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Abstract

This paper addresses the estimation of default probabilities and associated
confidence sets with special focus on rare events. Research on rating tran-
sition data has documented a tendency for recently downgraded issuers to
be at an increased risk of experiencing further downgrades compared to is-
suers that have held the same rating for a longer period of time. To capture
this non-Markov effect we introduce a continuous-time hidden Markov chain
model in which downgrades firms enter into a hidden, ’excited’ state. Using
data from Moody’s we estimate the parameters of the model, and conclude
that both default probabilities and confidence sets are strongly influenced by
the introduction of hidden excited states.
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1 Introduction

The Basel Committee on Banking Supervision has in its ’New Capital Accord’
proposed a regulatory setup in which banks are allowed to base the capital
requirement on their own internal rating systems and to use external rating
systems as well. The increased reliance on rating systems as risk measure-
ment devices has further increased the need for focusing on statistical analysis
and validation methodology for rating systems. While the formal definitions
of ratings by the major agencies do not formally employ a probability, or
an interval of probabilities, in their definition of the various categories, any
use of the ratings for risk management and capital allocation must rely on
default probabilities from each rating category and on probabilities of tran-
sition between non-default categories. There are many statistical issues, of
course, in estimating such probabilities and in assessing the precision of the
estimates.

In Lando and Skødeberg (2002), it is shown that using a continuous-time
analysis of the rating transition data enables us to meaningfully estimate
probabilities of rare transitions, even if the rare transitions are not actually
observed in our data set. When using classical ’multinomial’ techniques, as
those of Carty and Fons (1993) and Carty (1997), this is only possible in the
limit where the data are observed at all dates and the transition matrices are
estimated over very short periods (daily). The information gain in using the
full information of exact transition dates is important. The continuous-time
approach using generator matrices is mainly a question of ease of formulation
and application.

However, the computation of the one-year transition probability estimates
from a generator (or by taking powers of - say - daily transition matrices)
implicitly assumes that the underlying process is Markov. There is over-
whelming evidence that the rating evolutions are non-Markov, and one of
the most well-documented facts is that there is a ’downward momentum’
effect in ratings. This means that firms that are downgraded into a class
have a higher probability of experiencing a further downgrade from this class
than the companies that were not downgraded into that same class. Similar
effects are documented with respect to upward movements.

In this paper we expand the state space of the rating process to take into
account such non-Markov effects. We estimate a Markovian model in which
firms which are downgraded into certain categories enter into an ’excited
state’ in which they stay for a stochastic amount of time. For example, a
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firm downgraded into Baa, will be assumed to enter into a latent state Baa*
and (if no further rating action is observed) to migrate into the ’normal’
state Baa after a random amount of time. We estimate the time it takes
for the latent process to make the unobserved migration from the excited
state into the normal state, but more importantly, we obtain estimates for
transition probabilities from excited as well as normal states. We compare
the estimates obtained in this larger model with those obtained by using a
’basic model’ based on the observed rating classes only. Our data set does not
include outlooks and watchlists which Moody’s uses to convey information
in addition to the rating on the likely direction of future rating movements.
With access to these data, it would be natural to let the excited states cor-
respond to a ’negative outlook’. At the completion of this study, the study
Hamilton and Cantor (2004) appeared which documents that outlooks have
highly significant effects on migration probabilities.

A second focus of our paper is the use of a bootstrap1 procedure to ob-
tain confidence sets for the default probability estimates, and again compare
the confidence sets obtained in the enlarged state space model with those
obtained by using only the observed ratings. Our main focus is again on the
rare events.

Our main conclusions are as follows. First of all, we confirm that the
description of states as ’excited’ is well chosen. Firms in the excited states
have higher default probabilities over a one-year horizon than firms in the
normal state. Second, using the extended model increases default probabil-
ities from normal states compared to what is obtained in the basic model.
The intuition is, that the typical path to default is through a sequence of
downgrades. In the extended model, successive downgrades are more likely
because the entrance into an excited state increases the probability of a fur-
ther downgrade to yet another excited state etc. As in Lando and Skødeberg
(2002) the fact that we use ’continuously’ observed (i.e. daily) rating transi-
tions allows us to estimate probabilities of rare events (such as default from
Aaa, Aa or A) which are not observed in the data set. However, we show
here that the modification of the estimates of default for such rare transitions
needs to be larger than that proposed in Lando and Skødeberg (2002). Fi-
nally, the confidence sets for rating transition probabilities also become wider
in the extended model, partly as a consequence of the increased number of

1For an introduction to the bootstrap, see Efron (1982). Our method is an example of
a parametric bootstrap.
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parameters.
The improved understanding of transition probability variability has con-

sequences for a number of issues in credit risk management and in the analy-
sis of credit risk models in general. First, removing the zeros from all events
in the matrix of estimated transition probabilities and supplying confidence
bands gives us a concrete method of assessing, for example, the proposal
put forward by the Basel Committee, of imposing a minimum probability of
0.03% in these cases. As we will see, a proper use of the full information
in the data set gives a better impression of the appropriateness of such a
limit. Both Nickell, Perraudin, and Varotto (2000) and Höse, Huschens, and
Wania (2002) contain estimates of standard deviations and confidence sets,
but since they are based on multinomial type estimators, they cannot assign
meaningful confidence sets to probabilities of rare events where an estimate
of standard deviation is either not well-defined or the asymptotic methods
are not applicable.

Second, the comparison of actual default probabilities for high rating
categories and the default probabilities implied by spreads in corporate bond
prices relies on a point estimate of the default probability for a given rating
category. If this probability is significantly changed when one takes into
account the non-Markovian behavior of the rating transitions, especially for
short maturities, then the actual default probability is capable of explaining
a larger part of the observed credit spreads.

