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Presenting confidence intervals around means is a common method of expressing 

uncertainty in data. Loftus and Masson (1994) describe confidence intervals for means 

in within-subjects designs. These confidence intervals are based on the ANOVA mean 

squared error.  Cousineau (2005) presents an alternative to the Loftus and Masson 

method, but his method produces confidence intervals that are smaller than those of 

Loftus and Masson. I show why this is the case and offer a simple correction that 

makes the expected size of Cousineau confidence intervals the same as that of Loftus 

and Masson confidence intervals. 

 

 
 Confidence intervals (CIs) are a staple in the 

presentation of psychological data because they allow 

researchers to quickly gage the amount of uncertainty in 

data (Rouder & Morey, 2005). For within-subjects designs, 

there are several approaches to creating confidence 

intervals. For a given design it may not be clear which to 

choose. Consider a simple within-subjects design with two 

conditions, a pre-test and post-test. For this design, there are 

multiple methods of generating confidence intervals. I will 

discuss each in turn. 

Approaches to confidence intervals 

The standard way to build confidence intervals is to 

compute the standard error of the mean for each condition, 

and multiply it by the appropriate t-distribution quantile. In 

order to make this concrete, Table 1 lists hypothetical data 

for N = 10 participants.  A paired tt-test reveals a significant 

effect of condition (MSE = 5:19; t(9) = 3:65; p = :005;MSE = 5:19; t(9) = 3:65; p = :005; 
partial-´2 = :60partial-´2 = :60). Means are shown as points in Figure 1. To 

build a 95% confidence around each mean, one computes 
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the standard error (SD=
p
10)(SD=

p
10) and multiplies this by 

t:975(9) = 2:26t:975(9) = 2:26. This gives the size of the CI around the 

mean. The resulting confidence intervals are labeled “A” in 

Figure 1. The size of the confidence intervals is larger than 

what might be expected from the results of the tt-test. The tt-

test indicates a large, significant effect, but the confidence 

intervals overlap. The reason for this is that each observation 

reflects three sources of variance: the fixed effect of 

condition, the random ability of each participant, and 

random error. The size of the CIs labeled “A” are 

determined by both participant variance and error variance. 

The paired tt-test, in contrast, accounts for participant 

variability in computing the significance of the effect. 

Loftus and Masson (1994) suggested that confidence 

intervals in within-subject designs be based on the 

denominator Mean Square (MS) from the appropriate 

ANOVA analysis. Because the MS is an unbiased estimate of 

the appropriate error variance (Moser, 1996; Loftus & 

Masson, 1994), using the MS would yield a confidence 

interval uncontaminated by variance from participants. To 

build Loftus and Masson CIs, one computes a within-

subjects standard error by dividing the ANOVA 

denominator MS by NN  and taking the square-root. Using 

this standard error in place of the standard error of each 

condition, then multiplying by the appropriate tt quantile, 

yields a within-subjects confidence interval.  The CIs labeled 

“B” in Figure 1 are Loftus and Masson confidence intervals. 
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These confidence intervals are much tighter and better 

reflect our conclusions from the tt-test analysis. 

Loftus and Masson's method has two primary 

drawbacks: First, all CIs are the same size, so any 

heterogeneity of variance is hidden; second, it may be 

inconvenient to extract the appropriate MS and force a 

statistical program, such as SPSS, to use it to build CIs. 

Cousineau (2005) suggested another method for 

constructing confidence intervals in within-subjects designs. 

Cousineau's method is simple and seems reasonable: 

normalize the data by subtracting the appropriate 

participant's mean performance from each observation, and 

then add the grand mean score to every observation. Then, 

use the normalized data to build confidence intervals using 

the standard method described above. 

In notation, the Cousineau method can be described as 

follows. Let yijyij be the iith participant's score in the jjth 

condition (i = 1; : : : ; Ni = 1; : : : ; N ; j = 1; : : : ; Mj = 1; : : : ; M ). Then define the 

normalized observations zijzij as  

  
(1)

 

The variances of the resulting normalized values in a 

condition, and thus the size of the CIs, no longer depend on 

the participant effects (Loftus & Masson, 1994; Masson & 

Loftus, 2003). The intervals labeled “C” in Figure 1 were 

generated by Cousineau's method. The primary benefit of 

the normalization method over basing the CIs on the MS is 

ease of use and intuitiveness, and Cousineau provides SPSS 

code to easily generate the normalized scores.  

