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Abstract 

We use simulation to compare the confidence in 
estimating frequency drift in the presence of 
stochastic noise between two different estimators: (1) 
a mean second difference using neighboring data, and 
(2) a single second difference over the entire data set. 
In each case we simulate 100 s data sampling and 
10,OOO samples (11 and 1/2 days of data). The two 
estimators show a similar confidence when the noise 
is purely random walk frequency modulation, but 
when there is also white frequency modulation, as is 
common in oscillators, method (2) is more efficient. 
An advantage of (1) is that it provides an internal 
confidence to an estimate on a single data set. As a 
practical example, when we simulate a typical 
rubidium gas cell frequency standard, the confidence 
of the drift estimate was ten times better for method 
(2) over method (1). 

Theorv 

We studied the confidence on two second difference 
estimators of frequency drift in the presence of white 
noise frequency modulation (WHFM) and of random 
walk frequency modulation (RWFM) using simulation 
methods in Monte Carlo runs. We generated time 
series simulating clock data (l0,OOO points) taken 
every 100 s against a perfect reference, continuing 
for 106 s, about 11 and 1/2 days. In each case we 
repeated the simulation 100 times, that is, we 
generated 100 different data sets with the same 
stochastic and deterministic parameters but with a 
different starting seed number. We r e p t e d  our two 
different second difference estimators on each data 
set, taking the mean and standard deviation across all 
data for a given set of parameters. In this paper we 
refer to a "knee" in the Allan variance plot of uy(7) 
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versus 7. The knee is the 7 value where we see a 
transition from a region where one power law 
dominates, such as uy(7) - 7ID for RWFM, to the 
region where another process dominates, such as 
uy(7) s 7l for frequency drift. 

We simulated clock data for two types of 
experiments. The first type may be typical of some 
quartz crystal oscillators. In this case, there was a 
frequency drift of 1 part in 10" per day, and the 
stochastic noise was purely RWFM. This was done 
using four different levels of RWFM to make the 
knee in the a l a n  variance curve appear at I@ s, io4 
s, Id s, and equivalent of 106 s, if we had generated 
more data. This allowed us to study the ability of the 
second difference estimator to find the true drift when 
the random walk effects dominated increasingly more 
of the data set. In a second type of experiment we 
in t rodud  a combination of WHFM and RWFM with 
frequency drifts of either 1 part in lOI4 per day or 1 
part in 1013 per day, modelling the performance of 
two types of rubidium gascell frequency standards. 

The second difference operator, A2, estimates drift by 
computing the change in average frequency from one 
interval to the next. The second difference was 
computed in two ways: (1) a mean second difference 
using neighboring data, and (2) a single second 
difference over the entire data set. For (l), the mean 
second difference of a data set, we take first 
differences over the minimum time interval, T ~ ,  the 
average frequencies over each 70, and then difference 
them again to obtain an estimate of drift, the change 
in frequency, for the interval 7@ We then average 
these second differences over the entire data set. In 
this case the individual estimates of average 
frequency which are used to estimate drift are poor in 
the presence of the random walk frequency process, 
compared to those for a longer averaging time as in 
(2). But the second difference operator converts the 
RWFM process to a white noise process, hence 
allowing averaging of the individual drift estimates in 
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method (l), since in our simulation, the drift remains 
constant throughout the data length. This compares 
with method (2) where we take the average frequency 
over the first half of the data set and subtract it from 
the average frequency over the second half. In this 
case we have a better estimate of the average 
frequency, thus a better estimate of drift in the single 
second difference. It tums out from our simulation 
that methods (1) and (2) provide similar confidence 
on the estimates in the case of pure RWFM. 
However in real oscillators we usually find stochastic 
noise which is a mixture of RWFM as well as 
WHFM or what is called flicker frequency 
modulation. In these more realistic situations, 
method (2) is significantly more efficient as a drift 
estimator. We will demonstrate the increased 
efficiency if WHFM is present. An advantage of 
method (1) is that it provides an internal confidence 
of the estimate, the standard deviation of the mean of 
the series of second differences. 

