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Abstract—In this paper, we present several confidence measures
for large vocabulary continuous speech recognition. We propose
to estimate the confidence of a hypothesized word directly as its
posterior probability, given all acoustic observations of the utter-
ance. These probabilities are computed on word graphs using a for-
ward–backward algorithm. We also study the estimation of poste-
rior probabilities on -best lists instead of word graphs and com-
pare both algorithms in detail. In addition, we compare the pos-
terior probabilities with two alternative confidence measures, i.e.,
the acoustic stability and the hypothesis density. We present experi-
mental results on five different corpora: the Dutch ARISE 1k eval-
uation corpus, the German Verbmobil ’98 7k evaluation corpus,
the English North American Business ’94 20k and 64k develop-
ment corpora, and the English Broadcast News ’96 65k evalua-
tion corpus. We show that the posterior probabilities computed on
word graphs outperform all other confidence measures. The rel-
ative reduction in confidence error rate ranges between 19% and
35% compared to the baseline confidence error rate.

Index Terms—Confidence measures, forward–backward algo-
rithm, -best lists, posterior probabilities, speech recognition,
word graphs.

I. INTRODUCTION

W ITH the rising number of different application areas
for speech recognition technology, the demand for the

ability to spot erroneous words also increases. In this context
confidence measures can be used to label individual words
in the output of the speech recognition system with either
correct or incorrect, thus enabling the system and subsequent
modules to spot the position of possible errors in the output
automatically.

This additional assessment of the word sequence produced
by the speech recognition system has been and can be used in a
variety of different applications.

1) In automatic inquiry systems, e.g., train timetable infor-
mation system, confidence measures can be used to avoid
unnecessary and very often annoying verification turns if
the confidence for the relevant keywords in the speaker
utterance is high enough. If no verification is needed, the
dialogue duration can be shortened. Time and money can
thus be saved and the overall acceptance of the service
can be increased.

2) Confidence measures can be applied to unsupervised
training and adaptation algorithms, e.g., vocal tract length
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normalization, maximum likelihood linear regression
[16], and training of acoustic models on automatically
generated transcriptions. In all of these cases confidence
measures can be used to confine the algorithms to those
speech segments whose transcription is most probably
correct.

3) Yet another application is the decoding of the speech
signal itself. In [10], confidence measures are used to
dynamically change the weighting between the acoustic
models and the language model during the recognition
process depending on the confidence of the current lan-
guage model history. In [24], the authors use confidence
measures directly to improve the performance of the
speech recognition system.

In the following, we will try to motivate our work by
discussing why the computation of confidence measures in
a speech recognition system is in fact a problem. The fun-
damental rule in all statistical speech recognition systems is
Bayes’ decision rule which is based on the posterior probability

of a word sequence , given a
sequence of acoustic observations . That word
sequence which maximizes this posterior probability
also minimizes the probability of an error in the recognized
sentence

argmax

argmax

argmax

where
denotes the language model probability;
acoustic model probability;
probability of the acoustic observations.

Strictly speaking, the maximization is also over all sentence
lengths .

If these posterior probabilities were known, the posterior
probability for a specific word could easily
be estimated by summing up the posterior probabilities of
all sentences containing this word at position . This
posterior word probability could directly be used as a measure
of confidence.

Unfortunately, the probability of the sequence of acoustic
observations is normally omitted since it is invariant to
the choice of a particular sequence of words. The decisions
during the decoding phase are thus based on unnormalized
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scores. These scores can be used for a comparison of competing
sequences of words, but not for an assessment of the probability
that a recognized word is correct. This fact, and in other words
the estimation of the probability of the acoustic observations, is
the main problem for the computation of confidence measures.

Before presenting our solution for this problem, we give an
overview over related work on confidence measures. Previous
work can be categorized using at least two different, more or
less orthogonal criteria.

1) The different approaches can be distinguished by re-
garding whether only information is used that is extracted
directly from the original models in the recognizer. Al-
ternatively, additional models can be used that are build
solely for the purpose of computing confidence measures.

2) The second criterion which can be used for a distinction is
whether the confidence measures are probabilistic in the
broader sense or not.

Information that can be derived from the recognizer directly
is used by several authors. In [4] and [18], a large number of
heuristic features, e.g., the number of times a back-off in the
language model occurs or the log of the number of phones in a
word, are used to compute confidence measures. Other authors
try to use more probabilistic methods to solve the normalization
problem without additional models. In [7] and [22] word graphs
are used to compute posterior probabilities. For the computation
of these probabilities -best lists are used in [17] and [21] in-
stead.

An example for the use of additional models is the normaliza-
tion of the word scores produced by a speech recognizer with the
scores obtained with a phoneme recognizer [26] or filler models
[21]. These models are often referred to as garbage models.
These approaches are clearly probabilistic.

