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This paper deals with the assessment of the reliability of predictions made in the
context of the fuzzy inductive reasoning methodology. The reliability of predictions is
assessed by means of two separate confidence measures, a proximity measure and a
similarity measure. A time series and a single-input/single-output system are used as
two different applications to study the viability of these confidence measures.
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1. Introduction

Models never reflect all facets of reality. They are always reductionistic in nature, and

consequently, simulation results are never totally reliable. Hence, it is important to always

interpret simulation results with caution and a certain degree of scepticism.

The degree of uncertainty associated with a model of a system depends heavily on the

nature of that system. Simple man-made engineering systems, such as electronic circuits,

are characterised by a small degree of uncertainty, since it is an actual design goal when

fabricating these systems to keep the degree of uncertainty small. On the other hand,

biological or economic systems are usually characterised by a fairly large degree of

uncertainty.

Although the request for scepticism is a good mandate on moral grounds, it is doubtful

whether such a demand is also practical. How should, for example, medical practitioners

know how to judge the reliability of a prediction made about the status of one of their

patients? They have no way of assessing the reliability of a prediction made by an obscure

simulation model that is driven by measurement data taken from the patient. In all

likelihood, the model underlying this simulation was developed by someone else, and they

may not even know how it functions. All they know is how to interpret the results that

come out of the computer. Hence, it is important to instil scepticism into the simulation

software itself, rather than demanding it of its users.

Assessing the inaccuracy of a simulation result is in itself a modelling task. Yet, the

same methodology that is used to model the output to be predicted cannot be used to model

its error. This would lead to a paradoxical situation. If it indeed were possible to compute,

in a deterministic sense, the inaccuracy of a prediction made, then one could simply
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subtract the predicted prediction error from the prediction itself and obtain the precise

value of the output. Evidently, this cannot be done. The modelling error can only be

modelled in a statistical sense.

In this paper, two confidence measures implemented inside the fuzzy inductive

reasoning (FIR) methodology will be described, which assess the error of a prediction

made simultaneously with making the prediction.

In a robust modelling methodology capable of dealing with model uncertainty

(as qualitative modelling techniques should always be), modelling the modelling error

should not be an afterthought. Modelling the output and modelling its error should be done

simultaneously. A modelling and simulation methodology that does not take the model

uncertainty into consideration from the beginning is not robust when dealing with

uncertain situations.

In the next section, the two confidence measures, a proximity measure and a similarity

measure, are described in the context of the FIR methodology (Cellier et al. 1996a).

A description of the main elements of the FIR methodology can be found in Cellier et al.

(1996b).

Subsequently, two applications, one related to time-series forecasting and the other to

single-input/single-output (SISO) systems modelling, are studied in order to discuss the

viability and effectiveness of the proposed confidence measures.

2. Confidence measures of the FIR methodology

FIR deals with multi-input/single-output systems. Each state consists of a number of mask

inputs (the so-called m-inputs) and a single mask output, called m-output. In the

forecasting process, FIR compares the current values of the set of m-inputs (the so-called

‘input state’) with all the input states stored in the experience database that was constructed

during the training phase, i.e. in the modelling process. It determines, which are the five

nearest neighbours in terms of their input states in the experience database, and estimates

the new m-output value as a weighted sum of the m-output values of its five nearest

neighbours, i.e. proximity to the nearest neighbours is established in the input space,

leading to a set of weight factors that are then used for interpolation in the output space.

There are two separate sources of uncertainty in making predictions that need to be

taken into account. The first source of uncertainty is related to the proximity or similarity of

the current (testing) input state to the input states of the training data in the experience

database. If the previously observed training patterns are similar to the current testing

pattern in the input space, it is more likely that a prediction made by interpolating between

the observed m-outputs of the training data-sets will be correct. The second source of

uncertainty has to do with the dispersion among them-outputs of the five nearest neighbours

in the experience database. If the m-output values are almost identical, i.e. the dispersion

between the m-outputs is small, then it is more likely that the prediction will be accurate.