Our focus in this paper is on non-Markov effects that are in a sense ’in-
ternal’ to the rating process, i.e. which can be characterized by the history
of the rating process itself. The study of such effects is performed for ex-
ample in Altman and Kao (1992b), Altman and Kao (1992c), Altman and
Kao (1992a), Hamilton and Cantor (2004), Carty (1997), Kavvathas (2000),
Lucas and Lonski (1992) and Lando and Skødeberg (2002). A study of par-
ticular relevance to our study is the non-parametric estimation of Fledelius,
Lando, and Nielsen (2002). By means of non-parametric kernel smoothing
techniques they show that conditional on a previous downgrade there is a
temporary increased intensity of being further downgraded. And the other
way round, a previous upgrade leads to a temporary increased intensity for
being further upgraded. This effect is observed in all four rating categories
they consider, and whether they condition on previous upgrades or down-
grades the effect seems to disappear after some 20-30 months if no further
rating transitions are observed. This is consistent with the stated objective
of Moody’s of avoiding rating reversals, see Cantor (2001). These findings
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lend support to the extended state model of this paper. However, for prac-
tical reasons even our model does not allow for all heterogeneities. First
of all, when we consider downgrade intensities, we only distinguish between
firms that were downgraded into the current state. We do not distinguish be-
tween those for which we have no prior movements available and those where
the current state was reached through an upgrade. Based on the study of
Fledelius, Lando, and Nielsen (2002), the grouping of these two types is jus-
tified for the purpose of estimating downgrade intensities. We also keep this
grouping when we study upgrade intensities which is not consistent with the
analysis of Fledelius, Lando, and Nielsen (2002). However, since our focus
is on the probability of default, we are mainly concerned with the effect of
incorporating a temporary increased intensity of further downgrades upon
a previous downgrade, since the other effect will have only second order
effects. The dominant contribution to the default probability is the proba-
bility of taking a series of downgrades into default which is not interrupted
by temporary upgrades. As a consequence we leave out of consideration the
non-homogeneity arising from upgrades. Due to data limitations, we also do
not include excited states for the Aaa, Aa and A categories. The number of
firms downgraded from Aaa into Aa, for example, is so small that we cannot
obtain a meaningful estimate of the transition away from an excited Aa state.

Non-Markov effects or non-time homogeneity may of course also arise
from business cycle effects documented for example in Nickell, Perraudin,
and Varotto (2000), Bangia, Diebold, Kronimus, Schagen, and Schuermann
(2002) and Kavvathas (2000), or possible changes in rating practices, as ar-
gued in Blume, Lim, and MacKinlay (1998). We perform here an analysis
which is conditional on a particular phase in the business cycle. We con-
sider estimates from a stable period (1995-1999) and from a volatile period
(1987-1991). While there may still be cyclical effects within these small pe-
riods, the homogeneity assumption is much more plausible over these time
periods. This conditional analysis also limits the problems with correlation
between rating migrations arising from common dependence of exogenous
variables. It is well known from intensity-based models of default, that to
induce significant correlation of default events through common variation
in intensities, one must have extremely volatile intensities, see for example
Duffie and Gârleanu (2001) for evidence of this. We see no evidence even
close to such fluctuations of transition intensities over the five year periods
we consider. Correlation of defaults might also occur due to ’domino effects’
or ’parent-subsidiary’ relations but such events are very rare.
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The outline of the paper is as follows: Section 2 describes our data and
some of the data cleaning issues one faces when looking at the data set.
Section 3 recalls the discrete-time, multinomial estimation of the transition
parameters based on discretely observed ratings and contrasts this with the
continuous-time case. Furthermore, it discusses the problems with confidence
sets for rare events in the multinomial model. In section 4, we describe in
detail the continuous-time Markov chain model with extended state space,
we present an estimator for this model, and we discuss the problems of de-
termining the initial state of the issuers at the beginning of the estimation
period. In section 5 we give a description of the bootstrap experiment we
apply to obtain confidence sets. Section 6 contains our results and section
7 concludes the paper. An appendix contains a description of the technique
applied when estimating the extended model.

2 Data Description

The rating transition histories used for this study are taken from the complete
’Moody’s Corporate Bond Default Database’, that is the edition containing
complete issuer histories since 1970. We consider for this study only issuers
domiciled in the United States. Moody’s rate every single debt issue of the
issuers in the database but we exclude all but the senior unsecured issues.
This leaves us with 3,405 issuers with 28,177 registered debt issues. Including
all the rating changes for every issue we reach a total of 90,203 rating change
observations, ranging from just one observation for some small issuers up to
General Motors Acceptance Corporation, the finance subsidiary of GM, with
3,670 observations on 1,451 debt issues since 1973.

Our first task is to produce a single rating history for the senior unsecured
debt of each company - a task which is not completely simple. A first step
is to eliminate all irrelevant ’withdrawn rating’ observations. A ’withdrawn
rating’ is defined as irrelevant if it is not the last observation of the issuer
implying that the issuer is still present in the database.2 On the other hand
if a ’withdrawn rating’ is genuinely the last observation, and no other issues
are observed after the withdrawal, we leave out of consideration this issuer
from that date on and treat the issuer as ’right censored’. The issuer is also

2We can draw this conclusion because we work with the complete database, where all
loans matured or called in the past have as final observation a ’withdrawn rating’.
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right censored if alive at the final date of the observation period which is the
9th of January 2002.

Having corrected for withdrawn ratings, we should be able to obtain the
senior unsecured rating for the company by looking at any senior unsecured
issue which has not matured or has not been repaid. There are, however,
62 exceptions to this principle which we handle individually. The typical
case is that a single debt issue has some special covenants, is traded in the
Euro-market, or possesses similar peculiarities, which makes it fair to neglect
that specific issue. There were a few cases where we could not find a reason
for the different ratings, but in these cases it was easy to assign a rating
by looking at the rating of the majority of issues. Having done the above
cleaning of our data set, we are left with 13,390 rating change observations.

The next critical step is to get a proper definition of default. Recall, that
Moody’s do not use a default category as such, but do record a default date
in the data base. The lower categories (from B and downward) may include
firms in default, and the rating then measures the severity of the default.
The problem is that to measure transition rates from non-default categories
to default, we must know whether the firm migrated from (say) B to default
or whether the assignment of the rating B was already part of the default
scenario. As our primary focus is the estimate of the probability of default
for the various categories, it has been essential to make sure that these cases
were treated in the right way. Hence we decided to look at each of the 305
recorded defaults manually. These defaults are recorded by Moody’s in their
’Default Master Database’, and whenever reasonable, these default dates are
used to define a default date. In this case, all rating observations until the
date of default have typically been left unchanged. However, if a transition
from say B1 to Caa occurs a few days (up to a week) before the default
date, we interpret this event as a B1-issuer jumping directly to default. It
is clear in cases like this that the rating Caa has reflected the imminent
default and that only legal issues have made the default date different from
the date at which that lower rating was assigned. There is some arbitrariness
in this choice and it means that one should be very careful interpreting the
estimated default probabilities for the very low rated firms.

