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Abstract

This article describes an efficient procedure for computing approx-
imate confidence levels for searches for new particles where the ex-
pected signal and background levels are small enough to require the
use of Poisson statistics. The results of many independent searches for
the same particle may be combined easily, regardless of the discrimi-
nating variables which may be measured for the candidate events. The
effects of systematic uncertainty in the signal and background models
are incorporated in the confidence levels. The procedure described
allows efficient computation of expected confidence levels.



1 Introduction

The problem of combining the results of several independent searches for
a new particle and producing a confidence level (CL) has become very im-
portant at the LEP collider in its high-energy phase of running. Typically,
both the expected number of signal events and the expected number of back-
ground events are small, and few candidate events are observed in the data
for any particular search analysis. The ability to exclude the presence of a
possible signal at a desired CL is often improved significantly by combin-
ing the results of several searches, particularly if the sensitivity is limited
by the collected luminosity, and not by a kinematic boundary. In addition,
sophisticated search analyses may provide information about the observed
candidates, such as one or more reconstructed masses or other experimental
information relating to the expected features of the signal. These variables
provide better discrimination of signal from background, and also help to in-
dicate which signal hypothesis is preferred among many. Sometimes no such
information is available, and these search analyses must be combined with
other types of analyses for an optimal CL. Binning the search results of the
analyses in their discriminant variables and treating each bin as a statisti-
cally independent counting search provides a simple, uniform representation
of the data well suited for combination.

Often, as is the case with searches for MSSM Higgs bosons at LEP2,
a broad range of model parameters which affect the production of signal
events must be considered and exclusion limits placed for all possible val-
ues of these parameters. The expected experimental signatures of the new
particles in general vary with the model parameters which govern their pro-
duction and decay, and the combination of complementary channels provides
the best exclusion for all values of the parameters. A rapid procedure for
computing confidence levels is therefore necessary in order to explore fully
the possibilities of the model.

This article describes an efficient, approximate method of computing com-
bined exclusion confidence levels in these cases, allowing also for the possi-
bility of uncertainty in the estimated signal and background.
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2 Modified Frequentist Confidence Levels

For the case of n independent counting search analyses, one may define a test
statistic X which discriminates signal-like outcomes from background-like
ones. An optimal choice for the test statistic is the likelihood ratio [1, 2, 3].
If the estimated signal in the ith channel is si, the estimated background is
bi, and the number of observed candidates is di, then the likelihood ratio can
be written as

X =
n∏

i=1

Xi, (1)

with

Xi =
e−(si+bi)(si + bi)

di

di!

/
e−bibdi

i

di!
. (2)

This test statistic has the properties that the joint test statistic for the out-
come of two channels is the product of the test statistics of the two channels
separately, and that it increases monotonically in each channel with the num-
ber of candidates di.

The confidence level for excluding the possibility of simultaneous presence
of new particle production and background (the s + b hypothesis), is

CLs+b = Ps+b(X ≤ Xobs), (3)

i.e., the probability, assuming the presence of both signal and background
at their hypothesized levels, that the test statistic would be less than or
equal to that observed in the data. This probability is the sum of Poisson
probabilities

Ps+b(X ≤ Xobs) =
∑

X({d′
i})≤X({di})

n∏
i=1

e−(si+bi)(si + bi)
d′

i

d′i!
, (4)

where X({di}) is the test statistic computed for the observed set of candidates
in each channel {di}, and the sum runs over all possible final outcomes {d′i}
which have test statistics less than or equal to the observed one.

The confidence level (1 − CLs+b) may be used to quote exclusion limits
although it has the disturbing property that if too few candidates are ob-
served to account for the estimated background, then any signal, and even
the background itself, may be excluded at a high confidence level. It nonethe-
less provides exclusion of the signal at exactly the confidence level computed.
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Because the candidates counts are integers, only a discrete set of confidence
levels is possible for a fixed set of si and bi.

