlying the unbalanced one-way random effects model.

3. Notation and the Unbalanced One-Way Random Effects Models

Let Yij denote the jth arsenic concentration measurement from the ith laboratory, where
in general i = 1, ..., a, j = 1, ..., bi, and the total sample size is n =

∑a
i=1 bi. Since the bi’s are

not all equal, the model is unbalanced. The corresponding one-way random effects model is

Yij = µ + Ai + eij, (1)

where the a laboratories in the study represent a random sample of laboratories from a
population of laboratories. Furthermore, from within the ith laboratory, a random sample
of size bi is selected. The random effect Ai in model (1) represents the randomness in the
measurements due to the different laboratories and the eij’s are often referred to as random
errors and may be interpreted as the deviations of the measurements within laboratories. µ
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Table 1: ANOVA table for arsenic concentrations in oyster tissues

Source of Variation df Sum of Squares Mean Square
Between Labs 30 997.06 33.24
Within Labs 85 76.96 0.91
Total 115

is the overall mean of the measurements and in this paper is a nuisance parameter since the
parameter under study involves variances.

Since Ai and eij are random in model (1), it is assumed that Ai
iid∼(0, σ2

1) and eij
iid∼(0, σ2

2)
where the Ai’s and eij’s are mutually independent. However, suppose that the underlying
distribution is unknown. With this framework, the measurements from the same laboratory
are correlated since Cov(Yij, Yij′) = σ2

1 for j 6= j′ and the measurements from different
laboratories not correlated. In addition, E(Yij) = µ, V ar(Yij) = σ2

1 + σ2
2, and the third and

fourth central moments of Yij are E[(Yij − µ)
3
] and E[(Yij − µ)

4
], respectively. The kurtosis

of Ai and eij are defined as κ1 = E(Ai
4)/σ4

1 − 3 and κ2 = E(eij
4)/σ4

2 − 3, respectively. If, for
example, one imposes normality assumptions on the Ai’s and eij’s, then E[(Yij − µ)3] = 0,

E[(Yij − µ)4] = 3(σ2
1 + σ2

2)
2
, and κ1 = κ2 = 0.

Recall that the ratio of variance components is θ = σ2
1/σ

2
2 and that ρ = σ2

1/(σ
2
1 +σ2

2). ρ is
often referred to as the intraclass correlation coefficient since it is the correlation between two
measurements within the same class (or laboratory). By definition, 0 ≤ θ < ∞, 0 ≤ ρ < 1,
and there is a one-to-one correspondence between θ and ρ since ρ = θ/(θ +1). In an effort to
construct confidence intervals for θ or ρ, we first review the derivation of and then describe
the properties of important quadratic forms involving the Yij ’s.

The derivation of the aforementioned quadratic forms was provided by Burch and Iyer
(1997) and Burch and Harris (2001) in linear mixed models having two sources of variation.
Burch (2011b) presented the properties of the quadratic forms. We now summarize the
above work in the current paper. Let the n × 1 vector Y denote the sample so that (1) can
viewed in matrix notation as Y = 1µ + ZA + e, where 1 is an n× 1 vector of ones, Z is an
n× a matrix whose elements in the ith column are ones for the bi observations in laboratory
i, and e is the n × 1 error vector. Let H be an n × (n − 1) matrix whose columns span the
space orthogonal to the space spanned by the column vector of ones, and satisfies H′H = I

where I is an (n − 1) × (n − 1) identity matrix.
The (n−1)×1 random vector H′Y has mean vector zero and variance-covariance matrix

σ2
2I + σ2

1H
′ZZ′H where I is an (n − 1) × (n − 1) identity matrix. Let 0 = ∆1 < ... < ∆d be

the distinct eigenvalues of H′ZZ′H having multiplicities r1, ..., rd, respectively. There exists
an (n − 1) × (n − 1) orthogonal matrix P such that P′(H′ZZ′H)P is a diagonal matrix
with entries ∆1, .., ∆1, ..., ∆d, ..., ∆d, where each ∆k is repeated rk times, k = 1, ..., d. Note
that P = [P1, ...,Pd] where Pk corresponding to ∆k is of size (n− 1)× rk, and consider the
quadratic forms Qk = Y′(HPkP

