
con�gurable
 process models

Florian Gottschalk

Configurable Process Models

Copyright c© 2009 by Florian Gottschalk. All Rights Reserved.

A catalogue record is available from the Eindhoven University of Technology
Library.

Gottschalk, Florian

Configurable Process Models / by Florian Gottschalk.
- Eindhoven: Technische Universiteit Eindhoven, 2009. - Proefschrift. -

ISBN 978-90-386-2085-5
NUR 982

Keywords:
Process Configuration / Reference Models / Workflow / Business Process Man-
agement

The work in this thesis has been carried out under the auspices of
Beta Research School for Operations Management and Logistics.

Beta Dissertation Series D124

Printed by University Press Facilities, Eindhoven
Cover design by Christian Gottschalk

Configurable Process Models

PROEFSCHRIFT

ter verkrijging van de graad van doctor aan de

Technische Universiteit Eindhoven, op gezag van de

rector magnificus, prof.dr.ir. C.J. van Duijn, voor een

commissie aangewezen door het College voor

Promoties in het openbaar te verdedigen

op donderdag 3 december 2009 om 16.00 uur

door

Florian Gottschalk

geboren te Göttingen, Duitsland

Dit proefschrift is goedgekeurd door de promotor:

prof.dr.ir. W.M.P. van der Aalst

Copromotor:
dr. M.H. Jansen-Vullers

Contents

1 Introduction 1

1.1 Process Model Reuse 3

1.2 Process Model Adaptation 6

1.3 Research Goal, Methodology, and Contributions 11

1.4 Road Map 12

2 Background Process Modeling 15

2.1 Preliminaries 16

2.2 Languages for Formal Process Definition 19

2.2.1 Labeled Transition Systems 19

2.2.2 Workflow Nets 21

2.3 Workflow Patterns 26

2.4 Business Process Modeling Languages 28

2.4.1 Event-driven Process Chains 28

2.4.2 Protos 32

2.4.3 BPMN 34

2.5 Workflow Languages 35

2.5.1 YAWL 36

2.5.2 SAP WebFlow 40

2.5.3 BPEL 42

2.6 Summary 44

3 Configuring Process Models 45

3.1 Configuration versus Inheritance 45

3.2 Adding Configuration to Process Modeling 52

3.2.1 Configuring Ports of Tasks 52

3.2.2 Restricting Configuration Opportunities 57

3.2.3 Configurable Process Models 59

3.3 Related Work 61

3.3.1 Literature Study on Variability Mechanisms . . . 61

3.3.2 Studying of Adaptation Practices 62

3.3.3 Restricting Choices in Workflow Patterns 62

3.4 Conclusions 63

vi Contents

4 Configurable Workflow Languages 65
4.1 C-SAP WebFlow 66

4.1.1 Identifying Ports 66
4.1.2 Port Configuration 68
4.1.3 Configuration Constraints 70
4.1.4 Process Enactment 71

4.2 C-BPEL 72
4.2.1 Ports and their Configurations 72
4.2.2 Executability of BPEL Configurations 74

4.3 C-YAWL 76
4.3.1 Configurable Elements of EWF-Nets 76
4.3.2 Configuration Requirements and Validity 84
4.3.3 Components of C-EWF-Nets 87
4.3.4 Configurable Workflow Specifications 88
4.3.5 From C-YAWL to YAWL 91
4.3.6 C-YAWL Implementation 98

4.4 Related Work 98
4.4.1 C-EPCs 99
4.4.2 Further Process Configuration Extensions 101

4.5 Conclusions 102

5 Guiding the Configuration Process 105
5.1 Capturing Domain Variability 106
5.2 Capturing Process Variability 109
5.3 Linking Domain and Process Variability 110
5.4 Tool Support 115
5.5 Related Work 120
5.6 Conclusions 121

6 Configurable Process Models for Municipalities 123
6.1 Creating Configurable Process Models 124

6.1.1 Building the Models 124
6.1.2 Observations 133

6.2 Evaluation of the Approach 135
6.2.1 Provider of BPM Solutions 137
6.2.2 Provider of Municipality Software 137
6.2.3 Consultancy Firm 138

6.3 Related Work 139
6.4 Conclusions 140

7 Building the Configurable Process Model 143
7.1 Generating Configurable Process Models from Log Files . . 145

7.1.1 Pre-processing the Log Files 145
7.1.2 Mining the Basic Process Model 150

7.2 Merging Process Models 157
7.2.1 Function Graphs 159

Contents vii

7.2.2 From EPCs to Function Graphs 161

7.2.3 Merging Function Graphs 165

7.2.4 From Function Graphs to EPCs 169

7.2.5 Tool Support 172

7.3 Deriving Configurations 178

7.4 Case Study Re-visited 183

7.4.1 Mining Models from Log Files 183

7.4.2 Merging Individual Models 188

7.4.3 Identifying Individual Configurations 191

7.5 Related Work 194

7.5.1 Process Mining 194

7.5.2 Model Merging 195

7.5.3 Synthesis 196

7.5.4 Identifying Configurations and Conformance . . . 197

7.6 Conclusions 198

8 Executability of Configurations 201

8.1 Preserving Syntactic Correctness 203

8.2 Preserving Semantic Correctness 211

8.3 Correctness in C-YAWL 214

8.4 Constraints from Resource- and Data-flows 215

8.4.1 Data-flow Correctness 216

8.4.2 Resource Availability 222

8.5 Related Work 223

8.5.1 Soundness from a Control-flow Perspective . . . 223

8.5.2 Soundness from a Data-flow Perspective 224

8.6 Conclusions 225

9 Conclusions 227

9.1 Contributions 227

9.1.1 Process Model Configuration 228

9.1.2 Configurable Process Modeling Languages 228

9.1.3 Guiding Process Configuration 229

9.1.4 Model Merging 230

9.1.5 Soundness of Process Configuration 230

9.2 Limitations and Future Work 231

9.2.1 Adapting Configured Models 232

9.2.2 Configuration Performance 232

9.2.3 Configuration in the Process Life Cycle 233

9.2.4 Process Model Content 234

9.3 Summary 235

viii Contents

A Case Study Process Models 237
A.1 Acknowledging an Unborn Child 239
A.2 Registering a newborn 246
A.3 Marriage 253
A.4 Issuing Death Certificate 260

Bibliography 267

Index 285

Acronyms 309

Symbols 311

Summary 321

Samenvatting 323

Acknowledgements 325

Curriculum Vitae 329

There is no art that doesn’t reuse.
Lawrence Lessig (2001)

Chapter 1

Introduction

Efficient and reliable processing of data is key in today’s information society.
Thus, a good organization of the tasks that need to be executed to transform
input data into meaningful results is essential. The field that is concerned with
the orchestration of individual tasks to executable processes is known as Busi-
ness Process Management (BPM) [9, 12, 190]. To support BPM, process
models visualize process behavior [53, 70, 159, 163]. By documenting current
or future options available to handle data, by defining the execution order of
tasks, as well as by depicting possible outcomes, process models help stakehold-
ers when developing, implementing, executing, or improving business processes.
Moreover, process models can also serve as instructions for information systems
that support the data processing during the execution of business processes,
known as workflow management systems [7, 123]. Here, they provide ex-
act, formal specifications of how the various tasks can follow each other and
how data is transformed.

Designing high-quality process models is often time-consuming, error-prone,
and costly [4, 142]. It first requires identifying all the small steps that need
to be taken to get to the required results. The task order as well as whether
tasks can be executed in parallel or if they are alternatives to each other must
be determined. Then the data and resources needed as input for tasks must
be specified and the results produced by each step must be determined. The
amount of time and effort needed obviously increases with the level of detail
that needs to be specified for a process. While a brief overview of the main
tasks may be sufficient for managers, workflow systems require that each single
step is formalized in detail in order for it to be understood and automatically
controlled by the system. Also, with an increasing level of detail, the risk for
errors — especially undetected errors — rises. Hence, these efforts and risks
must be in proportion to the efficiency and reliability improvements achievable
when modeling a process.

Within the process landscape of corporations we can distinguish two main
types of business processes [7], primary processes and support processes.

2 Chapter 1. Introduction

Primary processes are core processes which directly drive a company’s success
by giving it a competitive edge. Examples of such processes can be production
processes, customer support, marketing, etc. These processes require innova-
tion and differentiation from other market participants. In contrast, support
processes such as verification of invoices, the approval of travel requests, or HR
processes like the payments of salaries do not directly contribute to increasing
a company’s business. Here it is essential that the company can rely on effec-
tive and efficient process execution. Furthermore, unless a corporation is itself
an outsourcing company specializing in the particular area, innovation in these
processes will do little to promote corporate success. And yet failure in these
processes can very well put the whole organization in jeopardy. Thus, for these
non-core processes, reliability is far more important than innovation, and these
processes are therefore good candidates for standardized solutions.

Vendors of so-called enterprise software or Enterprise Resource Planning
(ERP) systems like IBM, Oracle, or SAP, pick up on this. Their products
build up on databases that enable an integrated view on a company’s data. By
adding workflow support to the products, the provided solutions become capable
of automatically handling a process’s complete data [52]. For this, the products
include both the software as well as documentation on how the various processes
can be executed using the particular system. Thus, enterprise software vendors
often provide both rather informal process models as documentation as well as
technical templates which enable the process execution through their system’s
workflow engines [48, 139, 162]. Many consultancy firms have specialized in
introducing such standard products. For this, they not only rely on the offerings
of software vendors, but also provide their own so-called reference models.
These models utilize industrial standards which the consulting firms derive from
various previous implementations, i.e. through their experience in the particular
field [167].

Still, while processes like travel approval or invoice verification are executed
very similarly among organizations, small variations exist due to specific re-
quirements. For example, issuing a payment authorization might require two or
three separate approvals within some companies, while other companies grant
officers in charge to issue them directly. Consultants implementing standard
solutions in organizations therefore spend huge amounts of time on adapting a
standard solution to the individual process requirements of organizations [51].

In this thesis, the aim is to simplify this adaptation process. Current process
templates and reference models always depict ‘best-practice’ solutions to execute
a business process. Thus, any deviation from the standard procedures requires a
manual adaptation of the process model. Therefore, even small changes require
process modeling experience and skills, and hence come with the corresponding
risks.

To avoid these difficulties, we will suggest providing an integrated set of
all the different process variants, i.e. a single process model covering all the
various execution options, even enabling new combinations among them. Such
an integrated process model should then enable model users to simply select
desired and deselect undesired options. In this way, the process model can be

1.1. Process Model Reuse 3

Figure 1.1: Configurable process models within the domains of BPM, Reference Process
Modeling, Workflow Management, and ERP.

configured to a process variant containing only those parts of the integrated
set of process variants which are required by the particular organization. All
other options are eliminated from the model. Furthermore, the goal is to set up
configurable process models such that they guarantee the correctness of the
derived model. This means, a workflow engine should, e.g., be able to steer a
business process according to any process variation that a user is able to derive
from the configurable process model.

Summarizing, configurable process models enable reusing various existing
process definitions by combining them and providing the model user with a choice
for or against each individual alternative. Especially when applied in the inter-
section of the BPM domains of reference process modeling and workflow man-
agement (see Figure 1.1) their use promises a significant reduction of manual
process modeling efforts for model users.

For that reason, let us continue this introduction to the development of
configurable process models by taking a closer look at the reuse of process models
(Section 1.1) and the choices and variation opportunities that are provided by
process models (Section 1.2). Afterwards, Section 1.3 lists the research goal of
this thesis, the research questions connected to this goal, the research method
used to answer these questions, and the contributions made by answering each
question. Section 1.4 then gives an outlook on the thesis’ different chapters,
linking them to the research questions posed in Section 1.3. In this way, it
provides a road map for reading the thesis.

1.1 Process Model Reuse

The goal when reusing process models is to avoid ‘reinventing the wheel’, i.e. to
avoid designing business process models which have already been well defined

4 Chapter 1. Introduction

and used by others.
The idea of reusing established artifacts has especially inspired research in

the context of software engineering [35, 36, 69, 109]. From the simple idea of
reusing software code in the late nineteen-sixties, software reuse has matured
over the last forty years. Still, practitioners were quite reluctant to reuse existing
software in new projects for a long time. This was mainly attributed to the ‘not
invented here’ syndrome, i.e. a supposed unwillingness to use code written by
others [177]. However, Favaro [65] discovered in the early nineteen-nineties that
practitioners were actually quite willing to reuse existing software but they just
found it far too hard because of the lack of sophisticated concepts and tools (or
their lack of awareness thereof). With the success of inheritance concepts in
object-oriented programming, software libraries, and design patterns, this has
now changed significantly. Today, using such concepts, all software development
builds on previously existing software, e.g., reusing user interfaces, database
access, etc. [29, 68].

With the growing popularity of BPM during the nineteen-nineties, both re-
searchers and practitioners soon discovered that reuse of process models could
also significantly reduce process modeling costs [28, 30, 62, 95, 116, 169]. This
has led to the development of a number of reference models and template repos-
itories, providing process models that are considered ‘best-practice’ approaches
for the particular business processes [66, 67, 161]. The most prominent example
is probably the set of reference models provided by SAP which includes more
than 600 non-trivial process models (and more than 3,000 models in total) doc-
umenting the processes of their enterprise system which has more than 100,000
installations worldwide [48, 155]. Such reference models also aim at being a
better starting point for the development of process variants according to indi-
vidual requirements than starting from scratch. Nonetheless, although these is
plenty of literature on the existence of reference process models, it is hard to
find documentation that shows how these models have significantly contributed
to successful process implementation projects. For example, Daneva [51] claims
that requirements engineering for enterprise system implementation projects
is all about reuse, and she proposes starting with the process documentation
offered by system vendors. However, after analyzing a total of 67 SAP imple-
mentation projects, Daneva also realized that adapting the standard solution
to the individual needs often required far more work than initially anticipated,
and the tools provided by the system vendors do not capture the impact of any
changes made.

Besides the process models documenting the system behavior, SAP also de-
livers hundreds of simple, predefined process templates for the workflow system
that is part of any installation of their enterprise system — from process tem-
plates for logistics and material management to personal time management,
sales and distribution, or compensation management [139]. The templates,
which typically can be printed comfortably on one A4 page, can easily be acti-
vated in the SAP system. They are then triggered automatically whenever their
execution is required, without a process designer ever having spent a significant
amount of time on the workflow definition.