Rating changes observed after the date of default are eliminated, unless
the new ratings reach the B1/B2-level or higher and the ratings are related
to debt issued after the time of default. In these cases we have treated the
last rating observations after the recovery to the higher rating as related to
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a new (or ’refreshed’) independent issuer.3

Finally, there are 17 incidences of issuers with two default dates attached
to their name in the database, where the first might refer to a ’distressed ex-
change’ and the second to the date of a ’chapter 11 action’. By cross-checking
all the information in the database and looking at the rating observations
before and after both default dates, it has in most cases been possible clearly
to determine whether we have just one issuer defaulting once or it is a case
which according to our rule set up above should be treated as two defaults of
independent issuers. After this procedure, we have now come down to 9,991
observations of rating changes distributed among 3,446 issuers.4,5

Since the introduction of additional notches (Aa1, Aa2 etc.) in the begin-
ning of the 80s there has been a total number of 21 categories in the Moody’s
system, and adding a default and a ’withdrawn rating’ category we would
have to work with 23 categories in all. Because we treat withdrawals as cen-
sored observations and the ’default’ state is viewed as absorbing (or, at least,
the recovery time is not analyzed), there are 21 ∗ 22 = 462 rating transition
probabilities to estimate in the full system. This model is hard to estimate
with the sample we have at our disposal and it becomes impossible with the
addition of latent states. Hence we have chosen to reduce the number of
categories to a total of 8 in the usual way: Aaa is kept as an independent
category. Aa1, Aa2, and Aa3 are merged into one single category Aa. The
same procedure is applied to A, Baa, Ba, and B. For the Caa-category we
merge Caa, Caa1, Caa2, Caa3, Ca, and C into one category. Having done
this simplification we only have to estimate 56 rating transition probabilities
in the standard model, a much more reasonable number.

3When rating a company, Moody’s give weight to estimating not just the probability
of default but also the expected recovery of principal given default, which are combined
into one single rating. Most post-default rating changes are therefore not real changes but
mere reflections of the improved or deteriorated expectation of recovery, why they are of
no interest for our purposes.

4The number has gone up from 3,405 due to our procedure of introducing new issuers,
if the post-default information is judged to be real rating changes.

5Amongst the remaining issuers some might be affiliates of others. However, as re-
marked by Lucas and Lonski (1992), affiliate companies need not follow the same rating
path as the parent company, so we will not pursue this issue any further.
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3 Discretely observed vs. continuously ob-

served ratings

The advantage of using continuously observed data when estimating probabil-
ities of unobserved or rare transitions was observed in Lando and Skødeberg
(2002). In this paper we focus on two extensions of that approach. First, to
correct for observed non-Markov effects, we expand the state space to include
latent rating categories for down-graded firms. We investigate, whether this
adjustment has serious consequences for the estimates. Second, we use a
bootstrap method to obtain confidence sets for the probabilities of default,
something which is not possible using traditional methods. Before we turn to
these models, we briefly summarize the difference between the discrete time,
’multinomial’ approach and the continuous-time approach. To motivate the
bootstrap procedure, we also show why the traditional multinomial method
is less suitable for obtaining confidence sets.

Estimation in a discrete-time Markov chain is based on the fact that
the transitions away from a given state i can be viewed as a multinomial
experiment. Let ni(t) denote the number of firms recorded to be in state i
at the beginning of year t. Disregarding withdrawn ratings for the moment,
each of the firms may be in one of K states at the beginning of year t + 1.
Let nij(t) denote the number of firms with rating i at date t which are in
state j at time t + 1. The estimate of the one-year transition probability at
date t is then

p̂ij(t) =
nij(t)

ni(t)
.

If the rating process is viewed as a time-homogeneous Markov chain which
we observe over time, then the transitions away from a state can be viewed
as independent multinomial experiments. This allows us to in essence collect
all the observations over different years into one large data set. More pre-
cisely, the maximum-likelihood estimator for the time-independent transition
probability becomes

p̂ij =

∑T−1
t=0 nij(t)∑T−1
t=0 ni(t)

. (1)

where T is the number of years for which we have observations. In practice
there are rating withdrawals, and typically this is handled by elimination of
the observation for the year in which the withdrawal occurs. This procedure
depends on the withdrawal being ’non-informative’, an assumption which we
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make throughout, both in the discrete- and the continuous-time setting. In
the special (but unlikely) case where the number of firms in a rating category
stays the same (i.e. the inflow is equal to the outflow), the estimator for the
transition probabilities is the average of the one-year transition probability
matrices. But this average only serves as an approximation when the number
of firms in a given rating category changes from year to year. The estimator
above correctly weighs the information according to the number of firms
observed each year.

Time-homogeneity is used in the estimator (1) to aggregate transitions
and exposures over different time periods. Without the homogeneity assump-
tion, we may estimate the probability of a transition between two categories
over a particular time-period t to T as

p̂ij(t, T ) =
nij(t, T )

ni(t)
. (2)

where nij(t, T ) is the observed number of transitions from i to j over that
particular time period. This is a so-called cohort estimator, and this is also
a multinomial type estimator and it can be interpreted as such even without
a Markov assumption. However, both estimators are 0 when no transitions
from i to j occur, and both have problems with obtaining meaningful confi-
dence sets in this case, as we shall se below.

Estimation based on continuous observations relies on estimating the gen-
erator matrix of a time-homogeneous Markov chain. Let P (t) denote the
transition probability matrix of a continuous-time Markov chain with finite
state space {1, . . . , K} so that the ij’th element of this matrix is

Pij(t) = P (ηt = j|η0 = i).

The generator Λ is a K ×K matrix for which

P (t) = exp(Λt) for all t ≥ 0

where

exp(Λt) ≡
∞∑

k=0

(Λt)k

k!
.

The diagonal element of Λ we write −λi where

λi =
∑

j 6=i

λij, λij ≥ 0 for all i 6= j
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and from this we note that the rows of a generator sum to zero.
The maximum-likelihood estimator of λij based on observing realizations

of the chain from time 0 to T is

λ̂ij =
Nij(T )∫ T

0
Yi(s)ds

, i 6= j6 (3)

where Nij(T ) counts the total number of transitions from i to j in the time
interval and Yi(s) is the number of firms in state i at time s. Hence the
maximum-likelihood estimator for the one-period transition matrix P (1) is

P̂ (1) = exp(Λ̂).

Lando and Skødeberg (2002) analyze the importance of using this estima-
tor compared to the discrete-time estimator based on annual observations.
Briefly summarized, the advantages of the continuous-time estimator are:

1. We obtain non-zero estimates for probabilities of events which the
multinomial method estimates to zero.

2. We obtain estimates for the generator from which transition proba-
bilities for arbitrary time horizons can be obtained without having to
worry about finding roots of discrete-time transition matrices.

