
Configurable Composition and
Adaptive Provisioning of Web Services

Quan Z. Sheng, Member, IEEE, Boualem Benatallah, Member, IEEE,

Zakaria Maamar, and Anne H.H. Ngu

Abstract—Web services composition has been an active research area over the last few years. However, the technology is still not

mature yet and several research issues need to be addressed. In this paper, we describe the design of CCAP, a system that provides

tools for adaptive service composition and provisioning. We introduce a composition model where service context and exceptions are

configurable to accommodate needs of different users. This allows for reusability of a service in different contexts and achieves a level of

adaptiveness and contextualization without recoding and recompiling of the overall composed services. The execution semantics of the

adaptive composite service is provided by an event-driven model. This execution model is based on Linda Tuple Spaces and supports

real-time and asynchronous communication between services. Three core services, coordination service, context service, and event

service, are implemented to automatically schedule and execute the component services, and adapt to user configured exceptions and

contexts at run time. The proposed system provides an efficient and flexible support for specifying, deploying, and accessing adaptive

composite services. We demonstrate the benefits of our system by conducting usability and performance studies.

Index Terms—Web service, service composition, service-oriented architecture, exception handling, event-based service execution.

Ç

1 INTRODUCTION

WEB services, and more in general Service-Oriented
Architectures (SOAs), are gathering a considerable

momentum as the technologies of choice to implement
distributed systems and perform application integration.
Although tremendous efforts and results have been made
and obtained inWeb service composition area [1], [2], [3], [4],
the technology is still not mature yet and requires significant
efforts in some open research areas [4], [5], [6], [7], [8].

A current trend is to provide adaptive service composition

and provisioning solutions that offer better quality of

composite Web services [5], [6], [8], [9], [10], [11]. The

pervasiveness of the Internet and the proliferation of

interconnected computing devices (e.g., laptops, PDAs, 3G

mobile phones) offer the technical possibilities to interact

with services anytime and anywhere. For example, business

travelers now expect to be able to access their corporate

servers, enterprise portals, e-mail, and other collaboration

services while on the move. Since the contexts of users,

either human beings or enterprises, are varied, it is essential

that service composition embraces a configurable and adaptive

service provisioning approach (e.g., delivering the right

service in the right place at the right time). Configuration
allows the same service to be reused in different contexts
without low-level recoding and recompilation of the service.

We have developed the CCAP system (Configurable
Composition and Adaptive Provisioning of composite
services) [8], [12] that provides a system infrastructure for
distributed, adaptive, context-aware provisioning of compo-
site Web services. CCAP is a fully functional prototype
system that allows service designers to focus more on
specifying service composition requirements at a high level
of abstraction such as business logic of applications, generic
exception handling policies, and contextual constraints,
rather than on low-level deployment and coordination
concerns. The innovative aspect of our work is the composi-
tion model that provides distinct abstractions for service
context and exceptions, which can be embedded or plugged
into the process schemas through simple interactionwith end
users. This differs from existing service composition ap-
proaches, which rely on scripting languages or process
modeling notations (e.g., state diagrams, Petri nets, process
algebra) to specify low-level exception handling and con-
textual awareness, resulting inmonolithic composite services
that are unintuitive, hard to reuse, and maintain [13]. The
salient features and contributions of CCAP are as follows:

. A configurable service composition model that
decouples the contextual and exceptions specifica-
tion from the business logic of the actual service. We
use the concept of process schema, which is a reusable
and extensible business process template devised to
reach a particular goal for the modeling of the
business logic of the composite service. End users
can then customize this process schema by assign-
ing users’ contextual constraints to the process
schema. This avoids hard-coding users’ contextual

34 IEEE TRANSACTIONS ON SERVICES COMPUTING, VOL. 2, NO. 1, JANUARY-MARCH 2009

. Q.Z. Sheng is with the School of Computer Science, the University of
Adelaide, Adelaide, SA 5005, Australia. E-mail: qsheng@cs.adelaide.edu.au.

. B. Benatallah is with the School of Computer Science and Engineering, The
University of New South Wales, Sydney, NSW 2052, Australia.
E-mail: boualem@cse.unsw.edu.au.

. Z. Maamar is with the College of Information Technology, Zayed
University, PO Box 19282, Dubai, United Arab Emirates.
E-mail: zakaria.maamar@zu.ac.ae.

. A.H.H. Ngu is with the Department of Computer Science, Texas State
University, TX 78666-4616. E-mail: angu@txstate.edu.

Manuscript received 13 Feb. 2008; revised 4 Nov. 2008; accepted 22 Dec.
2008; published online 15 Jan. 2009.
For information on obtaining reprints of this article, please send e-mail to:
tsc@computer.org, and reference IEEECS Log Number TSC-2008-02-0009.
Digital Object Identifier no. 10.1109/TSC.2009.1.

1939-1374/09/$25.00 � 2009 IEEE Published by the IEEE Computer Society

constraints as control flow in the service which will
quickly lead to an overly complex process schema
that is hard to understand, reuse, maintain, and
schedule. Generic exception behaviors (e.g., service
failures, network errors) that may happen during
the service provisioning are specified as policies that
can be reused across different process schemas. By
adopting policy-based approach for modeling excep-
tions, end users can dynamically add, remove, and
modify policies on how exceptions can be handled
without changing composite service functionalities.

. An event-driven service execution model that pro-
vides the execution semantics of adaptive composite
services. The most significant benefit of translating
process models into an event-based model, by means
of control tuples in the form of Event-Condition-Action
(ECA) rules, is what we called knowledge independence,
in the sense that control tuples are stored separately
from a composite Web service specification. This
provides the possibility of: 1) distributing control
tuples to participatingWeb services, thereby realizing
a fully distributed execution of composite services
and 2) adding or removing control tuples to overlay
behavior on top of already deployed composite
services in response to unforeseen situations or
particular requirements. The execution semantics is
enforced by means of three core generic services:
coordination service, context service, and event service.
These basic infrastructure form the backbone of a
middleware that provides deployment and automatic
execution of the adaptive composite service in a
robust and scalable manner.

. A user-based service composition evaluation. CCAP
has been implemented using a number of state-of-
the-art technologies. To validate the feasibility and
benefits of our approach, we not only evaluated the
system performance such as scalability and adapt-
ability, but conducted a usability study to evaluate the
learnability, efficiency, and user adoption of our
approach. We presented the system to a number of
volunteers, asked them to use the system, and to
report their experience by answering a question-
naire. To the best of our knowledge, this is one of the
few works that provide evaluations of Web services
composition approaches using real users.

The remainder of the paper is organized as follows:
Section 2 overviews our configurable service composition
model and Section 3 elaborates the proposed configuration
approach including user contexts and exception handling
policies. Section 4 gives details about our event-driven
composite service execution model and the algorithms for
generating control tuples from composite service definitions.
Section 5 focuses on the implementation, usability study, and
performance evaluation of the proposed system. Finally,
Section 6 overviews related work and Section 7 provides
some concluding remarks.

2 CONFIGURABLE COMPOSITION MODEL

Traditional service composition model typically relies on
process modeling notations to choreograph the component

services. Service designers statically design and chart every
aspects of the composite service. This mode of composition
requires the context that the service will be executed in
specified a priori. It also requires exhaustive enumeration of
all the possible exceptions in the composed services if
robust execution is desired. However, the environments
that users interact with are dynamic by nature (e.g.,
changing locations, changing environmental factors,
changes in services, and evolving user requirements). It is
not possible to enumerate all the possible contexts and
exceptions at service design time. This calls for more
agile approaches where services can be composed from
reusable process template that can be configured to
accommodate the slight variation needs of every individual
user in different contexts, and can be transparently adapted
to changes with minimal or no user intervention.

2.1 Design Overview

Fig. 1 shows our configurable and adaptive service composi-
tion model, described in UnifiedModeling Language (UML)
[14]. A process schema is a reusable and extensible business
process template devised to reach a particular goal (e.g.,
travel planning). Each process schema has one or more tasks
and each task belongs to exactly one process schema. The
relation is denoted by a composite aggregation (i.e., the
association end with a filled diamond). Each task is
associated with a service operation where the service can
be either an atomic service, a composite service, or a service
community (details will be introduced in Section 2.2).

A process schema can be configured by assigning a
number of user contexts to the process schema’s tasks and
the schema itself. The relation is denoted as an association
class (dashed line). We distinguish two main kinds of user
contexts, namely execution contexts and data supply and
delivery contexts. Process schemas allow tasks to be para-
meterized, i.e., individual users can customize process
schemas to meet their particular requirements by assigning
contexts to those parameters.

A process schema can also be configured to handle
particular type of exceptions. An exception handling policy is
a rule that prescribes the knowledge on the appropriate
response to a particular execution exception. Policies are
assigned to the process schema and its tasks by the relation
policyAssignment, indicatingwhich task (process schema) has

SHENG ET AL.: CONFIGURABLE COMPOSITION AND ADAPTIVE PROVISIONING OF WEB SERVICES 35

Fig. 1. UML class diagram for configurable service composition model.

what kinds of exception handling policies. This assignment is
done at design time by the service designer. A task (process
schema) can have multiple exception handling policies. End
user can modify the assigned policies by adding, changing,
and deleting the exception handling policies.