In many of the cases presented above, the authors use
methods from all all of these categories. Very often, a large
number of features, including normalized acoustic scores and
heuristic features to name only a few, is gathered and is then
combined to form a single confidence measure, e.g., [2], [3].
Gillick et al. use generalized linear models to relate several
features directly to the probability of a word to be correct [6],
whereas Weintraubet al.use artificial neural networks to model
this interdependence, [21].

The confidence measures presented in this paper are all based
on word graphs and -best lists. Word graphs and-best lists
offer an important advantage for the computation of confidence
measures which was the main reason for us to pursue this direc-
tion. As we will see later on, the posterior probabilities used in
Bayes’ decision rule can be approximated more or less directly
on the basis of word graphs and also-best lists. With these
probabilities it is very easy to compute the posterior probability
for individual word hypotheses.

The organization of this paper is as follows.1 :

• First, we describe the computation of posterior probabil-
ities for individual words on the basis of word graphs
in detail. This quantity can directly be interpreted as the
probability of a word to be correct. The well-known for-
ward–backward algorithm can easily be adapted to this

1Some parts of this work were reported in [22] and [23]

problem. In particular, we study the elimination of redun-
dant silence edges in the word graph and the scaling of the
different probabilities which are needed for the computa-
tion of the confidence measures.

• Second, we study the computation of posterior probabili-
ties on -best lists and discuss advantages and disadvan-
tages of both methods, extending the work presented in
[17].

• Third, we compare the posterior probabilities with two
alternative features suggested previously by other authors,
the acoustic stability [4] and the hypothesis density [3], [7]
and show the superiority of the posterior probabilities.

• Finally, we present new experimental results on five dif-
ferent corpora.

Apart from the alternative criteria which are used for compar-
ison, all of our confidence measures are probabilistic and exploit
only information contained in the recognizer output.

II. WORD PROBABILITIES ON WORD GRAPHS

For the following considerations, it is very useful to introduce
explicit boundaries between the words in a word sequence.
Let denote the starting time andthe ending time of word .
With these definitions, is a specific hypothesis for this
word. A sequence of word hypotheses can thus be formulated
as , where ,

and for all . In order to de-
termine these word boundaries, we consider the following mod-
ified Bayes’ decision rule. denotes the poste-
rior probability for a sequence of word hypotheses, given the
acoustic observations and the acoustic model
probability

argmax

argmax

argmax

We assume that the generation of the acoustic observations
depends on word only. With these

word boundaries, the posterior probability for a
specific word hypothesis can be computed by summing
up the posterior probabilities of all sentences which contain the
hypothesis

(1)
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It should be noted that the posterior probabilities of all parallel
word graph edges hypothesized at a specific point in timeal-
ways sum up to one. Such a point in time can be interpreted as a
cut through the word graph and it is evident that the total prob-
ability to intersect this cut must equal one

Fig. 3 illustrates this property. In this example we assume that
the language model probabilities and the acoustic model proba-
bilities are uniform without loss of generality. As the illustration
shows, the posterior probabilities sum up to one for any point in
time.

In the following section, we discuss the construction of word
graphs which can be used to approximate the posterior proba-
bilities for a specific word hypothesis.

A. Construction of the Word Graphs

Let us first define the termword graph. In this paper, a
word graph is a directed, acyclic, weighted graph. Its nodes

represent discrete points in time, its edges word
hypotheses for word from node to node and its
weights the acoustic probabilities of the hypotheses. Any path
through the word graph, i.e., any sequence of word hypotheses
from the node corresponding to the first time frame of the
utterance to the node corresponding to the last time frame,
forms an alternative sentence hypothesis. As above, we use the
notation for such a
sequence of word hypotheses with given boundary times.

In our current speech recognition system [12], the word
graphs are generated time-synchronously in one pass using
the word-conditioned lexical tree search method[14]. During
the recognition phase we store the most probable word end
hypotheses (those hypotheses that survived the pruning
process) for each time frame. For each of these hypotheses
we also store the acoustic probability and the imme-
diate predecessor word . This strategy results in
a word-conditioned word graph[13], [25]. In a subsequent
optimization step, illustrated in Fig. 1, the final word graph
is constructed by merging all nodes with identical associated
times into a single node. If there are parallel edges with the
same word identity, only one of them is retained in the word
graph. The immediate predecessor words which
were stored for each word hypothesis before are now subsumed
in a list of predecessor words for each edge. The list of prede-
cessors is needed to speed up the word boundary optimization
and the pruning process using a sentence hypothesis tree [11]
during the rescoring of the word graph.