3. The estimator uses all available information in the data set by using
information from firms up until the date of a withdrawn rating and by
including information of a firm even when it enters a new state. In the
multinomial estimator, we cannot distinguish the exact date within the
year that a firm changed its rating.

However, the interpretation relies on a Markov-assumption, and this is
not satisfied for the process of observed ratings. Hence it is natural to look
for representations for which the Markov assumption is more palatable. This
we will do in the next section. Now, we will consider the problem of obtaining
confidence sets using the multinomial type estimators.

To construct confidence bands for default probabilities in the multino-
mial model we will use the following simple binomial procedure. Consider a
binomial random variable X ∼ b(θ,N) where θ is the probability of failure.

6Of course, λ̂i =
∑

j 6=i λ̂ij .
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Figure 1: 95% and 99% upper confidence boundaries of a default probability
estimate given an observation of X̃ = 0 and viewed as a function of the
number of issuers.

Given that we observe X̃ = 0, we may ask which is the largest θ ”consistent”
with this observation, i.e. for a given level α, what is the smallest θ we can
reject based on the observation of X̃ = 0. This θ of course depends on N
since more observations give us more power to reject. The smallest θ is the
solution to the equation

(1− θ)N = α

i.e. denoting the solution θmax(N, α) we find

θmax(N, α) = 1− α
1
N .

In Figure 1 we have illustrated this function as a function of N for α = 0.01
and α = 0.05.

In a multinomial analysis we could use this procedure as follows: For
a given rating category i and a given number of firms Ni in this category,
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Ni θmax
i (Ni, 0.05) θmax

i (Ni, 0.01)
Aaa 189 0.015725 0.024072
Aa 635 0.004707 0.007226
A 2277 0.001315 0.002020

Table 1: Upper 95% and 99% boundaries of θi for the Aaa, Aa, and A
categories based on the exposure over the period 1995 through 1999 measured
in company years as calculated in the denominator of equation (1). All six
values correspond to values which could in principle be seen in Figure 1.

consider the binomial distribution obtained by considering default/no default
as the only possible outcomes. We could then obtain a confidence band for the
default probability θi in the cases where we observe no defaults by following
the above procedure. To be precise, if we have T years of observations, we
consider the quantities ni(t) = “number of firms in category i at the beginning
of year t which have a rating or a default recorded at the beginning of year
t+1 as well.” Let Ni =

∑T−1
t=0 ni(t). This is the size of the binomial vector to

be used. For our data set this produces the confidence bands shown in Table
1 for the top categories where in fact no defaults are observed. We may
of course also assign confidence sets to the remaining default probabilities
where transitions to default are observed. For this, assume that we have
observed X̃i defaults over the period of T years and that the total number
of issuers having started in category i is defined as Ni above. This means
that Xi is b(θi, Ni). Now a two-sided confidence set for the true parameter θi

for a (1− α) level of significance is calculated in the following way. Let θmin
i

denote the lower end of the interval. This must be a value so low, that with
probability 1 − α

2
we will not be able to experience as many defaults as X̃i,

that is θmin
i must solve the following equation:

P (Xi ≤ X̃i − 1|θi = θmin
i ) = 1− α

2
.

On the other hand let θmax
i denote the upper end of the interval. To find this

we must let θi take on a value so high, that it will only just be possible with
probability α

2
to observe as few defaults as X̃i:

P (Xi ≤ X̃i|θi = θmax
i ) =

α

2
.
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Ni X̃i θmin
i (Ni, 0.05) θmax

i (Ni, 0.05) θmin
i (Ni, 0.01) θmax

i (Ni, 0.01)
Baa 2091 1 0.000012 0.002662 2.39e-06 0.003548
Ba 880 1 0.000029 0.006315 5.70e-06 0.008413
B 1132 42 0.026869 0.049823 0.024163 0.054081

Caa 217 29 0.091361 0.186261 0.080455 0.203524

Table 2: Two-sided confidence intervals for θ for the Baa, Ba, B, and Caa cat-
egories based on a binomial method and the sample data from 1995 through
1999.

Solving this for the lower categories gives us the results shown in Table
2.

There are at least two important problems with this procedure. The
first problem is that the confidence sets are very wide. This will become
more transparent later as we improve our estimation methodology. Loosely
speaking, since the estimator based on discrete-time observations is inefficient
when we have access to continuous-time data, the confidence sets based on
this estimation methodology become wide. More importantly, the confidence
sets for the zero-event categories depend on Ni and α only. Hence if there
are fewer firms in category Aaa than in Aa, the confidence set will be wider
- something which is counterintuitive when we consider the dynamics of the
rating transitions. This problem can be solved in a continuous-time setting
where the entire information content of the data set is used, but the cost
is loss of an analytical expression for confidence bounds. Even asymptotic
methods are of no use here since our main focus is precisely the cases with
few observed transitions.

A key concern is to understand the role of the Markov assumption in
our estimation procedure. In the next section, we therefore turn to the
specification of our model with an extended state space which allows us to
capture downward momentum effects and hence to compare estimates in the
extended model with those obtained using just the observed ratings.

4 The extended state space model

As noted in the introduction, there is ample evidence that the rating process
has ’momentum’. However, as indicated in Fledelius, Lando, and Nielsen

14



(2002), there is evidence that the above-average probability for downgraded
firms of being further downgraded is temporary. This is also consistent with
results on the duration of outlooks shown in Hamilton and Cantor (2004). Ac-
cordingly, we introduce latent states that we will refer to as excited states.
They are meant to capture a heterogeneity in the population of the rating
categories, possibly caused by a preference of the rating agencies for applying
a sequence of single-notch downgrades instead of one multi-notch downgrade.

The extended model we have chosen to work with adds the following four
excited states to the state space: Baa*, Ba*, B*, and Caa*. Due to data
limitations we do not add any excited states to the Aaa, Aa, and A cate-
gories.7 In total this gives us latent background processes with an extended
state space given by

E = {Aaa, Aa, A, Baa*, Baa, Ba*, Ba, B*, B, Caa*, Caa, D}
while the actually observed rating processes still have a set of ratings equal
to

A = {Aaa, Aa, A, Baa, Ba, B, Caa, D}.
The structure of the allowed transitions of the background process is as

follows. The excited states receive firms which in the data set are observed
as having a downgrade into the corresponding rating category. For exam-
ple, when a company is downgraded into Baa, we assign it in our extended
model to the state Baa*. Once a company reaches an excited state, it can
subsequently make four types of transitions. First, it can migrate from the
excited state to the corresponding normal or non-excited state, i.e. from
Baa* to Baa. The interpretation is that after a random amount of time it
is no longer at an increased risk of a further downgrade. Second, it can be
upgraded to a non-excited state, i.e. for example from Baa* to A. Third, it
can be downgraded into an excited state, i.e. for example from Baa to Ba*,
and finally it can default.