In the rest of this section, we will introduce the process
schema model. Details on configuring process schemas (i.e.,
user context model and exception handling model) will be
described separately in Section 3.

2.2 Process Schema

A process schema is an umbrella structure that aggregates
other atomic or composite services. Following our previous
work [15], process schemas are modeled as statecharts [16].
It is worth noting that the process schemas developed in
statecharts can be mapped onto other process definition
languages such as BPEL [17].

A statechart is made up of states and transitions. States
can be initial, end, basic, or compound. A basic state (also
called task) corresponds to an invocation of a service
operation, whether an atomic service, a composite service,
or a community. The concept of Web service community [15] is
proposed to handle the large number and dynamic nature
of Web services (e.g., emergence of new services and
retraction of old ones) in a flexible way. A service
community is a collection of Web services with a common
functionality but different nonfunctional properties such as
different providers and different Quality of Service (QoS)
parameters (e.g., reliability). Service communities provide
descriptions of a desired functionality without referring to
any potential service. When a community receives a request
to execute an operation, the request is delegated to one of its
current members based on selection strategies [15].

Compound states provide a mechanism for nesting one
or several statecharts inside a (larger) statechart. This is a
useful abstraction that is needed to nest subprocesses
within a process. There are two types of compound states:
OR and AND states. An OR state contains a single
statechart whereas an AND state contains several state-
charts (separated by dashed lines). OR states are used as a
decomposition mechanism for modularity purposes, while
AND states are used to express concurrency.

Fig. 2 is the statechart of a simplified process schema of
the digital class assistant [8] that helps students manage
their class activities. In this example, an attendance
reminder notifies students about the lecture’s time and
place. The task is followed by an AND state, in which an
attendance guide is performed in parallel with the outlining
of the lecture notes. The former provides a detailed
guidance on how to get to the lecture room from a student’s
current location, while the latter searches the lecture note
slides and provides the student an outline of the lecture.
During the lecture, when a student wants to ask a question,
she first browses the questions asked by other students
using her PDA. Then, she decides either to vote for a posted
question (if her question was already asked by someone) or
to post her question (if no one has asked a similar question).
The student may ask several questions during the lecture.
After the class, a consultation booking is performed if not
all of her questions are answered. In both cases, feedback
about the lecture is provided by the student.

2.2.1 Data Dependencies

In a process schema, each task t has a set of input and
output parameters. We denote its input and output as �� ¼

fi1; i2; . . . ; img and �o ¼ fo1; o2; . . . ; okg, respectively. The
value of a task’s input parameter may be: 1) requested from
user during task execution, 2) obtained from user profile, or
3) obtained as an output of another task. For the first case,
the following expression is used: ij :¼ USER. For the other
cases, they are expressed as queries: ij :¼ Qj. Queries vary
from simple to complex, depending on the application
domain and user needs. Queries can be expressed using
languages like XPath [18].

During the process schema specification, the service
designer only indicates which input parameters end users
have to supply values. It is the responsibility of an end user
to specify, during the configuration phase, if the value will
be provided manually or extracted from her profile.

Similarly, the value of a task’s output parameter may be:
1) sent to other tasks as input parameters and/or 2) sent
to an end user in case she wants to know the execution
result of the task. Symbol ! denotes the delivery of output
parameters. For instance, oj ! USER means that the value of
oj should be sent to the end user. Note that the value of an
output parameter can be submitted to multiple places (e.g.,
a task and the user). At process schema specification time,
the service designer only indicates which output para-
meters require end users attention.

Table 1 describes the input and output parameters of
the class assistant process schema, together with their data
dependencies. To describe data dependencies, the follow-
ing notations are used: 1) USER denotes an end user (e.g.,
a student) and 2) doc(rcv(QB))/subjectID is an
XPath query where rcv(QB) stands for the XML docu-
ment that includes the outputs of other tasks received by

36 IEEE TRANSACTIONS ON SERVICES COMPUTING, VOL. 2, NO. 1, JANUARY-MARCH 2009

Fig. 2. The class assistant process schema.

QB. A similar explanation applies to other XPath queries
given in the table.

Control flow between states are modeled as transitions.
There are five conditional transitions in the process schema
shown in Fig. 2. Conditional transitions are modeled as
Boolean variables whose values are provided by an end user
at runtime, or as Boolean functions that take as parameters
queries involving input and output parameters of tasks. For
example, the condition classOver(lectureTime) is a
function call whose parameter is directly obtained from one
of the outputs of task AR. Meanwhile, listed and
answered are two Boolean variables.

3 CONFIGURING PROCESS SCHEMAS

Process schemas that correspond to recurrent user needs
(e.g., booking rooms, financial planning, travel planning)
are defined by service designers based on, for example,
common usage patterns, and are stored in schema
repositories. These schemas specify tasks (e.g., booking a
flight), data/control-flow dependencies between tasks, and
generic exception handling policies. Once defined and
deployed as services, end users can locate, configure with
their contexts, and execute them. The configuration is done
by specifying a number of user contexts1 and exception
handling policies and assigning them to the process schema’s
tasks and/or the process schema.

3.1 User Context

Within current UML statecharts model, there is no provi-
sion for modeling and managing user contexts. Typically,
user contexts are either coded as specific tasks in the process
schema or as special conditional control flow. The intermix
of user context and business logic in a process schema
quickly leads to an overly complex process schema that is
hard to reuse, maintain, and schedule. We provide the
following two abstractions for modeling of user contexts in
CCAP: execution contexts and data supply and delivery contexts.

3.1.1 Execution Context

An execution context specifies that certain conditions must
be met in order to perform a particular operation. Formally,
an execution context is modeled as a predicate (i.e., Boolean
function) that consists of an operator and two or more

operands. While the concept of execution context is generic
enough to be applicable in specifying a wide range of
contextual constraints, we focus on two constraints in our
service composition model: temporal and spatial constraints:

. Temporal constraint �� ðtÞ: Formally, a temporal
constraint is specified as �ðP; T Þ, where P is a
comparison operator (e.g., ¼ , � , and between) and
T is either an absolute time, a relative time (e.g.,
termination time of a task), or a time interval in the
form of ½T 1; T 2�. The �ðP; T Þ constraint of a task
means that the task must be triggered if the
condition ct PT is evaluated to true. Here, ct

denotes system time.
. Spatial constraint ��ðtÞ: Similarly, a spatial constraint

is specified as �ðLÞ. L is a physical location given by
a user. The �ðLÞ constraint prescribes that the task
must be fired when the condition cl = L is evaluated
to true, where cl denotes the current location of the
user. A location L1 is considered the same as another
location L2 if the distance between two points of L1

and L2 does not exceed a certain value (e.g., less than
10 meters).

Temporal and spatial constraints can be empty, meaning
that the corresponding task can be executed anytime and
anywhere. It is important to make sure that the constraints
specified by users are conflict free, meaning that the specified
execution context should not be inconsistent with the
specification of process schemas. For example, in our digital
class assistant (Fig. 2), QB should be executed before QV

because there is a transition leading from QB to QV. However,
a studentmay correspondingly specify thatQB andQVwill be
executed at 9 a.m. and 8 a.m., which clearly violates the
specification. Shemay specify different spatial constraints for
two tasks which are supposed to be executed at the same
time. This is also impossible because a user cannot be at two
different places at a time. It is fairly easy to do the consistency
check of spatial constraints: only ensuring that the same
spatial constraints are specified to the tasks which are
supposed to be executed in parallel (i.e., tasks in the
concurrent regions of an AND state). We use the temporal
interval reasoning algorithm proposed in [20] to check the
consistency of the temporal constraints. If any inconsistency
is detected, the user is requested either to review her
configuration, or to relax certain temporal or spatial con-
straints. The interaction keeps going until the specification of
the composite service is declared free of conflicts.

3.1.2 Data Supply and Delivery Contexts

Data supply and delivery contexts deal with user’s
preferences for the input and output of tasks. The
configuration of data supply context consists of two steps:
1) identify which input parameter values can be derived
from user profile and 2) supply the location (e.g., URI) of
the profile and the corresponding attribute names. The
system will automatically generate queries to extract values
from the user profile for input parameters at runtime. In
our approach, user profile includes information related to
a user (e.g., user’s name, student id, and courses) and is
represented in XML document. Once a profile for a user is
defined, it can be reused across different process schemas.

SHENG ET AL.: CONFIGURABLE COMPOSITION AND ADAPTIVE PROVISIONING OF WEB SERVICES 37

TABLE 1
Data Dependencies of the Class Assistant Process Schema

1. A more detailed discussion of context can be found in [19].

Similarly, for the output parameters of a task, a user may
specify which parameter values need to be delivered to her.

It is worth mentioning that our design is not limited to the
above two contexts. For example, we can envision a task that
mustbeexecutedwithin certain security andquality contexts.

3.2 Multilevel Exception Handling Policies

Due to the dynamic nature of Web services and error-prone
service provisioning environments, various service provision-
ing exceptions can occur during the enactment of a composite
service. By exceptions, we mean abnormal events caused by
service failures, network errors, and resource or require-
ments changes. The lack of exception handling causes
problems like poor performance, wasted resources, nonopti-
mal service provision, and even failures of process enact-
ment. Services therefore should be proactive: they should be
able to adapt themselves in response to run-time exceptions.