A typical limit computation, however, involves also computing the confi-
dence level for the background alone,

CLb = Pb(X ≤ Xobs), (5)

where the probability sum assumes the presence only of the background. This
confidence level has been suggested to quantify the confidence of a potential
discovery, as it expresses the probability that background processes would
give fewer than or equal to the number of candidates observed. Then the
Modified Frequentist confidence level CLs is computed as the ratio

CLs = CLs+b/CLb. (6)

This confidence level is a natural extension of the common single-channel
CL=1-CLs [4, 5], and for the case of a single counting channel is identical to
it.

The task of computing confidence levels for experimental searches with
one or more discriminating variables measured for each event reduces to the
case of combining counting-only searches by binning each search analyses’
results in the measured variables. Each bin of, e.g., the reconstructed mass,
then becomes a separate search channel to be combined with all others, fol-
lowing the strategy of [6] and the neutrino-oscillation example of [7]. In this
case, the expected signal in a bin of the reconstructed mass depends on the
hypothesized true mass of the particle and also on the expected mass resolu-
tion. If the error on the reconstructed mass varies from event to event such
that the true resolution is better for some events and worse for others, then
the variables s, b, and d may be binned in both the reconstructed mass and
its error to provide the best representation of the available information. By
exchanging information in bins of the measured variables, different experi-
mental collaborations may share all of their search result information in an
unambiguous way without the need to treat the measured variables in any
way during the combination.

For convenience, one may add the si’s, the bi’s, and the di’s of channels
with similar si/bi and retain the same optimal exclusion limit, just as the
data from the same search channel may be combined additively for running
periods with the same conditions. The same search with a new beam energy
or other experimental difference should of course be given its own set of bins
(which may be combined with others of the same si/bi).
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3 Confidence Level Calculation

The task of summing the terms of Equation 4 can be formidable. For n
channels, each with m possible outcomes, there are O(nm) terms to com-
pute. This sum is often carried out with a Monte Carlo [6, 7], selecting
representative outcomes of the experiment and comparing their test statis-
tics with the test statistic computed with the data candidate event counts.
Another alternative, described in this article, is to compute the probability
distribution function (PDF) for the test statistic for a set of channels, and it-
eratively combine additional channels by convoluting with the PDFs of their
test statistics.

The PDF of the test statistic for a single channel is a sum of delta func-
tions at the accessible values of Xi. These may be represented as a list of
possible outcomes

(Xj
i , p

j
i ), (7)

where Xj
i is the test statistic for the ith channel if it were to have j events,

and pj
i is the Poisson probability of selecting j events in the ith channel if

the underlying average expected rate is si + bi when computing CLs+b, or
only bi when computing CLb. The list is formally infinitely long, but one
may truncate it when the total probability sum of the outcomes in the list
exceeds a fixed quantity, or one may select all j such that Xj

i ≤ Xobs.
For the case of two channels, one forms the probabilities and test statistics

for the joint outcomes multiplicatively,

(Xj
i X

j′
i′ , p

j
ip

j′
i′ ), (8)

to form a representation of the PDF of the test statistic for the joint outcomes
of two channels. One may then iteratively combine all channels together and
use the list to compute the confidence level by adding the probabilities of
outcomes with test statistics less than or equal to that observed. This rein-
troduces the computational difficulty of enumerating all possible experimen-
tal outcomes, and hence one needs to introduce an approximation to limit
the complexity of the problem.

The approximation is to bin the PDF of the test statistic at each com-
bination step. The cumulative PDF may be obtained from the listing of
outcomes by sorting them by their test statistics and accumulating the prob-
abilities. Then fine bins of the cumulative PDF may be filled with possible
outcomes. A useful binning covers very small probabilities logarithmically in
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order to represent small CL’s more exactly, and has a uniform binning for
larger probabilities. The finer the bins, the more precise the computed CL
will be; in the limit of infinitely fine bins, the problem reduces once again to
adding the probabilities of all possible outcomes.

To guarantee a conservative CL for setting limits, one may, at each com-
bination step, record as a possible experimental “outcome” the smallest test
statistic within a bin coupled with the largest accumulated probability within
the same bin. The list now consists of test statistics and the cumulative prob-
ability of observing that test statistic or less, and the differential PDF of X
may be recovered from it.

The process is then repeated iteratively for all channels to be combined.
The running time on a computer is proportional to the number of channels,
the number of bins kept in the PDF of X, and increases with the expected
number of events in the channels. To improve the accuracy of the approxima-
tion, the search channels should be sorted in order of si/bi, with the channels
with the largest si/bi combined last.