The addition of the excited states has the consequence that many tran-
sitions become unobserved. We do observe the entrance of a firm into the
excited states, since by definition a company which is downgraded enters into
this state. However, we do not observe a transition from the excited state
to the corresponding non-excited state, and as a consequence, if a company

7For the Aaa, Aa, and A categories there are too few rating transitions, and the issuers
stay too long in the new categories even upon a downgrade for this type of analysis to
make sense.
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reached its current rating through a downgrade, we do not know whether it
leaves that category from the excited or the non-excited state. If it reached
its current state through an upgrade or if no prior move is observed, then it
is by definition in a non-excited state, and the transition will be known to
occur from this state.

Hence all transitions away from a rating class by firms which were not
downgraded into that class, will be known to have occurred and recorded as
a move away from the non-excited rating category. However, all transitions
away from a rating class by companies which were downgraded into that
class are latent in our model since we do not know if they occur from the
excited or non-excited version of the class. In particular, since all firms in
excited categories were downgraded into their current rating, we do not have
any direct observations of moves away from excited categories.

The decision on which categories we split in excited and non-excited states
is driven in part by whether we have enough data to estimate transition prob-
abilities of the excited states. The choice has consequences for our numerical
results. Since almost all defaults occur after migrating down through the sys-
tem to the lowest categories, the probability of a default for a better rated
company within a fixed time period, will essentially be a reflection of the
probability of moving down to these categories. And this probability will in
turn be increased if there are many composite ratings along the way. If we
had enough data to model an excited state in A, default probabilities from
AA would be likely to increase.

Summing up, the purpose is to model a possible tendency for downgraded
issuers to have a temporary above-average probability of further downgrades
as documented for example by Fledelius, Lando, and Nielsen (2002). This
effect would increase the estimated downgrade probabilities of the excited
categories as compared with the non-excited categories. Ultimately, this
should turn up as significantly larger estimated probabilities of default for the
excited categories, i.e. we would be able to confirm that recently downgraded
issuers have a higher temporary PD than issuers well-established in the same
rating category.

16



5 The data sets and the bootstrap experi-

ment

We have fixed two time windows, the first being from January 1, 1987 to
December 31, 1991, the second being January 1, 1995 to December 31, 1999.
We consider it reasonable to assume that the processes involved behave in a
time-homogeneous way under such relatively short time horizons. Of course,
considerable changes seem to occur between the two time windows and the
separation between the windows is of the same magnitude as the duration
of each of them. Therefore the assumption of time-homogeneity may seem
questionable. We maintain it because the variations within the two periods
is much smaller than that between the two periods.

The study population corresponding to a time window, consist of all
issuers with an annotation at the onset of the time window, and all issuers
with a first annotation within the time window. It is assumed that the first
annotation of the newcomers corresponds to a non-excited state. The issue
is somewhat more complicated for the issuers alive at the onset: they might
or they might not be in an excited state. As we want to condition on the
starting state, this is a nuisance. We have resolved the problem by following
these issuers backward in time until their last change of rating. At that
moment in time (known as the issuer’s onset), the issuer was in a uniquely
defined state. And so we follow the study population in a somewhat larger
period of time, than the time window indicates.

It is well known in survival analysis, that defining a study population as
the persons alive at a specific day, and then following these persons backward
in time, is problematic. The phenomenon is known as left truncation, and it is
intimately related to the so-called waiting time paradox. If care is not taken,
the waiting time paradox introduces a bias in the estimation of the survival.
In short: the study population is missing persons with short survival times,
because these persons tend to have died before the onset of the time window.
We consider the problems related to left truncation to be quite mild in this
context. The point is, that we have multiple events per issuer (at least for
most of them), and left truncation only applies to the first of these events.

Not all issuers in the study population are observed throughout the time
window. As we have mentioned, some are late starters. Others are censored
in the window meaning that they have a withdrawn rating, usually because
their bonds have expired or have been called. As is common practice, we treat
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such instances of censoring as non-informative. And finally some experience
a default - and we use no more information after the default date for those
issuers unless they reappear as a refreshed firm in which case they are treated
as a new issuer.

The issuers in the study population are followed from their individual
onset until explicit withdrawal or the end of the time window (implicit right
censoring), whichever comes first. Finally, the observed rating history of the
various issuers are considered to be independent realizations of the Hidden
Markov Model.

In order to obtain confidence sets for the estimated transition probabili-
ties, in particular the default probabilities, we make the following (paramet-
ric) bootstrap experiment. We simulate N = 500 fake datasets for each time
window. Each dataset is generated as follows: For each of the issuers in the
real dataset, we have a starting state and an observation period (from the
individual onset to the implicit or explicit censoring, whichever comes first).
A fake dataset has the same number of issuers as the real dataset, and each
fake issuer is paired with the corresponding real issuers, meaning that it has
the same starting state and the same observation period. The issuer’s his-
tory background Markov process is simulated using the estimated transition
structure for the first and the last period, respectively, and translated into a
history of observed rating transitions.

The hidden Markov chain model is then reestimated, using each fake
dataset. From the estimated transition structure we calculate the one-year
default probability for each true state. And this vector of one-year default
probabilities is considered the outcome of the analysis of a single fake dataset.

We end up with N of these vectors. For each coordinate (that is, each
true state of the background process), we have N one-year default proba-
bilities. In the graphs to follow, a kernel estimator of the densities of these
default probabilities are depicted together with boundaries, indicating the
middle 95% of the observations. We actually know the true value of the
default probabilities behind the simulation experiment, this is also added
to the pictures. The bootstrap experiment of the standard model without
the extended state space is undertaken using a similar method. To vali-
date that 500 is a reasonable number of simulations, we tried decreasing the
number to 100 and repeated this five times. The estimators obtained using
the smaller samples showed almost no variability and they were extremely
close to the results from the larger sample. Since the simulations are very
time-consuming we did not want to increase beyond 500 simulations and the
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experiment above suggested we could perhaps have done with less.