1.1. Process Model Reuse 5

Enter
travel

request

Change
travel

request

Check
travel

request

Travel

required

Travel

request
created

Sent
back for

correction

Travel
request
rejected

Travel
request

accepted

XOR

Travel
request
changed

XOR

Figure 1.2: Approving travel requests man-
ually (adapted from [156])

Create
travel

request

Approval
by

manager

Automatic
approval

Travel
required

Travel
request
created

Manually
approved

No
automatic
approval

Approved
auto-

matically

XOR

XOR

Request
rejected

Figure 1.3: Approving travel requests au-
tomatically (adapted from [157])

As there are usually different options for how a process can be executed,
SAP’s repository often even includes multiple template variants for the same
business process, each variant suggesting a different implementation of the par-
ticular process. For example, there is a dedicated workflow template not only
for the approval of a travel request (as shown in Figure 1.2), but also one for the
automatic approval of a travel request (as shown in Figure 1.3). In addition,
there are workflow templates for the approval of a travel plan, the approval of
a trip, and the automatic approval of a trip.1

For deciding on which process variant to implement, a process designer has
to compare these templates. As all these templates are similarly structured, and
as none of the differences between the two templates is highlighted, finding the
small differences manually can be a difficult, and time-consuming task. If, as in
the example from figures 1.2 and 1.3, there is a certain degree of inconsistency in
the documentation of the templates because it is unclear if Create travel request
and Enter travel request actually depict the same task, this comparison requires
even further efforts.

It becomes even worse, if the process designer concludes that a combination
of two templates would be the optimal solution as each template has its strength
at a different point in the model. For example, the process designer might want
to combine the automatic approval step from Figure 1.3 with the option to
send the travel request back for correction from Figure 1.2. As such a template
is not available, she then has to manually adapt one of the templates at its
weak point to match the one not selected as closely as possible — an obviously
unsatisfying solution for the designer who just wants to select necessary and
deselect unnecessary options.

1The manual travel approval is accessible in the workflow builder of SAP’s enterprise system
as workflow template WS20000050, the automatic travel approval is accessible as workflow
template WS12500021. All the various templates are documented at http://help.sap.com/

saphelp_erp2005vp/helpdata/en/d5/202038541ec006e10000009b38f8cf/frameset.htm.

http://help.sap.com/saphelp_erp2005vp/helpdata/en/d5/202038541ec006e10000009b38f8cf/frameset.htm
http://help.sap.com/saphelp_erp2005vp/helpdata/en/d5/202038541ec006e10000009b38f8cf/frameset.htm

6 Chapter 1. Introduction

Similar issues can also be found when looking at other reference process
model repositories [58]. Hence, comparable to the lack of reuse concepts and
tools in software engineering projects in the early nineteen-nineties, reference
modeling practice lacks sophisticated concepts and tools that support the reuse
of process models.

1.2 Process Model Adaptation

To be able to improve the support for the adaptation of process models, it
is first necessary to find out how a process model can be adapted. For this,
Becker et al. [33, 34] developed a framework, categorizing adaptation techniques.
They distinguish two main types of process model adaptation: configuration
mechanisms and generic adaptation mechanisms. The essential difference
between these two types of mechanisms is that configuration mechanisms are
based solely on eliminating content that is already contained in the model while
generic adaptation mechanisms also allow for adding content to the model as
required when adding new steps or even simply re-directing the process flow, i.e.
changing the source or target of corresponding process flow arcs. That means
that any adaptation that requires ‘creative freedom’ is classified as a generic
adaptation mechanism while if the adapted model is a subset of the original
model, it is classified as a configuration mechanism.

To support generic adaptations, there are two approaches which provide
dedicated adaptation support by providing partial models which have to be
completed during the adaptation, called aggregation and instantiation [34].
In an aggregation approach, a library of process model building blocks is pro-
vided. These building blocks can be combined and nested, i.e. aggregated, to
create complex process models (see Figure 1.4). Thus, the approach is similar
to the provision of software libraries in software engineering. For example, Blin
et al. [37], Han et al. [86], Kilov [106], and Koschmider and Blanchard [108]
suggest frameworks for process model reuse utilizing aggregation mechanisms.

Instantiation provides the process designer with the inverse to aggregation.
In other words, it provides a framework of process models which contain place-
holders that need to be filled when adapting the process models (see Figure 1.5).
This is similar to the concepts of abstract classes and interfaces in object-
oriented programming, as well as to design patterns, which all deliver frames
that have to be filled with details when deriving variants from them. Vom
Brocke [38] and Becker et al. [34] outline such approaches further.

Process model configuration combines these two ideas for supporting reuse of
process models. It eliminates all manual process modeling efforts while still pro-
viding options to adapt process models. To enable process model configuration,
the overall framework needs to be defined (as for process instantiation), process
model libraries need to be defined (as they are provided for process aggrega-
tion), as well as it is necessary to define how the placeholders in the framework
can be filled from the process model libraries (see Figure 1.6). Without adding
any components, such a process model can be changed in two ways. On the one

1.2. Process Model Adaptation 7

T1

T34

A

B

IHD

XOR

F

T19

L

T15

Y

R

V

T8

V

T15

Y

R

V

T8

V

AW

XOR

T12

Figure 1.4: Aggregation of process model
building blocks

HD

XOR

A

L

T15

Y

O

V

V

AW

XOR

T12

T15

R

V

T8

V

Figure 1.5: Instantiation of a process model

HD

XOR

A

L T15

Y

O

V

V

AW

XOR

T12

T15

R

V

T8

V

XOR

XOR

XOR

XOR

T9

T21AW

T7

T18

V

T5

V

T78 T96

T2T14

F

Figure 1.6: Process model configuration: selecting those elements that should be preserved
in the model

hand, elements that are already in the model can be made invisible such that
reading the model becomes easier, i.e. they remain in the process model such
that the process model’s behavior is preserved. On the other hand, elements can
be eliminated completely from the model. Then, the behavior that is possible
according to the model is restricted. If we want to change the possibilities how
a process can be executed, we obviously need to restrict the behavior, i.e. do the

8 Chapter 1. Introduction

HD

XOR

A

L T15

Y

O

V

V

AW

XOR

T12

T15

R

V

T8

V

XOR

XOR

XOR

XOR

T9

T21AW

T7

T18

V

T5

V

T78 T96

T2T14

F

T15

T12

T15 T8
T9

T21

T7

T18 T5T78 T96

T2T14

H

XOR

A

T15

Y

O

V

V

AW

XOR

T12

R

V

T8

V

XOR

T96

T2T14

F

Process Model

Construction
(Decisions)

Process Model
Configuration

(Decisions)

Process

Execution
(Decisions)

Execution

Log

HD

XOR

A

L T15

Y

O

V

V

AW

XOR

T12

T15

R

V

T8

V

XOR

XOR

XOR

XOR

T9

T21AW

T7

T18

V

T5

V

T78 T96

T2T14

F

A

O

AW

T12

T96

Tasks

Figure 1.7: Process model construction, configuration, and execution: The possible process
behavior is restricted with each decision.

latter. Hence, process model configuration means restricting the behavior that
is possible according to a process model (and thus observable when executing the
corresponding process).

In this way, process configuration is an intermediate step between the con-
struction of a process model and the execution of the process. To visualize this,
let us have a look at Figure 1.7: By explicitly defining a process in a model, per-
forming tasks arbitrarily is prevented. Therefore, constructing a process model
means defining an execution order among the tasks as well as defining variation
options that can occur when executing the process. After the process model
has been constructed and enforced, tasks can no longer be executed freely, i.e.
they must be executed according to the process model. The possible process
behavior is restricted. Process configuration restricts this behavior further. It
eliminates elements from the process model and thus forbids their execution.
The decisions that still remain open are only made when executing the process:
each decision determines which path in the process model is followed. These
run-time decisions thus also eliminate (non-selected) paths from the possible
process behavior of the particular process instance.

Hence, process model construction, process configuration, and process ex-
ecution follow each other to determine the actually executed process behavior
which is captured in the execution log. While in fact most decisions are made
when constructing the process model, process configuration allows making fur-
ther decisions on how processes are executed before they are enacted, and the
decisions that remain open are so-called run-time decisions that are made
while executing the process (see Figure 1.8). With each decision, the varia-
tion options that remain available during the process execution are reduced (see
Figure 1.9).

Of course, a process model per se can also be executed without process con-
figuration. Process configuration is added to the decision making process as an
intermediate step to improve the support for reusing process models in related
process execution scenarios as follows: The more process behavior is supported
by a process model, the more it is applicable in various scenarios, i.e. it fits more
applications [144, 145]. For that reason, a process model allowing for a lot of

1.2. Process Model Adaptation 9

HD

XOR

A

L T15

Y

O

V

V

AW

XOR

T12

T15

R

V

T8

V

XOR

XOR

XOR

XOR

T9

T21AW

T7

T18

V

T5

V

T78 T96

T2T14

F

T15

T12

T15 T8
T9

T21

T7

T18 T5T78 T96

T2T14

H

XOR

A

T15

Y

O

V

V

AW

XOR

T12

R

V

T8

V

XOR

T96

T2T14

F

Process Model
Construction
(Decisions)

Process Model
Configuration

(Decisions)

Process
Execution

(Decisions)

Execution
Log

HD

XOR

A

L T15

Y

O

V

V

AW

XOR

T12

T15

R

V

T8

V

XOR

XOR

XOR

XOR

T9

T21AW

T7

T18

V

T5

V

T78 T96

T2T14

F

A

O

AW

T12

T96

Tasks

#
 o

f
d

e
c
is

io
n

s
 m

a
d

e

Figure 1.8: Decisions made: Constructing a process model means making plenty of decisions
while the last decisions are made only shortly before the execution of a process instance
completes.

HD

XOR

A

L T15

Y

O

V

V

AW

XOR

T12

T15

R

V

T8

V

XOR

XOR

XOR

XOR

T9

T21AW

T7

T18

V

T5

V

T78 T96

T2T14

F

T15

T12

T15 T8
T9

T21

T7

T18 T5T78 T96

T2T14

H

XOR

A

T15

Y

O

V

V

AW

XOR

T12

R

V

T8

V

XOR

T96

T2T14

F

Process Model
Construction
(Decisions)

Process Model
Configuration

(Decisions)

Process
Execution

(Decisions)

Execution
Log

HD

XOR

A

L T15

Y

O

V

V

AW

XOR

T12

T15

R

V

T8

V

XOR

XOR

XOR

XOR

T9

T21AW

T7

T18

V

T5

V

T78 T96

T2T14

F

A

O

AW

T12

T96

Tasks

#
 o

f
o

p
ti

o
n

s
 s

ti
ll
 o

p
e
n

Figure 1.9: Variation opportunities: Before the process model is constructed, it is completely
free which tasks can be executed in which order. This freedom decreases with each decision
made (while decisions made early in the decision making process usually have the biggest
impact on the further variation options).

#
 o

f
in

s
ta

n
c
e
s

HD

XOR

A

L T15

Y

O

V

V

AW

XOR

T12

T15

R

V

T8

V

XOR

XOR

XOR

XOR

T9

T21AW

T7

T18

V

T5

V

T78 T96

T2T14

F

T15

T12

T15 T8
T9

T21

T7

T18 T5T78 T96

T2T14

H

XOR

A

T15

Y

O

V

V

AW

XOR

T12

R

V

T8

V

XOR

T96

T2T14

F

Process Model
Construction
(Decisions)

Process Model
Configuration

(Decisions)

Process
Execution

(Decisions)

Execution
Log

HD

XOR

A

L T15

Y

O

V

V

AW

XOR

T12

T15

R

V

T8

V

XOR

XOR

XOR

XOR

T9

T21AW

T7

T18

V

T5

V

T78 T96

T2T14

F

A

O

AW

T12

T96

Tasks

Figure 1.10: Number of process instances that behave according to the model: Obviously,
the more the behavior possible according to a process model is restricted, i.e., the less variation
opportunities remain in the model (Figure 1.9), the less process instances behave according
to the restricted process model. While the constructed process model is applicable to a lot of
process instances, configuration decisions reduce the amount of process instances covered by
a process model. Finally, each execution log covers the behavior of a single process instance.

10 Chapter 1. Introduction

behavior enables more reuse. However, much of the behavior that is added to
achieve this general applicability, is not really desired behavior from the view-
point of an individual application [144, 145]. The single, individual application
only requires a subset of this behavior. Thus, while winning a lot of reuse poten-
tial through fitting to far more applications, adding behavior to a process model
makes the model at the same time less appropriate to the individual applica-
tion, reducing its reuse potential. However, by eliminating undesired behavior
through process configuration, the appropriateness of a process model can be
increased. Hence, process configuration aims at increasing the reuse opportuni-
ties of process models on the one hand through allowing additional behavior in a
process model, and on the other hand by providing a tool to tailor this additional
behavior to what is really needed (see Figure 1.10).

Process model configuration must therefore be clearly distinguished from
the issues that occur when a process model has been changed, and process
instances that are being executed at the moment of the change should use
the new process model from that point in time on. Systems tackling these
problems of switching from one ‘configuration’ to another are also often called
configurable, re-configurable or adaptive workflow systems (e.g. in [42, 64, 86,
87, 99, 140, 175]). However, these approaches typically neglect the preceding
problem of how the process model itself can be easily and safely changed, which
is our focus here.

The idea of extending process modeling languages with opportunities for
process model configuration has been picked up by several researchers. For ex-
ample, Rosemann and van der Aalst [143] suggest the use of specific configurable
node types which allow including or excluding process behavior during process
execution. Both Becker et al. [34] and Czarnecki and Antkiewicz [49] propose
to include or exclude model elements based on attributes assigned to these ele-
ments, while Puhlmann et al. [132] advocate adding conditions to decision nodes
and deciding based on evaluating these conditions if a certain process part can
be executed. Dreiling et al. [60] provide a set of general configuration patterns,
depicting which options to limit the process behavior exist in certain execution
scenarios.

All these approaches identify the particular configuration options by observ-
ing how process models are adapted or varied in practice, i.e. the suggested
configuration options conform to the observed practical needs. However, this
means that completeness of the offered options cannot be proven or assumed,
especially given that the practical success of process model reuse achieved up
to now is limited.

When suggesting process model configuration, efficiency benefits for the im-
plementation of enterprise systems are often anticipated. Still, none of the
approaches listed above shows the applicability of process configuration in this
context through using a toolset that derives a configured process model which
is executable in a classical workflow system. In fact, none of the approaches
demonstrates process model configuration based on a process modeling lan-
guage that is designed to support the automated process execution through a
workflow system.

1.3. Research Goal, Methodology, and Contributions 11

Therefore, in this thesis we aim on the one hand at providing a sound foun-
dation for process model configuration by analyzing process behavior. And on
the other hand we aim at using this knowledge to create configurable process
modeling languages which contain everything that is needed to even configure
process models that have the power to steer process executions in workflow
engines.