Once all channels have been combined, the test statistic is computed for
the candidate events observed in the experiment and CLs+b, CLb and CLs

may be computed using Equations 3, 5 and 6. Furthermore, the PDFs of X in
the signal+background and background hypotheses allow computation of the
expected confidence levels 〈CLs+b〉, 〈CLb〉, and 〈CLs〉, assuming the presence
only of background. These are indications of how well an experiment would
do on average in excluding a signal if the signal truly is not present, and are
the important figures of merit when optimizing an analysis for exclusion.

When computing 〈CLb〉, the outcomes are already ordered by their test-
statistic and only the probabilities are needed:

〈CLb〉 =
Nblist∑
i=1

pb
i

i∑
j=1

pb
j

 , (9)

where Nblist is the number of entries in the table of the PDF of X for the
background-only hypothesis, and pb

j is the jth probability in the list, where the
test statistic X increases with increasing j. For total expected backgrounds
of more than about 3.0 events in channels with non-negligible sensitivity to
the signal, 〈CLb〉 ≈ 0.5.

The values of 〈CLs+b〉 and 〈CLs〉 can be computed similarly, although
the PDF of X is needed in the s+b hypothesis as well as the background-only
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hypothesis.

〈CLs+b〉 =
Nblist∑
i=1

pb
i

∑
Xs+b

j ≤Xb
i

ps+b
j

 , (10)

and

〈CLs〉 =
Nblist∑
i=1

pb
i

∑
Xs+b

j ≤Xb
i

ps+b
j

i∑
j=1

pb
i

 , (11)

where ps+b
j is the jth entry in the PDF table of X for the s + b hypothesis,

and Xs+b
j is its corresponding value of X.

The difference between this method and that described by Cousins and
Feldman [7] is the choice of test statistic (referred to as the “ordering princi-
ple” in [7]). The likelihood ratio of Equation 2 has the advantages that it is
the most powerful test statistic for distinguishing the s + b hypothesis from
the background-only hypothesis, and also because it does not depend on the
range of possible models of new physics considered when testing a particular
signal hypothesis. With the test statistic of [7, 8], a signal hypothesis can be
excluded because other signal hypotheses fit the data better. The use of the
test statistic of [7, 8] does not allow the exclusion of the entire model space
under study – one must be careful to include the null hypothesis of no new
particle production in the space of models to be tested. In addition, there
may be more than one new physics signal present in the data. The method
of [7] is ideal for the case in which the possible model space is fully known,
and it is known that exactly one of the points in model space corresponds to
the truth.

For purposes of discovery, 1−CLb indicates the probability that the back-
ground could have fluctuated to produce a distribution of candidates at least
as signal-like as those observed in the data. This probability depends on
the signal hypothesis because channels with small si/bi do not contribute as
much to the computation of CLb as those with large si/bi. In the case that a
particle of unknown mass is sought, analyses which reconstruct the mass pro-
vide discrimination among competing signal hypotheses when a clear signal
is present, rather than the presence of an excess of candidates. Nonetheless,
the probability in the upper tail of the X distribution in the s + b hypoth-
esis may be used to exclude a signal hypothesis because it does not predict
enough signal to explain the candidates in the data.
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4 Systematic Uncertainty on Signal and Back-

ground

The effect on the confidence levels from systematic uncertainties in the signal
estimations {si} and background estimations {bi} can be accommodated by
a generalization of the method of Cousins and Highland [9]. This approach
was originally created for one-channel searches with systematic uncertainty
on the signal estimation only. A very similar approach for handling back-
ground uncertainty is described by C. Giunti in [10]. The generalization of
this technique to the case of many channels with errors on both signal and
background is summarized here.

When forming the list of the probabilities and test statistics of possible
outcomes for a channel, each entry in the list is affected by the systematic
uncertainties on the signal and background estimations for that channel.
This effect is computed by averaging over possible values of the signal and
background given by their systematic uncertainty probability distributions.
For purposes of implementation, these probability distributions are assumed
to be Gaussian, with the lower tail cut off at zero, so that negative s or b are
not allowed.