Policies are rules that control choices in a system’s
behavior. In our work, we adopt a policy-based approach for
exception handling that expresses and controls exception
handling strategies at a high level of abstraction, decoupling
it from the composite service’s functionality. Service
designers, even end users, can dynamically add, remove,
and modify policies, to reconfigure the composite services
without changing their functionalities (e.g., control flow
embedded in statecharts).

3.2.1 Exception Types

We distinguish three classes of service provisioning excep-
tions: user, component service, and community.

User exceptions. Many exceptions can occur at the user
level. For instance, a mobile device that a user uses to
interact with services can be disconnected unexpectedly
due to discharged battery, alignment of antennas, or lack of
coverage area. Further, a service result might not be able to
be displayed on the mobile device because of the lack of
appropriate facilities. Some exceptions are related to the
changes of the configured composite services launched by
users. For example, a user may wish to reset her preferences
on a specific task (e.g., spatial constraint of QB, QV, and QP

in the class assistant) due to situation changes (e.g., lecture
room rescheduled).

Component service exceptions. During the execution of
a composite service, different exceptions at the component
service level can occur. In particular, the selected service
that executes a task of the composite service may become
unavailable because it is overloaded or its respective server
is down; the execution of a service might take longer than
the estimated time and even might fail.

Community exceptions. Community level exceptions
are due to QoS changes of community members or
membership changes of a community. For instance, a
member service might increase its execution price; the
execution duration of the service might become longer due
to a sudden increase in the number of requests. In addition,
some new Web services with better QoS might join the
community, while some registered services might leave
(deregister) the community. If such changes happen after
the selection, the selected services may no longer be
considered as optimal. Redoing the selection would be
necessary to make sure that optimal Web services
are always selected for the execution of tasks.

An exception event is generated in response to the
occurrence of a service provisioning exception. For exam-
ple, if the invocation of a service s, which was selected
to execute a task t of a composite service, is failed, the
exception event failed(s,t) will be generated. Table 2
lists part of exception events supported in our work.

3.2.2 Exception Handling Policies

An exception handling policy prescribes the knowledge on the
appropriate response to a particular exception event, provid-
ing a means for flexible, robust, and adaptive service
invocation. Exception handling policies can be specified by
a service designer at process schema definition time, and
modified by an end user during schema configuration phase.

We use the Ponder language [21], especially its obligation
policies, for the specification of exception handling policies.
Obligation policies are declarative event-action-condition
rules defining the actions that policy subjects (entities
having the authority to initiate a management decision)
must perform on target entities, when specific events occur
and specific conditions hold upon event occurrence. Several
reasons motivate our choice of Ponder obligation language
for specifying exception handling policies:

. Ponder obligation policies are event-triggered rules.
Such event-driven model is an ideal candidate for
composite services because their component services
are typically distributed.

. Ponder obligation policies are declarative rules and
service designers and users can express their
exception handling strategies directly without hav-
ing to change composite service functionalities.

. Ponder obligation policies are amenable to policy
analysis and verification. Unlike exception handling
policies embedded in implementation code (e.g.,
catch clauses in Java code), it is possible to validate

38 IEEE TRANSACTIONS ON SERVICES COMPUTING, VOL. 2, NO. 1, JANUARY-MARCH 2009

TABLE 2
Selected Exception Events

declarative exception handling policies externally
for service exception handling.

Fig. 3 shows the syntax of Ponder obligation policies. The
On clause identifies the triggering event(s), while the
Subject clause identifies the entities having the authority
to initiate a management decision. The Do clause identifies
the exception handling action to perform on the target
entity—identified by Target clause—when the event
occurs. Combinations of various actions can be generated
using sequence and concurrency operators provided by
Ponder language. When clause is optional, defining the
conditions that must hold for the policy to be applied.

We introduce a new element called EffectiveInter-

val to indicate the time period in which a policy is enabled.
EffectiveInterval is a temporal condition, expressed as
�0ðP; T Þ where P is a comparison operator and T is a time
(similar to temporal constraint in Section 3.1.1). If Effec-
tiveInterval is not specified, we assume the policy is
always enabled. By means of EffectiveInterval, which
is not provided in the Ponder language, it is possible to state
that certain policies are not always enabled, rather they are
enabled only during specific temporal intervals.

Fig. 3 also provides an example policy, which is specified
by a user indicating that during the working hours (i.e.,
from 9 a.m. to 5 p.m.), whenever a service result is arrived
at her proxy service, if she is at a meeting, the result should
be delivered to her PDA without sound alert.

4 EVENT-DRIVEN EXECUTION MODEL

Existing service provisioning systems such as [22] are
centralized and service orchestration is ensured by a single
process which acts as a central scheduler. These centralized
execution models assume that the connection between the
central scheduler and the component services is continu-
ously available, with the same characteristics (e.g., latency,
bandwidth, reliability). Such assumptions are not valid in
the case of composite services for users in dynamic
environments, where executions are initiated and followed
up by a possibly mobile client. In addition, centralized
execution models suffer of the availability and scalability
problems [23]. Accordingly, to achieve adaptive and
scalable execution of composite services in dynamic
environments, the participating services should be self-
managed: they should be capable of coordinating their
actions in an autonomous way, without having to con-
tinuously synchronize with a central entity, which could
lead to idle periods and time-outs due to disconnections.

4.1 Orchestration Enabling Services

The proposed execution model is based on Linda Tuple
Space [24], which is recognized as an attractive model for

managing interactions among loosely coupled entities in
distributed and dynamic environments. The model consists
of three core services, namely the coordination service, the
context service, and the event service. These three elements form
what we call orchestration enabling services. When executing
a composite service, orchestration enabling services auto-
matically schedule and execute the component services,
and adapt to user configured exceptions and contexts.

Each participating Web service is associated with a
coordination service that monitors and controls the service
execution. In essence, the coordination service is a light-
weight scheduler that determines when should a component
service be executed, and what should be done after the
execution is completed. The knowledge needed by a
coordination service in order to answer these questions at
runtime is statically extracted from the description of the
composite service (e.g., statecharts, user contexts, exception
handling policies), represented in the form of control tuples,
as detailed in Section 4.2, and placed in the corresponding
tuple space. The generation of control tuples will be
reported in Section 4.3.

A coordination service enforces the control tuples with
the help of an event service and a context service. The event
service is responsible for disseminating events registered by
the coordination service, and the context service is
responsible for collecting context information from context
providers. Context providers can be components inside the
system (e.g., coordination services providing execution
status of Web services), or third party entities outside the
system (e.g., GlobalWeather Web service2).

Fig. 4 elaborates the interactions between these three
generic services. When the control tuples, which are
generated from a composite service, are injected into the
tuple space of aWeb service (step 1), the coordination service
associated with this Web service parses the control tuples
(step 2), retrieves relevant information (e.g., events, condi-
tions, and actions), and registers the events (e.g., failed)
with the event service (step 3). The event service then
subscribes relevant contexts needed by the events (e.g.,
executionStatus for event failed) to the context service
(step 4), which collects the context values from relevant
context providers. The event service fires and distributes
events if the corresponding conditions are matched

SHENG ET AL.: CONFIGURABLE COMPOSITION AND ADAPTIVE PROVISIONING OF WEB SERVICES 39

2. http://www.capescience.com/webservices/globalweather/index.
shtml, which provides forecasted weather information.

Fig. 3. Syntax of extended Ponder obligation policies and an example.

Fig. 4. Interactions of orchestration enabling services.

(e.g., executionStatus=“failed”) (step 5). Upon receiving
the notifications (i.e., event occurrence) from the event
service, the coordination service extracts the corresponding
control tuples from the tuple space (step 6), evaluates the
conditions, and performs the proper actions (step 7).

4.2 Control Tuples

We first introduce the concept of control tuples, and then
introduce the specific control tuples supported by CCAP for
the coordination of adaptive composite service executions,
namely service invocation tuples and exception handling tuples.

Definition 1 (Control tuple). A control tuple is a rule of the
form E½C�=A where

. E is a conjunction of execution events. Execution
events are generated in response to changes of the
status of service execution environments, including
execution exceptions. Table 3 gives some events
supported in our system.3 The conjunction of two
events e1 and e2 is denoted as e1 ^ e2 and the
semantics is that if an occurrence of e1 and an
occurrence of e2 are registered with any order, then
an occurrence of e1 ^ e2 is generated,

. C is a Boolean expression that combines conditions on
execution states including event parameter values
and service information (e.g., inputs and outputs
of tasks), and

. A is a sequence of execution actions a1; a2; . . . ; an,
which are executed in the order specified by the
sequence. Some selected actions supported in CCAP
are given in Table 3 (the signatures are omitted for
clarity reasons).

Briefly, the basic semantics of a control tuple is as
follows: when the event(s) of the tuple E is triggered and if
its condition(s) C evaluates to true, the corresponding
action(s) A will be performed.