′

kH
′)Y, k = 1, ..., d.
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The vector of quadratic forms, denoted by Q = (Q1, ..., Qd), where d < n, form a
set of minimal sufficient statistics associated with the model devoid of the parameter µ.
These quadratic forms can be used to estimate functions of variance components. The
number of quadratic forms and their corresponding distributions depend on the underlying
model structure. For example, in the arsenic concentration in oyster tissue application,
n = 116, d = 5, ∆1 = 0.00, ∆2 = 1.00, ∆3 = 1.05, ∆4 = 2.04, ∆5 = 4.00, and r1 = 85,
r2 = r3 = r4 = 1, r5 = 27.

For one-way random effects models in general, ∆1 = 0, r1 = n − a (if at least one
bi > 1) and the zero eigenvalue signifies that there is replication in the experiment (multiple
observations per laboratory). An equation that relates the eigenvalues and their replications
to the sample size and number of observations per laboratory is

d∑

k=2

rk∆k = n −

a∑
i=1

b2
i

n

so that

∆ =

d∑
k=2

rk∆k

d∑
k=2

rk

=
n −

a∑
i=1

b2
i /n

a − 1

is the average of the non-zero eigenvalues. In the arsenic concentration in oyster tissue ap-
plication, ∆ = 3.74. It is interesting to note that the sum of squares within laboratories∑a

i=1

∑b
j=1 (Yij − Y i.)

2
= Q1 and the sum of squares between laboratories

∑a
i=1 bi(Y i. − Y ..)

2
=

Q2+...+Qd, where Y i. and Y .. denote the ith laboratory mean and overall mean, respectively.
Hammersley (1949) showed that the expectations, variances, and covariances involving

Q1 and Q2 + ... + Qd are
E(Q1) = (n − a)σ2

2,

V ar(Q1) = V1σ
4
2,

E(Q2 + ... + Qd) = (a − 1)σ2
2 +


n −

a∑
i=1

b2
i

n


σ2

1 ,

V ar(Q2 + ... + Qd) = V2σ
4
1 + 4V3σ

2
1σ

2
2 + V4σ

4
2,

and
Cov(Q1, Q2 + ... + Qd) = V5σ

4
2κ2,

where

V1 = 2(n − a) + κ2

(
a∑

i=1

1

bi

+ n − 2a

)
,
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V2 = 2




a∑

i=1

b2
i − 2

a∑
i=1

b3
i

n
+

(
a∑

i=1

b2
i

)2

n2


+ κ1




a∑

i=1

b2
i − 2

a∑
i=1

b3
i

n
+

a∑
i=1

b4
i

n2


 ,

V3 = n −

a∑
i=1

b2
i

n
,

V4 = 2(a − 1) + κ2

(
a∑

i=1

1

bi
+

1 − 2a

n

)
,

and

V5 = (a − 1) +
a

n
−

a∑

i=1

1

bi

.

Also see Shoukri et al. (1990) and Singh et al. (2002) for more information.
The properties of the quadratic forms stated here do not depend on normal distribution

theory. However, note that the variances and covariances do depend on κ1 and κ2 (the
kurtosis of Ai and eij, respectively). Kurtosis measures the peakedness or tail weight of a
density function compared to the normal density function. For illustrative purposes, Figure
2 displays that densities and kurtosis values for the Uniform, Normal, t(5), and χ2(1) distri-
butions where centering and scaling was performed so that the four distributions have the
same mean and variance. For reference, the normal distribution has κ = 0. Distributions
with κ < 0 are often referred to as platykurtic whereas distributions with κ > 0 are referred
to as leptokurtic.