If WHFM noise is included with RWFM and drift, 
then the application of the second-difference operator 
A2 yields a non-white process. In a WHFM process 
the frequency is a white noise process of deviations 
around a mean frequency. Since a WHFM process 
is equivalent to a random walk phase modulation 
(RWPM), then the first difference of phase of 
WHFM data yields a white noise process. The 
longer we average white noise, the better the estimate 
of the mean. This means, the larger the value of 7 

we use to compute first differences, as long as the 
dominant noise process is WHFM, the better the 
estimate of mean frequency. As the interval 7 

increases for the A2 operator, the estimate of average 
frequency 7 improves because high-frequency energy 
contained in the WHFM is "filtered" by a greater 
extent. In the extreme case in which 7 is 112 the 
length of the full data set and there is only a single 
A2 to compute (i.e., three points as shown in figure 
(l), then the high-frequency energy is maximally 
filtered. Hence the knowledge of the frequency 
component of the data set is the best and is better 
than computing 2 over shorter 7 intervals. Though 
as 7 increases, the effects of RWFM and then drift 
become more dominant, yet this can explain why 
method (2), using a single over-all second difference, 
is more practically efficient than method (1). 

From a variance point of view, the variance of 
frequency is largest at 70, the minimum data spacing, 
and decreases as 7. This is because with white noise, 
data are random uncorrelated. From a frequency- 
domain viewpoint, the spectrum resulting from 
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applying A2 to WHFM phase data yields a non-white 
process -- having increased power at high Fourier 
frequencies compared to low Fourier frequencies. 

We will consider a few subtleties of A2 in the 
presence of RWFM. The A2 operator applies a 
sequential "difference-of-slopes" operation to a data 
set. If the set is the time difference of two clocks (or 
phase error data) from, say, a time-interval counter, 
then the A2 operator represents the "difference-of- 
frequencies" (since the slope of the phase is 
proportional to frequency) determined from three 
sequential time difference readings. Subsequent 
threesomes can be taken and the A2 operator applied 
to each; an average over the full data set can then be 
computed as Barnes has discussed [l]. The A* 

operator operator approximates the familiar - 

used in a continuous function. 

d2 
dt2 

To say that noise on a signal is consistent with a 
model of RWFM has several implications. We 
assume that there is a continuous process which is the 
double integral of a white noise process. Any 
measurements on the signal, however, are discrete 
band-limited measurements. Thus, if we doubly 
difference the discrete measurements, we might not 
obtain the theoretical underlying white noise process. 
There are at least three reasons for this: (1) initial 
data points are lost for each difference operation, 
i.e., there are N-1 differences for N data samples; (2) 
the functions involved are sampled at T~ thus the data 
always include power at the sampling frequency of 
1/7, which has an associated window function, and 
hence has power introduced within the bandwidth of 
our operators; and (3) as shown by Greenhall [2], 
adjacent sets of data can be highly correlated in 
RWFM, yielding a bias when double differencing. 
These problems can be mollified. If the initial data 
points on differencing are maintained, then item (1) 
is not a concern. Regarding item (2), the sampling 
window function can be shaped to reduce sidelobe 
leakage [3]. The correlation effect of item (3) may 
still cause the second difference of the sampled data 
to yield a different white-noise process than the 
theoretical, continuous process. As an aside, the 
addition of the drift term to the RWFM can perturb 
the estimate of WHPM using the A2 operator, since 
it is added and subsequently subtracted at different 
steps in the process. This problem can also be 
resolved. Thus, with proper care we can find that 
double differencing yields a white process, though we 



lose some information about the theoretical 
underlying continuous process. 

ExDeriment 

Measurements are commonly taken by a time-intend 
counter, producing a sampled, usually equally spaced, 
time series with interval r0. The WHFM and RWFM 
models are invariably useful for studying the 
performance of Cs, Rb, Qz, H, and other frequency 
standards [4]. Optimal estimation involves converting 
the noise term to a white process so that a simple 
average and standard deviation can be computed. 
The 2 operator will do this to pure RWFM. This 
paper shows that the result is essentially the same for 
pure RWFM plus drift if we apply A2 to each data 
three-some (at interval 7,) or if we compute A* by 
simply taking the first, middle, and last points as 
shown in figure 1. 