4.2.1 Service Invocation Tuples

There are two kinds of service invocation tuples: 1) preinvoca-
tion tuples contain the knowledge to answer, before the
execution of this task, questions such as what are the actions

that need to be performed and what are the conditions that
need to be satisfied and 2) postinvocation tuples contain the
knowledge to answer, after an execution of this task,
questions such as which entities (e.g., other tasks) need to
be notified of this completion, and which output needs to be
sent to which entity. In the following, we formally define the
concepts of preinvocation andpostinvocation tuples of a task.

We first introduce the concept of compound transition,
which will be used in the definitions of service invocation
tuples. As discussed in Section 2, a statechart can have
compound states (AND and OR states) which serve to
decompose the statechart into substates and specify regions
of the statechart which can be executed concurrently. Due to
this feature, there can be multiple direct and indirect ways
of transitioning from a given basic state to another basic
state. In other words, when exiting a given state, there are a
number of transitions that can be taken, some of which are
simple (e.g., the transition between QB and QP in Fig. 2) and
some are compound (e.g., the transition between QP and CB

in Fig. 2). Hence, it is important to determine how to route
control-flow notifications and data items between basic
states. Intuitively, a compound transition is a path (i.e., a list
of linked transitions) going from a basic state to another
basic state without passing through any other basic state.

Definition 2 (Compound transition). A compound transition
CT is a sequence of transitions tr1; tr2; . . . ; trn belonging to a
given statechart, such that:

. sourceðtr1Þ
4 is a basic state,

. targetðtrnÞ is a basic state, and

. for all i in ½1::n� 1�, either targetðtriÞ is the final
state of a region belonging to the compound state
sourceðtriþ1Þ, or sourceðtriþ1Þ is the initial state of a
region belonging to the compound state targetðtriÞ.

Under these conditions, CT is said to connect sourceðtr1Þ with
targetðtrnÞ, i.e., sourceðCT Þ¼sourceðtr1Þ and targetðCT Þ¼
targetðtrnÞ. The condition part of CT , noted CondðCT Þ, is the
conjunction of the conditions labeling tr1; tr2; . . . ; trn, ex-
pressed as CondðCT Þ ¼ fc1 ^ c2 ^ � � � ^cng, where ci is the
condition labeling transition tri.

40 IEEE TRANSACTIONS ON SERVICES COMPUTING, VOL. 2, NO. 1, JANUARY-MARCH 2009

3. It should be noted that the exception events (see Table 2) are not
included in this table.

TABLE 3
Selected Events and Actions Supported in CCAP

4. Here, sourceðtrÞ denotes the source state of transition tr, while
targetðtrÞ denotes the target state of tr.

It should be noted that although this definition of
compound transition is specific to statecharts, a similar
concept can be defined for virtually any other language for
process-based service composition (e.g., BPEL). The techni-
ques that we present can thus be applied to other
languages, as long as a definition of compound transition
for the language is provided.

Definition 3 (Preinvocation tuple). The preinvocation tuples
of task t of a composite service CS include two kinds of control
tuples: data collection and precondition tuples. The former is a
control tuple such that:

. E is empty.

. C is a conjunction of temporal and spatial constraints
of t, i.e., ��ðtÞ and ��ðtÞ. If t does not have any
constraint, C is interpreted as true.

. A are actions in the form of collectDataðip; ssÞ,
where ip is an input parameter whose value should be
obtained from a supplying source ss.

While the precondition is a set of control tuples such that:

. E is a conjunction of events readyð��ðtÞÞ and a set of
completedðt0Þ, where t0 is a task that there exists a
compound transition CT such that sourceðCT Þ ¼ t0

and targetðCT Þ ¼ t. The event completedðt0Þ is raised
when a notification of completion is received from task t0.

. C is a conjunction of temporal and spatial constraints
of t, i.e., ��ðtÞ and ��ðtÞ. If t does not have any
constraint, C is interpreted as true.

. A is an action in the form of executeðtÞ, which
invokes the task t.

Definition 4 (Postinvocation tuple). The postinvocation
tuples of t of CS contain a set of control tuples such that:

. E is an event completedðtÞ. The event is generated
when the execution of task t is completed.

. There exists a compound transition CT such that
sourceðCT Þ ¼ t and targetðCT Þ ¼ t0.

. C isConjunctionðCondðCT ÞÞ, whereConjunctionðc1^
c2 ^ � � � ^ cnÞ ¼ c1; c1; . . . ; cn.

. A are actionsnotifyðt0Þ and a set of sendResultðO;rÞ.
The O is a set of output parameters whose values need
to be delivered to a receiver r, which could be the user
or another task of CS. The actions are executed in the
order specified as action1; action2; . . . ; actionn.

4.2.2 Exception Handling Tuples

Definition 5 (Exception handling tuple). An exception
handling tuple acts as an instruction to execute a particular
action if a specific exception event occurs and a specific
condition(s) holds. It is a control tuple such that:

. E is an exception event. The example of exception
events can be found in Table 2.

. C is a conjunction of conditions on execution states
including event parameter values and service informa-
tion (e.g., input and output of tasks).

. A is an exception handling action. Examples of
exception handling actions are: 1) retryðsÞ allows
reinvoking a service s after a failure, 2) forwardðs1; s2Þ
allows a service s1 to forward an invocation message to

another service s2, and c) transformðr; s; dÞ allows
transforming service result r using the transformation
service s according to the capabilities of the user’s
device d.

4.3 Control Tuples Generation

In this section, we propose in turn the algorithms for
generating the service invocation and exception handling
tuples from adaptive composite services.

4.3.1 Preinvocation Tuples Generation

The generation of preinvocation tuples of a task relies on the
contextual attributes of the task (e.g., temporal and spatial
constraints), data dependencies of input parameters, and
control flows associated with the task. The task’s incoming
transitions are analyzed and preinvocation tuples are
generated for each incoming transition of the task.

The algorithm for the generation of preinvocation tuples
of a task is given in Fig. 5. It takes as input a task t and
produces a set of preinvocation tuples for t. The algorithm
analyzes the data dependencies of the input parameters
(ID, line 2) and the incoming transitions of t (T RI , line 1).
From ID, a set of actions (CD) is created prescribing which

SHENG ET AL.: CONFIGURABLE COMPOSITION AND ADAPTIVE PROVISIONING OF WEB SERVICES 41

Fig. 5. Algorithm for generation of preinvocation tuples.

supplying source should be used in order to get the value of
which input parameter (lines 4-7). The data collection tuple
of t is then created by putting temporal and spatial
constraints (�� and ��) as condition and CD as action
(line 8). The preinvocation tuples of t is the union of the
data collection tuple and the precondition tuples associated
with the incoming transitions of t (lines 9-11).

The function named PreProcT computes the precondi-
tions of a transition, which takes as input a transition tr, and
returns a set of precondition tuples associated with this
transition. PreProcT distinguishes the cases where the
source of the transition is a basic state, an initial state, and
compound state (i.e., AND or OR state). In the first case, the
precondition ready(��)^completed(source(tr))[��

and ��]/execute(t) is created, meaning that when all
the values of the input parameters of t are available, and the
execution of task source(tr) is finished, if the temporal
and spatial constraints are satisfied, task t will be executed
(line 14). In the second case (the transition tr stems from an
initial state), the incoming transitions of its superstate are
considered and one or several precondition tuples
are generated for each of them (lines 15-20). Notice that if
the superstate of tr is the topmost state of the statechart, tr
is an initial transition of the composite service and the
precondition tuple is therefore {ready(��)[�� and ��]/

execute(t)}. In the third case (the transition tr stems
from a compound state), the function PreProcT is applied
recursively to the final transitions of the compound state,
and the results are merged (lines 21-33). In the case of an OR
state, the merging is a simple set union (line 23). In the case
of an AND state, each concurrent region is treated as an
OR state, and the precondition tuples obtained for each
concurrent region are merged through a Cartesian product
(lines 25-33), meaning that the AND state is exited (i.e.,
task t can be executed) if one of the final transitions in each
of the concurrent regions is taken.

4.3.2 Postinvocation Tuples Generation

Similarly, Fig. 6 describes the algorithm PostInv for
generating postinvocation tuples for a task. The algorithm
takes as input a task t, and produces a set of postinvocation
tuples. The algorithm analyzes the data dependencies of the
output parameters (OD, line 2) and the outgoing transitions
of t (T RO, line 1). From OD, a set of actions (i.e., RD) is
created indicating which outputs should be delivered to
which receivers (lines 4-7). The postinvocation set of t is the
union of the postinvocation tuples associated with the
outgoing transitions of t (lines 8-10).

The postinvocation tuples for each outgoing transition of
a task are generated by a function named PostProcT, which
takes as input a transition tr, and returns a set of
postinvocation tuples including the postprocessing actions
associated with this transition. There exist various cases.
When tr leads to a basic state (say t0), the tuple com-

pleted(source(tr))[c]/notify(t0) is created, mean-
ing that after the execution of the task is completed, if the
condition c is true, a notification must be sent to the task
controller of t0 (line 13). If an outgoing transition points to a
compound state, one postinvocation tuple is generated for
each of the initial transitions of this compound state (lines 14-
16). Finally, if the outgoing transition points to a final state of

a compound state, the outgoing transitions of this compound
state are considered in turn, and one or several postinvoca-
tion tuples are produced for each of them (lines 17-22). Three
auxiliary functions AddCond, AddAction, and CTargets

are described in lines 23-25 using a functional programming
style. Note that PostProcT does not handle the output data
dependencies of the task (i.e., RD), which need to be added
to the tuples generated by PostProcT (line 9).