6 Results

The technical issue of estimating this hidden Markov chain model is outlined
in the appendix. We have chosen to estimate the generators over two 5 year
periods. The period between January 1, 1995 and December 31, 1999 had a
relatively stable macroeconomic climate whereas the other period from Jan-
uary 1, 1987 to December 31, 1991 included the savings and loan crisis and
a macroeconomic recession. The main results of our analysis are presented
in Tables 4 and 5. All other tables and the figures elaborate on these results.
Instead of estimating the generator directly we have used an approach based
on a discretization with period length equal to one day. This increases the
mathematical tractability of the estimation of the latent variables in the ex-
tended state space model and it is a harmless approximation in the standard
case since the approximation of the transition probability P (∆t) from the
generator Λ

P (∆t) ≈ I + Λ∆t

is very accurate when ∆t is just one day. This means that the estimated one-
year transition probability matrices obtained by raising the one-day matrix
to the power 365, is very close to the matrix exponential of the generator.

Before discussing the main results, we motivate the choice of bootstrapped
confidence sets by comparing the computation for one of the periods based on
the binomial method (from discrete data) with the bootstrap method (based
on continuously observed data), see Table 3. For the period 1987-1991 the
binomial approach gives us zero-estimates for the top categories Aaa, Aa, and
A, whereas the continuous-time approach leads us to a non-zero estimate of
the actual default probability over the period. For the categories Baa down
to B, the binomial approach gives much higher default probability estimates,
and in both cases the confidence sets from the binomial approach are much
wider compared with those obtained by bootstrapping the continuous-time
model. But more seriously, in the binomial approach the width of the confi-
dence sets is larger in Aaa than in Aa, for example, simply due to the lower
number of firms in the Aaa category. The confidence sets should reflect the
dynamics of transitions and therefore we use bootstrapped confidence sets in
all that follows. Note also, that for the Caa-category the binomial approach
leads to relatively low estimates because the Caa-catergory is in most cases

19



just a transitional category that issuers pass through on their way to default.
The continuous-time model catches this effect resulting in a higher estimate
for the probability of default.

We now turn to the extended model and the comparison of the results of
that model to those of the standard model. For the period 1995 through
1999, the estimated one-year default probabilities and the corresponding
bootstrapped confidence sets are presented in Table 5. For the investment
grade categories the point estimate of the default probability in this period
is scaled up approximately by a factor of 10 in the extended model, and the
same holds for the 97.5% quantile of the simulated distribution. For the Ba-
category of the extended model there is no big difference between the excited
and non-excited state, but they are both twice as big as the point estimate
of the standard model. For the B-category of the extended model we see a
similar picture. The cause for this difference between the two models is to
be found in the Caa-category, where the extended model has a significant
difference between the excited category Caa* and the non-excited category
Caa. In the standard model the two types of issuers are merged into one
category with an estimated one-year probability of default of 0.17.

The results for the period 1987 through 1991 shown in Table 4, show
the same picture for the investment grade categories. However, now the
difference between the point estimates of the standard and the extended
model is roughly a factor of 2. In this period the default probabilities were
already at an extremely high level in historical terms.

For the Ba- and B-categories we see a two-type system where the members
of the excited states are being downgraded through the categories much faster
than the more stationary subset in each category. In the standard model
these two types of issuers are simply merged into one category for each rating,
and as a consequence the estimated one-year default probability for these two
categories lies between the estimates for the corresponding excited and non-
excited categories in the extended model.

A more detailed description and explanation can be obtained by looking
at the estimated one-year transition probability matrices for the extended
model in Tables 8 and 9. For the period 1987 through 1991 we see a marked
difference between excited and non-excited states in the size of the diagonal
elements. An issuer in a non-excited state is more likely than an issuer in an
excited state to stay in the same state for one year. The issuer in the excited
state has a measurable probability of falling into the normal state and an
increased probability of suffering downgrades. In the period 1995-1999, the

20



Binomial approach Bootstrap standard model
Rating

Estimate Conf. set Estimate Conf. set
Aaa 0 [0, 0.00896] 3.57e-07 [6.7e-09, 9.8e-07]
Aa 0 [0, 0.00363] 1.59e-05 [9.1e-07, 4.9e-05]
A 0 [0, 0.00156] 5.95e-05 [3.1e-05, 0.0001]

Baa 0.00257 [0.000530, 0.00748] 0.000513 [0.00029, 0.00082]
Ba 0.0331 [0.0178, 0.0559] 0.0122 [0.00062, 0.018]
B 0.0706 [0.0481, 0.0992] 0.0482 [0.035, 0.063]

Caa 0.367 [0.234, 0.517] 0.435 [0.34, 0.55]

Table 3: The 95% confidence sets for the one-year probabilities of default for
the binomial approach and the bootstrap simulation of the standard model
based on the estimated transition probability matrices for the period 1987
to 1991.

rating activity is much smaller and the difference between the two types of
states is harder to detect.

Note that only in the extended state space model, and only when consid-
ering the worst five-year period of the 32 year long dataset, i.e. the period
January 1, 1987 to December 31, 1991, do we see the 97.5% quantile of our
bootstrapped confidence sets reach a level of 0.02% for the A-category.

To complete the discussion, Figures 2 and 3 give representative graphical
illustrations whose construction are described in detail at the end of Section
5. These show the value of the ’true’ one-year default probability and the
kernel smoothed density following from the simulated distribution of the one-
year default probability. The 2.5% and 97.5% quantiles of these distributions
are marked with lines in the graphs. The figures thus reflect the variations in
estimates due to the limited sample size. The fact that our ’true’ transition
structure is of course only an estimate is only corrected for indirectly by
considering two different periods. Figure 2 shows the important point that
there is an effect of using an extended model even for the category A in which
we do not have an excited state. The fact that there are excited states in
the system below A, significantly increases the default probability. Figure 3
shows the heterogeneity between firms in the excited state Baa* and those
in the ’normal’ state Baa.

As a final remark, note that this effect also holds for 3- and 5-year prob-
abilities of default estimated in the two models. As shown in Table 10 the

21



Bootstrap extended model Bootstrap standard model
Rating

Estimate Conf. set Estimate Conf. set
Aaa 7.40e-07 [1.3e-08, 2.8e-06] 3.57e-07 [6.7e-09, 9.8e-07]
Aa 2.96e-05 [1.8e-0.6,9.2e-05] 1.59e-05 [9.1e-07, 4.9e-05]
A 0.000106 [5.1e-05, 0.0002] 5.95e-05 [3.1e-05, 0.0001]

Baa* 0.00115 [0.00054, 0.0024] N.A. N.A.
Baa 0.000676 [0.00035, 0.0013] 0.000513 [0.00029, 0.00082]
Ba* 0.0193 [0.0086, 0.037] N.A. N.A.
Ba 0.00808 [0.004, 0.02] 0.0122 [0.00062, 0.018]
B* 0.0910 [0.055, 0.13] N.A. N.A.
B 0.0334 [0.025, 0.056] 0.0482 [0.035, 0.063]

Caa* 0.479 [0.37, 0.6] N.A. N.A.
Caa 0.106 [0.15, 0.55] 0.435 [0.34, 0.55]

Table 4: The estimated one-year default probabilities and their bootstrapped
95% confidence sets for both the extended and the standard model based on
the estimated transition probability matrices over the period 1987 to 1991.

default probability estimates for rare events based on the volatile period
show the same relative differences as the one-year estimates simply because
of the almost linearity of the small transition probabilities in the time period
lengths considered.

