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Confidence intervals in within-subject designs:  

A simpler solution to Loftus and Masson’s method 

Denis Cousineau 

Université de Montréal 

 

Within-subject ANOVAs are a powerful tool to analyze data because the variance associated to 

differences between the participants is removed from the analysis. Hence, small differences, 

when present for most of the participants, can be significant even when the participants are very 

different from one another. Yet, graphs showing standard error or confidence interval bars are 

misleading since these bars include the between-subject variability. Loftus and Masson (1994) 

noticed this fact and proposed an alternate method to compute the error bars. However, i) their 

approach requires that the ANOVA be performed first, which is paradoxical since a graph is an 

aid to decide whether to perform analyses or not; ii) their method provides a single error bar for 

all the conditions, masking information such as the heterogeneity of variances across conditions; 

iii) the method proposed is difficult to implement in commonly-used graphing software. Here 

we propose a simple alternative and sow how it can be implemented in SPSS. 

 

 
 Consider the results shown in Figure 1 where mean 

results from a 2 × 5 experiment are shown. The error bars 

show the standard error in each condition, measured on 16 

participants per point. If confidence intervals had been 

shown, the error bars would have been about twice their 

actual sizes! By looking at this figure, we have no doubt that 

it is only noise. Yet, have a look at the ANOVA table: the 

effects and the interaction are all highly significant! How can 

this be? 

The present data are simulated. However, we obtained 

similar results in Paradis and Cousineau (in preparation). 

This kind of situation was first noted by Loftus and Masson 

(1994). 

The cause of the discrepancy between the figure and the 

analyses is not obvious. It is not a problem with 

homogeneity of variances (all the variances are 

homogeneous and spherical, Tabachnik & Fidell, 1996, 
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Mauchly’s W = 0.74, p > .50 for factor 2 and W = 0.68, p > .50 

for the interaction; this test cannot be performed for factor 1 

since it has only two levels but we generated the data such 

that it is also homogeneous). The Greenhouse-Geiser and the 

Huynh-Feldt epsilons are close to 1 so that we don’t need to 

use corrections (Huynh, 1978, Rouanet and Lepine, 1970). 

Using multivariate tests (such as Hotelling’s T or Wilks λ) 

does not change the results in any way. 

The inconsistency between the graph and the analyses 

comes from the fact that we are using a repeated-measure 

design. All the participants are measured in each of the 10 

combinations of the factor 1 and factor 2 levels. Hence, it is 

possible to assess whether a given participant systematically 

scores high or systematically scores low. In fact, that is what 

happens in the present case. Figure 2 shows the results for 

each individual participant. As seen, there is a tremendous 

amount of difference between each participant. Hence, we 

can safely conclude that the participants differ significantly 

(in fact, this information is indeed provided by most 

statistical software, F(1, 15) = 710, p < .001). However, in 

general, we don’t care about this: in psychology, it is a plain 

fact that most humans differ. What we really want to know 

is if the factors influence the results. By looking carefully at 

the second condition of the factor 1 (the right panel of Figure 

2), we see that for most of the participants, scores decrease 

when going from the first level of factor 2 to the fifth. 
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Therefore, if we could ignore the relative position of the 

participants, the trend would be very clear. 

Figure 3 shows exactly that. Each participant’s scores 

were adjusted so that its relative position is no longer 

present. As seen on the right panel, the downward trend is 

very clear whereas in the other condition on the left, there is 

no visible trend. Hence, we should observe an interaction. 

The repeated-measure ANOVA got those results right 

because it first starts computing the between-subject sum of 

square (SSS, Keppel, 1973) and removes it from the total sum 

of square before partitioning the remaining sum of square in 

the usual manner (main effects, interaction, and error terms). 

Hence, a great deal of variability is removed, giving more 

chance to the F ration to exceed the critical value. 

Because the mean square of error MSe = √(MSe / dle) is a 

direct measure of the unexplained variation, Loftus and 

Masson (1994) suggested to use this term for the 

computation of the error bar. Indeed, the ANOVA test uses 

the quantity √(MSe / dle)so that a confidence interval is tα, dle 

×√(MSe / dle) where a is the confidence level (often 5%) and t 

is obtained in a Student table with dle degrees of freedom. By 

extension with other tests, we can equate the standard error 

to the √(MSe / dle) term as it is the part that does not depend 

on a confidence level. 