4.3.3 Exception Handling Tuples Generation

Exception handling tuples are generated from predefined
exception handling policies (Section 3.2). Since exception
handling policies are expressed as extended Ponder
obligation polices that are also event-condition-action rules,
the generation of exception handling tuples from exception
handling policies is straightforward.

The generated tuples are injected into the tuple spaces of
relevant coordination services. The information on where
an exception handling tuple should be uploaded is
specified in the target entity of the corresponding exception
handling policy. As mentioned in Section 3.2, there are
three different kinds of targets: component service, service
community, and user. The generated exception handling
tuples should be injected into:

. the tuple space of the coordination service of the
component service if the target of a policy is a
component service,

42 IEEE TRANSACTIONS ON SERVICES COMPUTING, VOL. 2, NO. 1, JANUARY-MARCH 2009

Fig. 6. Algorithm for generation of postinvocation tuples.

. the tuple space of the coordination service of the
community if the target of a policy is a service
community, or

. the tuple space of the user’s proxy service if the
target of a policy is a user.

4.4 Discussion

The ECA model was originally developed in active
database systems [25] and has been widely used in
workflow and business processes management [26], [27].
Although the ECA model has a sound theoretical basis, it is
not easy to visualize the meaning of rules, and thus very
difficult for users to understand and manage them. In
addition, the previous approaches require a considerable
amount of manual efforts in generating rules, causing many
difficulties in dealing with complex processes.

Our approach, in fact, combines the techniques of
graphical process representation and ECA rules. The
statechart-based service composition model provides con-
venience for a human user to grasp the actual processes,
while ECA rules (i.e., control tuples in CCAP) are used to
transform the graphical model of composite services into a
machine-readable form so that the execution of the
composite services can be performed automatically. In
particular, we developed an algorithm to systematically
analyze composite service specifications, which, in turn,
automatically generates service orchestration rules, based
on a set of abstracted events and actions.

The most significant benefit of realizing service orchestra-
tion by means of control tuples (in the form of ECA rules) is
what we called knowledge independence, in the sense that
control tuples are stored separately from a composite Web
service specification. This provides the possibility of dis-
tributing control tuples toparticipatingWebservices, thereby
realizing a fully distributed execution of composite services.
In addition, it is possible to add or remove control tuples to
overlay behavior on top of deployed composite services in
response to unforeseen situations or particular requirements.

5 IMPLEMENTATION AND EXPERIMENTS

This section is devoted to the implementation and perfor-
mance study of our proposed service composition approach.

5.1 Implementation

CCAP is designed as a layered architecture shown in Fig. 7.
The service builder, the service discovery engine, the proxy
service, and the service deployer compose the service
development and deployment environment, which provide a
service composition environment where service designers
and users can compose and invoke Web services. In
particular, service designers can specify process schemas
while end users can select a specific process schema,
configure, and then execute it. The runtime environment
consists of a set of generic services (coordination, context,
and event) that provide mechanisms for enacting the
execution of composite Web services.

CCAP has been implemented in Java and is based on
state-of-the-art technologies like XML, SOAP, WSDL, and
UDDI [28]. Java2WSDL, a tool provided by Apache Axis,5 is

used to generate WSDL descriptions from the Java class
files so that all the components of CCAP are invoked as
Web services. Services are deployed using Apache Axis. In
our implementation, we use Apache Tomcat6 as a Web server
where Apache Axis is deployed. Apache Axis provides
not only a server-side infrastructure for deploying and
managing services, but a client-side API for invoking
these services. Each service has a deployment descriptor that
includes the unique identifier of the Java class to be
invoked, session scope of the class, and operations in the
class available for the clients. Each service is deployed using
the service management client by providing its descriptor
and the URL of the Axis servlet rpcrouter.

5.1.1 Service Development/Deployment Environment

The service discovery engine facilitates the advertisement
and location of services. Service registration, discovery, and
invocation are implemented by SOAP calls. When a service
registers with a discovery engine, a UDDI SOAP request
containing the service description in WSDL is sent to the
UDDI registry. After a service is registered in the UDDI
registry, service designers and end users can locate the
service by sending the UDDI SOAP request (e.g., business
name, service type) to the UDDI registry.

The discovery engine is implemented using the IBMWeb
Services Toolkit 2.4 (WSTK) [29]. WSTK provides several
components and tools for Web service development. In
particular, we use the UDDI Java API (UDDI4J) to access a
private UDDI registry (i.e., hosted by the CCAP platform),
as well as the WSDL generation tool for creating the WSDL
documents and SOAP service descriptors required by the
discovery engine.

The service builder assists service designers in the creation
andmaintenance of composite services. It provides an editor
for describing the statechart diagram of a composite service
operationand for importingoperations fromexisting services
into composite services and communities. It should be noted
that the service builder also supports the specification of
process schemas. We designed an XML schema for process

SHENG ET AL.: CONFIGURABLE COMPOSITION AND ADAPTIVE PROVISIONING OF WEB SERVICES 43

Fig. 7. Multilayer architecture of CCAP.

5. http://ws.apache.org/axis/index.html. 6. http://jakarta.apache.org/tomcat/.

description. Eachprocess is represented in anXMLdocument
and has a business entry in theUDDI registry, with a tModel7

of type processSpec. Service developers can design their
new composite services (e.g., via specifying particular
preferences) on top of these schemas.

The service deployer is responsible for generating
control tuples of every task of a composite service
statechart, using the algorithms presented in Section 4.3.
The input of the programs implementing these algorithms
are statecharts represented as XML documents (which are
generated by the service builder), while the outputs are
control tuples formatted in XML as well. Once the control
tuples are generated, the service deployer assists the service
designer in the process of uploading these tuples into the
tuple spaces of the corresponding component services and
the composite service. Tuple spaces are implemented using
IBM TSpaces [30], which is a network communication
buffer with database capabilities. Coordination services
communicate asynchronously through the shared spaces by
writing, reading, and taking control tuples. Each tuple is
implemented as a vector of Java objects.

5.1.2 Runtime Environment

This layer contains the three core generic services that
provides the execution semantics for the adaptive composite
services. The coordination serviceprovides anoperation called
coordinate for receiving messages, managing service
instances (i.e., creating and deleting instances), registering
events to the event service, triggering actions, tracing service
invocations, and communicating with other coordination
services. The coordination service relies on the tuple space of
the associated service to manage service activities.

The context service detects, collects, and disseminates
context information while the event service fires and
distributes events. The context service is built on top of
the Context Toolkit [31], a package that supports the
development of context-aware applications. In particular,
we implemented context providers as a set of context
widgets that encapsulate context information and provide
methods to access them. Each context widget has a set of
attributes that can be queried by the context service. The
communications between context widgets and applications
are implemented based on BaseObject class, provided by
the toolkit. Finally, the event service provides operations for
receiving messages, including subscribing messages from
the coordination service of a service and context informa-
tion from the context service, and notifying the fired events
to the coordination services. Readers are referred to [8] for a
detailed description of the system implementation.

5.2 Usability and Performance Evaluation

The aim of our performance study is twofold. First, we
investigate the potential usage of the proposed service
composition platform via a usability study. Second, we
compare the performance of our proposed service composi-
tion techniques from various aspects including scalability,
execution cost, and adaptation effectiveness.

5.2.1 Usability Evaluation

We conducted a usability study to evaluate users’ will-
ingness to use the system, and their perception of the
system’s utility and ease of use.

We presented our system to 41 people, all from different
educational backgrounds (21 undergraduate students,
12 masters students, and 8 PhD students) and computer
literate. The presentation included a PowerPoint show of
the system overview, a demonstration of the CCAP system,
and the digital class assistant service that was built on
top of CCAP. The participants were then asked to use
the system and to report their experience by answering
a questionnaire.

The feedback from the participants was quite encoura-
ging. Thirty four people reported that they understood the
design principles of CCAP very well after their usage of the
system, while seven indicated a partial comprehension.
However, lacking the technical knowledge about the system
does not seem to prevent students from using it. Most
people (37) expressed their willingness to use the system in
designing and accessing composite Web services.

We evaluated the learnability and efficiency of CCAP
system by asking the participants to create the digital class
assistant service and five other composite services using our
service composition tools. These five services have the
same complexity as the digital class assistant service. The
participants were asked to create these services, including
the specification of process templates on a desktop and the
configuration of the templates using a Pocket PC, and record
the time used. We found that users spent more time on their
first attempt. The average time they spent is 53 minutes.
However, compared to the first attempt, the average time
used for specifying the rest five services is only 18 minutes.
We can see that it took about 35 minutes for the participants
to learn how to use CCAP system. Fig. 8 shows the time
spent by a participant in the specification of the six services.