7 Conclusion

We have investigated the importance of the Markov assumption in the method
of estimating one-year transition probabilities using the continuous-time Markov
technique as advocated in Lando and Skødeberg (2002). By taking into ac-
count one of the most pronounced non-Markov effects in ratings, namely the
higher downgrade intensity of recently downgraded firms, we find that the
non-zero default probability estimates obtained from the generator method
for investment grade classes are increased further. This is true for both the
’quiet’ period 1995-99 and the more volatile period 1987-91. If we compare
the estimated default probabilities for the top categories in the extended
state space model with the standard state space model, we find larger es-
timates in the model with extended state space simply because the risk of
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Bootstrap extended model Bootstrap standard model
Rating

Estimate Conf. set Estimate Conf. set
Aaa 8.38e-11 [4.2e-12, 4e-10] 1.09e-11 [1.5e-12, 3.2e-11]
Aa 2.15e-08 [1.5e-09, 9.4e-08] 2.89e-09 [5.2e-10, 6.8e-09]
A 2.36e-06 [1.9e-07, 9.8e-06] 3.34e-07 [6.6e-08, 7.7e-07]

Baa* 2.51e-04 [9.6e-06, 0.001] N.A. N.A.
Baa 1.16e-05 [3.1e-06, 0.00014] 3.04e-05 [4.5e-06, 8.2e-05]
Ba* 0.000665 [0.00027, 0.0013] N.A. N.A.
Ba 0.000849 [0.00027, 0.0017] 0.000325 [0.00016, 0.00054]
B* 0.0238 [0.012, 0.038] N.A. N.A.
B 0.0217 [0.015, 0.028] 0.0110 [0.0074, 0.015]

Caa* 0.444 [0.33, 0.53] N.A. N.A.
Caa 0.0376 [0.032, 0.083] 0.171 [0.14, 0.21]

Table 5: The estimated one-year default probabilities and their bootstrapped
95% confidence sets for both the extended and the standard model based on
the estimated transition probability matrices over the period 1995 to 1999.

migrating down through a sequence of excited states is larger. We also find
larger probabilities of migrating down from an excited state than from the
corresponding non-excited state in the extended model, thereby confirming
that the terminology is appropriate.

We also use a bootstrap procedure to estimate the confidence bands for
the default probabilities. This is used to address a particular problem dis-
cussed in the Basel Accord. Estimates of rating transition probabilities often
suffer from small samples, either in the number of firms which are actually
rated or in the number of events which take place. This often results in esti-
mates which are 0 even if there may be reason to believe that the events can
and will actually occur given a large enough sample. This insecurity has led
the Basel Committee on Banking Supervision to impose a lower minimum
probability of 0.0003 for rare events. This paper allows us to assess whether
this is a reasonable limit for sample sizes corresponding to the number of US
corporate issuers in the Moody’s Default Database.

We find that the minimum of the Basel Committee corresponds well to
the estimate of the default probability for Ba issuers in the standard model
or Baa* issuers in the extended model in the stable 5-year period beginning
in 1995, and that this minimum is somewhere between our estimate for the
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A and Baa category in the volatile 5-year period beginning in 1987 for both
types of models. If a 97.5% confidence limit was the base of this figure, we
can conclude that the A-default probability in the volatile period is below
the 3 bps (at only 2 bps). The minimum level of 0.03% put forward by the
Basel Committee in its latest proposal for a new capital accord therefore is
conservative based on the evidence in our data for the top three investment
grade categories.
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8 Appendix

In this appendix we will present the technique used for estimating the ex-
tended state space model from section 4.

We start by recalling the classical terminology for hidden Markov Models
(abbreviated HMM in the following). A HMM consists of a background
process (Xt)t∈T , in discrete or continuous time as the case may be, and an
observed process (Yt)t∈T . The background process has values in a set E,
denoted the set of states. The observed process has values in another set A,
denoted the set of symbols. Usually we assume that there are only finitely
many states and finitely many symbols.

In the extended model of this paper the background process has a state
space given by

E = {Aaa, Aa, A, Baa*, Baa, Ba*, Ba, B*, B, Caa*, Caa, D}

and the observed process has a set of symbols equal to

A = {Aaa, Aa, A, Baa, Ba, B, Caa, D}.

There are four ingredients in the description of the distribution of the pro-
cesses. Firstly, the background process is assumed to be a time-homogeneous
Markov process. Secondly, conditionally on the Xt-variables in any given time
window [a, b], the corresponding observed variables in that time window,
(Yt)t∈[a,b], are independent. Thirdly, conditionally on Xt0 , the correspond-
ing observed variable Yt0 is independent of all other background variables,
(Xt)t 6=t0 . Finally, the conditional distribution of Yt given Xt does not depend
on t.

The most obvious example of a HMM, and in fact the only type we
consider in this paper, is given by the relation Yt = f(Xt), where (Xt)t∈T is a
time-homogeneous Markov process with state space E, and where f : E → A
is some function. It is well known that the observed process (Yt)t∈T in this
case may be non-Markovian. But of course, if f is simply the identity E → E,
the observed process is identical to the background process, and consequently
Markovian. So the class of processes that are functions of Markov processes,
form a broader larger class than the Markov processes themselves. And the
class of HMM’s is even wider, at least if we insist that the background Markov
process has a finite state space.
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A parsimonious description of a HMM is given in terms of the transition
structure of the background process (Xt)t∈T ,8 the initial distribution of the
background process, and the emission probability, that is, the conditional
distribution of Yt given Xt. If the observed process is simply a function of the
background process, the emission probability is trivial, and the parsimonious
description is given in terms of the parameters for the background Markov
process.

We now turn to a discussion of the HMM we study in this paper. We
consider a symbol set A which is ordered (from ’good’ to ’bad’), a state space
E and a function f : E → A with the property that each symbol a ∈ A has
one or two pre-images in E. If a has just one pre-image (a simple symbol),
this is also denoted a, if it has two pre-images (a composite symbol), they
are denoted a and a∗. We can extend the order structure from A to E by
considering a and a∗ to be next to each other, and by considering a∗ ’better’
than a.