In order to create a meaningful metric of proximity in the input space, it is necessary to

normalise the variables. This is accomplished using a normalised pseudo-regeneration of

the previously fuzzified variables. A ‘position value’, posi, of the ith m-input, vari, can be

computed as follows:

posi ¼ classi þ sidei · ð1:0 2 MembiÞ; ð1Þ

where classi, Membi and sidei are the qualitative triple representing the ith m-input,

obtained in the fuzzification process (Cellier et al. 1996b). In the above formula, the

linguistic variables, classi and sidei, assume numerical (integer) values. The class
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values range from 1 to ni, where ni is the number of discrete classes attributed to vari,

and the side values are from the set ‘ 2 1’, ‘0’ and ‘ þ 1’, representing the linguistic

values ‘left’, ‘centre’ and ‘right’ of the fuzzy membership function (Cellier et al.

1996b). The position value, posi, can be viewed as a normalised pseudo-regeneration

of the ith m-input. Irrespective of the original values of the variable, posi assumes

values in the range [1.0, 1.5] for the lowest class, [1.5, 2.5] for the next higher class,

etc.

The data in the experience database can be characterised in the same fashion,

pos
j
i ¼ class

j
i þ side

j
i · ð1:0 2 Memb

j
iÞ ð2Þ

represents the normalised pseudo-regenerated value of var
j
i, the ith m-input of the jth

neighbour in the experience database and

posj ¼ classj þ sidej · ð1:0 2 MembjÞ ð3Þ

is the position value of the single output variable of the jth neighbour in the database.

The position values of the m-inputs can be grouped into a position vector, pos:

posin ¼ ½pos1; pos2; . . . ; posn�; ð4Þ

where n represents the number of m-inputs. Similarly,

pos
j
in ¼ ½pos

j
1; pos

j
2; . . . ; posjn� ð5Þ

represents the corresponding position vector of the jth nearest neighbour in the experience

database.

The position vectors of the five nearest neighbours are the starting point for computing

both types of confidence measures.

2.1 The proximity measure

The idea behind assessing the reliability of a prediction by means of a proximity measure

is related to establishing distance measures between the testing input state and the training

input states of its five nearest neighbours in the experience database and to establishing

distance measures between the output states of the five nearest neighbours among

themselves.

The distance between the current input state and its jth nearest neighbour is computed

as

dis
j
in ¼ jposin 2 pos

j
inj: ð6Þ

In order to prevent a possible division by zero in the proposed algorithm, it is necessary to

avoid distance values of 0.0:

d j ¼ maxðdis
j
in; 1Þ; ð7Þ

where 1 is the smallest number that can be distinguished from 1.0 in addition.

sd ¼
X5

j¼1

d j ð8Þ

is the sum of the distances of the five nearest neighbours, and

d
j
rel ¼

d j

sd
ð9Þ
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are the relative distances. By applying these formulae to either the entire experience

database or a suitable subset thereof, the five nearest neighbours can be determined while

simultaneously computing their relative distance functions.

The interpolation is done in the output space. Absolute weights are computed as

w
j
abs ¼

1:0

d
j
rel

; ð10Þ

and

sw ¼
X5

j¼1

w
j
abs ð11Þ

is the sum of the absolute weights. Hence relative weights can be computed as

w
j
rel ¼

w
j
abs

sw
: ð12Þ

The average distance used to determine the input confidence measure is computed as a

weighted sum of the relative distances of the five nearest neighbours in the input space:

dconfin
¼

X5

j¼1

w
j
rel · d j: ð13Þ

The largest possible input distance value can be calculated as

dconfinmax
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXn
i¼1

ðni 2 1Þ2

s
; ð14Þ

where ni is the number of classes used in the fuzzification of the ith input variable.

Consequently, the confidence value related to the proximity of the five nearest

neighbours in the input space can be defined as

confproxin
¼ 1:0 2

dconfin

dconfin

; ð15Þ

where confproxin
is real valued in the range [0.0, 1.0], and larger values denote a higher

confidence. Consequently, confproxin
can be used as a quality measure (Cellier 1991).