We also collected the feedback of the participants on our
CCAP system design. The results are summarized in
Table 4. From the table, we can see that most participants
can use the system with little effort. In fact, nine people
even enjoyed their experience in using CCAP. The ease-of-
use component that most people agreed, with no surprise, is
the service editor that provide a visual interface where
composite services can be specified by drawing statechart
diagrams. However, most participants (29) rated the PDA
service configuration tool as the most difficult one to use.
From Table 4, we can see that although most people had a
not so bad experience in using the configuration tool, very

44 IEEE TRANSACTIONS ON SERVICES COMPUTING, VOL. 2, NO. 1, JANUARY-MARCH 2009

7. In UDDI, a tModel provides a semantic classification of the
functionality of a service, together with a formal description of its interfaces.

Fig. 8. The time used for specifying the services.

few people (four) would like to use the PDA version if they
are given both versions of configuration tool (i.e., Desktop
PC and PDA). Reasons that prevent people from using the
PDA based configuration tool include:

. difficulties in operating the interface,

. slow interaction speed, and

. more importantly, endless anxiety about the battery
power and network connections of PDAs.

We also found out that the people who gave the low
ease-of-use ratings are generally not familiar with handheld
computing devices. In any case, user training on how to
use such kinds of devices would help alleviate some of
this anxiety.

5.2.2 Performance Evaluation

This section presents two experimental results. The first one
compares the performance between our distributed services
orchestration approach and the centralized orchestration
approach. The second experiment studies the adaptation
effectiveness of the system.

For the experiments, we used the implemented class
assistant service (see Fig. 2). We conducted experiments
using a PDA and a cluster of PCs running the prototype
system. A Mitac Mio 168 GPS integrated Pocket PC is used
as a mobile device that connects the 11 Mbit Lucent
802.11 bit access points installed in the building of the
School of Computer Science and Engineering at UNSW. A
cluster of PCs was used to run the remaining part of the
system. One of them is dedicated to the class assistant
composite service while others are servers for component
services. All PCs have the same configuration of Pentium III
933 MHz and 512 Mbit RAM. Each PC runs Debian Linux
and the Java 2 Standard Edition V1.4.2, and is connected to
a LAN through 100 Mbps Ethernet cards.

Distributed versus centralized orchestration. The pur-
pose of this experiment is to study and compare the
performance of our distributed orchestration model with
that of the centralized one. In the implementation of the
centralized approach, a central scheduler is responsible for
sending and receiving messages to and from the component
services. The central scheduler is located on the same
machine as the class assistant service, while the component
services (e.g., consultation booking service) are located
on other machines. The physical message exchanges in the
centralized model correspond to the messages exchanged
between the central scheduler and the component services.

On the other hand, in the implementation of the
distributed approach, the orchestration enabling services
(i.e., coordination service, context service, and event
service) of a task and the component service invoked in

this task are located in the same machine. The physical
message exchanges in this approach correspond to the
messages exchanged between the coordination service of
the composite service and the coordination services of its
component services, as well as those exchanged between
the component coordination services. It should be noted
that we do not count the messages exchanged between
orchestration enabling services (e.g., messages exchanged
between the event service and the coordination service)
because they are located in the same machines.

We conducted experiment to investigate the execution
performance of distributed and centralized execution
models, with different size of exchanged messages. In the
experiment, we assume that the size of all exchanged
messages remains the same during the service execution.
The size of messages ranges over the values from 1,000 to
1,024,000. For each message size, we executed the class
assistant service 10 times and computed the average service
response time. The results for case 1 (i.e., the question has
been asked by other students and all the student’s questions
have been answered by the lecturer, see Fig. 2) is shown in
Fig. 9. Similar results were obtained for the other cases.

From Fig. 9a, we can see that, in both the distributed and
the centralized approach, the service response time does not
change significantly when the size of messages is small. For
example, for the distributed approach, the service response
time changes slowly from 11.02 to 15.3 seconds when the
message size grows from 1,000 to 8,000. In addition, the
response time of the distributed approach is slightly bigger
than the response time of the centralized approach. To
make it easy to compare, we depict the service response
time of both approaches with the message sizes from
1,000 to 32,000, in Fig. 9b. It is shown that, in the distributed
approach, the response time is 11.02 seconds when
the message size is 1,000 and it is 10.52 seconds in the
centralized approach. The main reason of more time
required for distributed approach is due to the number of
exchanged messages in the distributed approach is more
than the one in the centralized approach.

We also note that when the size of messages increases,
the service response time of the centralized approach
increases more sharply than that of the distributed
approach (see Fig. 9a). This is due to the reason that the
messages in the centralized approach need to systematically
transit through a central scheduler which easily constitutes
a bottleneck.

Adaptation effectiveness. The purpose of this experi-
ment is to study the effectiveness of the system’s adaptation
to dynamic environments. The experiment was done by

SHENG ET AL.: CONFIGURABLE COMPOSITION AND ADAPTIVE PROVISIONING OF WEB SERVICES 45

TABLE 4
Evaluation Results of the System Design

comparing the performance of the system with and without
the exception handling mechanism.

A Timeout policy, “if the waiting time is longer than five
seconds during the invocation of a service, cancel the invocation
and execute the substitute service,” was used in the experiment
to see how effective our system is when the network
becomes overloaded. The exception handling tuples were
generated from this policy and injected into the tuple spaces
of the services. To simulate the network congestion, we
defined a service delay that makes the services sleep for a
specific amount of time (e.g., 1,000 ms) before their
acceptance of the invocation requests. We then executed
the two versions of the class assistant service with various
network congestion situations and measured the time used.
The service delays we simulated range from 1,000 to
10,000 ms. Under each network congestion condition, we
executed our service 10 times and computed the average
service response time. The result is depicted in Fig. 10.

From Fig. 10a, we can see that exception handling
mechanism significantly improved the system performance.
When service delays are less than 5 seconds, for exception
handling approach and nonexception handling approach,
there is no major impact on the service performance because
the exception handling policy is not applied yet due to
unsatisfied condition of the exception handling tuples.
However, the performance difference of both approaches
becomes significant when the service delay is increased. For
example, when the service delay is 10 seconds, it spends
178.568 seconds to execute the class assistant without

exception handling mechanism, while only 103.780 seconds
for the one with exception handling. In particular, with the
exception handling, the response time of the application
tends to level off because the coordination services select
new services with less workload for the invocation instead
of waiting for the overloaded ones.

It is also interesting to note that when the delay time is
less than 5 seconds, the response time of the application
with exception handling is slightly higher than the one
without exception handling (Fig. 10b). The reason of the
higher service response time is due to the overhead
introduced by the processing of exception handling tuples.
However, we do not consider this to be a significant
performance overhead, comparing with the performance
achieved by the exception handling tuples.

6 RELATED WORK

Over the last few years, the prosperous research on
Web services has led to a multitude of results in composi-
tion techniques for Web services. In this section, we
overview major techniques that are most closely related to
our approach.

6.1 Techniques for Web Service Composition

Current efforts in Web services composition can be
generally grouped into three categories: manual, automatic,
and semiautomatic composition [4]. By manual composition,
we mean that the composite service is designed by a human
designer (i.e., service provider) and the whole service

46 IEEE TRANSACTIONS ON SERVICES COMPUTING, VOL. 2, NO. 1, JANUARY-MARCH 2009

Fig. 9. The response time of the class assistant service. (b) is a closer
look at the partial part (message size ranges from 1,000 to 32,000)
of (a).

Fig. 10. System performance with and without Timeout policy. (b) is a

closer look at the partial part (service delay ranges from 0 to 5 seconds)

of (a).

composition takes place during the design time. This
approach works fine as long as the service environment,
business partners, and component services do not or rarely
change. On the other hand, automatic service composition
approaches typically exploit the Semantic Web and artificial
intelligence (AI) planning techniques. By giving a set of
component services and a specified requirement (e.g., user’s
request), a composite service specification can be generated
automatically [7]. However, realizing a fully automatic
service composition is still very difficult and presents
several open issues [7], [4], [5]. The basic weakness of most
research efforts proposed so far is that Web services do not
share a full understanding of their semantics, which largely
affects the automatic selection of services. Currently, the
first results on automatic composition of Web services are
those presented in [1], [3], [32], [33]. In a latest effort
reported in [33], the classical semantic matching of services
using Description Logic is augmented with Concept Covering
and Concept Abduction. This allows users to obtain an
explanation of what concepts are missing when no-exact
matches are found for composition. The explanation
provides users opportunities to refine composite services.

There exist some research efforts that leverage manual
and automatic compositions. Instead of coupling compo-
nent services tightly in the service model, such approaches
feature a high-level abstraction of the process models at the
design time, while the concrete composite services are
either generated automatically using tools or decided
dynamically at run time. For example, in [34], authors
propose some model-driven approaches for Web services
composition. A completed executable service specification
(e.g., BPEL [17]) can be generated from the composite
service specification (e.g., UML activity model, protocol
specifications, and interface). In the Modeling Web Service
Composition and Execution (MoSCoE) project,8 composi-
tion is achieved by providing high-level abstraction,
mashing of component services, and iterative refinement.
Once a satisfactory composite service is realized, it can be
translated to BPEL execution codes. Our approach is similar
to MoSCoE in the sense that we also adopt a semiautomatic
approach to service composition. Our composite services
are specified as process schemas not high-level goals and the
component services are selected, at run time, based on
nonfunctional properties (e.g., QoS parameters, contextual)
constraints specified by users.