3.1 Confidence Intervals for θ or ρ: The PQ Method

Under normal theory, Qk
ind∼ (σ2

2 + ∆kσ
2
1)χ

2(rk), k = 1, ..., d and κ1 = κ2 = 0. It follows
that V ar(Q1) = 2(n − a)σ4

2, V ar(Q2 + ... + Qd) = 2
∑d

k=2 (σ2
2 + ∆kσ

2
1)

2
rk and Cov(Q1, Q2 +

... + Qd) = 0. A well-known PQ for θ or ρ is

Q1/(n − a)
d∑

k=2

Qk

1+∆kθ
/(a − 1)

∼F (n− a, a − 1), (2)

where F (n − a, a − 1) is the F -distribution with numerator and denominator degrees of
freedom n− a and a− 1, respectively. While this approach yields exact confidence intervals,
the endpoints of the interval are not available in closed-form since the PQ is not a simple
function of the θ. However, by replacing ∆2, ..., ∆d in (2) with ∆,

(1 + ∆θ)Q1/(n − a)
d∑

k=2

Qk/(a − 1)

approx∼ F (n− a, a − 1),

and an approximate 100(1 − α)% confidence interval for θ is obtained since

P
(

1

∆

[
MSA

MSE
Fα/2 − 1

]
≤ θ ≤ 1

∆

[
MSA

MSE
F1−α/2 − 1

])
≈ 1 − α, (3)
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Figure 2: Density functions and kurtosis values for the Uniform, Normal, t(5), and χ2(1)
distributions all having a common mean and variance.

where MSA =
∑d

k=2 Qk/(a − 1), MSE = Q1/(n − a), and Fα/2 and F1−α/2 are the α/2 and
1 − α/2 quantiles of the F (n − a, a − 1) distribution, respectively.

The interval in (3) was presented by Harville and Fenech (1985) and is similar to the
method proposed by Thomas and Hultquist (1978). Note that if (L, U) denotes a confidence
interval for θ, then the corresponding confidence interval for ρ is (L/(L + 1), U/(U + 1)).

3.2 Confidence Intervals for θ or ρ: The REML Method

In this Section we use the REML method to find a point estimator of θ. The large-
sample properties of the REML estimator of θ are then used to construct an approximate
confidence interval for θ. Burch and Harris (2001) developed closed-form approximations
to REML estimators in linear mixed models having two variance components. See Burch
(2011a) and Burch (2011b) for the development of REML-based confidence intervals for
θ or ρ in balanced and unbalanced one-way random effects models, respectively. We will
summarize the development of this approach in the following discussion.

The REML estimators of variance components depend on linear combinations of the
Yij ’s whose distribution is devoid of the nuisance parameter µ. Under normal theory, the
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restricted log-likelihood function with respect to θ and σ2
2 can be written as

LRestricted ∝ −
[
(n − 1)lnσ2

2 +
d∑

k=2

rkln(1 + ∆kθ)

]
− 1

σ2
2

[
Q1 +

d∑

k=2

Qk

1 + ∆kθ

]
.

In unbalanced random effects models, LRestricted is not a simple function of the parameters
and closed-form REML estimators of θ (and σ2

2) are not available. An approximate restricted
log-likelihood function is obtained by replacing ∆k with ∆ for k = 2, ..., d. This simplification
yields

L∗

Restricted ∝ −
[
(n − 1)lnσ2

2 + (a − 1)ln(1 + ∆θ)
]
− 1

σ2
2

[
Q1 +

1

1 + ∆θ

d∑

k=2

Qk

]
.

Differentiating L∗

Restricted and maximizing over the parameter space yields an approximate
REML estimator of θ, denoted by θ̂, which is

θ̂ =
1

∆

(
MSA

MSE
− 1

)
, if MSA ≥ MSE

and zero otherwise. The corresponding approximate REML estimator of ρ is θ̂/(θ̂ + 1).
Using L∗

Restricted as a surrogate for LRestricted and assuming regularity conditions hold,
Jiang (1996) established asymptotic normality of REML estimators in non-normal applica-
tions. Westfall (1987) and Burch and Harris (2001) showed that the regularity conditions for
one-way random effects models relate to the number of laboratories, a, approaching infinity
while the bi’s have a finite upper bound. Jiang (1996, 2005) also derived the asymptotic
covariance matrix of REML estimators and combining these results we obtain

θ̂
asymp∼ N (θ, V ar(θ)) (5)

where

V ar(θ̂) =
(1 + ∆θ)

2

∆
2
σ4

2

(
V ar(SSE)

(n − a)2
+

V ar(SSA)

(a − 1)2(1 + ∆θ)
2
− 2Cov(SSA, SSE)

(n − a)(a − 1)(1 + ∆θ)

)

=
(1 + ∆θ)

2

∆
2

(
V1

(n − a)2
+

θ2V2 + 4θV3 + V4

(a − 1)2(1 + ∆θ)
2
− 2κ2V5

(n − a)(a − 1)(1 + ∆θ)

)
.