A position value for the m-output associated with the testing data can be estimated

using a weighted sum of the m-outputs of the five nearest neighbours:

posout ¼
X5

j¼1

w
j
rel · pos j: ð16Þ

The distance between the estimated m-output and any one of its five nearest neighbours is

dis
j
out ¼ jposout 2 pos jj: ð17Þ

The average distance used to determine the output confidence measure is computed as a

weighted sum of the relative distances of the five nearest neighbours in the output space:

dconfout
¼

X5

j¼1

w
j
rel · dis

j
out: ð18Þ
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The largest possible output distance value can be calculated as

dconfoutmax
¼ nout 2 1; ð19Þ

where nout is the number of classes of the m-output.

The confidence value related to the proximity of the five nearest neighbours in the

output space can be defined as

confproxout
¼ 1:0 2

dconfout

dconfoutmax

; ð20Þ

where confproxout
is real valued in the range [0.0, 1.0], and larger values denote a higher

confidence. Consequently, confproxout
can also be used as a quality measure.

Finally, the overall confidence is evaluated as the product of the individual confidence

measures in the input and output spaces:

confprox ¼ confproxin
· confproxout

: ð21Þ

2.2 The similarity measure

Measures of confidence can also be defined without the explicit use of a distance

function. The input distance function is a scalar function over a vector space. This

function throws potentially useful information about the position vectors away. Similarity

measures avoid this problem by defining a similarity function between the position

vectors themselves.

The similarity measure proposed in this paper is a generalisation of the classical set-

theoretic equality functions. The generalisation relies on the definitions of cardinality and

difference in fuzzy set theory. The similarity measure presented in this section is based on

intersection, union and cardinality. It was originally proposed by Dubois and Pradé

(1980).

S1ðA;BÞ ¼
jA> Bj

jA< Bj
:

Clearly, when A ¼ B, then S1ðA;BÞ ¼ 1:0; and when A and B are totally disjoint, then

S1ðA;BÞ ¼ 0:0.

In FIR, this concept is implemented in the following way. The position variables posi
assume values in the range ½1:0; ni�. They are normalised once more:

pi ¼
posi 2 1

ni 2 1
: ð22Þ

The pi variables assume values in the range [0.0, 1.0]. Similarly, a renormalised position

value for the ith m-input of the jth nearest neighbour in the experience database can be

computed as

p
j
i ¼

pos
j
i 2 1

ni 2 1
: ð23Þ

The similarity of the ith m-input of the jth nearest neighbour to the testing m-input based

on intersection is then defined as follows:

sim
j
i ¼

minð pi; p
j
i Þ

maxð pi; p
j
i Þ
: ð24Þ
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The overall similarity of the jth neighbour is defined as the average similarity of all its

m-inputs in the input space:

sim
j
in ¼

1

n

Xn
i¼1

sim
j
i : ð25Þ

The position value of the m-output of the jth neighbour can be renormalised as follows:

p j ¼
pos j 2 1:0

nout 2 1
: ð26Þ

A normalised position value for the testing m-output can be estimated using a weighted

sum of the re-normalised position values of the m-outputs of the five nearest neighbours:

pout ¼
X5

j¼1

w
j
rel · p j: ð27Þ

The similarity of the jth neighbour to the estimated testing m-output based on intersection

can be defined as follows:

sim
j
out ¼

minð pout; p
jÞ

maxð pout; p jÞ
: ð28Þ

A confidence value based on similarity measures can thus be defined in the following

fashion:

confsim ¼
X5

j¼1

w
j
rel · sim

j
in · sim

j
out: ð29Þ

Also confsim is a quality measure, i.e. a real-valued quantity in the range [0.0, 1.0], where

values close to 1.0 denote a reliable forecast.

3. Applications

In this section of the paper, two separate applications are discussed. Both confidence

measures are computed in parallel and compared to each other to evaluate their

effectiveness at predicting forecasting errors. The interested reader is invited to visit the

URL: http://www.inf.ethz.ch/, fcellier/Pubs/FIR/ConfMeas.html on the World Wide

Web, where he or she can find all the models (SAPS-II programs) that were used to

produce the results shown in this section. SAPS-II (Cellier and Yandell 1987) is the tool

that was used throughout this investigation. SAPS-II implements the FIR methodology.