When computing the PDF of X for the s + b case, the probability to
observe j events in channel i with estimated signal si ± σsi

and estimated
background bi ± σbi

, is

pj
i =

∫ ∞

0
ds′

∫ ∞

0
db′

e
−
(

(s′−si)
2/2σ2

si
+(b′−bi)

2/2σ2
bi

)
2πσsi

σbi

e−(s′+b′)(s′ + b′)j

j!

∫ ∞

0
ds′

∫ ∞

0
db′

e
−
(

(s′−si)2/2σ2
si

+(b′−bi)2/2σ2
bi

)
2πσsi

σbi

, (12)

which is used in each entry in the list of Equation 7. While the denominator
is a product of error functions, the numerator may be computed numerically.
When computing the PDF of X for the background-only case, the averages
are only done over the background variation.

To extend this to the multichannel case, additionally the test statistic
must be averaged over the systematic variations because it, too, depends on
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si and bi:

Xj
i →

∫ ∞

0
ds′

∫ ∞

0
db′

e
−
(

(s′−si)2/2σ2
si

+(b′−bi)2/2σ2
bi

)
2πσsi

σbi

Xj
i

∫ ∞

0
ds′

∫ ∞

0
db′

e
−
(

(s′−si)2/2σ2
si

+(b′−bi)2/2σ2
bi

)
2πσsi

σbi

. (13)

This average is also computed numerically. It is computed both when the
sum over all possible experimental outcomes is performed and when the test
statistic is computed for the data candidates, ensuring that the data outcome
is identical with one of the possible outcomes in the PDF tables. This is
important for confidence levels computed with a single channel, when all
outcomes are listed in the PDF table.

5 Numerical Examples

The above algorithm has been tested in a variety of ways. For general use, a
program implementing it is available at
http://home.cern.ch/∼thomasj/searchlimits/ecl.html.

• If a single channel has 3.0 expected signal events, no expected back-
ground events, and no observed candidates, then CLs = 4.9787% as
expected from an exact computation. CLb = 1.0 in this case. For
experiments with few possible outcomes, this technique yields exact
CL’s.

• If this single channel is broken up into arbitrarily many pieces (say, a
few hundred), equally dividing up the 3 expected signal events, each
with no background or candidates, the limit is the same as that for the
single channel.

• If a channel with no expected signal, but some expected background
(and corresponding data candidates) is added to the combination, then
CLs is not changed significantly, while CLs+b and CLb reflect the rela-
tionship between the expected background and the observed candidate
count.
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• A more realistic example requiring the binning of search results and
combination of those bins has been explored by simulating a typical
search for the Higgs boson (or any new particle) in high-energy par-
ticle collisions, where the mass of each observed candidate may be
reconstructed from measured quantities. The mock experiment has
an expected background of 4 events, uniformly distributed from 0 to
100 GeV/c2 in the reconstructed mass. The resolution of the recon-
structed mass of signal events, were a signal to exist, decreases linearly
from 10.5 GeV/c2 at mH=10 Gev/c2 to 3.3 GeV/c2 at mH=80 GeV/c2,
where mH is the mass of the Higgs boson (or other new particle). In
a real search, the signal resolutions and background levels are typi-
cally obtained from Monte Carlo simulations. Three candidates were
introduced with measured masses of 34, 35, and 55 GeV/c2.

To explore the limits one may set on Higgs production, the space of
possible values of mH was explored from 10 GeV/c2 to 70 GeV/c2, and
the total expected signal count was studied between 2 and 6.5 events.
For each pair of mH and the signal count, histograms of the expected
signal and background were formed in fine bins from 0 to 100 GeV/c2.
The candidates were also histogrammed using the same binning as the
signal and background. Each bin of these histograms was considered a
separate search channel, and the confidence level CLs was formed.

The 95% CL upper limits (CLs < 0.05) on the signal s =
∑n

i=1 si are
shown in Figure 1 for two choices of the test statistic Xi: the likelihood
ratio of Equation 2, and the test statistic Xi = disi/bi. This latter test
statistic is the event count weighted by the signal/background ratio,
and it is combined additively from channel to channel.