The distribution of θ̂ tends to be positively skewed for finite sample sizes so employing
the normal approximation in (5) may not produce acceptable results. The logarithmic trans-
formation is applied to the REML estimator of θ using Slutzsky’s theorem, and it follows
that

ln
(
1 + ∆θ̂

)
asymp∼ N

(
ln(1 + ∆θ), V ar(ln(1 + ∆θ̂))

)
.

V ar(ln(1 + ∆θ̂)) may be written as

V ar(ln(1 + ∆θ̂)) = 2

(
1

n − a
+

cθ2 + 2(a − 1)∆θ + (a − 1)

(a − 1)2(1 + ∆θ)
2

)
+ κ1θ

2 c1

(a − 1)2(1 + ∆θ)
2
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+κ2

(
c21

(n − a)2
+

c22

(a − 1)2(1 + ∆θ)
2
− 2c23

(n − a)(a − 1)(1 + ∆θ)

)
(6)

where c, c1, c21, c22, and c23 are constants that depend on n, a and bi, i = 1, ..., d. See Burch
(2011b) for details.

In equation (6), κ1θ
2 = E(Ai

4)/σ4
2 − 3θ2, κ2 = E(eij

4)/σ4
2 − 3, and to construct the

endpoints of a REML-based confidence interval for θ, κ1θ
2 and κ2 must be estimated. Simple

plug-in estimators are given by

κ̂1θ2 =

1

n

a∑
i=1

bi(Y i. − Y ..)
4

MSE2
− 3θ̂2

if MSA ≥ MSE, where κ̂1θ2 = 0 otherwise, and

κ̂2 =

1

n

a∑
i=1

bi∑
j=1

(Yij − Y i.)
4

MSE2
− 3.

These estimators, however, do not correct for bias. Empirical results suggest that an estima-
tor based on κ̂1θ2 can drastically overestimate κ1θ

2 whereas using κ̂2 can severely underes-
timate κ2 for leptokurtic distributions. An and Ahmed (2008) and Burch (2011a) discuss in
detail the use of empirical bias-corrected estimators of kurtosis in related applications. Fur-
thermore, Burch (2011b) provides suggestions to modify κ̂1θ2 and κ̂2 which yield improved
performance. Using this approach, the REML-based confidence interval for θ is


 1

∆



(
1 + ∆θ̂

)
e
−Z1−α/2

√
V̂ ar(ln(1+∆θ̂)) − 1


 ,

1

∆



(
1 + ∆θ̂

)
e

Z1−α/2

√
V̂ ar(ln(1+∆θ̂)) − 1




 .

(7)

where V̂ ar
(
ln
(
1 + ∆θ̂

))
is the estimator of (6) and Z1−α/2 is the 1 − α/2 quantile of the

standard normal distribution. The corresponding REML-based confidence interval for ρ is
readily available.

4. Confidence Intervals for ρ
4.1 Simulation Study

The confidence intervals for θ using the PQ and REML methods are converted to confi-
dence intervals for ρ and the simulated coverage probabilities are computed for a variety of
scenarios. The values of ρ considered are 0.1, 0.5, and 0.9. Furthermore, since asymptotic
results hold as a increases for bounded bi where i = 1, ..., a, let a = 5, 10, 50 and 100, and
consider the bi-patterns listed in Table 2. For a = 5, each pattern has a total sample size of 24
but the patterns exhibit varying degrees of imbalance. Ahrens and Pincus (1981) used Φ to
measure imbalance in one-way random effects models where Φ = (a/

∑a
i=1 bi)(a/

∑a
i=1 1/bi),

0 < Φ ≤ 1, and Φ is equal to 1 if and only if the model is balanced. Note that for a = 10, 50
and 100, the patterns listed in Table 2 are simply replicated so that, for instance, pattern 1
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Table 2: bi-patterns for a = 5

Pattern b1 b2 b3 b4 b5 Φ
1 5 5 5 5 4 0.99
2 10 5 5 2 2 0.69
3 10 10 2 1 1 0.39
4 20 1 1 1 1 0.26

for a = 10 results in ten classes with individual class sizes of 5, 5, 5, 5, 4, 5, 5, 5, 5, and 4.
The overall sample sizes (n =

∑a
i=1 bi) considered in this study range from 24 to 480.