During the computation of the confidence measures we do
not use the additional information about the predecessors of a
word graph edge. In other words, we regard all possible tran-
sitions between edges starting and ending in a specific word
graph node. This strategy can easily be justified since the re-
duced number of possible transitions was only caused by the
different pruning steps during the search process. In principal,
all of these transitions are possible and should be considered.

Fig. 1. The left side of the illustration shows a list of six hypotheses[w; �; t]
for a vocabularyA = fA;B;C;D;E; Fg. In this example, the acoustic
probabilitiesp(x jw) are omitted for readability. The lower index corresponds
to the language model predecessorv([w; �; t]). On the right side of the
illustration the resulting word graph is shown after hypotheses with the same
word index, the same starting, and the same ending time were merged. Now, a
list of the predecessors is attached to each edge. As already mentioned, we do
not use this list to restrict the possible transitions during the computation of
our confidence measures.

A word graph can thus be regarded as a limited representation
of the infinite space of possible solutions for the maximization
problem defined in Bayes’ decision rule. If the word graph is
constructed as described above, it contains the most probable
sentence hypotheses and can thus be used to approximate the
posterior probabilities defined in (1).

B. Computation of the Hypothesis Probabilities

In the following, we discuss how the posterior probability for
a word hypothesis can be computed on the basis of word graphs.
In the style of the forward-backward algorithm we compute the
forward probability and the backward probability for a word
hypothesis and combine both probabilities into the posterior
probability of this hypothesis. In contrast to the forward-back-
ward algorithm on a hidden Markov model state level the for-
ward–backward algorithm is now based on a word hypothesis
level. Let us assume that a word graph is given and that we use
an -gram language model and let be
the immediate predecessor words of word(from now
on referred to as thehistoryof word ). We can now compute
the forward probability that the last hypoth-
esis of a sequence ofword hypotheses is and that its
history is

(2)

The sum in the equation above is over all partial paths
through the word graph which end in hypothesis and
whose last language model predecessors are . In
order to simplify the notation we set and

. Equation (2) can be evaluated very effi-
ciently in a recursive manner if the word hypotheses can be ac-
cessed directly using both, their starting and ending times. The
forward probabilities are computed chronologically in an ascen-
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ding order

(3)

Since is the starting time of word , denotes the ending
time of the preceding word . Edges which represent seg-
ments of silence in the speech signal require special treatment.
In order to keep track of the language model history, the forward
probabilities for silence edges have to be computed separately
for each preceding word.

Analogously, let denote the immediate successor
words of word (from now on referred to as thefutureof word

). With this definition we can compute the backward proba-
bility that the first hypothesis of a sequence
of word hypotheses is and that its future is

(4)

The language model probabilities for all words
are computed later in (6), because at this stage in the algorithm,
the language model history for these words is not known. Si-
lence edges are treated as described above. Equation (4) can be
evaluated recursively as well. The backward probabilities are
computed in a descending order

(5)

With the definitions in (1), (3) and (5), the posterior hypothesis
probability can now be computed by summing over all histories
and futures of the word hypothesis

(6)

The last term in this equation represents the language model
probabilities which are missing in (4), as mentioned above. The
fraction above has to be divided by the acoustic probability for

algorithmic reasons, because it was included twice, in (3) and
(5). in the denominator of (6) can be evaluated as follows:

(7)

where the last unigram probability has to be computed only if
. As (7) reflects, the prior probability of the acoustic ob-

servations can be computed in two different ways. In our current
implementation of the forward-backward algorithm this redun-
dancy is used to assure that the forward and backward probabil-
ities are computed correctly.

It is also interesting to note that the total number of distinct
paths through a specific word graph edge and through the word
graph in general can easily be computed with the forward-back-
ward algorithm. By setting all language model probabilities and
all acoustic probabilities to one, the product of the forward and
the backward probabilities for each edge, i.e., (6) without renor-
malization with , corresponds directly to the number of
paths through this edge and directly to the total number
of paths through the word graph.

The posterior hypothesis probability defined in (6) can now
directly be used as a measure of confidence for each individual
word hypothesis

(8)

In our experiments, the confidence is later on compared with
a tagging threshold optimized on a cross validation corpus be-
forehand. Words whose confidence exceeds this threshold are
tagged ascorrect, all others asfalse.

C. Scaling of the Probabilities

In addition to the language model scaling factor, we also
use a scaling factor to scale the acoustic model prob-
abilities. This scaling has a major impact on the computation
of the posterior probabilities and their performance as a confi-
dence measure. If the acoustic model probabilities are not scaled
appropriately, the sums in all of the equations above are domi-
nated by only a few word graph hypotheses because of the very
large dynamic range of the acoustic scores (i.e., the negative
logarithm of the unnormalized acoustic probabilities). The dif-
ferences in the acoustic scores are mainly due to the variance of
the acoustic features which is presumably underestimated. Since
a re-estimation of these variances is very difficult, the acoustic
probabilities have to be scaled in order to obtain useful results.
This additional scaling can be regarded as a broadening of the
variance of the acoustic model probabilities.