1.3 Research Goal, Methodology, and Contribu-

tions

The goal of the research presented in this thesis can be summarized as follows:

Improve the support for process model reuse by defining process model
configuration such that it enables tailoring process models which are
applicable in many contexts to the behavior desired in an individ-
ual context. The resulting models should be usable to enforce the
individually desired behavior.

To achieve this goal, we need to answer the following, connected research ques-
tions:

• What is process configuration and what are configurable process models?

• How can existing process modeling languages be extended with configu-
ration options?

• Is it possible to define configurable process models such that users without
process modeling skills can adapt these models to individually desired
behavior?

• Are configurable process models practically feasible, i.e., is their complex-
ity manageable and do organizations see benefits in using configurable
process models?

• Which challenges arise when constructing configurable process models and
how can they be addressed?

• Which challenges arise when executing configured process models and how
can they be addressed?

A design science2 research approach as, e.g., outlined by Hevner et al. [91], was
used to answer these questions. The main contributions made in this way are:

• a sound and complete definition of what process configurations means
using the assumption that process configuration is the inverse of adding
behavior to a process model (Chapter 3, Section 3.1),

2While natural and behavioral science explains how and why things are like they are,
design science attempts to create things that serve human purposes. Thus, while behavioral
science focuses on discovering and justifying new things, design science focuses on building
and evaluating new things [91, 101, 117].

12 Chapter 1. Introduction

• a methodology to setup configurable process modeling languages (Chap-
ter 3, Section 3.2),

• the formal definition of a configurable process modeling language which
is also of practical use (Chapter 4, Section 4.3), demonstrated by a case
study (Chapter 6),

• a framework that enables adapting process models without any process
modeling knowledge, i.e. one that is based on domain specific questions
expressed in natural language (Chapter 5, Section 5.3),

• an algorithm for merging process models while preserving the individual
behaviors (Chapter 7, Section 7.2), and

• the definition of a propositional formula which — as long as it evaluates
to true — preserves the soundness of a free-choice process model while
eliminating elements from the model (like we do when configuring the
model; Chapter 8, Sections 8.1/8.2).

The main results from this thesis have also been published in international
journals and key conferences in the field of information systems and BPM [16,
17, 73, 74, 75, 76, 77, 78, 79, 113].

1.4 Road Map

The thesis is divided into nine chapters and an appendix.

Chapter 1 (this chapter) explains the need for configurable process models
in the context of reference process modeling, presents the main research
questions, and outlines how these questions will be addressed throughout
the thesis in a design science research approach.

Chapter 2 provides necessary background information by introducing the for-
mal notations as well as the process modeling languages used throughout
the thesis. For this, formal notions like Labeled Transition Systems and
Petri nets, as well as business process modeling languages like Event-driven
Process Chains (EPCs), Protos, and BPMN, and workflow languages like
SAP WebFlow, YAWL, and BPEL are introduced.

Chapter 3 identifies how process configuration can restrict process behavior.
To do this, it first looks back on how behavior is added to process mod-
els, and defines process configuration afterwards as the inverse. Then, in
the second part, Petri nets are used to show how a configurable process
modeling language can be built based on a basic process model, i.e. a
traditional process model which integrates the process behavior of related
process variants, a set of configuration constraints that restrict the config-
uration space, and a default configuration which defines a starting point
for process configuration.

Chapter 4 shows how advanced process modeling notations used by practi-
tioners to enable automatic workflow executions can be extended with
configuration options. While in Chapter 3 Petri nets are used to discuss

1.4. Road Map 13

the theory of process configuration, Chapter 4 informally suggests config-
uration extensions for SAP WebFlow, and BPEL. For the ‘configurable
YAWL’ language even a formal specification is provided, and a transfor-
mation algorithm shows how process specifications, which are executable
in the YAWL workflow engine, can be derived based on the configuration
decisions.

Chapter 5 proposes a framework which allows steering process configuration
decisions through a natural language questionnaire. For this, the answers
given in the questionnaire must be directly or indirectly mapped onto one
or more process configuration decisions. The framework’s implementa-
tion is demonstrated through a running example, showing each step from
answering the questionnaire to getting to a completely configured and ex-
ecutable YAWL model. In this way, even subject matter experts who lack
process modeling knowledge can derive individual process model variants
from a configurable process model.

Chapter 6 outlines a case study in which configurable process models were
built for four common registration processes of municipalities (getting
married, registering being the father of a not-yet-born child, registering a
newborn child, issuing a death certificate). The configurable process mod-
els, which are built in YAWL, incorporate the process variations occurring
among four Dutch municipalities and a reference model. Each variant as
well as further variants can be derived by answering a natural language
questionnaire using the toolset from Chapter 5 and is then executable
in the YAWL workflow engine. The chapter also reports on interviews
performed with stakeholders in the application of these models, i.e. a soft-
ware provider for municipality models, the provider of the software used
for business process modeling by most of the Dutch municipalities, as well
as by various consultants.

Chapter 7 discusses the integration of various process variants into a single
process model, i.e. the construction of a configurable process model’s ba-
sic process model. Building the integrated model is far more complex than
building a traditional process model because the basic process model con-
tains the behavior of several process variants (which obviously increases
complexity). For that reason, Chapter 7 suggests techniques that can help
in building such models: On the one hand, existing process mining tech-
niques can build a basic process model if log files of various existing sys-
tems executing the process in question are available. On the other hand,
an algorithm is presented which is capable of merging process models di-
rectly while preserving the behavior of the individual models. In addition,
the chapter depicts a way to identify configurations of existing systems in
the basic process model by replaying log files. This can, for example, help
in finding default configurations or dependencies among configurations.
The chapter ends by briefly showing how the depicted techniques could
be used in the context of the case study process models from Chapter 6.

14 Chapter 1. Introduction

Chapter 8 discusses constraints that can be imposed on the configuration of
process models to preserve correctness of the process model during process
configuration. By restricting the control-flow of process models, process
configuration can easily inhibit more process behavior than desired —
up to the point that the process model is not a correct process model
anymore at all. Besides these control-flow issues, the data-flow of processes
can be impaired when eliminating process behavior because, for example,
tasks which are eliminated by process configuration create data which
is necessary for tasks preserved in the process model. The constraints
suggested in Chapter 8 guarantee the absence of the mentioned issues.

Chapter 9 concludes the thesis by summarizing the contributions made for
creating configurable process models. As future research directions the
identification of preferred configurations, the adaptation of process con-
figurations within the life cycle of process models, and the need for creating
good content for configurable process models are suggested.

Appendix A provides all the process models created during the case study
outlined in Chapter 6.

Readers familiar with the aforementioned process modeling languages, may pre-
fer to use Chapter 2 solely as a reference guide to the formal definitions used
throughout the thesis. In addition to this, each of the subsequent chapters 3–7
provides a section that discusses work related to the issues addressed in the
particular chapter.

The core ideas for process model configuration are provided in Chapter 3.
Chapters 4–6 focus on using process configuration to enact process model ex-
ecutions in practice. Chapter 7 addresses the issues arising in the interplay
with the phase preceding process configuration in the process model life cycle,
i.e. the process model construction, while Chapter 8 addresses issues arising
in the interplay with the succeeding phase, i.e. the process execution. In this
way, chapters 7–8 discuss issues in a more theoretical way than chapters 4–6.
Still, readers interested in process configuration practice should not simply skip
chapters 7 and 8 as the discussed issues are practically very relevant.

No thought exists without a sustaining support.
Mel Bochner (1970)

Chapter 2

Background Process

Modeling

Process models are used to define and depict which tasks need to be performed
when executing a business process as well as ordering constraints among these
tasks. Various languages have been developed to support the modeling of pro-
cesses in different contexts. In this thesis, we distinguish three categories of
process modeling languages, depending on their main application area.

First, there are a number of well-defined languages for the formal speci-
fication of processes, which are mainly used in academia for depicting and
formally proving various assumptions and characteristics of process modeling.
These languages provide the foundations for advanced process modeling lan-
guages in the two other categories.

Business process modeling languages, as the second category of process
modeling languages, provide practitioners with the opportunity to quickly draw
the process flow as a basis for discussions, as well as to provide documentation
that is easily understandable by stakeholders of the process. Thus, they usually
abstract from implementation details.

Workflow models, as the third category of process models discussed here,
enable the enactment of the depicted processes through Information Technol-
ogy (IT). They thus enrich the business process model with additional, precise
information required by information systems to execute the process. Similar
to the formal languages, workflow notations thus need well-defined execution
semantics. Moreover, they need to include information like which resources are
authorized to perform certain tasks of the process or on how to handle the input
and output of the various activities.

While languages for formal process definitions precisely depict all poten-
tial changes of parameters of the overall state of the process, business process
modeling notations and workflow languages try to combine commonly jointly
occurring changes of state parameters, so-called workflow patterns, into ex-

16 Chapter 2. Background Process Modeling

plicit modeling constructs. In this way, the depiction of larger processes becomes
clearer.

To formalize and thus unambiguously define the various languages and their
application throughout this thesis, this chapter starts with some preliminar-
ies introducing the formal notations and concepts used later on. Afterwards,
Section 2.2 introduces and formally defines Labeled Transition Systems
(LTSs) and workflow nets as two languages for formally defining processes.
Section 2.3 gives a very brief overview of workflow patterns which are usually ad-
dressed through explicit modeling constructs in business process modeling and
workflow languages. In Section 2.4, Event-driven Process Chains (EPCs),
Protos, and the Business Process Modeling Notation (BPMN) are
introduced as examples for business process modeling languages while Sec-
tion 2.5 presents three examples for workflow languages, namely Yet Another
Workflow Language (YAWL), SAP WebFlow, and the Business Pro-
cess Execution Language (BPEL). EPCs and YAWL are notations with
an academic background and we will also provide formal definitions for these
languages. The modeling notations of Protos and SAP WebFlow were both
developed for commercial tools while BPMN and BPEL are open standards
developed for the particular modeling purpose.

2.1 Preliminaries

There are several mathematical notations used for defining concepts throughout
the following chapters. This section therefore gives an overview on the notations
used.

For reasoning based on the properties of the introduced concepts we will use
propositional logic. Each statement we make about such properties is called
a proposition or propositional formula and has a truth value, i.e. it can be
true or false. For example, a statement could be ‘The car is red’. Usually, we will
use a propositional letter like p or q for refering to a certain statement. An
atomic formula is a proposition of only one propositional letter. Using logical
operators, propositions can be combined to more complex propositions.

Definition 2.1 (Logical Operators) Let p and q be two propositional state-
ments. Then:

• p is the negation of p, i.e. p is true iff p is false,

• p ∧ q depicts the conjunction of p and q which is true iff both p and q

are true,

• p ∨ q depicts the disjunction of p and q which is true iff either p, or q,
or both p and q are true,

• p∨̇q depicts the exclusive disjunction of p and q which is true iff either
p, or q is true, but not both of them,

• p ⇒ q depicts that p implies q which is false iff p is true while q is false
(implication),

2.1. Preliminaries 17

• p = q depicts that p equals q, i.e. both p and q have the same truth value
(equivalence).

A literal is an atomic formula or its negation. Any propositional formula can
be brought into the specific structures of the conjunctive normal form and
the disjunctive normal form.

Definition 2.2 (Conjunctive Normal Form) A propositional formula
that consists of a conjunction of clauses where each clause is a disjunction
of literals is in conjunctive normal form. No further logical operators are
allowed.

Definition 2.3 (Disjunctive Normal Form) A propositional formula that
consists of a disjunction of clauses where each clause is a conjunction of literals
is in disjunctive normal form. No further logical operators are allowed.

Thus, a proposition (p1 ∨ p2) ∧ (p3 ∨ p4) is in conjunctive normal form while a
proposition (p1 ∧ p2) ∨ (p3 ∧ p4) ∨ (p5 ∧ p6) is in disjunctive normal form.

To define categories of elements and their relationship, we will use the math-
ematical concepts of sets of elements, functions, and sequences.

Definition 2.4 (Set) A set is a collection of distinct elements.

• s ∈ S expresses that an element s is contained in a set S,

• S = S1 ∪S2 depicts that the set S is the union of two sets S1 and S2, i.e.
S contains all elements of S1 and S2,

• S = S1 ∩ S2 depicts that the set S is the intersection of two sets S1 and
S2, i.e. S contains those elements that are contained in both sets S1 and
S2,

• S = S1 \ S2 expresses that the set S contains those elements that are
contained in S1 but not in S2, i.e. all elements that are contained in S2

are removed from S1,

• |S| represents the number of elements that are contained in S,

• S ⊆ S1 denotes that S is a subset of S1, i.e. if all the elements of S are
contained in S1,

• S ⊂ S1 denotes that S is a proper subset of S1, i.e. S ⊆ S1 ∧ S 6= S1,

• S = S1 × S2 is the cartesian product of two sets, i.e. S = {(s1, s2)|s1 ∈
S1 ∧ s2 ∈ S2},

• IP(S) = {S1|S1 ⊆ S} is the powerset of S, i.e. the set of all subsets of S,

• ∅ denotes the empty set, i.e. the set without any elements, and we assume
that ∅ ⊆ S holds for all sets S.

Definition 2.5 (Function) Let X and Y be two sets. Then f : X → Y is
a function that maps the elements of X onto Y , i.e. for all x ∈ X holds that
f(x) ∈ Y , where the application of the function f to the element x is denoted
as f(x). For a function f : X → Y we call dom(f) = X the domain of f and
rng(f) = {f(x)|x ∈ dom(f)} the range of f .

18 Chapter 2. Background Process Modeling

Definition 2.6 (Partial Functions) A partial function f : X 6→ Y is a func-
tion that is only defined for a subset of X, i.e. dom(f) ⊆ X.

By assigning natural numbers to elements of a set, we can create a multi-set,
i.e. a set that can contain multiple elements of the same type:

Definition 2.7 (Multi-set) A multi-set is a function Z : S → N mapping
the elements of S to the natural numbers. A set is a special case of a multi-
set where ∀s ∈ S : Z(s) = 1. The sum of two multi-sets Z1 = S1 → N and
Z2 = S2 → N is denoted as Z3 = Z1⊎Z2 such that Z3 : S1∪S2 → N where for
all s ∈ S1∪S2 holds that Z3(s) = Z1(s)+Z2(s), while their difference is denoted
as Z3 = Z1 \ Z2 such that Z3 : S′ → N, S′ = {s ∈ S1|Z1(s) − Z2(s) > 0},
and for all s ∈ S′ holds that Z3(s) = Z1(s) − Z2(s).