Table 3 displays the kurtosis values for a variety of distributions based on a random
variable X having mean µ and variance σ2. Both symmetric and asymmetric distributions
are included. It is interesting to note that the smallest possible value of kurtosis is -2, which
occurs when X is distributed Bernoulli(1/2). At the other extreme, the kurtosis for X ∼
t(4) is infinite.

Table 3: Kurtosis values for various distributions

Distribution κ = E[(X − µ)
4
]/σ4 − 3

Symmetric Uniform(0,1) -1.2
N(0,1) 0.0
t(5) 6.0

Asymmetric Beta(0.4,0.6) -1.33
χ2(1) 12.0

Without loss of generality, let µ = 100. Furthermore, assume that Ai
iid∼(0, σ2

1), eij
iid∼(0, σ2

2),
Ai and eij are mutually independent, and these random variables depend on the distribu-
tions listed in Table 3. These distributions have varying degrees of skewness and kurtosis.
If the distribution considered does not have the appropriate mean and variance for a par-
ticular simulation, then the distribution is simply located and scaled so that it does. For
instance, if one considers the random variable Xi ∼ Uniform(0,1) for factor Ai, then let
Ai = σ1

√
12(Xi − 0.5), where i = 1, ..., a. It follows that E(Ai) = 0 and V ar(Ai) = σ2

1.
For this simulation study we assume that Ai and eij are built from the same underlying
distribution.

For each combination of ρ, number of laboratories (a), observations per laboratory
(bi, i = 1, ..., a) and distribution, we generated 10,000 Monte Carlo random samples and
simulated the coverage probabilities of the PQ and REML methods. The simulated coverage
probabilities are summarized using boxplots for each interval procedure. For example, simu-
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Figure 3: Simulated coverage probabilities of 95% nominal confidence intervals for ρ =
σ2

1/(σ
2
1 + σ2

2). Results are for the PQ and REML procedures assuming normality.

lated coverage probabilities for nominal 95% confidence intervals for ρ are displayed in Figure
3 assuming Ai and eij are normally distributed. Each boxplot is comprised of coverage values
for the forty eight combinations of ρ, a, and bi-pattern. The nominal coverage probability of
0.95 is depicted by the horizontal dotted line. Even under normal distribution assumptions,
Figure 3 indicates that the PQ procedure may not result in confidence intervals that have
adequate coverage probabilities. This is primarily due to the imbalance in the models under
consideration. The greater the degree of imbalance, the greater the degradation is in the
coverage probability. The REML procedure is more likely to maintain coverage values that
are close to the nominal level of 0.95.

Figure 4 summarizes the simulated coverage probability results for each of the Beta(0.4,0.6),
Uniform(0,1), t(5), and χ2(1) distributions. The PQ method performs adequately for the
platykurtic distributions (κ < 0) but exhibits severe undercoverage for the leptokurtic dis-
tributions (κ > 0). In many cases the low coverage probability values in the boxplots are
also associated with models having a large degree of imbalance. However, when considering
a specific distribution in Figure 4, the least desirable coverage probabilities for both the
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Figure 4: Simulated coverage probabilities of 95% nominal confidence intervals for ρ =
σ2

1/(σ
2
1 + σ2

2). Results are for the PQ and REML procedures for the Beta(0.4,0.6), Uni-
form(0,1), t(5), and χ2(1) distributions.

PQ and REML methods are primarily associated with large values of ρ. See Burch (2011b)
for more details. Although not perfect, the REML procedure is more apt to have coverage
values that are closer to the nominal level of 0.95.

From a different vantage point, Figure 5 summarizes the simulated coverage probability
results for the four bi-patterns listed in Table 2. Each boxplot is comprised of coverage values
for the sixty combinations of ρ, a, and underlying distribution. It is clear that imbalance has
a more detrimental effect on the coverage probabilities of the PQ method than it does on
the coverage probabilities of the REML method. However, it is not obvious why the REML
method’s performance improves when the data is more unbalanced.