Both parameters and have to be estimated on a cross-
validation corpus which must be distinct from the testing corpus
in order to avoid over-adaptation. During the forward–backward
algorithm, all language model probabilities are scaled with the
factor and all acoustic model probabilities with the factor.
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Fig. 2. Confidence error rate on the Verbmobil development corpus for
different acoustic scaling factors� using the plain posterior hypothesis
probabilitiesp([w; �; t]jx ) as a measure of confidence.

To specify how exactly the scaling factors are used, we take (3)
as an example and rewrite it with all scaling factors

All other equations are modified accordingly.
In order to illustrate the effect of the acoustic scaling factor
we ran a simple experiment on the Verbmobil development

corpus, one of the corpora that we used for our experiments. We
computed the hypothesis probabilities defined in (8) for each
hypothesis in the word graph and tagged each word in the recog-
nized sentence as eithercorrector falsedepending on whether
the corresponding probability exceeded a certain threshold or
not. Then we optimized this tagging threshold so as to minimize
the confidence error rate2 and plotted this error rate over the dif-
ferent acoustic scaling factors. As Fig. 2 clearly shows, the per-
formance of the posterior hypothesis probability as a confidence
measure strongly depends on the correct choice of the acoustic
scaling factor . We also observed that the optimal value for the
language model scaling factor, when optimizing and on
the cross-validation corpus, is not identical but very close to 1.0.
This is exactly what one would expect since the language model
probabilities are normalized.

D. Elimination of Redundant Silence Edges

An important aspect is the elimination of redundant silence
edges. As described in Section II-A the word graphs are opti-
mized by merging all nodes with identical associated times into
a single node and by retaining only one of parallel edges with
the same word identity. In doing so, the dependence of a word

2The confidence error rate (CER) is simply defined as the number of incor-
rectly assigned tags, i.e., labelscorrectandfalse, divided by the total number
of recognized words. The baseline confidence error rate is given by the number
of insertions and substitutions, divided by the number of recognized words, i.e.,
tagging all words ascorrect.

Fig. 3. Simple word graph. The solid edges represent word hypotheses,
whereas the dashed edges represent silence hypotheses. In this example
we assume that the language model probabilities and the acoustic model
probabilities are uniform without loss of generality. For each edge[w; �; t] the
posterior hypothesis probabilityp([w; �; t]jx ) is specified. As the illustration
shows, these probabilities sum up to one for any point in time.

Fig. 4. Same word graph as in Fig. 3 after redundant silence edges have
been removed. Again, we assume that the language model probabilities and
the acoustic model probabilities are uniform. Note the different posterior
probabilities for all edges[w; �; t] in comparison with Fig. 3.

edge on its predecessor is resolved and a directed acyclic graph
in its classical sense is obtained.

Sequences of silence edges do not exist in the original word
graph before this optimization step is carried out. Omitting the
dependence on the predecessor words for silence edges in par-
ticular, these sequences of silence edges can now come into ex-
istence. As Fig. 3 shows, there are three different paths con-
sisting of silence edges (dashed lines) from nodeto node
in the graph. Without sequences of silence, there would be only
one path. From an algorithmic point of view, the two additional
paths do not cause any problems. On the other hand, they do
not contain any additional information. All three parallel paths
represent silence in the same part of the speech signal. Since
the posterior probabilities of all edges intersecting a given time
frame sum up to unity, these parallel, more or less identical paths
have a great influence on the posterior probabilities of all these
edges. Therefore, two of the paths should be removed from the
word graph. To maintain all other possible paths through the
word graph, we remove all silence edges from the word graph
which can be bridged by a sequence of shorter silence edges.
Fig. 4 shows the impact of this additional step during the pre-
processing of the word graphs on the posterior probabilities.

Apart from the fact that the redundant silence edges should
be removed from a theoretical point of view, there is an algo-
rithmic advantage of this processing step. The number of paths
through the word graph can be reduced drastically if the word
graphs contain a lot of silence edges. The computing time and
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the memory needed for the estimation of the forward and back-
ward probabilities can thus be reduced.3

E. Computation of the Word Probabilities

In the experiments presented in Table II, the posterior hypoth-
esis probabilities defined in (8) turned out to perform hardly
better than the baseline confidence error rate4. In fact, this obser-
vation is not surprising since the fixed starting and ending time
of a word hypothesis determine which paths in the word graph
are considered during the computation of the forward-backward
probabilities. Usually, several hypotheses with slightly different
starting and ending times represent the same word and the prob-
ability mass of the word is split among them. The unsatisfactory
performance of the confidence measure defined in (8) is indeed
a strong indication that this problem, later on referred to asseg-
mentation of the word graph, needs to be solved.