SAPS-II is a Matlab toolbox (MathWorks 1993).

3.1 Central nervous system

In this section, the two previously explained confidence measures, the proximity measure

and the similarity measure, are studied in the context of a SISO system describing one

facet of the cardiovascular system of the human body.

The cardiovascular system is composed of the haemodynamic system and the central

nervous system (CNS) control. The CNS comprises, among others, the signals that are

transmitted from the brain to the heart and to the blood vessels for controlling the

haemodynamic system.

A mixed quantitative and qualitative model of the cardiovascular system using FIR to

describe the qualitative subsystems has been presented in Nebot et al. (1998).
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It contains five separate FIR controller models. One of the five controllers that

compose the CNS, the peripheric resistance (PR) controller, is used in this paper as an

example for studying the validity of the two confidence measures presented in the previous

sections when applied to systems with input and output signals.

The input of the system is the Carotid Sinus Pressure and the output is the PR control

signal. The PR controller FIR model is presented in Matrix 30. It is an optimal mask of

depth five (Cellier 1991). A set of 5000 data values, representing a number of normalised

Valsalva manoeuvres (Nebot et al. 1998), has been used in the identification process in

order to obtain an optimal mask that captures the behaviour of the given system.

t \ x CSP PR

t2 4dt

t2 3dt

t2 2dt

t2 dt

t

0 21

0 0

0 0

22 23

0 þ1

0
BBBBBBB@

1
CCCCCCCA

: ð30Þ

The model was validated using it to forecast six different data-sets that had not been

employed in the model identification process, i.e. using data the model had never seen

before. Each one of these six data-sets, with a size of about 600 datapoints each, contains

recordings of a Valsalva manoeuvre representing a specific morphology, allowing the

validation of the model for different system behaviours. The upper portion of Figure 1

shows a comparison of the output obtained by forecasting one of the data-sets using the

FIR model with the true measured output.

It can be noticed that the FIR prediction represents rather well both the low-frequency

and high-frequency behaviour of the true signal. There is only a short interval around

sample 300 where the FIR model was unable to predict the behaviour of the system

accurately. Its insecurity is related to non-deterministic behavioural characteristics of the

measurement data. The PR control level during various Valsalva manoeuvres recorded in

the experience database varied slightly during this period, and consequently, FIR is

insecure as to what precisely it should predict, and oscillates between the different

plausible predictions.

During the qualitative simulation process, the confidence measures are computed

together with the forecast. The lower portions of Figure 1 show the two confidence

measures, i.e. the proximity and the similarity measures.

The forecast depicted in the upper portion of Figure 1 shows that the prediction is

excellent during the early part of the simulation. It is also quite good during the later part

of the simulation period. However, there is a time segment, approximately between

samples 170 and 380, where the quality of the prediction is reduced. Between samples 170

and 200, the high-frequency components of the signal are not properly represented, and

between samples 200 and 380, the prediction is outright wrong. Both confidence measures

respond reliably to the prediction error, as can be seen in Figure 1. The confidence values

in the early and late segments of the simulation are very high, whereas they are much

reduced in the middle section. It can also be noticed that the similarity measure is more

sensitive to the prediction errors than the proximity measure.

The simulations shown in Figure 1 were made to look bad on purpose. In the

simulation presented in Figure 1, a subset of training data was chosen that contains quite
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a bit of ambiguity. Had a different subset of training data been chosen, the results could

have looked quite a bit better. Figure 2 shows the same simulation experiment once more,

this time using a different training data subset, yet the same testing data. The optimal mask

found is slightly different from the one found earlier:

t \ x CSP PR

t2 4dt

t2 3dt

t2 2dt

t2 dt

t

21 0

0 0

0 0

22 23

0 þ1

0
BBBBBBB@

1
CCCCCCCA

: ð31Þ

Both masks are of almost identical quality. This time, the mask shown in Matrix 31 was

slightly ahead of the game, whereas the opposite was true when using the original training

data subset.