6.2 Techniques for Service Orchestration

Composite services orchestration is a very active area of
research and development. The underlying execution
models of the projects (e.g., [22]) are based on a centralized
process execution engine that is responsible for scheduling,
dispatching, and controlling the execution of all the
instances of a composite service. This contrasts with our
work’s distributed execution approach where the control-
flow and data-flow notifications are directly exchanged
between participating component services without going
through the composite service.

Our work’s distributed orchestration model has some
similarities with the work presented in [23], which proposes

a decentralized orchestration approach where a composite
Web service specification is partitioned and executed at
distributed locations. The approach, however, differs from
our work, in that it is only applicable when the assignment
of activities to their executing entities is known during the
deployment of the workflow, which is a restrictive
assumption in the context of service composition where
providers can leave and join a community or alter the
characteristics of their offers (e.g., the QoS or the price) after
the composite service has been defined and deployed. In
addition, it depends on full-fledged execution engines (e.g.,
BPWS4J9) for the execution of partitions, which contrasts
with our lightweight coordination services. SelfServ [15]
and OSIRIS [35] also feature a distributed, peer-to-peer
service orchestration model. OSIRIS proposes a distributed
process engine that routes process instances directly from
one node to the next ones. The metainformation of a
composite service is maintained in global repositories and
distributed to participating nodes. The generation of such
meta information from composite service specifications,
however, is not given. In SelfServ, the responsibility of
coordinating the execution of a composite service is
distributed across several software components called
coordinators. Compared to SelfServ, our work is one step
further. Our orchestration model takes advantage of
powerful coordination model of tuple spaces, which
provides direct support of asynchronous interactions
among participating services and users. In addition, our
design of service orchestration control tuples considers
both control flow and data dependencies of composite
services. As a result, the communication requirements can
be minimized.

6.3 Techniques Dealing with Service Adaptability

Several techniques have been proposed to deal with
adaptability of composite Web services. The work of Miller
et al. [36] is one of the first works that addresses the
exception problems for Web-based workflow applications,
but it provides only a classification of exceptions. Both
BPEL4WS [17] and WSMF [37] offer the ability for exception
handling by using fault/compensation handlers and exception
handling section, respectively. However, their exception
handling specifications are incorporated tightly with the
composite service specifications that is difficult to maintain
and evolve. In contrast, our Web service composition model
provides a policy-based, multilevel exception handling
approach that expresses and controls exception handling
strategies at a high level of abstraction, separated from
the composite services functionalities. Brambilla et al. [27]
presents a high-level approach for the management of
exceptions that occur during the execution of workflow-
based Web applications. Authors provide a Web-based
exception classification and a set of policies for capturing
and recovering exceptions, which is quite similar to our
exception handling model. However, the work is based on a
modeling language called WebML,10 which was initially
designed for the development of Web page (i.e., hypertext)

SHENG ET AL.: CONFIGURABLE COMPOSITION AND ADAPTIVE PROVISIONING OF WEB SERVICES 47

8. http://www.moscoe.org/.

9. OASIS Business Transaction Protocol, http://www.oasis-open.org/
business-transaction/.

10. Web modeling language, http://www.webml.org/.

based applications, not Web services. In a recent effort
reported in [10], a platform has been developed where
BPEL processes can be extended with policies and
constraints for runtime configuration. The other two recent
efforts for adaptive Web services composition, reported in
[9], [11], focus on QoS-based, dynamic service selection for
context-aware business processes.

Finally, Aspect Oriented Programming (AOP) [38] is
emerging as a promising technique for realizing adaptive
and flexible Web services composition. Nonfunctional
composition properties (e.g., service selection policies) and
new business rules are specified as aspects, which can be
activated or deactivated appropriately at execution time.
However, applying AOP to Web services composition is
still in its early stage. Some first efforts are reported in [39],
[40], [41], [42]. In particular, [40] is a recent effort to enhance
BPEL orchestration engine with AOP technique to enable
adaptive service provisioning. The emphasis is on dynamic
modification of the BPEL specification to allow on-demand
debugging, execution monitoring, or an application specific
GUI. The hooks for plugging the appropriate aspects at
runtime are limited to what is expressible in XPath. It is still
very tedious and complex for users to specify aspects using
XML or Java classes.

7 CONCLUSION

In this paper, we have presented CCAP, a system that
supports configurable and adaptive composition of Web
services. Firstly, we introduced a configurable service
composition model. The innovative aspect of our model is
to provide distinct abstractions for service context and
exceptions, which can be embedded or plugged into the
process schemas through simple interaction with end users.
This departs from existing approaches in the area of service
composition, which rely on scripting languages or process
modeling notations (e.g., state diagrams, Petri nets, process
algebra) without taking into account context awareness and
runtime exception handling. Secondly, we proposed an
execution model where statechart-based composite service
specifications are transformed into a set of control tuples,
represented as ECA rules. Since control tuples are stored
separately from a composite Web service specification, it
provides the possibility of distributing control tuples to
participating Web services, thereby realizing a fully
distributed execution of composite services. Thirdly, CCAP
has been implemented using a number of state-of-the-art
technologies and is fully functional. We also conducted
an extensive performance study to validate the feasibility
and benefits of our approach. In particular, we introduced a
usability study to evaluate the learnability, efficiency, and
user adoption of our approach, which, to the best of
our knowledge, is one of the few works that provide
evaluations of Web services composition approaches using
real users.

Experience with CCAP has shown that our system can
simplify the specification and deployment of composite
Web services, can provide asynchronous service orchestra-
tion for distributed, loosely coupled participating services,
and can favor robust and adaptive service execution in
highly dynamic environments. These encouraging results

are stimulating a number of further researches to extend the
current prototype. First, a possible extension to CCAP is a
mechanism for seamlessly accessing services among multi-
ple computing devices. Indeed, during the invocation of a
Web service, especially one having long running business
activities or with complex tasks (e.g., composite services),
users are more likely to be switching from device to device
(e.g., from office PC to PDA). Applications cannot be
allowed to terminate and start again simply because users
change devices and users should not experience a break
during the service invocation while they are moving. This is
extremely important for people in time critical working
environments (e.g., doctors in hospitals). Second, it is
important to extend CCAP to support team work so that
multiple (mobile) users can virtually collaborate with each
other in same business processes. Finally, it is also
interesting to add more flexibility to CCAP (beyond its
exception handling capability) by supporting runtime
modifications to the schema of a composite service (e.g.,
removing a task), and build more applications on top of
CCAP, to further study the performance of the platform for
large-scale service compositions.

ACKNOWLEDGMENT

Quan Z. Sheng’s work has been partially supported by
Australian Research Council (ARC) Discovery Grant
DP0878367. The authors would like to thank Manoj
Chandra, Eileen Oi-Yan Mak, Nathan Wong, and Daniel
Pak for their participation in the implementation of CCAP.

REFERENCES

[1] V. Agarwal, K. Dasgupta, N. Karnik, A. Kumar, A. Kundu, S.
Mittal, and B. Srivastava, “A Service Creation Environment Based
on End to End Composition of Web Services,” Proc. 14th Int’l Conf.
World Wide Web (WWW ’05), May 2005.

[2] A. Charfi and M. Mezini, “Middleware Services for Web Service
Compositions,” Proc. 14th Int’l World Wide Web Conf. (WWW ’05),
May 2005.

[3] B. Medjahed, “Semantic Web Enabled Composition of Web
Services,” PhD dissertation, Virginia Polytechnic Inst. and State
Univ., 2004.

[4] N. Milanovic and M. Malek, “Current Solutions for Web Service
Composition,” IEEE Internet Computing, vol. 8, no. 6, pp. 51-59,
Nov./Dec. 2004.

[5] Q. Yu, X. Liu, A. Bouguettaya, and B. Medjahed, “Deploying and
Managing Web Services: Issues, Solutions, and Directions,” The
VLDB J., vol. 17, no. 3, pp. 537-572, 2008.

[6] M.P. Papazoglou, P. Traverso, S. Dustdar, and F. Leymann,
“Service-Oriented Computing: State of the Art and Research
Challenges,” Computer, vol. 40, no. 11, pp. 38-45, Nov. 2007.

[7] D. Berardi, G.D. Giacomo, and D. Calvanese, “Automatic
Composition of Process-Based Web Services: A Challenge,” Proc.
14th Int’l World Wide Web Conf. (WWW ’05), May 2005.

[8] Q.Z. Sheng, “Composite Web Services Provisioning in Dynamic
Environments,” PhD dissertation, The Univ. of New South Wales,
2006.

[9] D. Ardagna and B. Pernici, “Adaptive Service Composition in
Flexible Processes,” IEEE Trans. Software Eng., vol. 33, no. 6,
pp. 369-384, June 2007.

[10] L. Baresi, E. Di Nitto, C. Ghezzi, and S. Guinea, “A Framework for
the Deployment of Adaptable Web Service Compositions,” Service
Oriented Computing and Applications, vol. 1, no. 1, pp. 75-91, 2007.

[11] G. Canfora, M. Di Penta, R. Esposito, and M. Villani, “A
Framework for QoS-Aware Binding and Re-Binding of Composite
Web Services,” J. Systems and Software, vol. 81, no. 10, pp. 1754-
1769, 2008.