In the following, we describe several methods we imple-
mented. In a first attempt we summed up the probabilities
of all hypotheses with an identical word index for which the
intersection of the time intervals defined by the starting and
ending times of the considered hypotheses is not empty. From
now on this confidence measure is referred to as

(9)

It is important to note that the accumulation for this and all
following criteria is carried out over all different pronunciation
variants of word . As the results in Table II show, (9) performs
significantly better than the posterior hypothesis probabilities
defined in (8) on all testing corpora.

Unfortunately, the sum of the accumulated posterior proba-
bilities over all different words for one specific time frame does
no longer sum up to unity by definition. Although performing
better in terms of confidence error rate, the question remains
whether the missing normalization has an effect on the confi-
dence measure. If we restrict the accumulation of the posterior
hypothesis probabilities to a single time frame, common to all
hypotheses for a specific word, the accumulated probabilities
for all different words at a given point in time do sum up to
unity. Thus, we accumulate only the posterior probabilities of
those hypotheses for word which intersect the median time
frame of the hypothesis under consideration, later on referred to
as

(10)

As our results show, the performance is comparable with the
confidence measure defined in (9) and the effect of the lacking
normalization seems to be negligible.

3The effect on the performance of the confidence measure is very small on
all of our testing corpora. The main advantage is, in fact, the reduced number of
forward and backward probabilities that have to be computed.

4 As before, the baseline confidence error rate is defined as the number of
insertions and substitutions divided by the number of recognized words, i.e.,
tagging all words ascorrect.

In a final experiment, we investigated whether the choice of
the time frame has an effect on the performance. We carried
out the accumulation not only for the median time frame of the
current hypothesis but for all of its time frames and chose the
maximum of these values as a measure of confidence, from now
on referred to as . The idea here is to determine
thebest-caseprobability for a given word to occur in a certain
period of time

(11)

As the experiments presented in Table II indicate, this measure
performs slightly better than the one defined in (10) and we
therefore decided to use this quantity as our standard word graph
confidence measure.

III. W ORD PROBABILITIES ON -BEST LISTS

In [17], Rueber suggests to compute posterior probabilities
for semantic items in a recognized sentence on-best lists. This
approach is very similar to the computation of posterior proba-
bilities on word graphs and can easily be extended to the com-
putation of posterior probabilities for individual words. Before
describing this extension we first have to discuss two possible
ways of defining what an -best list contains the following.

1) An -best list can be defined as the list of thebest
sentence hypotheses . With
this definition, several of the hypotheses in the list can
of course be identical when comparing only on a word
level. In this case, only the starting and ending times of
one or several words are different. It is obvious that using
such an -best list, the posterior probability defined in
(1) can easily be computed by summing over all sentence
hypotheses containing the specified word hypothesis

. If the -best list contains exactly the same
sentence hypotheses as the word graph, the posterior
probabilities computed on the word graph and the-best
list are identical. On the other hand, the advantage of
the word graph becomes very obvious. Using the word
graph, the posterior probabilities can be computed very
efficiently with the forward–backward algorithm in a
dynamic programming fashion. When using the-best
list, all of the sentence hypothesis probabilities have
to be added explicitly. In other words, there is no need
to use this type of -best lists since a word graph is a
more compact and efficient representation of the set of
different sentence hypotheses.

2) Alternatively, -best lists can be defined as thebest
sentence hypotheses, each of which contains only the se-
quence of words, but no information about the starting
and ending times of the words. This definition is more
straightforward than the first and bears an interesting ad-
vantage over word graphs. As described in the previous
sections, the relaxation of the word graph segmentation is
crucial for a reliable estimation of the confidence.-best
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lists that are based on word positions only and that con-
tain no information about starting and ending times do
not suffer from this segmentation problem and might thus
be used to compute confidence measures without having
to accumulate posterior probabilities of several word hy-
potheses.

Since there is no advantage of -best lists over word
graphs when using the first definition, we decided to focus
on the second type of -best lists. In our speech recognition
system, the -best lists are constructed on the basis of word
graphs. The algorithm is comparable to the normal word graph
rescoring algorithm [11], the only difference being that instead
of keeping only the best out of several hypotheses for each
language model history at a specific point in time, we keep
the best hypotheses for each language model history. It is
important to note that there are no approximations or pruning
steps during the generation of the-best lists.