 

Inconsistency between approaches 

Examination of Figure 1 reveals a mismatch between the 

size of Loftus and Masson style CIs and CIs based on 

normalized data. If the size of both CIs is based only on the 

error variance, why are normalized CIs smaller than those 

based on the MS? The MS from the ANOVA analysis has 

properties that are well-understood in linear model theory. 

There is very little discussion in the literature, however, on 

the properties of CIs built from normalized scores. If CIs 

based on normalized data are to be useful, it is important to 

understand the reason for the mismatch between Loftus and 

Masson CIs and Cousineau CIs. 

The reason that CIs based on normalized scores will be 

smaller on average is that normalizing scores induces 

positive covariance between scores within a condition. 

Because all the data is used in the computation of a single 

normalized observation (see Eq. 1, the observations become 

correlated. If scores are correlated, the sample variance will 

be biased low, because positively correlated scores will not 

vary as much as expected from one another. Thus, even 

though both Loftus and Masson CIs and Cousineau CIs are 

functions of error variance alone, Loftus and Masson CIs are 

based on an unbiased estimate, while Cousineau CIs are 

based on an estimate biased to be small. All CIs generated 

from normalized scores will be “too small” with respect to 

Loftus and Masson CIs. Loftus and Masson (1994) noted this 

in their Appendix, and a general proof of this fact is 

provided in the Appendix of this manuscript. 

The size of Cousineau CIs relative to Loftus and Masson 

CIs is a function of the number of within-subjects conditions. 

The expected value of the sample variance in a condition of 

normalized data is  

 E

·

SSj

N ¡ 1)

¸

= ¾2

²

M ¡ 1
M

;E

·

SSj

N ¡ 1)

¸

= ¾2

²

M ¡ 1
M

; (2) 

where ¾2

²¾2

²  is the error variance, SSjSSjis the sum of squares for 

conditionjj, and MM  is the number of within-subjects 

conditions. The worst case bias occurs for M = 2M = 2, and the 

bias decreases as MM  increases.  

An easy correction 

Eq. 2 suggests a way of correcting the bias of Cousineau 

CIs. Compute the sample variance of the normalized data as 

Cousineau suggests, then simply multiply the sample 

variances in each condition by M=(M ¡ 1)M=(M ¡ 1). Multiplying by 

this correction factor will bring the size of Cousineau CIs 

into line with Loftus and Masson CIs. For M = 2M = 2, the 

resulting corrected CIs will be exactly the same size as the 

Loftus and Masson intervals. The corrected Cousineau CIs 

for the hypothetical data are represented by “B” in Figure 1. 

For M > 2M > 2, corrected CIs will not be exactly the same size in 

general, but their expected size is the same as Loftus and 

Masson CIs.   

This simple correction also holds for more complicated 

designs. It can accommodate any number of fixed effects; 

simply replace MM  with 
QP

p=1
Mp

QP

p=1
Mp, where PP  is the number of 

fixed factors, and MpMp is the number of levels of the ppth fixed 

Table 1. Sample results used in Figure 1. 
 

 

Participant # Pretest Posttest
1 59.4 64.5
2 46.4 52.4
3 46.0 49.7
4 49.0 48.7
5 32.5 37.4
6 45.2 49.5
7 60.3 59.9
8 54.3 54.1
9 45.4 49.6
10 38.9 48.5

Mean 47.74 53.43
SD 8.60 7.25

Participant # Pretest Posttest
1 59.4 64.5
2 46.4 52.4
3 46.0 49.7
4 49.0 48.7
5 32.5 37.4
6 45.2 49.5
7 60.3 59.9
8 54.3 54.1
9 45.4 49.6
10 38.9 48.5

Mean 47.74 53.43
SD 8.60 7.25
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factor. If there are between-subject factors, each level of the 

between-subject factor should be considered separately. 

Using this simple correction, the ease-of-use of the 

normalizing approach is retained, while also retaining the 

expected size of the Loftus and Masson intervals.   