1 An element s is part of
a multi-set Z, i.e. s ∈ Z, iff Z(s) > 0. The size of a multi-set Z : S → N is
defined as |Z| =

∑

s∈S Z(s). IB(S) denotes all multi-sets over S.

While (multi-)sets are not sorted, the elements of a (multi-)set can be arranged
in sequences.

Definition 2.8 (Sequence) Let S be a set of elements. A sequence σ ∈ S∗ is
a sequence of the elements of S, where S∗ is the set of all sequences composed of
zero or more elements of S. We use σ = 〈s0, s1, ..., sn〉 such that ∀0≤i≤nsi ∈ S to
denote a sequence. 〈〉 denotes an empty sequence, + concatenates sequences, and
✁ denotes sub-sequences, i.e. σ ✁ σ′ if and only if there exists σpre , σpost ∈ S∗,
such that σ′ = σpre + σ + σpost .

To work with sequences, let us furthermore define how functions can be applied
to sequences, the length of a sequence, the elements of a sequence, and a filter
for sequences that allows eliminating elements from a sequence.

Definition 2.9 (Operations on Sequences) Let S, S′ be sets of elements,
f : S → S′ be a function, and σ ∈ S∗ be a sequence such that σ = 〈s0, s1, ..., sn〉.
Then f : S∗ → S′∗ is a function such that f(σ) = 〈f(s0), f(s1), ..., f(sn)〉, i.e.
f is applied to all elements of σ; |σ| = n + 1 is the length of σ; and s ∈ σ if
and only if ∃0≤i<|σ|si = s. Moreover, if S′ ⊆ S, then we define πS′ : S∗ → S′∗

as a filter such that πS′(σ) = 〈s′0, s
′
1, ..., s

′
m〉 is the sequence σ with m ≤ n and

without those elements s ∈ σ for which s 6∈ Y .

Throughout this thesis we will use various graph-based process modeling nota-
tions. Thus, let us first define the concept of a graph which is composed of a
set of nodes that are connected through a set of directed edges. Edges thus
depict the directions in which how one can ‘move’ between nodes.

Definition 2.10 (Graph) Let N be a set of nodes and E ⊆ N × N a set of
(directed) edges. We say that G = (N ,E) is a graph.

As the nodes of a graph can be connected through edges, we can clearly identify
the nodes from which a certain node can be reached through following a single
edge, i.e. the nodes that are in the pre-set of the node, as well as those nodes

1Z1(s) is assumed to be 0 if s 6∈ S1 and Z2(s) = 0 if s 6∈ S2.

2.2. Languages for Formal Process Definition 19

that can be reached when following one of the edges originating from the node,
i.e. the nodes that are in the post-set of the node.

Definition 2.11 (Pre-set, post-set) Let G = (N ,E) be a graph and n ∈ N .

Then
G
•n = {m ∈ N |(m,n) ∈ E} denotes the set of input nodes to n (pre-set),

and n
G
• = {m ∈ N |(n,m) ∈ E} denotes the set of output nodes of n (post-

set) with respect to G. If the context is clear, we simply write •n and n•.

Furthermore, if n 6∈ N we say n
G
• = ∅ and

G
•n = ∅.

Moreover, the ‘movement’ from one node to another along a set of edges and
via a set of further nodes in between describes a path in the graph.

Definition 2.12 (Path) Let G = (N ,E) be a graph. Let a, b ∈ N . Then a
path from a to b is a sequence of nodes denoted as 〈n1, n2, ..., nk〉 with k ≥ 2
such that n1 = a and nk = b and ∀i∈{1..k−1}(ni, ni+1) ∈ E. Moreover, we
denote the set of all paths of G as E⋆, i.e. 〈n1, ..., nk〉 ∈ E⋆ if and only if
∀1≤i<k(ki, ki+1) ∈ E.

2.2 Languages for Formal Process Definition

Basically, a process model describes the variation among the behavior that oc-
curs during the execution of a business process. Thus, it depicts which tasks can
be executed when, as well as the possible outcomes of the task executions. For-
mal process definition languages depict all the different ways of how the overall
state of a process execution can change. Let us in the first part of this section
have a look at Labeled Transition Systems (LTSs), a graph notation which de-
picts state changes in a direct way by using an explicit node for each and every
state of the process. In the second part, we look at a variant of Petri nets called
workflow nets. Workflow nets do not explicitly depict every state but rather
the properties of states and the changes among these properties. Besides the
syntax of workflow nets, we will also provide formal semantics for workflow nets
and use them to define which workflow nets depict sound behavior and which
behavior cannot be considered as sound.

2.2.1 Labeled Transition Systems

The graph notation of Labeled Transition Systems (LTSs) provides one of
the most simple and direct ways to depict the behavior of a business process.
For example, let us have a look at the simple travel approval process shown in
Figure 2.1. The process is started when an employee of a company needs to do
a business trip, i.e. she needs to travel. In this situation, she can either file a
travel request or she can directly book the trip herself. If she has filed a travel
request, the administration can either refuse it or it can approve it and book
the trip. In the first case, it can be silently dropped, or it can be re-filed and
subsequently be evaluated again. In case a trip was booked, it needs to be paid
before the process is completed.

20 Chapter 2. Background Process Modeling

traveling required

file travel request

approve &
book trip

pay trip

re-file travel request

book trip

refuse trip

trip booked

travel request filed

request refused

request processed

Transition

State

refuse trip Label

Figure 2.1: A simple travel approval process depicted as Labeled Transition System.

Thus, within an LTS the graph nodes represent states like trip booked while
the edges represent the possible changes of states. A state therefore represents
a complete, distinct set of properties which describes the actual situation of an
execution of the business process. The edges represent the transitions from
one state to another. A transition label like refuse trip is used to describe the
cause of the state change. Hence, the actual tasks that are performed during
the execution of a business process are represented by one or more transitions,
depending on how many different outcomes the execution of the task can have.
If more than one transition originates from a state, then there is a choice in
which way the process continues. A silent transition, labeled τ , is a special
transition that transforms a state into another without changing any of the
externally visible properties of the state. This means, the state change is not
triggered by an execution of a concrete task. Note that in request refused the
transition re-file travel request can still be executed, while in request processed
no further transitions can be executed. Thus, although τ transitions are not
visible they may limit the possible ways a process can continue.

When formally defining LTSs we furthermore distinguish a set of initial
states, which depict which states trigger the execution of the process, as well as
a set of final states which are those states which depict a successful termination
of the process. Hence, if a process deadlocks in a state, i.e. it cannot continue
via any further transitions, and this state does not belong to the set of final
states, the process execution will be considered as unsuccessful.

Definition 2.13 (Labeled Transition System) A labeled transition system
is a five-tuple LTS = (S ,L,T , SI , SF), where

• S is the set of states,

2.2. Languages for Formal Process Definition 21

• L is the set of transition labels,

• τ ∈ L is the label reserved for silent transitions,

• T ⊆ S × L × S is the set of transitions,

• SI ⊆ S is the set of initial states, and

• SF ⊆ S is the set of final states.

LTSs provide a straightforward way to depict simple business processes. LTSs
however have the drawback that they require a separate node in the graph for
each state the overall process can be in, i.e. for each combination of a process’s
properties. It is therefore impossible to depict processes with large state spaces
in a readable way. For this, we thus require more advanced notations. Nonethe-
less, it is important to note that any such advanced notation can be mapped
onto LTSs [71, 120].

2.2.2 Workflow Nets

Petri nets are a notation allowing for more compact representations of pro-
cesses. Petri nets are graphs distinguishing two types of nodes: places depicted
as circles and transitions depicted as rectangles. Instead of whole states, a
place of a Petri net only represents a property of the process. Thus, Petri nets
only require a place for each property and not for each combination of properties
like LTSs.

A state change might imply switching several properties. Therefore, in a
Petri net the transition from one state to another state cannot be depicted by a
simple edge like in an LTS. Instead, transitions of Petri nets are represented by a
second node type and depict the changes of properties of the process. To depict
which properties must hold before the corresponding transition can execute a
state change and which properties will hold afterwards, arcs connect places to
transitions and transitions to places. Like in LTSs, we use transition labels
to denote what causes the particular change of properties and use a special
label τ for depicting property changes that are not caused by any concrete task
execution.

Definition 2.14 (Petri net) A Petri net is a five-tuple PN = (P ,T ,A,L, l),
such that:

• P is a finite set of places,

• L is the set of transition labels,

• τ ∈ L is the label reserved for silent transitions,

• T is a finite set of transitions (P ∩ T = ∅),

• l : T → L assigns labels to transitions,

• A ⊆ (P × T) ∪ (T × P) is a set of arcs (flow relation).

A Petri net is a graph with P ∪T as the set of nodes and A as the set of edges.

22 Chapter 2. Background Process Modeling

pI

p5 p6

pO

p2p1

p7

p9

Waiting for
Travel

Quotes

Waiting for
Accomodation

Quotes

p8

t8

t1

t2

t5 t6

t9

t10

t13 t14

t11

t7

t12

Request for International
Travel & Accommodation

Quotes (Employee)

Request for

Domestic Travel
Quote (Employee)

Prepare

Travel Form
(Secretary)

Prepare

Travel Form
(Employee)

Check & Update

Travel Form

(Employee) Report
Travel Form

(Employee)

Approve

Travel Form
(Admin)

Reject

Travel Form
(Admin)

Submit

Travel Form
for Approval

(Employee)

Request for Change
(Admin)

Drop

Travel Form
(Employee)

XOR-join

XOR-split

AND-join

AND-split

Arc

Place

Transition

simple process for
domestic travels

complex process for

international travels

p4p3

t3 t4
Compare
Accomodation

Quotes (Employee)

Compare
travel quotes

(Employee)

Figure 2.2: A travel approval process distinguishing simple and complex approvals depicted
as Petri net.

Figure 2.2 shows a Petri net of a travel approval process which depicts in detail
the preparation of a travel request. It incorporates two variants of the travel
approval process: a complex one for international travels on the left and a
simple one for domestic travels on the right. After requesting quotes for an
international travel, the employee has to decide on both the travel quotes as
well as the accommodation quotes, and after that either the employee herself or
a secretary prepares the travel requisition form. In case the assistant prepares
the form, the employee needs to check the form before submitting it for approval.
The administrator can then approve or reject the requisition, or make a request
for a change. At this point, the employee can update the form according to the
administrator’s suggestions and re-submit it, or drop the case. In contrast, the
application for domestic travel only requires the employee to ask for a quote
and to report the travel requisition to the administration.

Such a business process may be executed a number of times to deal with
different cases like different travel requests. Each case has a unique identifier
and is usually handled in isolation from other cases. We thus also say that a

2.2. Languages for Formal Process Definition 23

case is an instance of the process.
To deal with instances of business processes in Petri nets, we require that

they have a clearly defined starting point and ending point (to mark the comple-
tion of the process). To achieve this, we require that a Petri net which represents
a business process has a unique source place representing the start or input
of the process, and a unique sink place representing the process’s completion,
i.e. its output. All transitions and all other places must then be on a directed
path between these two places. Otherwise, a property represented by a place or
a transition which is not on such a path would either not be reachable from the
start of the process and thus not be able to contribute in any way to completing
the process, or the place signaling the completion of the process’s execution
would not be reachable from this place or transition and hence the node would
not contribute to completing the process either.

A Petri net representing a business process and satisfying these conditions
is known as a workflow net [3]. The net in Figure 2.2 is an example of a
workflow net.

Definition 2.15 (Workflow net) Let PN = (P ,T ,A,L, l) be a Petri net.
PN is a workflow net iff:

• there exists exactly one pI ∈ P such that •pI = ∅, and

• there exists exactly one pO ∈ P such that pO • = ∅, and

• for all n ∈ P ∪ T , 〈pI , ..., n〉 ∈ A⋆ and 〈n, ..., pO〉 ∈ A⋆.

Let furthermore ∆ be the set of all such workflow nets.

To explicitly depict the state of a process, places of Petri nets can be marked
with tokens indicating that the corresponding property holds. Petri net places
can be marked with multiple tokens to depict that a property holds multiple
times. This is, e.g., useful if a place indicates the number of copies of forms that
are filled-in and a subsequent task requires multiple copies for further processing.

The marking of places also indicates which transitions are enabled in the
current situation, i.e. which transitions can be executed. This enabling of a
transition depends on the marking of its preceding places with tokens. Only if
each of the places preceding the transition is marked with a token, the transition
can be executed or fire as we say for Petri nets.

When a transition fires, the marking of the Petri net changes as follows. The
transition removes one token from each preceding place and puts one token into
each succeeding place.

Definition 2.16 (Marking, enabling rule, firing rule) Let PN = (P ,T ,
A,L, l) be a Petri net:

• M : P → N is a marking of PN and M(PN) is the set of all markings of
PN ,

• M (p) returns the number of tokens in place p if p ∈ P,

• For any two markings M ,M ′ ∈ M(PN), M ≥ M ′ iff ∀p∈P M (p) ≥
M ′(p),

24 Chapter 2. Background Process Modeling

• For any transition t ∈ T and any marking M ∈ M(PN), t is enabled at
M , denoted as M [t〉, iff ∀p∈•t M (p) ≥ 1. Marking M ′ is reached from M
by firing t and M ′ = M − •t+ t•,

• For any two markings M ,M ′ ∈ M(PN), M ′ is reachable from M in
PN , denoted as M ′ ∈ PN [M 〉, iff there exists a firing sequence σ =
〈t1, t2, ..., tn〉 leading from M to M ′, and we write M

σ

։
PN

M ′. If σ = 〈t〉,
we use the notation M t→

PN
M ′. ΦPN = {σ|M

σ

։
PN

M ′ ∧ M ,M ′ ∈
M (PN)} denotes the set of all such sequences. PN can be omitted if
sufficiently clear from the context.

To simulate the execution of a process in this way, we require for workflow nets,
that initially only the source place pI is marked while we consider a case to be
completed as soon as the final (sink) place pO is marked with a token.

Definition 2.17 (Initial marking, final marking) Let WF = (P ,T ,A,L,
l) be a workflow net:

• MI is the initial marking of WF with one token in place pI , i.e. MI(pI) =
1 and ∀p ∈ P \ pI : MI(p) = 0, and

• MO is the final marking of WF with one token in place pO, i.e. MO(pO) =
1 and ∀p ∈ P \ pO : MO(p) = 0.

Every started execution of a case should at some point in time complete with
no further work to do, i.e. with the sink place pO being marked. Therefore,
it must be possible to reach MO from any marking that is reachable from the
initial marking MI . If a workflow net satisfies this requirement, it is guaranteed
that the process will never run into a deadlock, i.e. into a state where no further
behavior is possible although the sink place is not yet marked. Moreover, the
requirement guarantees the absence of livelocks in the net. That means, the
process contains no states from which it can continue to fire transitions arranged
in a cycle, but from which it can never reach the final marking. Also, it should
only be possible to mark pO when no other places are marked as it will lead to
confusion if the completion of a case is signaled by a marking of pO while work
on the case is still in progress signaled by a marking of any other place .