Figure 2 shows an almost perfect forecast throughout the testing period. In fact, the

results are so good that the predicted data cannot be distinguished from the observed data
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Figure 1. PR controller of the cardiovascular system, first training data-set; (top) comparison of
observed and predicted data, (centre) proximity measure of confidence in predictions made and
(bottom) similarity measure of confidence in predictions made.
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at all by the naked eye. The two confidence measures reflect this improvement as well.

Although both confidence measures still have the largest doubts between samples 200 and

350, the confidence values now are never lower than 0.96, whereas before they had

decreased to a value as low as 0.6 on one occasion.

3.2 Water demand time series

An FIR model has been obtained to predict the daily water demand of a section of the city

of Barcelona (López et al. 1996). The available measurement data contain the daily water

demand of approximately 2 years. The demand is measured in m3.

The city government was interested in making a prediction for 1 day ahead.

Consequently, it made sense to perform an experiment in which the water demand for the

following day is predicted by FIR, but then, the predicted value is immediately replaced by

the true value, before yet another day is predicted. The experiment is described in detail in

López et al. (1996).

No input variables are considered in the model. The water demand is treated as

a time series. Future demand is predicted as a function of past demand only. 570 days

(from 1 January 1985 to 24 July 1986) were used as training data, whereas 128 days

(from 25 July 1986 to 29 November 1986) were used as testing data.
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Figure 2. PR controller of the cardiovascular system, first training data-set; (top) comparison of
observed and predicted data, (centre) proximity measure of confidence in predictions made and
(bottom) similarity measure of confidence in predictions made.
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The time series (solid line of Figure 3) shows a periodicity of 7 days. This makes sense,

because, during the weekends, many companies are closed, and therefore, less water is

being consumed. Also, the time series is mildly chaotic, i.e. no two weeks resemble each

other totally. Figure 3 shows the forecast (dashed line) together with the measured values

(solid line). Underneath, the two confidence measures are depicted.

Contrary to the cardiology example, the relationship between the prediction error and

the confidence measures is not immediately evident. Due to the chaotic nature of this time

series, the confidence is generally lower than that in the cardiology example. The lower

confidence values are primarily caused by a larger dispersion among the output values for

similar inputs due to the chaotic nature of the data. In addition, the confidence is lower

during weekends. This additional reduction in confidence is an artefact of data deprivation.

There are only about 70 weekends among the training data, and thus, there are less near

neighbours in the input space for weekend days than for week days. Hence, the additional

reduction in confidence is caused by a lack of good neighbours in the input space, rather

than by dispersion among the neighbours in the output space.

Although the relationship between the prediction error and the two confidence

measures is not evident to the naked eye, it can be shown statistically. To this end, the
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Figure 3. Water demand of the city of Barcelona; (top) comparison of observed and predicted data,
(centre) proximity measure of confidence in predictions made and (bottom) similarity measure of
confidence in predictions made.
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cross-correlation between the prediction error and ð1:0 2 confiÞ was computed, where i

stands for either proximity or similarity.

How is the prediction error defined? There is not a unique formula that is commonly

agreed upon to best represent a prediction error. Absolute errors and relative errors are

widely used, but also mean square errors are commonly found. For the purpose of this

investigation, a different error formula was used that balances well the different aspects of

errors captured by the three aforementioned formulae and that also takes into account the

dissimilarity between the curves representing the observed and the predicted trajectories.

First, the observed testing data (meas) and the forecast testing data (pred) are jointly

normalised to a range of [0.0, 1.0]:

M ¼ maxðmeas; predÞ; ð32Þ

m ¼ minðmeas; predÞ; ð33Þ

mni ¼
measi 2 m

M 2 m
; ð34Þ

pni ¼
predi 2 m

M 2 m
: ð35Þ

Then, the absolute error between the two normalised trajectories is computed:

errabsi ¼ jmni 2 pnij: ð36Þ

Due to the previous normalisation, the so computed absolute error can serve also as a

measure of the relative error. Then, the dissimilarity error between the two normalised

trajectories is computed:

simtyi ¼
minðmni; pniÞ

maxðmni; pni; 1Þ
; ð37Þ

errsimi
¼ 1:0 2 simtyi: ð38Þ

Finally, the overall error is computed as the mean of the two errors computed above:

erri ¼
errabsi þ errsimi

2
: ð39Þ

The cross-correlation is computed using Matlab’s xcov function, as it is important to

subtract the mean values of the two variables prior to computing their cross-correlation.