General Discussion 

The use of within-subjects confidence intervals in data 

presentation is an important way of communicating the 

amount of uncertainty in data. In within-subjects designs, a 

researcher may desire CIs whose size accords more with the 

result of inferential tests. Loftus and Masson (1994) and 

Cousineau (2005) provide methods of building these 

confidence intervals. Cousineau's method has two 

advantages: first, it is easy to compute; second, it may show 

violations of homogeneity of variance (Cousineau, 2005).  

Understanding the properties of the methods used to 

create CIs is a vital part of understanding graphical 

presentations of data. I have shown that within-subjects 

confidence intervals based on normalized data are small 

relative to Loftus and Masson within-subjects confidence 

intervals. Luckily, however, the bias in normalized CIs is 

easily corrected; the simple correction suggested above will 

make the expected size of Cousineau CIs the same as the 

commonly-used Loftus and Masson CIs. 
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Appendix 

In this appendix I prove the main result that CIs based 

on normalized data are based on biased estimates of error 

variance. Consider the model  

 

yij = ¹+ ®i + ¯j + ²ij ;

®i
indep:
» Normal(0; ¾2

®);

²ij
indep:
» Normal(0; ¾2

² );

yij = ¹+ ®i + ¯j + ²ij ;

®i
indep:
» Normal(0; ¾2

®);

²ij
indep:
» Normal(0; ¾2

² );  

 
Figure 1. Means from hypothetical data and several possible 95% CIs on the means. A: CIs from standard errors of each condition 

considered   separately. B: CIs from ANOVA MSE. C: Cousineau (2005) CIs from normalized data. 
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where the ®i(i = 1; : : : ; N)®i(i = 1; : : : ; N) are random participant effects 

and ¯j(j = 1; : : : ; M)¯j(j = 1; : : : ; M) are fixed condition effects 

(ie,
P

j ¯j = 0
P

j ¯j = 0), and all ²ij²ij and ®i®i are mutually independent.   

Let the multivariate normal data vector yy be 
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 (3) 

It is obvious that the covariance matrix for yy given the 

model is  

 §y = IN Ð [¾2

®JM + ¾2

² IM ];§y = IN Ð [¾2

®JM + ¾2

² IM ]; (4) 

where ININ is the N £NN £N  identity matrix, JNJN is an N £NN £N  

matrix of all 1, and ÐÐ is the Kronecker product operator.  

Normalization of the vector yy (Cousineau, 2005) is 

accomplished by multiplying the vector by  
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The covariance matrix of the normalized data vector 

z = Cyz = Cy is  

 

§z = C
T
§yC

= C§yC:

§z = C
T
§yC

= C§yC:  
(6)

 

Equation 6 follows from the fact that CC is symmetric. 

Multiplying the matrices in equation 6 yields 
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(7)

 

Because we are only interested in the observations within a 

level of ¯̄ , we only need to consider vector of length NN , ww, 

containing the observations of interest (all those from level jj 

of ¯̄). We can construct the N £NN £N  covariance matrix §w§w by 

examination of the elements of §z§z. Let aa be the on-diagonal 

elements of §z§z, and let bb be the off-diagonal elements 

corresponding to the observations within a condition. 

Examination of equation 7 yields  
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With these values, the covariance matrix §w§w is 

 §w = (a¡ b)IN + bJN§w = (a¡ b)IN + bJN  (9) 

It is also easy to show that E[w] = (¹+ ¯j)1[w] = (¹+ ¯j)1, where 11 is a 

column vector of all 1. Let KK be the N £NN £N  centering matrix, 

ie 

 K = IN ¡
1

N
JNK = IN ¡

1

N
JN  (10) 

The sum of squares of the vector ww is then wTKwwTKw. Because 

for any random vector xx and matrix AA, 

E[xT Ax] = trace(A§) + ¹
T A¹[xT Ax] = trace(A§) + ¹
T A¹, 

E[wT
Kw] = trace(K§w) + (¹+ ¯j)
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Dividing by N ¡ 1N ¡ 1 to obtain the expected value of the 

sample variance yields M¡1

M
¾2

²
M¡1

M
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² .  
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