In the definition of workflow nets we already required that each transition
should potentially be able to contribute to the completion of the process and
thus required that it should be on a path between pI and pO. However, simply
being on such a path does not necessarily mean that a transition is able to fire
at some point in time, e.g. because two of its preceding places can be marked on
their own but never at the same time. Thus, for a transition being really able
to potentially contribute to the process, there should be at least one execution
sequence from the initial marking to the final marking that includes at least one
firing of this transition.

A workflow net fulfilling these requirements is sound, i.e. semantically cor-
rect [3].

Definition 2.18 (Sound workflow net) Let WF = (P ,T ,A,L, l) be a work-
flow net and MI ,MO be its initial and final markings. WF is sound if and only
if:

2.2. Languages for Formal Process Definition 25

• option to complete: for every marking M reachable from MI , there exists
a firing sequence leading from M to MO, i.e. ∀M∈WF [MI〉 MO ∈ WF [M 〉,
and

• proper completion: the marking MO is the only marking reachable from MI

with at least one token in place pO, i.e. ∀M∈WF [MI〉 M ≥MO ⇒ M = MO,

• no dead transitions: every transition can be reached by the initial marking,
i.e. ∀t∈T ∃M∈WF [MI〉 M [t〉.

We indicated earlier in this section that any of the process modeling notations we
use throughout this thesis can be mapped onto LTSs. The LTS that corresponds
to a workflow net can be generated through analyzing the markings of the
workflow net that are reachable from its initial marking through the firing of
transitions. These markings correspond to the states of the LTS. Each transition
of the LTS corresponds to a firing of a Petri net transition. Formally:

Definition 2.19 (LTS from workflow net) Let WF = (PWF ,TWF ,AWF ,

LWF , lWF) be a workflow net, MI its initial marking, and MO its final marking.
The LTS corresponding to WF is defined as LTS = (SLTS ,LLTS ,TLTS , SI

LTS ,

SF
LTS), where

• SLTS = WF [MI〉,

• LLTS = LWF ,

• TLTS = {(M,n,M ′) ∈ SLTS × LLTS × SLTS |∃t∈TWF (M t→
WF

M ′ ∧
lWF (t) = n)},

• SI
LTS = {MI}, and

• SF
LTS = {MO}.

Petri nets and workflow nets benefit from a rich body of theoretical results, anal-
ysis techniques, and tools. Moreover, Petri nets have been extensively applied
for the formal verification of process models. Further details on the research
on Petri nets can, e.g., be found in the work of Murata [122], Peterson [127],
and Reisig and Rozenberg [138] while van der Aalst [3] and Verbeek et al. [182]
provide details on the verification of process models using workflow nets.

Many business process modeling languages and workflow languages use
building blocks which can be mapped onto a sub-class of workflow nets called
free-choice [3, 122]. A Petri net is free-choice if for every couple of places
sharing transitions in their post-set, these post-sets coincide.

Definition 2.20 (Free-choice Petri net) Let PN = (P ,T ,A,L, l) be a Petri
net. PN is free-choice if ∀p1,p2∈P\pO [p1• ∩ p2• 6= ∅ ⇒ p1• = p2•].

As free-choice workflow nets have some desirable properties which have let to
the development of efficient analysis techniques for this class of Petri nets, the
restriction to free-choice nets provides often a good compromise between ex-
pressiveness and verification complexity. Further details on free-choice nets can
be found in the work of Desel and Esparza [54].

26 Chapter 2. Background Process Modeling

BusyResources
Resources

CASE

CASE CASE

Start
u21

case0

In_w1
In

case0

In

@+WorkTimeuB()

"Back Office Staff"

Done
w16_u2

AVAILABLE_RESOURCEResources

Done
w3_u2

Out_w16
Out

Out_w3
Out OutOut

BUSY_CASE

case0 case0

"Back Office Staff"

CASE.set_PlaceArrivalTime
case0 (Time())

CASE.set_PlaceArrivalTime
case0 (Time())

Figure 2.3: XOR-split

BusyResources
Resources

CASE

Done
u21

In_w20
In

In_w19
InIn InCASE CASE

Start
w20_u21

Start
w19_u21

case0

case0 case0

case0

@+WorkTimeuBA() @+WorkTimeuBA()

AVAILABLE_RESOURCE BUSY_CASE

case0

CASE.set_PlaceArrivalTime
case0 (Time())

"Back Office Staff"

"Back Office Staff"

Out

Resources

Figure 2.4: XOR-join

2.3 Workflow Patterns

In practice, the execution of a task usually does not refer to a single state change,
but at least to two state changes as the execution of a task usually takes time.
That means, first the task changes from being enabled to being executed, and
later on the state changes from the task being executed to being completed.
Furthermore, some tasks can be triggered from varying states or, depending on
the outcome of the task, result in different states after different executions. To
capture common combinations of such state changes, van der Aalst et al. [11]
created a list of common workflow patterns.

For example, let us have a look at Figure 2.3. It models the execution of
a particular task in terms of a colored Petri net. Colored Petri nets extend
ordinary Petri nets (as introduced in Section 2.2.2) with data and time. In
this way, the tokens of colored Petri nets can carry data values while running
through the process. These values can be evaluated and changed by transitions.
Furthermore, the consumption of tokens by transitions can be delayed until a
later point in time by adding a time-stamp to tokens which determines their
earliest possible re-use.

The task in Figure 2.3 is enabled as soon as a case token is put into the task’s
In place. In addition, the task requires someone from the back office to actually
process the case. This is depicted through the second incoming arc from the
left into the Start transition which can then trigger the task’s execution. In this
way, the staff member from the back office becomes busy with executing the
task for a certain period, indicated at the upper right of the Start transition by
adding a delay of a certain work time to the token (@+workTimeuB()). During
this time the resource is not available for any other work.

As soon as the execution time has passed, the token in the Busy place can,
like in a traditional Petri net, be removed by one of the two Done transitions.
These transitions release the back office staff involved in the task back to the
pool of resources, and put the case token into the corresponding Out place from
which it can be processed further. Hence, there are two possible outcomes of
the execution of the task in Figure 2.3, indicated by the two Out places. This

2.3. Workflow Patterns 27

"Back Office Staff"
case0

CASE.set_PlaceArrivalTime
case0 (Time())

CASE.set_PlaceArrivalTime
case0 (Time())

"Back Office Staff" case0

case0

Done
u30

Start
u30

@+WorkTimeuCJ()

Out_w32
Out CASE

Out_w31
Out CASE

In_w29
In

CASE

Resources
Resources AVAILABLE_RESOURCE

Busy

BUSY_CASEResources

In

Out Out

Figure 2.5: AND-split

CASE.set_PlaceArrivalTime
case0 (Time())

"Back Office Staff"
case0

"Back Office Staff"
case0

case1case0

Done
u44

Start
u44

@+WorkTimeuDD()[#CaseID case0 = (#CaseID case1)]

Out_w45
Out CASE

In_w43
In CASE

In_w42
In CASE

Resources
Resources AVAILABLE_RESOURCE

Busy

BUSY_CASEResources

In In

Out

Figure 2.6: AND-join

selection of one out of several possible process continuations is known as an
exclusive choice or XOR-split [11].

Similarly, it is often possible that a task can be started from several different
places. For example, in Figure 2.4 several In places can be marked with tokens.
As each of these places is followed by its own Start transition, a case that
arrives in one of these In places can immediately be processed, i.e. the task can
immediately be started, as soon as the necessary resource from the back office
is available. This workflow behavior is known as a simple merge or XOR-
join [11] of the incoming process branches as any arriving case token is then
processed in an identical way.

The behavior of XOR-splits and XOR-joins can clearly be distinguished from
the behavior of transitions in Petri nets, which require all their preceding places
to be marked to fire, and which after firing mark all subsequent places. A task
that triggers all subsequent paths by marking all the outgoing places is depicted
in Figure 2.5. This behavior is also known as parallel split or AND-split [11],
as it allows the parallel execution of all the subsequent paths while the XOR-
split triggers only one of them exclusively. Figure 2.6 shows a task that waits
until all its In places are marked with tokens of the same case before it can
be executed, known as synchronization or AND-join [11] of the incoming
process branches. This is ensured by the condition (which is in colored Petri
nets called a guard) depicted at the upper left of the Start transition as #caseID
case0 = (#caseID case1). By requiring identical case identifiers, a system is able
to distinguish multiple cases which are executed at the same point in time.

XOR-splits, XOR-joins, AND-splits, and AND-joins are four of the most ba-
sic workflow patterns, describing behavioral blocks commonly required when
defining business processes. More advanced patterns are, e.g., the multi-choice
(also called OR-split), the synchronizing merge (also called OR-join), and
cycles or loops of process behavior [11]. The multi-choice depicts how a sub-
set of several process branches can be triggered. The synchronizing merge
shows how the behavior from various incoming process branches can be synchro-
nized without the requirement that really all preceding branches are executed.

28 Chapter 2. Background Process Modeling

Loops enable repetition of behavior.
Workflow patterns therefore systematically depict common constructs which

are required or desired to describe a business process with a process model.
Hence, advanced process modeling languages, like those which we will discuss
in the remainder of this chapter, often provide dedicated modeling constructs
for a number of workflow patterns.

Van der Aalst et al. [11] provide a list of 21 of such workflow patterns. These
patterns have been broken down into further, detailed patterns by Russell et al.
[151]. All the tasks depicted in figures 2.3–2.6 use just one resource of a specific
type and cannot start until this resource is available, while in practice often more
advanced selection criteria for resources are applied. Elaborate descriptions of
such resource patterns can be found in the work of Russell et al. [149, 150]. In
his PhD thesis, Russell [148] specifies all these patterns as colored Petri nets,
thus providing a formal foundation of how all the patterns should behave.

Readers interested in more details on modeling colored Petri nets and using
them for simulating and analyzing complex systems like workflow management
systems should have a look at the work of Jensen et al. [98] and Vinter Ratzer
et al. [184].

2.4 Business Process Modeling Languages

Business process modeling languages were developed to enable practioners to
depict the flow of business processes in a consistent manner. In combination
with a toolset, they provide a way for easily drawing process models. Usually,
the toolsets allow annotating the process models with additional details like
resources or data requirements, as well as they provide some basic methods for
analyzing the models. We will discuss three particular notations here: Event-
driven Process Chains (EPCs), the process modeling language of Protos, and
the Business Process Modeling Notation (BPMN). EPCs were developed in an
academic environment and are nowadays supported by various popular tools,
like Microsoft Visio or ARIS from IDS Scheer. Protos is a commercial business
process modeling tool with its own (Petri-net-like) notation, which is very popu-
lar in the Netherlands. BPMN aims at being the standard notation for business
process modeling and is more and more supported by various process modeling
tools.

2.4.1 Event-driven Process Chains

Event-driven Process Chains (EPCs) were developed by Keller et al. [103]
in the early 1990s in a collaboration between SAP AG and the University of
Saarland. Different from Petri nets, EPCs use three node types to depict the
control-flow of a business process: functions, events, and connectors. Func-
tions correspond to the tasks that need to be performed when executing the
process. The execution of a function depends on the occurrence of its preced-
ing events. A completed function then causes the occurrence of one or several

2.4. Business Process Modeling Languages 29

Quote Flight

^

Quote Accomodation

Prepare and Submit Travel Form

X

Check Travel Form

X

Check and Update or Drop Travel Request

X Forward Travel Request

X

Travel Required

^

Quotes available Travel Request Approved

Travel Form Submitted Request Processed

Change Requested

Figure 2.7: An EPC of a travel approval process

succeeding events. If several events precede or succeed a function, these events
are not connected directly to the function but via a connector, the third node
type of EPCs. The type of a connector then specifies explicitly which events are
required to execute a function or which events are triggered after the function’s
execution. EPC connectors can be of type ∧, XOR, or ∨. An ∧ connector
requires that all its preceding events need to be triggered for the succeeding
function to be executed (AND-join) or that all the succeeding events are trig-
gered after its preceding function completes (AND-split). An XOR connector
depicts that the execution of a succeeding function requires the triggering of
one of its preceding events only (XOR-join) or that only one of the succeeding
events is triggered after the preceding function completes (XOR-split). The ∨

connector specifies that a certain number of events is required or triggered by
a function which can also vary from case to case. In this way, the ∨ connector,
e.g., allows that two out of three succeeding events are triggered.

For an example EPC let us have a look at Figure 2.7 which depicts again a
travel approval process similar to the complex one we have seen as a Petri net
(Figure 2.2, p. 22). When the need for a travel arises, the process first requires
quoting both an accommodation and a flight. Both quotes need to be available
before the process can pass the subsequent ∧ connector and can continue with
the preparation and submission of the travel form. After the form has been
checked, the request can either be accepted or a change can be requested — as
indicated by the XOR connector subsequent to the Check Travel Form function.
If a change is requested, a choice exists if the form is either updated or dropped.
If it is updated, it re-joins the control-flow as if it would have been submitted
as a new travel form. If it is dropped, there is no need for further processing.
If the travel request is accepted, it is forwarded to the clearing center and the
processing of the request finishes as well.

30 Chapter 2. Background Process Modeling

The following formal EPC definitions are in line with the definitions of Rose-
mann and van der Aalst [143]:

Definition 2.21 (EPC) An Event-driven Process Chain is a five-tuple
EPC = (E ,F ,X ,m,A):

• E is a finite (non-empty) set of events,

• F is a finite (non-empty) set of functions,

• X is a finite set of connectors,

• m ∈ X → {∧,XOR,∨} is a function which maps each connector onto a
connector type,

• A ⊆ (E ×F)∪ (F ×E)∪ (E ×X)∪ (X ×E)∪ (F ×X)∪ (X ×F)∪ (X ×X)
is a set of arcs.

EPC is a graph with E ∪ F ∪ X as the set of nodes and A as the set of edges.

Although Definition 2.21 already shows that arcs of an EPC cannot connect two
events or two functions directly, the definition still permits to, e.g., connect two
events via a connector. However, the idea behind EPCs is that events trigger
the execution of functions and the completion of functions triggers again events.
This way, functions and events have to alternate on any path of an EPC. Hence,
a well-formed EPC has to guarantee this. Moreover, Definition 2.21 does not
yet ensure that EPCs have to start and end with events or that connectors are
the only nodes that are permitted to branch and synchronize the control-flow.
We therefore have to define further requirements which need to be satisfied by
well-formed EPCs. To formalize them, we introduce some additional notations
first.