Seconda x LO' 

Figure 1. This figure illustrates the three points used 
in a simple second difference for estimating the 
frequency drift. The random line is simulated 
RWFM super-imposed on a linear frequency drift. 
The two straight lines indicate the slopes 
corresponding to the two frequencies from which the 
frequency drift is estimated. 

A Monte Carlo method was used to test the concept 
on a set of simulated data. The simulated data 
consist of drift equal to 1@" per day with RWFM 
added at four levels of amplitude. The RWFM data 
were generated by twice integrating band-limited 
white noise. The first integration converts white 
noise into random walk noise. This output can be 
used to model RWPM, which is the same as WHFM. 
Using a different "seed" and two integrations 

converts white noise into a model of the phase for 
RWFM. Theta noises are then added to a quadratic 
term whose slope increase corresponds to a frequency 
drift ranging from per day to l@l0 per day to 
generate the final data set. The analysis is then 
applied to these data to compute the drift and 
confidence. Since we know the drift a priori, we can 
test the accuracy of the drift and confidence 
estimation. 

A family of plots of uY(7) showing (theoretically) four 
levels of RWFM and drift of 1@lo per day are shown 
in figure 2. RWFM and drift go as and 7+l 
respectively. The "knee" (or change of slope in the 
uy(7) plot) occurs at Id, lo4, and I d  s. We note 
that in the highest level of RWFM used in our 
simulation, the knee occurs at a sample time equal to 
the length of the data set, 14 s; so in this case, the 
RWFM essentially masks the drift. 
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Figure 2. An illustration of a frequency stability plot, 
uY(7), for different simulated levels of RWFM and a 
fixed frequency drift of 1 part in 1O'O per day as is 
typical for some precision quartz-crystal oscillators. 
Notice the intersections "the knee" between the 
RWFM curves and the frequency drift curve occur at 
1OOO s, 10,OOO s, 100,OOO s, and at 1,OOO,O00 s. 

Also shown in figure 2 is white frequency modulation 
(WHFM) (the single dotted line with iH behavior) at 
a level common to high-performance commercial 
cesium-beam frequency standards and to rubidium 
gas-cell frequency standards. Note, however, that 
this much frequency drift would be unusually poor 
performance for a cesium standard. Depending on 
the level of RWFM, we may or may not see its 7+% 

behavior if masked by the WHFM plus drift. If there 
is no RWFM and we have pure WHFM and drift, 
then A2 applied to the phase data will not convert the 
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WHFM to a white process. In this case, the 
residuals around a linear regression to the frequency 
are white, and this regression line is the appropriate 
estimator of drift. Note, WHFM is the same as 
RWPM, the first integral of a WHPM process. 

Figure 3 is a model with a WHFM level of 10 ns and 
a RWFM of 30 nsld, both at 1 d, and a drift of 1013 
per day. The last two numbem are typical for 
commercial rubidium gascell frequency standard and 
the first number for traditional cesium-beam 
frequency standard. Though not plotted, we also did 
the simulation for the anticipated performance of the 
rubidium frequency standards that are planned for the 
GPS Block 2-R satellites to be used in cross-link 
ranging for that system. The model elements in this 
second case were 3 ns/d for the WHFM, 4 nsld at 1 
d for the RWFM and l @ I 4  per day for the frequency 
drift. 

0 I 

Figure 3. An illustration of a frequency stability 
plot, u,,(r), for simulated data as may be typical in 
some atomic frequency standards. The noise model 
includes both WHFM and RWFM. The frequency 
drift model is typical of commercial rubidium 
frequency standards. 

RWFM. The fourth column represents the standard 
deviation over each 100 cases. 

TABLE I 
100 Single 2nd Difference Estimates of 

10-I0/d Drift + RWFM 

RWFM @ Id "Knee" [SI Mean of 2d's S.D. of 2D's 

lo00 ns/d 103 l.oO*lO1o .004*10-'o 

5000 ns/d 104 l.OO*lO1o .190*10-10 

loo00 ns/d le 1.02*10-10 .344*10-" 

Table I1 shows the results of computing the mean 
second differences using the same original data. The 
average of the mean second differences over each of 
the 100 case.s is shown in column three. Again the 
worst match is in the last (lughest level) case of 
RWFM being in error by + 12 5%. The fourth column 
shows the standard deviations of the mean second 
differences used in column three and is a measure of 
confidence on the result. The fifth column is the 
RMS of the standard deviations of the means and 
these are essentially identical to the standard 
deviations because the A* operator yields a pure 
white process from the pure RWFM data set. 