The two test statistics perform differently under these circumstances,
and the method described in this article can be used to evaluate the
effects of changing the test statistic. The expected confidence levels
〈CLs+b〉 and 〈CLs〉 provide discrimination of which test statistic is the
best choice.

• The probability coverage of the techinique was explored by testing to
see how often a true signal would be excluded at the 95% CL. The
same mock experiment as described above was used, but the candi-
dates were distributed according to a signal+background expectation
with signal levels varying from 3 events to 10 events, with a true mass
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of 77 GeV/c2. Many experiments were simulated with different popula-
tions of candidates according to the hypothesis, and the probability of
excluding a true signal, hypothesized to have the same strength as was
used to simulate the experiments, at 95% CL is shown in Figure 2. The
exclusion fraction is smaller than 5% for low expected signal rates, a
consequence of the use of the Bayesian CLs = CLs+b/CLb, where some
of the exclusion power is lost by dividing by CLb. Alternatively, one
may use CLs+b exclusively, which would give the proper limit. In the
latter case, the sensitivity 〈CLs+b〉 should be quoted with experimental
results as well to cover the case of much fewer candidate events than
the background expectation, giving a more stringent limit than would
be warrented by the sensitivity of the experiment.

• For combining the search results from four LEP experiments for the
MSSM Higgs, nearly 100 separate search analyses from different ener-
gies, performed by different collaborations, have been combined using
this technique. For a model point with mh and mA near the exclu-
sion limit for the combined data from 1997 and before, this method
computes CLs = 5.380%, while an exact computation yields CLs =
5.332%, both corresponding to an exclusion not quite at the 95% level.
For this test, the bin width for the PDF of X was 0.03% above proba-
bilities of 1%, and 20 bins per decade below 1%.

• To test the correctness of the strategy for handling systematic uncer-
tainty in the signal, the results of Table 1 in Reference [9] have been
reproduced. In all cases, the Monte Carlo confidence levels of Refer-
ence [9] were reproduced at least as well as by Equation (17a) in the
same paper. This equation is

Un = Un0

[
1 +

{
1−

(
1− σ2

rE
2
n

)1/2
}

/En

]
, (14)

where Un is the upper limit, including the effects of systematic uncer-
tainty, on the signal at a desired CL if n candidate events were observed
in the data, Un0 is the upper limit on the signal at the same CL without
the effects of systematic uncertainty, σr is the relative uncertainty on
the signal (e.g., from uncertainty on the efficiency or luminosity), and
En ≡ Un0 − n. The results of this test are shown in Table 1.
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6 Limitations

Because the binning of the PDF of the test statistic X has a finite resolution,
experimental outcomes with very small probabilities of occurring are not
represented correctly. When using the conservative choice of filling the bins
described above, these outcomes are overrepresented in the final outcome.
For the purposes of discovery, however, this approach is not conservative.
When computing the CL for a potential discovery, one must compute the
sum of probabilities of fluctuations of the background giving results that
look at least as much like the signal as the observed candidates, or more.
Conversely, one may add up all the probabilities for outcomes less signal-like
than observed and subtract it from unity. This involves precise accounting
of many outcomes with small probabilities, and the approximation presented
here will not suffice. The most useful case for this technique is in forming
CL limits near the traditional 90%, 95%, and 99% levels.

Another limitation is that correlations between the systematic uncertain-
ties of different search channels are not incorporated. If the results of a search
are binned in a discriminant variable, the signal estimations in neighboring
bins may share common uncertainties, as may the background estimations.
Similarly, if several experimental collaborations perform similar searches us-
ing similar models for the signal and background, then their results will share
common systematic uncertainties. A Monte Carlo computation of the con-
fidence levels is needed when the effects of correlated errors are expected to
be large. The effect can be estimated by replacing blocks of correlated pa-
rameters si and bi with biased values and recomputing the confidence levels.

The technique described in this article also requires that the value of the
test statistic is defined for each single-bin counting search channel, and that
these test statistics may be combined to form a joint test statistic1. More
complicated test statistics which cannot be separated into contributions from
independent channels cannot be used with this technique. A Monte Carlo
approach is suggested in order to use such test statistics. The likelihood
ratio test statistic of Equation 2, because it combines multiplicatively, is well
suited for this technique.