Definition 2.22 (EPC connector types) Let EPC = (E ,F ,X ,m,A) be an
Event-driven Process Chain.

• X join = {c ∈ X | | • c| ≥ 2} is the set of join connectors,

• X split = {c ∈ X | |c•| ≥ 2} is the set of split connectors,

• XEF ⊆ X such that c ∈ XEF if and only if there is a path p =
〈n1, n2, ..., nk−1, nk〉 such that n1 ∈ E, n2, ..., nk−1 ∈ X , nk ∈ F, and
c ∈ {n2, ..., nk−1},

• XFE ⊆ X such that c ∈ XFE if and only if there is a path p =
〈n1, n2, ..., nk−1, nk〉 such that n1 ∈ F, n2, ..., nk−1 ∈ X , nk ∈ E, and
c ∈ {n2, ..., nk−1},

• XEE ⊆ X such that c ∈ XEE if and only if there is a path p =
〈n1, n2, ..., nk−1, nk〉 such that n1 ∈ E, n2, ..., nk−1 ∈ X , nk ∈ E, and
c ∈ {n2, ..., nk−1},

• XFF ⊆ X such that c ∈ XFF if and only if there is a path p =
〈n1, n2, ..., nk−1, nk〉 such that n1 ∈ F, n2, ..., nk−1 ∈ X , nk ∈ F, and
c ∈ {n2, ..., nk−1}.

2.4. Business Process Modeling Languages 31

We can now restrict the sizes of both the set of input nodes and the set of
output nodes to ensure that each event is at maximum preceded by one input
node and at maximum succeeded by one output node as well as to ensure that
each function has exactly one input node and one output node. Furthermore,
we can use these sets to require that each well-formed EPC needs at least one
start event that is not preceded by any other node and one end event that is
not succeeded by any other node.

Connectors must have at least one input and one output node as they are
always located between functions and events or vice versa. They can also have
several input nodes or several output nodes, but we require that they do not
have both multiple input nodes and multiple output nodes at the same time.
We hence require that the sets X join and X split partition the set of connectors
X into on the one hand a set of connectors which splits up the control-flow, and
on the other hand a set of connectors which joins the control-flow. Finally, we
use directed paths to limit the set of routing constructs using connectors. That
means, we prevent that paths exist which connect two events or two functions
only via connector nodes in between and instead require that connectors are
always located on paths from events to functions or from functions to events.
Altogether, well-formed EPCs can be formalized as follows:

Definition 2.23 (Well-formed EPC) A well-formed Event-driven Process
Chain (E ,F ,X ,m,A) satisfies the following requirements:

1. The sets E, F , and X are pairwise disjoint, i.e. E ∩ F = ∅, E ∩ X = ∅,
and F ∩ X = ∅,

2. for each e ∈ E : | • e| ≤ 1 and |e•| ≤ 1,

3. there is at least one event estart ∈ E such that •estart = ∅,

4. there is at least one event eend ∈ E such that eend • = ∅,

5. for each f ∈ F : | • f | = 1 and |f •| = 1,

6. for each c ∈ X : | • c| ≥ 1 and |c•| ≥ 1,

7. X join and X split partition X , i.e. X join ∩X split = ∅ and X join ∪X split =
X ,

8. XEE and XFF are empty, i.e. XEE = ∅ and XFF = ∅,

9. XEF and XFE partition X , i.e. XEF ∩XFE = ∅ and XEF ∪XFE = X .

Up to today, the semantics of EPCs are ambiguous as the semantics of its OR-
join permits for different interpretations due to its non-locality. Details of this
are, e.g., discussed by Kindler [107] and van der Aalst [1]. We will not contribute
to this discussion here. Instead, we will always assume the same semantics for
EPCs that is used in relevant previous work, i.e. either in previously developed
concepts or in previously developed models.

No matter what semantics are used, if there are formal semantics for an EPC,
then the EPC implicitly defines an LTS. The particular LTS can be derived by
creating the state space of the EPC through re-playing all possible executions
of the EPC according to its semantics in the same way as we did for workflow

32 Chapter 2. Background Process Modeling

nets. An algorithm to derive a workflow net from an EPC can be found in the
work of van Dongen and van der Aalst [57].

Besides the semantical issues, Sarshar and Loos [158] claim that end-users
without much training on the particular notation perceive EPCs as easier under-
standable than Petri nets. This probably contributed to the success of the ARIS
platform as a business process modeling tool which grew while using EPCs as its
core notation [160]. It is nowadays used by more than 7.000 major companies
worldwide [94]. The ARIS framework as the basis for the ARIS platform allows
for the integration of various views on a business process, e.g. between an or-
ganizational chart, a database model, and an EPC. For this integration, EPCs
have been extended with opportunities to annotate functions with information
on how data and resources are involved in the process. Details on this extended
EPC (eEPC) notation are, e.g., summarized by Scheer et al. [163] while Scheer
[164] provides further insights into the ARIS framework.

2.4.2 Protos

Protos is a business process modeling tool similar to the before-mentioned ARIS
platform, but developed by the Dutch company Pallas Athena. Protos is part of
Pallas Athena’s BPM toolset BPM|one and nowadays used by about 1.500 orga-
nizations in more than 20 countries, but especially popular in the Netherlands.
Here, Pallas Athena is the market leader for BPM products. For example, more
than 250 out of 441 Dutch municipalities have active maintenance contracts
for Protos with Pallas Athena and use it for the specification of their in-house
business processes [183].

The process modeling notation of Protos looks similar to Petri nets and
it is well possible to use it in the same way as Petri nets. Tasks are called
activities in Protos and depicted by rectangles, while a status in Protos depicts
a property of the process in the same way as a place can do in a Petri net.
Thus, it is also drawn as a circle (see Figure 2.8). Different from Petri nets, but
similar to the use of connectors in EPCs, Protos has been extended with options
that allow users to specify the relation among the incoming and outgoing arcs
(called connections in Protos) of an activity in a property dialogue (see Figure
2.8). In this way it can be indicated if all those arcs should be triggered after
the completion of an activity in the same way as a transition in a Petri net or an
∧ connector in EPCs (AND-split), if only one of these arcs should be triggered
at a time like the XOR connector of an EPC implies (XOR-split), or if a certain
subset of the outgoing arcs should be triggered like an ∨ connector implies for
an EPC (OR-split). In the same way, it can be specified if the execution of
an activity requires the triggering of all of the incoming arcs (AND-join), if
it requires the triggering of one of the incoming arcs only (XOR-join), or if it
requires the triggering of a subset of the incoming arcs (OR-join). In the travel
approval process of Figure 2.8 this is, e.g., used to depict the decision making
as one activity with different outcomes while we had to use different transitions
in the Petri net of Figure 2.2 to depict the various possible state changes.

2.4. Business Process Modeling Languages 33

Figure 2.8: The travel approval process for international travels depicted in Protos.

If a Protos model is created in a Petri net way, an LTS can be derived
from it in the same way as for Petri nets. If not all statuses between activities
are modeled, such implicit statuses can be added by adding the corresponding
places. In case XOR or ∨ connections are assigned to activities, these need to
be translated into Petri net constructs by adding an additional place after the
activity that represents the choice as well as — if necessary — a set of silent
transitions leading to the possible outcomes of the choice.

Besides depicting the process flow, Protos also allows for specifying which
resources are involved in the various activities, which data and documents are
required or produced by the activities, as well as the potential processing times,
priorities, costs, etc. of the various activities. This information can be used to
simulate the process. For this, Protos models can be translated into colored
Petri nets using Protos2CPN2 [75]. Porots2CPN generates for each Protos
task a colored Petri net like the ones depicted in figures 2.3 – 2.6. According
to the Protos model, the input and output places of these individual tasks are
then merged through a higher-level colored Petri net. This generates a colored
Petri net for the whole Protos process, which can be loaded into CPN Tools3.
CPN Tools is a standard simulation engine for colored Petri nets [98, 184, 187].
Through simulating the Protos model in CPN Tools, the behavior of the modeled
process can be investigated in detail and it is, for example, possible to derive

2available at http://www.floriangottschalk.de/protos2cpn
3see http://wiki.daimi.au.dk/cpntools

http://www.floriangottschalk.de/protos2cpn
http://wiki.daimi.au.dk/cpntools

34 Chapter 2. Background Process Modeling

statistical data, like waiting or overall execution times of the process.

Moreover, Protos models can also be tested on their soundness (see Definition
2.18, p. 24) using an interface to the verification tool Woflan [182]. More
information on Protos can be found at the website of Pallas Athena4 and in the
user manual of Protos [125].

2.4.3 BPMN

The Business Process Modeling Notation (BPMN) was developed with
the goal to form a common standard notation for buisness process modeling.
Similar to EPCs, a BPMN process is always triggered through a start event
and completes with an end event. Within the process flow intermediate
events can be used to trigger activities or to depict the results of activities.
For this, BPMN distinguishes different event types, e.g. events can be triggered
through or be the result of messages, errors, or timers. Different from EPCs,
BPMN does not require the depiction of events between any tasks. Instead
events are usually used to depict external influences on or of the process flow.
The tasks themselves can either be atomic or composite, i.e. composed of
other processes which can be collapsed into a single task. The routing of cases
through the process is determined by gateways. Similar to EPC connectors,
gateways enable the specification of XOR-splits, AND-splits, OR-splits, XOR-
joins, AND-joins, and OR-joins, but it distinguishes between XOR gateways
which forward cases based on an evaluation of data and XOR gateways that
wait for events to occur for deciding on how the process will continue.

By dividing a process through swimlanes into pools, a process can be split
up among the various participants (e.g. roles, organizational units, persons).
Each of the participants has then her own process with start and end events
while the exchange of messages between the participants coordinates the various
processes. In Figure 2.9, we used for example two pools to distinguish the role
of the from the role of the in the approval of a travel request. As soon as the
employee has organized both quotes (which can happen in parallel) and submits
the travel form, the administration is notified through a message and starts the
processing of the travel request. During this step, the administration informs
the employee whether the request is accepted or declined. Only if the request
is approved, it is forwarded to the travel agency; otherwise the administration
process terminates immediately. In the meantime the employee’s process waits
for the approval notification. If the request is indeed approved, this particular
instance of the travel approval process immediately terminates while in case
the request is declined, the employee has to update and to re-submit the travel
form. For the administration this re-starts the approval process.

Further details on the use of additional events and swimlanes and how these
elements can be used to organize process models and to depict issues like can-
celations, error handling, roll-back, and compensation can be found in the work
of White and Miers [191] as well as in the BPMN specification [192]. To give

4see http://www.pallas-athena.com/

http://www.pallas-athena.com/

2.5. Workflow Languages 35

Travel Required

Prepare and Submit

Travel Form

Quote Flight

Quote

Accommodation

Check Travel Form

Check and Update

Travel Request

Forward Travel
Request

Travel Request
Approved

Travel Request
Approved

Travel Request
Declined

E
m

p
lo

y
e
e

A
d
m

in
is

tr
a
ti
o
n

Travel Request

Declined

Gateways

Task (Atomic)

Collapsed Sub-
Process

(Composite Task)

AND

XOR
(data-based)

XOR

(event-based)

Activities

Travel Form

Events

General (Start)

Message (Start)

Terminate (End)

Message Flow

Sequence Flow
Document

Multiple (Intermediate)

Figure 2.9: The travel approval process for international travels depicted in BPMN.

formal semantics to BPMN, Raedts et al. [134] provide a transformation from
a restricted subset of BPMN to Petri nets. Through such a Petri net, we can
then also construct LTSs for BPMN.

2.5 Workflow Languages

Workflow management systems are IT systems supporting the execution of busi-
ness processes like the ones we have depicted in the previous section by automat-
ically distributing the waiting jobs to suitable process participants and providing
them with the information necessary to perform these jobs. In the following we
will discuss three concrete workflow languages with different backgrounds which
enable the specification of business processes such that a system can support
their execution in this way. We will start with the academic workflow language
YAWL (a shorthand for ‘Yet Another Workflow Language’) which was devel-
oped with the goal to create a notation that supports all of the desired workflow
patterns of van der Aalst et al. [11]. YAWL is both formally defined as well as
implemented in a workflow management system. It is therefore also usable in
practice. Secondly, we will provide an overview of the commercial workflow lan-
guage of SAP WebFlow. SAP WebFlow is a workflow engine distributed with
every installation of SAP’s enterprise system since 1995 [155]. Last, we will give
a brief overview on the Business Process Execution Language (BPEL)

36 Chapter 2. Background Process Modeling

which is nowadays the standard notation for orchestrating web-services in so-
called service-oriented architectures.

2.5.1 YAWL

YAWL is a workflow modeling language inspired by Petri nets, but with several
important extensions and its own semantics. A YAWL workflow specification
is composed of a number of so-called Extended Workflow nets (EWF-nets).
Each EWF-net consists of conditions, which in Petri net terms can be inter-
preted as places, and tasks. Both are connected by arcs to depict the flow of a
process. The various EWF-nets form a hierarchy. This hierarchy is created by
mapping some tasks of an EWF-net onto other EWF-nets within the workflow
specification, i.e., there is a tree-like structure where tasks can be decomposed
into EWF-nets. These ‘mapped’ tasks are called composite tasks, ‘unmapped’
tasks are called atomic tasks.

Figure 2.10 shows an example for such a YAWL model. The example de-
picts a booking and payment workflow for train travels. After an order has
been received, multiple train tickets, a reduction card for train tickets, and/or
multiple hotels can be booked. Until a payment method has been selected, the
booking can also be canceled. Afterwards the travel has to be paid either in cash
or by credit card before the documents can be either send to the customer or
collected by her. The tasks Book hotel and Credit card payment contain further
refinements in form of additional EWF-nets.

Each EWF-net has exactly one unique input condition and one unique
output condition. The control-flow determines the flow of tokens through
tasks and conditions. AND-joins, OR-joins, and XOR-joins as well as AND-
splits, OR-splits, and XOR-splits determine the control-flow behavior before
and after each task. AND-joins like the task Reserve in Figure 2.10 require
tokens in all the conditions preceding the AND-join to enable the execution of
the subsequent task, AND-splits like the task Start search in Figure 2.10 put
tokens into all the post-conditions after the task has completed. Tasks with an
XOR-join behavior, as e.g. the Send documents task in Figure 2.10, require a
token in only one of their pre-conditions to be enabled, tasks with an XOR-
split behavior, as the task Select payment method, put a single token into one
of the post-conditions after the completion of the task. OR-joins, as in task
Select payment method, allow a synchronizing merge of several process branches
by enabling the subsequent task only if there is no chance that any tokens will
arrive in unoccupied pre-conditions of the OR-join at any future point in time.
OR-splits, as in task Receive order, enable a multi-choice, i.e. a selection of
several post-conditions.