TABLE I1 
100 Mean 2nd Difference Estimates of 

101O/d Drift + RWFM 

RWFM (Id) 'h' Is] Mean of MZd S.D. of M2D RMS(SD Mean) 

lo00 ns/d 10' l.OO*lO-'o 0.035*10~'0 0.034*10i0 

So00 ns/d 10' 0.99*10-10 0.173*10-i0 0. 170*10-'0 

loo00 ns/d lo-' 1 .OO*lO1o 0.333*10-1° 0.340*1010 
Results 

5oooO ns/d 106 1.12*10i0 1.670*1010 1.670+10~io 
Results of using the simulated data and computing a 
single second difference (first, mid, and last points 
only) are shown in Table I. One can imagine the 
data representing four different experiments each 
involving 100 independent clocks and each clock 
having the same level of RWFM (and value of drift, 
of course). The third column is the average of each 
of the 100 cases; the results closely match the 
expected value of per day with a + 18% error 
being the worst in the last (highest level) case of 

A typical plot of the simulated phase data with the 
"knee" at 104 s is shown in figure 4. We see the 
obvious quadratic trend and the added slight RWFM 
noise accompanying it. The corresponding uY(7) plot 
is shown in figure 5.  Here we see the r+% RWFM 
behavior over most of the plot and then the curvature 
in long-term toward 7'' frequency drift. It is 
interesting to note that even with the "knee" being 
comparable to the data length, the frequency drift is 
still reasonably measurable. 
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For the typical rubidium frequency standard data (see 
figure 3) where the modeled drift was 1013 per day, 
we obtained (0.61 f 0.42) x per day for the 
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Figure 4. A typical plot of the simulated phase data 
with the "knee" at 104 s. We see the obvious 
quadratic trend and the added slight RWFM noise 
accompanying it. 
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external estimate of the confidence using method (1) 
and (0.91 f 0.12) x lU13 per day for the estimate 
using method (2). For the improved performance 
rubidium planned for the GPS Block 2-R with a 
modeled drift of 1014 per day we estimated (0.3 f 
1.4) x per day from the internal estimate of the 
confidence using method (1). The external estimate 
of the confidence gave a very large uncertainty. For 

method (2) the frequency drift estimate was (0.88 f 
0.17) x lUi4 per day. 

Conclusions 

We have compared two different estimators of drift 
in the presence of pure RWFM, and the more 
realistic combination of WHFM and RWFM. We 
find with pure RWFM that even though one is 
computationally simpler, they both produce estimates 
of drift with comparable confidence. Thus, the drift 
can be estimated With confidence using only three 
points from this data set: the first, the middle, and 
the last points. The real advantage of this simple 
seconddifference frequency drift estimator appears 
when a significant level of WHFM is present. Then 
the confidence on this estimate becomes significantly 
better than computing second differences over T ~ ,  

then computing the mean of these. We note that 
similar simulation would show this second difference 
estimator giving significantly better estimates of drift 
with WHFM and RWFM stochastic noise, than linear 
regression on the frequency or quadratic regression 
on the phase. 

In general, taking the results of this paper, which are 
based on pure simulation and modeling, along with 
the results of Barnes and Allan (see ref. [l] and [4]) 
which are based on real data, we have the following 
conclusions concerning the estimation of frequency 
drift. If the predominate noise process is white noise 
phase modulation (WHPM), then the frequency drift 
can be best determined by calculating a quadratic- 
least-squares to the phase (or the time) data values. 
If the predominate noise process in white noise 
frequency modulation (WHFM), then the frequency 
drift can be best determined by a linear-least-squares 
to the frequency data values. Otherwise, the simple 
second difference, determined from the first, middle 
and last phase (or time) data values will be a more 
efficient estimator of frequency drift for typical 
frequency standards. 
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