As we already noted, the second type of-best lists is
based only on word positions. Unfortunately, the concept of
a word position is somehow ill-defined. First, the sentences

in the -best list may have different lengths.
Second, even if all lengths were identical, word positions could
not be compared directly due to possible deletion and insertion
errors. Thus, the different sentence hypotheses have to be
aligned using dynamic programming. In [8], Levensthein sug-
gests an algorithm to compute that alignment which minimizes
the sum of insertions, deletions, and substitutions when com-
paring two different sentences. The important feature of this
algorithm is the following: for word at position in the
reference sentence we are able to assign the corresponding
word in any of the other sentences . We denote
this by . Using this definition, the posterior
word probability for each word in the reference sentence

can easily be computed

where the Kronecker function returns 1 if both arguments
are identical and 0 if they are different. As the equation above
shows, we used a scaling factoragain to scale the acoustic
model probabilities. As before, is the language model scaling
factor. The scaling factor greatly influences the performance
of this confidence measure just like in our experiments on word
graphs. As shown later, the confidence measure computed on

-best lists performs quite well on most of the testing corpora.
We will discuss the differences between the computation on

-best lists and word graphs in detail later on in Section V.

IV. A LTERNATIVE CRITERIA MEASURES

In order to compare the posterior probabilities with alterna-
tive criteria we implemented the acoustic stability criterion [4]
and the hypothesis density criterion [7].

A. Computation of the Acoustic Stability

The motivation for the acoustic stability is that a word is most
probably correct if it is contained at the same position, speci-
fied by the Levensthein alignment, in the majority of sentences
generated with different weighting between the acoustic and the
language model scores. We implemented the acoustic stability
criterion as follows. In a first step, we rescore the word graph
with the standard language model scaling factor in order to
obtain the first-best sentence . Second, we rescore the word
graph with different language model scaling factors and ob-
tain alternative first-best sentences . The
language model scales are equidistant values taken
from the interval . All of
these sentences are then aligned with the ref-
erence sentence using the Levensthein algorithm again.
Pronunciation variants of the same wordare again treated
as equal, since they only represent different hypotheses for the
same word. The relative frequency of any word taken from the
reference sentence occurring at the same position in all of the
sentences is a direct measure for the acoustic sta-
bility

As the experiments presented in Table II show, this criterion
performs well on all corpora, except for the Broadcast News
evaluation corpus.

B. Computation of the Hypothesis Density

Another criterion suggested previously is the hypothesis
density [7]. In order to reduce the computational complexity
during the decoding process, unlikely hypotheses are usually
pruned, using a variety of different pruning strategies. If a large
number of hypotheses have similar scores at the same point in
time, no effective pruning will take place and the number of
hypotheses which is stored in the word graph will be above
average. Since a word is usually hypothesized several times
with different starting and ending times, we count each word
only once while computing the hypothesis density for a given
time frame. Let denote the set of all hypotheses contained
in the word graph. The hypothesis density for time framecan
then be computed as follows:5

To capture the time dependence of this quantity we used the
average hypothesis density in the time interval as our
measure of confidence

As Table II clearly shows, the performance of this criterion is
disappointing on most of the evaluation sets. We will try to ex-
plain possible reasons in the next section.

5The notationjXj indicates the number of elements in (or the size of) a set
X .
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TABLE I
SUMMARY OF THE EXPERIMENTAL SETUP AND SPECIFICATION OF THEWORD GRAPHSUSED IN THEEXPERIMENTS. WGD DENOTES THEWORD GRAPH DENSITY,

NGD THE NODE GRAPH DENSITY, BGD THE BOUNDARY GRAPH DENSITY AND GERTHE WORD GRAPH ERRORRATE

V. EVALUATION OF CONFIDENCEMEASURES

Once the confidence has been computed, each word of the
recognized sentence is simply tagged as eithercorrector false,
depending on whether its confidence exceeds a certain threshold
or not. Here, two different types of errors can occur. The first is
afalse acceptance, i.e., a false word is tagged ascorrect, and the
second is afalse rejection, i.e., a correct word is tagged asfalse.
Obviously, there is a trade-off between the two types of errors,
depending on the choice of the tagging threshold.

Before we present experimental results for all of the confi-
dence measures described in the sections before, we discuss sev-
eral of the evaluation metrics for confidence measures which
were suggested previously.

The confidence error rate (CER), already introduced before,
is is simply defined as the number of incorrectly assigned tags
divided by the total number of recognized words. The baseline
CER is given by the number of insertions and substitutions, di-
vided by the number of recognized words. The CER does of
course strongly depend on the choice of the tagging threshold.
Therefore, the threshold should not be adjusted to minimize the
CER on the testing corpus, but on a clearly distinct cross-vali-
dation corpus. With this threshold the confidence measure can
then be evaluated on the testing corpus. The main drawback of
the CER is that it depends on the prior probability of the two
classescorrectandfalse.