Although not explicitly depicted in the previous figures, the PQ method’s performance
can deteriorate as the sample increases since the PQ itself is not based on large-sample
theory. For example, using ρ = 0.5, pattern 1 in Table 2, and the χ2(1) distribution, the
simulated coverage probability of 0.8342 for a = 5 decreases to 0.6497 for a = 100. See Burch
(2011b) for more details. The REML procedure’s performance, on the other hand, continues
to improve as a increases due to the large-sample properties of the REML estimator. In
general, the REML confidence intervals tend to be wider than the PQ confidence intervals
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Figure 5: Simulated coverage probabilities of 95% nominal confidence intervals for ρ =
σ2

1/(σ
2
1 + σ2

2). Results are for the PQ and REML procedures for the four degrees of model
imbalance.

for the cases considered. However, for distributions having a large kurtosis the REML pro-
cedure has coverage probabilities that are close to the nominal level of 0.95 and thus wider
intervals are warranted.

4.2 Arsenic in Oyster Tissue

In the arsenic concentration in oyster tissue application, n = 116, a = 31, b1 = ... =
b28 = 4, b29 = 2, and b30 = b31 = 1. In addition, Φ = 0.87, ∆ = 3.74, θ̂ = 9.56, and the
REML estimate for ρ is 0.91. 95% confidence interval estimates for ρ using the PQ and
REML procedures are (0.84, 0.95) and (0.79, 0.96), respectively. The PQ interval for ρ was
obtained by the appropriate transformation of the endpoints of the interval in (3). Similarly,
the REML interval for ρ was obtained by the appropriate transformation of the endpoints
of the interval in (7).

Conventional confidence intervals for ρ assume that Ai and eij are normally distributed.
While one cannot directly determine whether or not the normal distribution assumptions
are valid, in this example we computed Âi = Y i. − Y .., i = 1, ..., 31 and êij = Yij − Y i.,
i = 1, ..., 31, j = 1, ..., bi, and considered their distributions in lieu of the distributions of
Ai and eij. Specifically, density histograms of the distributions of Âi and êij indicate that
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the distribution of Âi is asymmetric and the the distribution of êij is more peaked than the
normal distribution. Shapiro-Wilk tests for normality indicate that the distributions of Âi

and êij are not normal and thus it is unlikely that the confidence level of the PQ procedure
is actually 95%. In this example, the REML confidence interval procedure is much more
likely to achieve the stated coverage probability.

5. Summary

This paper examines confidence intervals for variance components under non-normal dis-
tribution assumptions. In particular, confidence intervals for a ratio of variances (θ = σ2

1/σ
2
2)

or the intraclass correlation coefficient (ρ = σ2
1/(σ

2
1 + σ2

2)) are under study. Whereas Burch
(2011a) presented confidence intervals for functions of variances under non-normality using
balanced one-way random effects models, the present paper provides results for unbalanced
one-way random effects models. Additional details are provided by Burch (2011b). The
combination of non-normality and imbalance can negatively impact the quality of commonly
used confidence interval procedures.

The PQ procedure relies on the F -distribution to construct the endpoints of the interval.
This method provides exact confidence results for the balanced one-way random effects model
under normal distribution assumptions. However, even under normality, simulated coverage
probabilities for unbalanced models may not be acceptable. Furthermore, the PQ method is
not based on large-sample theory and simulated coverage probabilities may actually diverge
from the nominal value as the sample size increases. The REML procedure incorporates
estimators of kurtosis in the interval construction process and performed adequately for the
majority of the cases considered. As the sample size increases, the variability of the simulated
coverage probabilities using the REML confidence interval procedure tends to decrease and
one is more likely to achieve a coverage probability that is close to the nominal value.

Table 4 provides a summary of the simulation study which considered 240 combinations
of ρ, a, bi-patterns, and distributions. The REML confidence interval procedure’s mean
coverage probability matched the nominal level of 0.95. To achieve the prescribed value,
these intervals where, on average, wider than the PQ generated intervals. The PQ method
fell short of the nominal coverage probability of 0.95.

Table 4: Comparing the PQ and REML Confidence Intervals

Interval Mean Coverage Mean
Method Probability Length
PQ 0.8737 0.3327
REML 0.9508 0.4112
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