The specification of a cancelation region, as for the task Cancel booking
in Figure 2.10, allows for the removal of all tokens from the conditions and
running tasks within this region during the execution of the task to which the
cancelation region is attached to. Independently of the total number of tokens in
the conditions, it removes all tokens and therefore supports various cancelation
patterns. In addition, tasks can be specified in such a way that they start in

2.5. Workflow Languages 37

Condition

Input condition

Output condition

Atomic task

AND-split task

XOR-split task

Composite task

Multiple instances
of an atomic task

Multiple instances
of a composite task

OR-split task

AND-join task

XOR-join task

 OR-join task

... remove tokens

Figure 2.10: An example YAWL model for a travel booking process

multiple instances. Examples are the Book train ticket and the Book hotel
tasks from Figure 2.10 which allow for the booking of multiple tickets or hotels.
It is then possible to specify upper and lower bounds for the number of instances
of the task that can be started. It can also be specified if instances can only
be created at once when the task is started, i.e. statically, or if instances can
be added dynamically while the task is running and the number of started
instances is lower than the maximum number. The task’s threshold value
determines the number of instances that have to be completed to complete
the task as a whole. As soon as the threshold value is reached, all remaining
instances are terminated.

Formally and in line with the definitions of van der Aalst and ter Hofstede
[8], an EWF-net can be defined as follows:

Definition 2.24 (EWF-net) An Extended Workflow net (EWF-net) is a tu-
ple EWF = (K , i,o,T ,F , split , join, rem,nofi) such that:

• K is a set of conditions,

• i ∈ K is the input condition,

• o ∈ K is the output condition,

• T is a set of tasks,

• F ⊆ (K \ {o} × T) ∪ (T × K \ {i}) ∪ (T × T) is the flow relation,

38 Chapter 2. Background Process Modeling

• every node in the graph (K ∪ T ,F) is on a directed path from i to o,

• split : T → {∧,XOR,∨} specifies the split behavior of each task,

• join : T → {∧,XOR,∨} specifies the join behavior of each task,

• rem : T 6→ IP(T ∪ K \ {i,o}) specifies the cancelation region for a task,
and

• nofi : T 6→ N×N
∞ ×N

∞ ×{dynamic, static} specifies the multiplicity of
each task (minimum, maximum, threshold for continuation, and dynam-
ic/static creation of instances).

The tuple (K ,T ,F) corresponds to a classical Petri net where K (the set of
conditions) corresponds to the set of places, T (the set of tasks) corresponds to
the set of transitions, and F (the flow relation) corresponds to the set of arcs
(compare Definition 2.14, p. 21). Different to Petri nets, there are the special
conditions i and o, and tasks can be connected not only via places but also
directly to each other by the flow relation. We counteract this ‘unstructuredness’
by defining the extended set of conditions K ext and the extended flow relation
F ext for EWF-nets, adding the implicit condition c(t1,t2) between two tasks
t1, t2 if there is a direct connection from t1 to t2.

Definition 2.25 (Implicit conditions) Let EWF = (K , i,o,T ,F , split , join,
rem,nofi) be an EWF-net. Then K ext = K ∪{c(t1,t2) | (t1, t2) ∈ F ∩(T ×T)} is

the extended set of conditions and F ext = (F \(T ×T))∪{(t1, c(t1,t2)) | (t1, t2) ∈
F ∩(T×T)}∪{(c(t1,t2), t2) | (t1, t2) ∈ F ∩(T×T)} is the extended flow relation.

The four functions of the EWF-net split , join, rem, and nofi specify the proper-
ties of each task. As the names imply, the first two functions specify the split and
join behavior for the tasks. rem specifies from which parts of the net the tokens
should be removed. Note that the range of rem includes tasks and conditions,
but tokens cannot be removed from input and output conditions. Removing to-
kens from a task corresponds to aborting the execution of that task. If a task is
a composite task, its removal implies the removal of all tokens it contains in its
sub-nets. nofi specifies the attributes related to multiple instances. Whenever
we introduce an EWF-net EWF in the following we assume K , i, o, T , F , split ,
join, rem, and nofi defined as EWF = (K , i,o,T ,F , split , join, rem,nofi). For
simplicity’s sake, we also assume that K = K ext and F = F ext , i.e. we only
consider extended nets with implicit conditions. We use π1(nofi(t)) to refer to
the minimal number of instances initiated, π2(nofi(t)) to refer to the maximal
number of instances initiated, π3(nofi(t)) is the threshold value, and π4(nofi(t))
indicates whether it is possible to add instances while handling the other ones.

For convenience, we extend the functions rem and nofi in the following way.
If t ∈ T \dom(rem), then rem(t) = ∅. If t ∈ T \dom(nofi), then π1(nofi(t)) = 1,
π2(nofi(t)) = 1, π3(nofi(t)) = ∞, π4(nofi(t)) = static. This allows us to treat
these partial functions as total functions in the remainder.

The mapping of tasks to lower-level EWF-nets which are refining the task
(as, e.g., for the tasks Book hotel and Credit card payments in Figure 2.10) is
not part of the higher-level EWF-net, but rather of the workflow specification
which organizes the EWF-nets in a tree-like hierarchy. We deviate here from the

2.5. Workflow Languages 39

original YAWL specification of van der Aalst and ter Hofstede [8] by assigning
sets of EWF-nets to composite tasks. The selection which EWF-net from such
a set is executed when the composite task is triggered is then performed at run-
time. This follows a suggestion by Adams et al. [20] for extending YAWL with
such run-time implementation choices for tasks, known as the worklet service
architecture. Thus, although several EWF-nets are assigned to a composite
task, only one of the EWF-nets is executed when the task is triggered. In this
way, different implementations of a task can be assigned to the same generic
task (e.g., the task Book hotel can have an implementing EWF-net for bookings
directly with the hotel by phone and another totally different implementation
for bookings via a booking portal in the internet).

Definition 2.26 (Workflow specification) A workflow specification is a tu-
ple (Q⋄, Q, top, T ⋄,map) such that:

• Q⋄ is a set of EWF-nets,

• top ∈ Q⋄ is the top level workflow,

• Q ⊆ IP(Q⋄ \ {top}), (
⋃

EWFS∈Q EWFS) = Q⋄ \ {top},∀EWFS1,EWFS2∈Q

(EWFS 1 ∩EWFS 2 6= ∅) ⇒ EWFS 1 = EWFS 2, partitions Q⋄ into sets of
EWF-nets,

• T ⋄ = ∪EWF∈Q⋄TEWF is the set of all tasks,

• ∀EWF1,EWF2∈Q⋄EWF 1 6= EWF 2 ⇒ (KEWF1
∪ TEWF1

) ∩ (KEWF2
∪

TEWF2
) = ∅, i.e., no name clashes,

• map : T ⋄ 6→ Q is an injective, surjective function which maps each com-
posite task onto a set of EWF-nets, and

• the relation {(EWF 1,EWF 2) ∈ Q⋄ × Q⋄ | ∃t∈dom(map)(t ∈ TEWF1 ∧
EWF 2 ∈ map(t))} is a tree, i.e. it contains no cycles.

Q⋄ is a non-empty set of EWF-nets with a special EWF-net top. The tasks
in the domain of map are the composite tasks which are mapped onto sets of
EWF-nets. This is done in such a way that each EWF-net in Q⋄ can only be
assigned onto one task, but each composite task is mapped onto a set of several
EWF-nets that is specified in Q, i.e. a tree-like structure with top as root node is
formed. As top is always the root net, it will be part of any workflow execution.
This does not necessarily hold for the other EWF-nets in Q⋄ (i.e. the child
elements of top). If there is more than one EWF-net mapped onto a task t,
i.e. |map(t)| ≥ 2, then only one of these nets is selected and becomes part of
the workflow execution. The other alternatives and their sub-nets will not be
executed. Also note that we always assume that there are no name clashes, i.e.,
names of conditions differ from names of tasks and there is no overlap in names
of conditions and tasks originating from different EWF-nets. If there would be
name clashes, tasks and conditions could simply be renamed.

YAWL comes with its own formal semantics which is capable of handling
all the different types of task execution by explicitly distinguishing active tasks
from individual task instances which can be created, executed, or completed.
For composite tasks, the execution phases of individual task instances is halted

40 Chapter 2. Background Process Modeling

as long as the execution of the sub-net lasts. The formalization of the YAWL
semantics can be found in the work of van der Aalst and ter Hofstede [8]. It
includes the definition of the state space of a YAWL workflow specification
by taking these sub-states of tasks into consideration. Van der Aalst and ter
Hofstede also include the transition relation which depicts the possible changes
among these states. When a label about the various properties that led to the
particular state change is assigned to each transition, the transition relation,
the state space, and these labels form an LTS.

2.5.2 SAP WebFlow

SAP, as one of the biggest vendors of enterprise systems, delivers the workflow
engine WebFlow with any installation of their business suite. It can be used to
guide business processes through SAP’s enterprise system, but is also capable of
incorporating other systems into the workflow. The workflow engine comes with
its own workflow modeling notation which for simplification we just call SAP
WebFlow in the following. the notation is mainly based on so-called steps and
events which are organized in a block structure5. Steps are depicted by boxes
with different symbols, representing either routing constructs or functionalities
offered by the system, i.e. they refer to tasks. Figure 2.11 depicts a template
for a travel approval process that is provided by SAP with their enterprise
system. Let us use this example to explain the different modeling elements of
SAP WebFlow.

• The most basic step type is the activity () which is in the example
used for the Set trip status to approved, Change trip, Enter and send
message, and Send mail: Request approved activities. An activity step is
always connected to a task maintained in SAP’s enterprise system which
is executed when the step is triggered. After completion of the task, the
step is completed and the next task is triggered.

• User decisions (), such as the Approve travel request step shown in
Figure 2.11, are providing a list of answers from which the user can chose
one. Based on this answer the corresponding subsequent path is selected.

• Conditions (), such as the Travel request approved? step, evaluate a
boolean condition. Based on the outcome of this evaluation the process
follows one of the two paths. Similar, multiple conditions (, not
depicted in the example) contain a set of subsequent paths, of which one is
selected based, for example, on the value of a (non-Boolean) data element
of the workflow. If no path is connected to the value of the data element,
an ‘other values’ branch is selected.

• Forks (,) are used to specify the parallel processing of paths. All
paths leaving the splitting fork are triggered by this step. The joining fork
allows the specification of a condition when it is completed. This condition

5SAP also provides an EPC translation for workflows specified in SAP WebFlow. However,
the usage of EPCs is restricted to constructs realizable in SAP WebFlow. For this reason, we
stick to the original SAP workflow notation.

2.5. Workflow Languages 41

Fork

Condition

User decision

Activity

Wait for event

Event

enables parallel processing of paths; the joining fork allows

the specification of a condition when the block is completed

evaluates a boolean condition; depending on the result

either the true/yes or the false/no branch is taken

provides a list of answers from which the user can choose

one; the path assigned to the decision is then triggered

connects a task in the SAP system which is executed when

the activity is triggered

waits for the linked event to occur; the process continues

only afterwards

can be raised by business applications to communicate

with workflows either as triggering events to start the

workflow or as terminating events to complete a wait for

event step or the workflow as a whole

Workflow

Started

Manually

RejectedChangeApproved

Travel

Request

Created

Event occured

YesNo

Wait for
event 'Trip

changed'

Approve
travel

request

Set trip

status to
approved

Change

trip

Enter and

send
message

1 from 2

Travel

request

approved?

Send mail:

Request

approved

Workflow

completed

Figure 2.11: A workflow template of a travel approval process provided by SAP for its
WebFlow engine (accessible in SAP as workflow WS20000050)

can be the number of preceding paths that have to have completed. In
this way, e.g., a two-out-of-three join can be realized, i.e. the process
continues as soon as two out of three incoming branches have completed.
The condition can also be based on data elements of the workflow. In any
case, as soon as the completion condition is fulfilled, any work that is still
ongoing in the preceding branches is terminated and deleted.

• As soon as a Wait for event step () is triggered, it waits for a linked
event to occur and the workflow is only continued after the event has
occurred.

Events () can be raised by business applications to communicate with work-
flows. The trigger to raise an event can be manifold. For example, it can be the
creation or the change of a document, a general status message, an exception
occurring in an information system, or a business transaction event which oc-
curred in the financial system. Even a workflow can raise events on its own by
Event creator steps (). Events can be linked to workflows (and tasks which
then are handled as if they are workflows on their own) as triggering events to
start the workflow (e.g., as the Travel Request Created event in the example), or
as terminating events to stop a workflow or a wait for event step inside a work-

42 Chapter 2. Background Process Modeling

flow. Note that the same event can be linked for different purposes to different
workflows at the same time, e.g. to terminate one workflow and instead trigger
another workflow.

The LTS corresponding to a model depicted in SAP WebFlow can be con-
structed in a similar way as the LTS for models depicted in YAWL, i.e., during
the construction of the state space all the various intermediate states have to
be considered, which occur during the execution of steps and activities. Fur-
thermore, the transition relation has to take not only the obvious process flow
into account, but also all possible points in time when events or conditions lead
to the cancelation of behavior.

The linkage between steps or events and workflows includes the linkage of the
data in the data containers of the step or event and the workflow. This linkage
enables the start of a workflow or a step with the right parameters, e.g. to select
responsible resources or correct documents. Further details on such mappings
and other implementation issues can be found in the book by Rickayzen et al.
[139].

2.5.3 BPEL

As a third example notation for specifying workflows, we use the Business
Process Execution Language (BPEL), also known as Web Services Busi-
ness Process Execution Language (WS-BPEL). Nowadays, it is the standard for
the composition and orchestration of web services. BPEL uses an XML-based
representation to define workflows. The language can be seen as a mixture of
graph-based and programming-like constructs. For example, Figure 2.12 (par-
tially) shows the BPEL representation of the travel booking process we used
as example for YAWL (see Figure 2.10, p. 37). Similar to SAP WebFlow, ac-
tivities in BPEL are also block structured. Within this block structure BPEL
distinguishes between six structured activities organizing the control-flow of its
sub-blocks and three primitive activities that perform the required tasks. Ex-
amples for structured activities are the sequence which enforces the sequential
execution of its sub-blocks (see Figure 2.12), the flow which allows for a par-
allel execution of the sub-blocks, and the switch which can be used to define
an XOR choice among the sub-blocks. The primitive invoke activities call a
linked operation, e.g. of a web service or another workflow, and wait for its re-
sponse. For example, in Figure 2.12 the first invoke activity calls the operation
requestTravel of the booking engine. Receive actvities are primitive activities
which wait for such invoke calls. The results of such requests are then provided
through the primitive reply activities.