48 IEEE TRANSACTIONS ON SERVICES COMPUTING, VOL. 2, NO. 1, JANUARY-MARCH 2009

[12] Q.Z. Sheng, B. Benatallah, Z. Maamar, M. Dumas, and A.H. Ngu,
“Enabling Personalized Composition and Adaptive Provisioning
of Web Services,” Proc. 16th Int’l Conf. Advanced Information
Systems Eng. (CAiSE ’04), June 2004.

[13] T. Fjellheim, S. Milliner, M. Dumas, and J. Vayssière, “A Process-
Based Methodology for Designing Event-Based Mobile Composite
Applications,”Data & Knowledge Eng., vol. 61, no. 1, pp. 6-22, 2007.

[14] The Unified Modeling Language (UML) Version 1.5, http://
www.omg.org/technology/documents/formal/uml.htm, 2009.

[15] B. Benatallah, Q.Z. Sheng, and M. Dumas, “The Self-Serv
Environment for Web Services Composition,” IEEE Internet
Computing, vol. 7, no. 1, pp. 40-48, Jan./Feb. 2003.

[16] D. Harel and A. Naamad, “The STATEMATE Semantics of
Statecharts,” ACM Trans. Software Eng. and Methodology, vol. 5,
no. 4, pp. 293-333, Oct. 1996.

[17] T. Andrews et al., “Business Process Execution Language for
Web Services 1.1,” http://www-106.ibm.com/developerworks/
library/ws-bpel, 2009.

[18] J. Clark and S. DeRose, “XML Path Language (XPATH)
Version 1.0,” http://www.w3.org/TR/xpath, Nov. 1999.

[19] Q.Z. Sheng and B. Benatallah, “ContextUML: A UML-Based
Modeling Language for Model-Driven Context-Aware Web
Service Development,” Proc. Fourth Int’l Conf. Mobile Business
(ICMB ’05), July 2005.

[20] J.F. Allen, “Maintaining Knowledge about Temporal Intervals,”
Comm. ACM, vol. 26, no. 11, pp. 832-843, 1983.

[21] R. Montanari, E. Lupu, and C. Stefanelli, “Policy-Based Dynamic
Reconfiguration of Mobile-Code Applications,” Computer, vol. 37,
no. 7, pp. 73-80, July 2004.

[22] S.R. Ponnekanti and A. Fox, “SWORD: A Developer Toolkit for
Web Service Composition,” Proc. 11th Int’l World Wide Web Conf.,
May 2002.

[23] G.B. Chafle, S. Chandra, V. Mann, and M.G. Nanda, “Decen-
tralized Orchestration of Composite Web Services,” Proc. 13th Int’l
World Wide Web Conf. (WWW ’04), May 2004.

[24] S. Ahuja, N. Carriero, and D. Gelernter, “Linda and Friends,”
Computer, vol. 19, no. 8, pp. 26-34, Aug. 1986.

[25] N.W. Paton and O. Dı́az, “Active Database Systems,” ACM
Computing Surveys, vol. 31, no. 1, pp. 63-103, 1999.

[26] U. Dayal, M. Hsu, and R. Ladin, “Organizing Long-Running
Activities with Triggers and Transactions,” Proc. ACM Int’l Conf.
Management of Data (SIGMOD ’90), May 1990.

[27] M. Brambilla, S. Ceri, S. Comai, and C. Tziviskou, “Exception
Handling in Workflow-Driven Web Applications,” Proc. 14th Int’l
Conf. World Wide Web (WWW ’05), May 2005.

[28] F. Curbera, M. Duftler, R. Khalaf, W. Nagy, N. Mukhi, and S.
Weerawarana, “Unraveling the Web Services Web: An Introduc-
tion to SOAP, WSDL, and UDDI,” IEEE Internet Computing, vol. 6,
no. 2, pp. 86-93, Mar./Apr. 2002.

[29] IBM WSTK Toolkit, http://alphaworks.ibm.com/tech/
webservicestoolkit, 2009.

[30] P. Wyckoff, S.W. McLaughry, T.J. Lehman, and D.A. Ford,
“T Spaces,” IBM Systems J., vol. 37, no. 3, pp. 454-474, 1998.

[31] D. Salber, A.K. Dey, and G.D. Abowd, “The Context Toolkit:
Aiding the Development of Context-Enabled Applications,” Proc.
Conf. Human Factors in Computing Systems (CHI ’99), May 1999.

[32] P. Traverso and M. Pistore, “Automated Composition of Semantic
Web Services into Executable Processes,” Proc. Third Int’l Semantic
Web Conf. (ISWS ’04), Nov. 2004.

[33] A. Ragone, T.D. Noia, E.D. Sciascio, F.M. Donini, S. Colucci, and F.
Colasuonno, “Fully Automated Web Services Discovery and
Composition through Concept Covering and Concept Abduc-
tion,” Int’l J. Web Services Research, vol. 4, no. 3, pp. 85-112, 2007.

[34] D. Skogan, R. Gronmo, and I. Solheim, “Web Service Composition
in UML,” Proc. Eighth Int’l IEEE Enterprise Distributed Object
Computing Conf. (EDOC ’04), Sept. 2004.

[35] C. Schuler, R. Weber, H. Schuldt, and H.-J. Schek, “Peer-to-Peer
Process Execution with Osiris,” Proc. First Int’l Conf. Service-
Oriented Computing (ICSOC ’03), Dec. 2003.

[36] J. Miller, A. Sheth, K. Kochut, and Z. Luo, “Recovery Issues in
Web-Based Workflow,” Proc. 12th Int’l Conf. Computer Applications
in Industry and Eng. (CAINE ’99), Nov. 1999.

[37] D. Fensel and C. Bussler, “The Web Service Modeling Framework
WSMF,” Electronic Commerce Research and Applications, vol. 1, no. 2,
pp. 113-137, 2002.

[38] G. Murphy and C. Schwanninger, “Aspect-Oriented Program-
ming,” IEEE Software, vol. 23, no. 1, pp. 20-23, Jan./Feb. 2006.

[39] A. Charfi and S. Kloppenburg, “Aspect-Oriented Web Service
Composition in AO4BPEL,” Proc. Fifth Int’l Conf. Aspect-Oriented
Software Development (AOSD ’06), Mar. 2006.

[40] C. Courbis and A. Finkelstein, “Weaving Aspects into Web Service
Orchestrations,” Proc. 2005 IEEE Int’l Conf. Web Services (ICWS
’05), July 2005.

[41] W. Kongdenfha, R. Saint-Paul, B. Benatallah, and F. Casati, “An
Aspect-Oriented Framework for Service Adaptation,” Proc. Fourth
Int’l Conf. Service-Oriented Computing (ICSOC ’06), Dec. 2006.

[42] B. Verheecke, W. Vanderperren, and V. Jonckers, “Unraveling
Crosscutting Concerns in Web Services Middleware,” IEEE
Software, vol. 23, no. 1, pp. 42-50, Jan./Feb. 2006.

Quan Z. Sheng received the PhD degree in
computer science from the University of New
South Wales in 2006. He is a lecturer in the
School of Computer Science at the University
of Adelaide. His research interests include
service-oriented architectures, distributed com-
puting, and pervasive computing. He was the
recipient of the Microsoft Research Fellowship
in 2003. He is the author of more than
40 publications. He served on program com-

mittees for dozens of conferences and was the program cochair of the
IEEE SITIS 2008, the publication chair of the WISE 2005, and the
publicity co-chair of the ICSOC 2005 and the WISE 2007. He is a
member of the IEEE and the ACM.

Boualem Benatallah received the PhD degree
in computer science from the University of
Grenoble, France. He is a professor in the
School of Computer Science and Engineering at
the University of New South Wales, where he is
also the founder of the Service-Oriented Com-
puting Research Group. His research interests
include Web service protocols analysis and
management, enterprise services integration,
process modeling, and service-oriented archi-

tectures for pervasive computing. He is a member of the IEEE.

Zakaria Maamar received the MSc and PhD
degrees in computer science from Laval Uni-
versity, Quebec, Canada, in 1995 and 1998,
respectively. He is an associate professor at the
College of Information Technology of Zayed
University in Dubai, U.A.E. Prior to joining ZU,
he held a defense scientist position with the
Defense Research Establishment Valcartier in
Quebec, Canada. His research interests are
related to software agents, context-aware com-

puting, and Web services.

Anne H.H. Ngu is currently an associate
professor with the Department of Computer
Science at Texas State University-San Marcos.
Her main research interests are in information
integration over the Web, service-oriented com-
puting, databases, scientific workflows, and
agent technologies. The unifying theme of her
research has been to provide transparent global
access to heterogeneous, distributed autono-
mous information sources. From 1992 to 2000,

she worked as a senior lecturer in the School of Computer Science and
Engineering, the University of New South Wales. She had held research
scientist positions with Telecordia Technologies and MCC. She had also
been a summer faculty scholar in Lawrence Livermore National
Laboratory from 2003 to 2006.

SHENG ET AL.: CONFIGURABLE COMPOSITION AND ADAPTIVE PROVISIONING OF WEB SERVICES 49