Another criterion is the equal-error-rate (EER). The EER can
be computed by adjusting the tagging threshold so that the false
acceptance and the false rejection error rate are equal. Just like
the CER, the EER strongly depends on the prior probability of
the two classescorrectandfalse.

Yet another evaluation metric is the detection-error-tradeoff
(DET) curve which comprises the equal-error-rate as one of
many possible operating points. The DET curve simply contains
a plot of the false acceptance rate over the false rejection rate.

The final criterion discussed here is the normalized cross en-
tropy. For a definition, the reader is referred to [19]. In our
opinion, this quantity cannot be used to evaluate the confidence
measures presented in this paper. Although it can easily be inter-
preted, it approaches infinity as soon as the posterior probability
of a word equals one, despite the fact that this word was not rec-
ognized correctly. Two different ways to elude this problem are
to remove all words from the test corpus whose posterior prob-
abilities are one although they were recognized incorrectly or
to limit the posterior probability to a value below 1.0. Instead,

we confine ourselves to the use of the confidence error rate be-
cause of its simplicity and to the DET curve because it contains
a high amount of information for different operating points of
the system.

A. Experimental Setup

We carried out experiments on five different corpora. The
English NAB’94 20k dev corpus [15] consists of read newspaper
articles, recorded under high-quality conditions. The NAB’94
64k dev task uses the same evaluation corpus with a larger vo-
cabulary. The Broadcast News ’96 evaluation corpus [5] consists
of broadcast television and radio news. The German Verbmobil
’98 evaluation corpus [1] consists of spontaneous human-to-
human dialogues, also recorded under high-quality conditions.
The Dutch ARISE corpus [9] is composed of human-to-machine
dialogues, recorded over the telephone with an automatic train
timetable information system in The Netherlands. Table I sum-
marizes the experimental setup and specifies the word graphs
generated with our speech recognition system [12]. The word
graph density (WGD) is defined as total number of word graph
edges divided by the number of spoken words, the node graph
density (NGD) as the total number of different words ending at
each time frame divided by the number of spoken words, and
the boundary graph density (BGD) as the number of different
word boundaries, i.e., different starting and ending times, per
spoken word. The graph error rate (GER) is computed by de-
termining that sequence of word hypotheses through the word
graph which best matches the spoken sentence. This measure
provides a lower bound for the word error rate which can be
achieved with a given word graph. For details on these quanti-
ties the reader is referred to [13].

For all of the following experiments we optimized all model
parameters, i.e., the acoustic scaling factors, the language model
scaling factors and the tagging thresholds on separate cross-val-
idation sets beforehand in order to avoid over-adaptation on the
testing data.

B. Confidence Error Rates

Table II comprises the baseline confidence error rates and the
confidence error rates achieved with the different confidence
measures on the five testing corpora.

Before comparing the different confidence measures pre-
sented in this paper, we focus on the different relaxation
strategies which are necessary to compute confidence measures



296 IEEE TRANSACTIONS ON SPEECH AND AUDIO PROCESSING, VOL. 9, NO. 3, MARCH 2001

TABLE II
CONFIDENCEERRORRATES FOR THEDIFFERENTCONFIDENCEMEASURESPRESENTED INTHIS PAPER. ALL ERRORRATES ARE GIVEN IN [%]. THE BASELINE

CONFIDENCEERRORRATE IS DEFINED AS THENUMBER OF INSERTIONS ANDSUBSTITUTIONSDIVIDED BY THE NUMBER OF RECOGNIZEDWORDS

using the forward-backward algorithm on word graphs. Table II
shows the effect of the different strategies. Obviously, the
relaxation of the word graph segmentation is essential for
the computation of the confidence measure using the criteria

, , and . Compared
to the posterior hypothesis probability defined in (8)
all of the accumulated probabilities perform significantly better.
The missing probability normalization for only
has a negligible effect on the performance. Since
yields the best results we chose this criterion as our standard
confidence measure for all further comparisons with the other
methods. It should also be mentioned that there is almost
no degradation in performance when using less dense word
graphs. In order to study this effect, we pruned the five word
graphs using a forward–backward pruning algorithm [20] and
repeated the experiments. We observed no loss in performance
as long as the WGD remained above 2.5 for the ARISE and
the NAB 20k corpus, above 5.0 for the NAB 64k corpus, and
above 25.0 for the Verbmobil and the Broadcast News corpus.