Special care has to be taken in the case that candidate events can have

1The combination rule for the test statistic needs to be associative in order for the
iterative combination of one search channel to a list of combined results of other search
channels to be well defined. The combination rule also needs to be commutative so that
the order in which the combination is performed does not affect the outcome.
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more than one interpretation. A single event may appear in more than one
bin of an analysis or may appear in two separate analyses due to ambiguities
in reconstruction or interpretation. The most rigorous treatment of such
cases is to construct search bins which contain mutually exclusive subsets
of the search results. For example, one may wish combine three counting
channels, A, B, and C, and candidate events may be classified as passing the
requirements of A, B, or C separately, while some may pass the requirements
of both A and B, or both A and C, etc. In this case, one would construct
seven exclusive classification bins, A, B, C, AB, AC, BC, and ABC, and
proceed as before. In general, if a combination has a total of n bins, then
there are 2n−1 possible classifications of each event if multiple interpretations
are allowed. The nature of the analyses will necessarily reduce the size of
this possible overlap problem, and only cases in which significant overlap is
expected for signal or background events need to be considered.

7 Summary

An efficient technique for computing confidence levels for exclusion of small
signals when combining a large number of counting experiments has been
presented. The results of sophisticated channels with reconstructed discrimi-
nating variables are binned and the separate bins are treated as independent
search channels for combination. A variety of test statistics may be used to
evaluate their effects on the confidence levels. The approximate confidence
levels obtained are very close to the values of computationally intensive di-
rect summations of probabilities of all final outcomes, or to those obtained
by Monte Carlo simulations, and the accuracy of the approximation is ad-
justable. The confidence levels are either exact or more conservative than
the true values from explicit summation. Average expected confidence levels
may easily be calculated from the results, and the probability distributions
of the test statistic may be used to construct confidence belts using the tech-
niques described in Reference [7]. Uncorrelated systematic uncertainties in
the signal and background models are incorporated in a natural manner.
Monte Carlo alternatives are suggested when the effects of correlated sys-
tematic uncertainties are expected to be large and in the case of potential
discoveries. This technique is useful for efficiently scanning many possible
models for production of signals with different signatures and combining the
results of searches sensitive to these different signatures.
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Figure 1: The 95% CL upper bound on the number of events as a function
of a hypothetical Higgs mass, using two test statistics, the likelihood ratio
(filled circles) and events weighted by si/bi (empty circles). Candidates are
shown with their respective mass resolutions at the bottom of the figure.
The total background is four events expected to be uniformly distributed
from zero to 100 GeV/c2.
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Figure 2: The false exclusion rate for the mock Higgs search experiment in the
presence of a real signal at mH=77 GeV/c2, for 95% CL computation. The
error bars are hidden within the plot symbols. If a pure frequentist approach
were taken (using CLs+b), then the false exclusion probability would be flat
at 5%.
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Table 1: Reproduction of Table 1 of Reference [9], together with the com-
putation of the same quantity using the method of this article. Listed are
the 90% CL upper limits on the signal for a single counting measurement
with no background, no uncertainty on the background, and n candidates.
The relative uncertainty on the signal is σr = σs/s. The Monte Carlo col-
umn (MC) is also from Reference [9]. The missing entry in the column for
Equation (17a) has a square root of a negative argument, indicating that the
expansion used to derive the formula has reached its limit of validity.

n σr MC Eq. (17a) This Work
0 0.00 2.30 2.30 2.30

0.10 2.33 2.33 2.33
0.20 2.42 2.41 2.42
0.30 2.60 2.58 2.61

1 0.00 3.89 3.89 3.89
0.10 3.94 3.95 3.95
0.20 4.13 4.14 4.14
0.30 4.51 4.57 4.53

2 0.00 5.32 5.32 5.32
0.10 5.41 5.41 5.42
0.20 5.71 5.72 5.71
0.30 6.30 6.78 6.32

3 0.00 6.68 6.68 6.68
0.10 6.80 6.81 6.81
0.20 7.21 7.27 7.22
0.30 8.05 — 8.05

16