We consider Markov processes on E, which respect this ordering. This
means that we disallow the following three types of transitions:

1. a → a∗ if a is a composite symbol
2. x → a if a∗ exists and if x is a state that is better than a∗
3. x → a∗ if a∗ exists and if x is a state that is worse than a.

There is a well-developed methodology for estimating the parameters of
an HMM in discrete time, with observations from a single realization of
the model. This methodology is usually referred to as the Baum-Welch
algorithm (Baum, Petrie, Soules, and Weiss (1970) and Baum (1972)) -
see Koski (2001) for a careful recent discussion. In modern language, the
Baum-Welch algorithm is best viewed as a special case of the EM-algorithm,
see Dempster, Laird, and Rubin (1977), even though the algorithm itself and
the clarification of its convergence properties predates the work of Dempster
et al. considerably.

In the E-step of the EM-algorithm, a new objective function is constructed
on the basis of a preliminary estimate of the parameters. This objective func-
tion is subsequently maximized in the M-step, and the argument maximizing
it is the updated parameter estimate. In the HMM-setting, the new objective
function is

θ 7→ Eθ0 log Pθ(X | Y = y)

8“transition structure” is a common term for the transition intensity if time is contin-
uous, and the one-step transition probability if time is discrete.
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where θ0 is the present parameter estimate, X is shorthand for the entire
background process, and Y is shorthand for the entire observed process.
This objective function turns out to have a product-multinomial form, just
like the ordinary log-likelihood for a standard Markov model, and it is easily
maximized: The transition probability from a to b is estimated as

P̂a b =
N̂a b∑
c N̂a c

.

The sum in the denominator is over all possible states c. In a usual Markov
model the numbers N̂a b would simply mean the number of observed transi-
tions from a to b, here it means the expected number of transitions, given
the observed Y -sequence (note that this expectation is with respect to the
present parameter estimate),

N̂a b = E

(
N−1∑
n=1

1(Xn=a,Xn+1=b) | Y1 = y1, . . . , YN = yN

)

It is easy to write up N̂a b as a sum over all possible paths of the background
process. But the sum is not directly calculable if the process is observed
over a long time - there are simply too many terms. The main contribution
of Baum et al. was an organization of the calculation of N̂a b in terms of
two linear programming algorithms, known as the forward and backward
algorithm, which both run in time directly proportional to the number of
observations. The forward algorithm calculates

F (n, a) = P (Y1 = y1, . . . , Yn = yn, Xn = a)

for each a, inductively in n, utilizing the induction formula

F (n + 1, b) =
∑

a

F (n, a) Pa b P (Yn+1 = yn+1 | Xn+1 = b) , (4)

where Pa b is the present transition probability from a to b. The backward
algorithm calculates

B(n, a) = P (Yn = yn, Yn+1 = yn+1, . . . , YN = yN | Xn = a)

for each a, inductively in n, but this time going from n = N down to n = 1.
The backward algorithm utilizes the induction formula

B(n, a) =
∑

b

Pa b B(n + 1, b) P (Yn = yn | Xn = a) . (5)
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From the output of these algorithms we may compute the expected number
of transitions from a to b as

N̂a b =

∑N−1
n=1 F (n, a) Pa b B(n + 1, b)∑

c F (N, c)
. (6)

We have implemented the Baum-Welch procedure described above, with a
few adjustments. The first has to do with the nature of time. We have data
on a daily basis, so it is rather natural to think of time as discrete and to
consider day-to-day transitions. But in that perspective our observations
are extremely non-volatile: the issuers typically have the same rating for
years. And this makes the direct calculations of the forward and backward
algorithms unnecessarily time consuming, considering how little is happening
in each step. It turns out to be dramatically more efficient to calculate F (n, a)
and B(n, a) only at the times of observed jumps in the Y -process. Our rather
simple HMM-structure makes this possible, at the expense of slightly more
complicated versions of (4) and (5).

The change in viewpoint on how the induction is performed, has a concep-
tual advantage, as well as a numerical: The standard Baum-Welch algorithm
does not make sense in continuous time, as there is nothing to do induction
on. But induction from jump to jump makes perfect sense. In the application
it turns out that there is no difference between results obtained if we think
of ratings as being given on a day-to-day basis, or if we think of the ratings
as being given in continuous time, though.

The second modification of the Baum-Welch procedure has to do with
the fact that the standard procedure is designed for one long sequence of
observations, where we have many independent, but shorter sequences. We
have adapted a standard trick of adding a fictitious state, corresponding
to censoring, at the end of each sequence, and then gluing the sequences
together to form one long sequence. Analyzing this artificial sequence, we get
’estimates’ for the transitions to and from the censor state. The transitions
from the censor state are more or less nonsensical, but can be disregarded
without any problems. Transitions to the censor state is a slight problem, as
these transitions give a bias downwards to all other transitions, but we can
simply normalize them out.
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3-year default probability 5-year default probability
Rating

Standard Extended Standard Extended
Aaa 0.0000108 0.0000225 0.0000531 0.000107
Aa 0.000193 0.000339 0.000641 0.00107
A 0.000707 0.00128 0.00230 0.00405

Baa* N.A. 0.0110 N.A. 0.0287
Baa 0.00477 0.00614 0.0132 0.0161
Ba* N.A. 0.0768 N.A. 0.139
Ba 0.0458 0.0364 0.0877 0.0737
B* N.A. 0.270 N.A. 0.380
B 0.171 0.120 0.282 0.203

Caa* N.A. 0.780 N.A. 0.839
Caa 0.746 0.269 0.821 0.387

Table 10: The estimated 3-year and 5-year default probabilities for both the
standard and the extended model based on the estimated one-day transition
probability matrix over the period 1987 to 1991.
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Figure 2: Simulated density distribution of the default probability estimates
for A-rated issuers over the period 1987-1991. In the top graph is depicted the
distribution obtained from the standard model, whereas the bottom graph
shows the distribution obtained from the extended model. The bold vertical
line in each graph shows the one-year default probability (PD) corresponding
to the ’true’ value derived from the estimated transition probability matrix.
The thin vertical lines mark the 2.5% and the 97.5% quantile.
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Figure 3: Simulated density distribution of the default probability estimates
for Baa (the top graph) and Baa* in the extended model over the period
1987-1991. The bold vertical lines show the one-year default probability
(PD) corresponding to the ’true’ value derived from the estimated transition
probability matrix. The thin vertical lines mark the 2.5% and the 97.5%
quantile.
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