The results are shown in Figure 4.

It can be seen clearly that there exists a positive correlation between the two quantities

at the centre, which is what was to be expected if the confidence measures are operating

correctly. It can also be noticed that the correlation is a little higher in the case of the

similarity measure, which is an indication of the somewhat higher sensitivity and

reliability of this confidence measure.

4. Discussion

The two examples presented above are useful in analysing the characteristics of the

proposed confidence measures, as well as the capabilities of FIR for prediction in two very

different situations. The CNS data correspond to a process that is largely deterministic,

except at the peaks when the precise value is different from one period to the next, whereas
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the water demand time series is mildly chaotic at all times. In a statistical sense, this time

series can be interpreted as a stochastic quasi-stationary process.

The value of confidence, using either of the two proposed confidence measures, is

related to how deterministic the database is, i.e. how close or disperse the outputs are for

any one input pattern. When the process to be modelled is mostly deterministic, FIR will

have a high level of confidence in the predictions it makes. A reduction in confidence, in

this situation, is a reflection of data deprivation, i.e. FIR does not find enough close

neighbours in the experience database. More training data will solve the problem.

On the other hand, if the system to be modelled is chaotic in nature, i.e. the measured

data stream can be viewed as stochastic (though quasi-stationary), FIR will exhibit overall

a lower confidence in its predictions. The reason for the reduced confidence here is the

dispersion of outputs among the five nearest neighbours. Additional training data will not

be able to solve this problem.

5. Conclusions

When using FIR models in prediction, it is very important to generate not only forecasts

for the output variables, but also measures of the reliability of each forecast. Two measures

of confidence in the reliability of FIR predictions have been proposed in this paper, one

being a proximity measure, the other being a similarity measure. After testing these

measures on a largely deterministic SISO system and on a mostly stochastic time series, a

few conclusions can be drawn:
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Figure 4. Water demand of the city of Barcelona: cross-correlation between the prediction error
and the confidence in the prediction made; (top) proximity measure and (bottom) similarity measure.
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. The similarity measure is more sensitive to the prediction error than the proximity

measure. This is reasonable because the similarity measure preserves more

information than the proximity measure about the qualitative difference between a

new input state and its neighbours in the experience database.

. Since the models derived by FIR are largely deterministic and autoregressive, in

both the deterministic and the autoregressive stochastic processes, the proposed

measures are useful tools to evaluate the likelihood of errors. More specifically, large

proximity or similarity values indicate that a low prediction error is likely to occur.

. In time series corresponding to stochastic processes that are not entirely

autoregressive, i.e. processes where the errors may be correlated, there is not

necessarily a significant correlation between the prediction error and ð1:0 2 confiÞ.

Therefore, the correlation between these two entities may, in general, be used as an

indicator of how well the series in question may be fitted by an autoregressive or

deterministic model.

A remark of a more philosophical nature is in place as well. The better the modelling

methodology works, the less likely it is that a measure of the quality of the prediction can

be made. If indeed the model were to exploit all the information that is available in the

measurement data, then the model of the prediction error would necessarily have to behave

like uncorrelated white noise, because whatever can be said about the prediction error can,

at least in theory, be exploited to improve the model. In practice, this is not a big problem.

As long as the prediction error does not behave like white noise, the information obtained

is useful to assess the quality of the prediction. On the other hand, once the prediction error

starts to behave like white noise, the modeller can be assured that he or she has exploited

every bit of knowledge available, and has come up with the best possible model already.

Hence even in that case, the error analysis reveals something of value.
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