Although Loftus and Masson solution is sound in 

providing standard errors and confidence intervals 

exempted of between-subject differences, it has three 

limitations: 

First, the analyses must be performed first, in order to 

get the √(MSe / dle) term that is used as the error bars in the 

graphs. This is paradoxical since graphs should precede any 

analysis, as their purpose is to help anticipate the results of 

the analyses. In addition, in factorial designs, there are more 

than 1 error terms so which one to use is ambiguous. For 

instance, if you expect a main effect and no interaction, use 

the error term associated with that effect whereas if you 

expect an interaction, use the interaction error term… 

Second, Loftus and Masson’s method provides the size 

for a unique error bar that will be applied to all the points. 

The (omnibus) ANOVA do use a single error term per effect, 

and in this respect, the graph is congruent with the analysis. 

However, we may want to look at other information on the 

graph. For instance, are the variances homogeneous across 

levels of the factors? By using a single error bar, this 

information is lost. 

Thirdly, most plotting software either computes error 

bars automatically (but then, they wrongly include between-

subject differences) or they must be provided manually. This 

last technique takes a lot more time, requiring multiple steps 

and manual interventions. 

In the following, we present an alternative technique that 

solves all three limitations. Further, it can be implemented 

easily in most statistical software. We show how using SPSS 

13. 

Consider the data from three participants presented in 

Table 2. As seen by the marginal means, there seems to be an 

effect of the manipulation. However, there are also large 

differences between the participants. For instance, the first 

one is on average 55 ms faster than the mean of the group. 

Hence, if we add 55 ms to all the obtained performance, we 

would “erase” the particularities of that participant. The 

participant mean (noted 1X ) minus the group mean (noted 

Table 1. Results of a 2 × 5 experiment with the first factor having two levels and the second factor having 5 levels 

 

Effect name  SS  dl  MS  F  

Factor 1  10621  1  10621  76.8 *** 

Error  2073  15  135    

Factor 2  11784  4  8196  16.4 *** 

Error  4378  60  72.9    

Interaction  2250  4  562  6.52 *** 

Error  5171  60  86.2    

***: p < .001 

Figure 1: Fictitious results of an experiment with two factors, 

the first with two levels and the second with 5 levels. Error 

bars show the mean ± 1 standard error. 
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X ) indicates the amount of correction to apply to the 

performance obtained in the ith condition by the jth 

participant (noted Xij). Overall, if we create a new variable Y 

and let 

 XXXY ij +−= 1  (1) 

for all conditions i and all participants j, all the individual 

differences will be erased. Figure 3 was made using Ys 

instead of Xs. Further, a graph of Y as a function of the 

conditions can be made showing means and error bars 

automatically. Figure 4 shows the results from the fictitious 

experiment. It is now evident from inspection of the graph 

that an interaction is present. 

In SPSS 13, computing the mean for each participant is 

performed using the following syntax: 

Aggregate outfile=* mode=addvariables 

 /break = subject 

 /x.subj = mean(x). 

where x is the name of the column containing the dependant 

variable and subject is the name of the column containing 

subject identification. 

Figure 2: The individual results of the 16 simulated participants of Figure 1. Left panel is for the first level of the first 

factor. 
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Table 2. Hypothetical results from a repeated-measure experiment with one factor having three levels. 

 

  Condition   

Participant  1  2  3  Mean 

1  550  580  610  580 

2  605  635  655  635 

3  660  690  710  690 

Mean  605  635  655  635 

Figure 3: The individual results of the 16 simulated participants of Figure 1 after the individual differences were removed. 
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To compute the overall mean, you need to segment the 

data by groups. In a full within-subject design, there is no 

group, so you need to assign all the participants to the same 

group, e. g. group 1. This is done with: 

Compute group = 1. 

Then, you can compute the mean for each group with: 

Aggregate outfile=* mode=addvariables 

 /break = group 

 /x.group = mean(x). 

Finally, computing Y as in Eq. 1 is done with: 

Compute y = x – x.subj + x.group. 

That is all you need. You can now realize you graphs on Y to 

have the correct error bars. Y is only useful for graphing 

purposes; for the analyses, continue to use the original data 

contained in the column X. 

You will find on the journal’s web site the data used in 

the Figures along with a complete syntax file for SPSS 13.0 

that computes Y, makes the graphs, and after reorganizing 

the data so that they are in distinct columns, performs the 

ANOVA. 
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Figure 4: Same as in Figure 1 except that the error bars does 

not include variability associated with between-subject 

differences. 
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