Table II shows that there is no significant difference between
the computation of posterior probabilities on word graphs and
the computation on -best lists for the ARISE, the NAB 20k,
and the NAB 64k task. On the Verbmobil and the Broadcast
News task on the other hand, the word graph posterior probabili-
ties perform significantly better than those computed on-best
lists. Apparently, the information contained in thebest alter-
native sentence hypotheses is only sufficient for the first three
corpora. For the ARISE corpus we attribute this effect to very
short average length of the utterances which is 3.4 words per
sentence. It is more difficult to explain the good performance of
the -best list criterion on the NAB tasks especially when com-
paring the results with the performance on the Broadcast News
evaluation corpus. The NAB 64k and the Broadcast News tasks
are both defined for a vocabulary with more than 64k words
and both corpora contain very long sentences. The size of the

-best list alone, which might in fact be too small, can thus not
be the only explanation. The main difference between both cor-
pora is that the first was recorded under high-quality conditions
and that it contains read speech. Due to the higher quality of the
acoustic models and the language model, the probability dis-
tributions discriminate better between different hypotheses. As
a result, fewer sentence hypotheses contribute to the posterior
probabilities and a smaller size of the-best list is thus suffi-
cient.

In fact, the combination of the size of the-best lists and the
quality of the acoustic models and the language model seems
to be the explanation for the rather poor performance on the
Verbmobil and the Broadcast News tasks. One could argue that
by simply increasing the size of the-best lists this disadvan-
tage can easily be compensated for. Unfortunately, we observed
an increase in CER for . A detailed analysis of the

-best lists showed that words are occasionally aligned which
do not represent the same segment in time. Obviously, the Lev-
ensthein algorithm does not always lead to reasonable align-
ments and causes additional problems. Another aspect is that
it is more difficult to handle very large -best lists efficiently.

For the acoustic stability criterion we used and
. We noticed only a negligible change in performance

for larger values of and different values of. As Table II indi-
cates, the acoustic stability achieves good results on all corpora,
except for the Broadcast News evaluation corpus. Nevertheless,
the acoustic stability is clearly not able to outperform the pos-
terior probability on word graphs. Only on the ARISE corpus it
performs extraordinarily well. As before, we attribute this effect
to the very short average length of the utterances.

The hypothesis density criterion is also not able to outper-
form the performance of the accumulated posterior probability

. The number of parallel hypotheses for a given
time frame is obviously not sufficient as a confidence measure.

C. Detection-Error Tradeoff Curves

The DET curves in Figs. 5–9 support the analysis presented
above. For all of the five testing corpora the word graph based
confidence measure yields the best results.

Unfortunately, we were not able to plot the DET curves for
the acoustic stability criterion for all possible operating points.
Here, the problem is that a rather large number of incorrect
words occur at the same position in all of thedifferent sen-
tences. As soon as the tagging threshold is smaller than 1.0, all
of these incorrectly recognized words are automatically tagged
as correct. There is no way to compute the DET curve between
the 0.0%false acceptance rate/100.0%false rejection ratepoint
in the plot and the point where the DET curves for the acoustic
stability start. Therefore we did not draw a connecting line be-
tween these two operating points.

The same problem occurs for the-best list criterion. Even
for we were not able to plot the curves for all op-
erating points. The explanation is the same as for the acoustic
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Fig. 5. DET curves for the ARISE evaluation corpus.

Fig. 6. DET curves for the Verbmobil evaluation corpus.

Fig. 7. DET curves for the NAB 20k evaluation corpus.

stability criterion. If all of the different sentences contain the
same word at a specific position, the-best posterior proba-
bility is 1.0, no matter whether the word is correct or not. We
believe that values of would not help to solve this
problem since we already observed a deterioration of the perfor-
mance of the -best list posterior probabilities for .
As already discussed, we attribute this effect to the Levensthein
alignment.

Fig. 8. DET curves for the NAB 64k evaluation corpus.

Fig. 9. DET curves for the Broadcast News 96 evaluation corpus.

VI. CONCLUSIONS

In this paper, several confidence measures based on word
graphs and -best lists are presented and compared. Experi-
mental evidence clearly shows that posterior word probabilities
outperform alternative confidence measures, i.e., the acoustic
stability and the hypothesis density. Additional experiments
prove that the estimation of posterior word probabilities on
word graphs yields better results than their estimation on

-best lists. The relative reduction in confidence error rate
ranges between 19% and 35% on different corpora using a
trigram language model and the best posterior probability based
confidence measure, defined in (11). The relative reduction
was highest for corpora which are commonly regarded as
difficult, consisting of spontaneous speech. For these corpora,
the advantage of the confidence measures based on word
graph posterior probabilities was also highest compared to the
other confidence measures. It is interesting to note that this
improvement is achieved with a single confidence measure and
not with a vector of numerous features which can be extracted
from a word graph. A combination of the different confidence
measures presented in this paper using a linear discriminant
analysis have not improved the results presented in this work.
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