In addition to the structured activities such as a sequence, switch, etc. BPEL
allows for expressing control flow relations between activities also through con-
trol links. Control links establish a control flow from one to another activity
possibly breaking BPEL’s block structure. For this reason not only the next ac-
tivity according to the block structure is triggered when an activity completes,
but also outgoing control links can be activated. In Figure 2.12 three such
control links are for example specified for the first invoke activity. An activity

2.5. Workflow Languages 43

<process ...>
<sequence ...>

<flow ...>
<links>

<linkName="trainTicket"/><linkName="reductionCard"/><linkName="hotel"/>
</links>
<invoke partner="BookingEngine" operation="requestTravel"

inputVariable=... outputVariable="travelNeeds" ...>
<source linkName="trainTicket"

transitionCondition="bpws:getVariableData(travelNeeds, trainReq)=true"/>
<source linkName="reductionCard"

transitionCondition="bpws:getVariableData(travelNeeds, cardReq)=true"/>
<source linkName="hotel"

transitionCondition="bpws:getVariableData(travelNeeds, hotelReq)=true"/>
</invoke>
<invoke partner="TicketProvider" operation="getTicket" ...>

<target linkName="trainTicket"/>
</invoke>
<invoke partner="CardProvider" operation="orderCard" ...>

<target linkName="reductionCard"/>
</invoke>
<invoke partner="HotelReservationSystem" operation="reserve" ...>

<target linkName="hotel"/>
</invoke>

</flow>
<flow ...>

<links>
<linkName="creditCardPayment"/><linkName="cashPayment"/>

</links>
<invoke partner="PaymentEngine" operation="getPaymentDetails"

inputVariable=... outputVariable="paymentDetails" ...>
<source linkName="creditCardPayment"

transitionCondition="bpws:getVariableData(paymentDetails, card)=true"/>
<source linkName="cashPayment"

transitionCondition="bpws:getVariableData(paymentDetails, cash)=true"/>
</invoke>
...

</flow>
...

</sequence>
</process>

Figure 2.12: A travel booking process specified in BPEL

for which a corresponding incoming control link is specified can then only be
executed if it is triggered through the structure of the workflow and if all the
incoming links have been activated. The invoke activity in Figure 2.12 that gets
the ticket is thus only activated if on the one hand the enclosing flow activity is
activated and on the other hand the link trainTicket is activated. In the context
of an activity also a join condition over the data provided by the links has to
be true. Therefore, all incoming links and the control-flow through the block
structure synchronize a workflow’s behavior in the same way as an AND-join.

For each outgoing control link, a separate condition can be given to specify
whether it will be activated. The trainTicket link of Figure 2.12 is thus only
enabled if the trainReq parameter is true. Depending on the conditions, any
combination of activating outgoing control links is possible, which means that
the links are in an ∨ relation.

Translations from BPEL to Petri nets are, e.g., suggested by Hinz et al.

44 Chapter 2. Background Process Modeling

[92], Lohmann [115], Ouyang et al. [124], and Verbeek and van der Aalst [181].
Through such a translation of a BPEL model into a Petri net, also an LTS can
be derived from a BPEL process as we have depicted in Section 2.2. As we
did for YAWL and SAP WebFlow, we omit further implementation details on
BPEL that are irrelevant for the remainder of this thesis here. The interested
reader finds these details in the BPEL standard [24].

2.6 Summary

After having defined some formal notations, this chapter introduced three types
of process modeling languages, namely notations for formal process specifica-
tions, more informal business process modeling languages, and executable work-
flow languages. Formal definitions were provided for Labeled Transition System
(LTS) and workflow nets, which are a the Petri net variant. A brief introduc-
tion to common workflow patterns lead to focusing on more practice-oriented
languages. Still, we also discussed formal definitions for Event-driven Process
Chains (EPCs), and introduced Protos models, and the Business Process Mod-
eling Notation (BPMN) as further examples for business process modeling lan-
guages. In the same way, we provided formal definitions for the workflow lan-
guage YAWL, and also introduced SAP WebFlow, and the Business Process
Execution Language (BPEL) as further examples for such languages. Workflow
engines capable of automatically executing the particular models exists for all
three workflow languages.

Throughout this thesis we will use formal languages for both identifying
the essence of process model configuration, as well as for providing the founda-
tions for configuring process models correctly. A process implementation usu-
ally starts with drawing a general business process model. We will therefore use
business process modeling languages whenever we discuss models which serve
as the starting point for building a configurable process definition rather than
as its concrete specification. On the other hand, we will use workflow notations
whenever we will discuss the execution of processes.

I saw the angel in the marble and carved until I set him free.
Michelangelo Buonarroti (1475–1564)

Chapter 3

Configuring Process Models

The goal of configuring a process model is to adapt the model such that it
fits the model user’s individual needs better than the original process model.
However, ideally, the user should not need to add any content to the process
model itself while configuring the model. Thus, configuring a process model
means restricting the behavior depicted by an existing process model in such
a way that it only allows for the desired behavior of the model, while all the
undesired behavior is eliminated from the model.

In this chapter we will analyze what ‘restricting the behavior’ means for
process models. For this, we will first have a look how behavior can be added to
a process model by introducing concepts based on the inheritance of dynamic
behavior. Knowing how behavior can be added, we can do the inverse of it to
remove behavior from a process model, i.e. we can configure the process model.
In the second section of this chapter, this definition of process configuration is
used to define configurable process models. The third section of this chapter
on related work compares this approach of defining configurable process models
with the work of other authors that have identified configuration opportunities
for process models. The chapter ends with summarizing general requirements
on process model configuration, providing an outlook on the issues that need to
be addressed when developing configurable process modeling notations.

3.1 Configuration versus Inheritance

Obviously, behavior can only be removed from a process model if it has been
added beforehand. To get to the essence of process configuration, i.e. how a
process model’s behavior can be restricted, we should thus analyze, how this
behavior can be added to the model in the first place.

A nowadays very popular approach that deals with adding information and
methods to an existing framework in a structured way is called inheritance.
The inheritance concept is a guiding principle in object-oriented software de-

46 Chapter 3. Configuring Process Models

velopment. In object-oriented programming, classes describe the properties of
a certain type of objects as well as the methods that these objects can perform.
The basic idea of inheritance is then to provide a mechanism that allows for
constructing subclasses of such classes, which are inheriting all this behavior
and all the properties of the original classes. A subclass can then be extended
with additional behavior or properties compared to the original class. Thus, a
subclass must always provide at least the same functionality as the class from
which it is derived, but can add additional functionality and properties to this.1

The original classes are then called superclasses of the subclasses. To get back
to our original question, we can thus say that any class that adds behavior or
properties to another class is a subclass of this other class under the inheritance
concept.

Basten and van der Aalst [32] applied these inheritance concepts to workflow
models and identified how inheritance can be detected between such models of
behavior. For this, they compare the behaviors of models, using the equivalence
notion of branching bisimulation [71].

Basically, branching bisimulation ignores the behavioral impact of silent
tasks, i.e. tasks that cannot be observed, but (unlike trace equivalence) takes
the moment of choice into account. Two process models are behavioral equiva-
lent under branching bisimulation if all non-silent tasks that can be executed in
any particular state of one model can also be executed in the equivalent state
of the other model, either directly or after executing a set of silent tasks that
leads to a state from which the task can then be executed. For this, branching
bisimulation relates states in one process to states in the other process (and
vice-versa) such that the ‘possible futures’ of these states match. For example,
compare the two LTSs in Figure 3.1a. Here, sA1 in process A allows for exe-
cuting a in the same way as sB1 in process B. sA2 allows for executing b which
requires the execution of a silent transition labeled τ in sB2. In this way sB3

is reached which then allows executing b in the same way as sA2. Finally, both
processes complete after the execution of b in sA3 or sB4. Hence, both processes
are equivalent under branching bisimulation and we say they represent identical
behavior. This is different in Figure 3.1b: We can easily match sC1 to sD1 as
both states allow executing either a (in case of process D after executing the
silent τ transition) or b, as well as sC2 to sD3, sC3 to sD4, and sC4 to sD5. But
there is no equivalent state to sD2 in process C. In sD2 only a can be executed.
The only state from which a can be executed in process C is sC1. However,
in sC1 also b can be executed. Hence, it cannot be considered equivalent to
sD2 as their ‘possible futures’ are different. Since it is not possible to construct
such a relation, C and D cannot be considered as equivalent under branching
bisimulation.

For detecting and defining inheritance relations between two workflow mod-
els, Basten and van der Aalst [32] employ two mechanisms. Both mechanisms

1Note that inheritance allows to overwrite the concrete implementation of a particular
method. However, for the outside world the functionality remains the same as the identifier
as well as the type of the output remains identical. Thus, these parts of the inheritance
concept do not add any behavior and can be neglected here.

3.1. Configuration versus Inheritance 47

C2

b)

a)

A1

A3

A2

B1

B3

B2

B4

C1

C3

C4

D1

D4D2

D5D3

Figure 3.1: The two processes in (a) are branching bisimilar, while the two processes in (b)
are not as there is no state in C that matches state sD2 in D.

start with identifying the behavior that is depicted in that model of the two
models which is assumed to be a subclass of the other one. They then compare
this behavior with the subclass’s superclass, i.e. the other model, identifying the
behavior that is lacking in the superclass compared to the subclass. Thus, while
subclasses add behavior to superclasses, the mechanisms to detect inheritance
relations are analyzing the process model in the inverse direction by removing
behavior from subclasses.

• The first mechanism identifies inheritance relations by encapsulating, i.e.
inhibiting, the execution of additional functionality. If it is not possible to
distinguish the behaviors of a model x and a model y when only transitions
of x that are also present in y are executed, then is x a subclass of y.
That means, all transitions of the subclass x that are not present in the
superclass y are blocked from being executed. For example, let us have a
look at the LTS superclass A and its subclass in Figure 3.2. If the subclass’s
transitions b, j, k, l, m, n, and p are blocked and thus not executed, the
behavior of the subclass and superclass A are identical. Therefore, an
inheritance relation exists between the two transition systems.

• The second mechanism abstracts from the execution of the transitions

48 Chapter 3. Configuring Process Models

a

c

d e

f g

h i

o

Variant A Variant B

Superclass A

Configurable Process Model

Inheritance Inheritance

Configuration Configuration

Superclass BSubclass

a

b

c

d e

f g

h i

j

k m

n

o p

l

a

b

c

e

g

i

j

k m

n

o p

l

d

Figure 3.2: Inheritance relations between process models — the inverse of configuration.

themselves, but it analyzes if the two processes vary if only the effects of
those transitions of the model x are considered that are also part of the
model y. If the behaviors of x and y cannot be distinguished when arbi-
trary transitions of x are executed, but when only the effects of transitions
that are also present in y are considered, then x is a subclass of y. All
effects of the subclass x not occurring in y are hidden in the superclass
y. For example, let us compare the LTS superclass B with the subclass in
Figure 3.2. The transitions f and h exist in the subclass but not in the
superclass. However, if we execute the subclass and do not consider that
these two transitions are executed in between the execution of transition
d and transition o, the subclass behaves identical to its superclass B where
o is executed directly after d.

Figure 3.2 also shows that through multiple inheritance a subclass can be the
subclass of multiple superclasses. Such a subclass includes the behavior of all its
superclasses, i.e. from the perspective of each individual superclass the subclass
is extended with (at least) the behavior of the other superclasses. If such a
subclass is minimal, i.e. each extension is motivated by at least one of the given
superclasses, we refer to the subclass as the least common multiple of the
given superclasses [5].

When configuring a process model, the goal is to get rid of undesired behavior
in contrast to adding behavior as inheritance concepts imply. Thus, instead of
deriving a subclass of a process model, we have to do the inverse and need to find
a superclass of the process model which is optimal for the particular purpose

3.1. Configuration versus Inheritance 49

a b

s1

s3s2

b)

b

s1

s3s2

b

s1

s3s2

c)

d)

Configured ModelConfigurable Model

a)

e) f)

a

s1

s2

s1

s2

s1

s2

c d e f c d e f c d e f

Figure 3.3: Configuration in a labeled transition system

for which the model is configured. As Basten and van der Aalst [32] defined the
inheritance relations already by determining if the superclass can be re-produced
from the subclass through encapsulating and abstracting from behavior of the
subclass, the two mechanisms of blocking and hiding behavior can be used as
tools to derive a superclass from the process model, i.e. to restrict the behavior
of the process model. For the configuration of LTSs (Definition 2.13, p. 20) we
can, e.g., use hiding and blocking as follows :

Definition 3.1 (LTS Configuration) A configuration of an LTS = (S ,L,T ,
SI , SF) is a (partial) function CLTS ∈ T 9 {hide, block} where dom(CLTS) is
the set of configured transitions, and for t ∈ dom(CLTS):

• if CLTS (t) = hide, t is a hidden transition, and

• if CLTS (t) = block, t is a blocked transition.

To derive a configured model from a configuration, the configuration must be
applied to the process model. Figure 3.3 depicts some configuration scenarios
using an LTS: the first column depicts the configurable models; the subsequent
columns depict the resulting models if transition a is blocked or hidden.

The configuration decision to block a transition implies that the transition
will never be executed. That means, the transition should not appear within

50 Chapter 3. Configuring Process Models

the configured model. It must be removed from the model when generating the
configured model as depicted in Figure 3.3a/b where the transition labeled a in
Figure 3.3a is configured as blocked and thus removed in the configured model
in Figure 3.3b. Hence, when reaching state s1, the transition can no longer be
executed. Instead the process has to execute the alternative transition (s1, b, s3)
to reach state s3. Thus, state s2 and its subsequent transitions labeled c and d
become unreachable, depicted in the figure through greying them out. In fact,
as they are not reachable, they could be removed as well, but as they cannot
be reached anyway this has from an execution point of view no influence on the
process behavior.

If the configuration decision is to hide a transition, the transition’s external,
i.e. observable, effects will be ignored. However the effects within the model,
that means on the execution of subsequent transitions, are kept. Therefore,
when generating a configured model, the transition must be transformed into a
silent step without output. Thus, the transition is replaced with a silent transi-
tion labeled τ (see Figure 3.3a/c). Hence, the choice in state s1 in Figure 3.3c
is preserved in the configured model: it only switches from being between ex-
ecuting (s1, a, s2) or (s1, b, s3) to being between executing the silent transition
(s1,τ , s2) without generating any visible output and thus continuing with the
subsequent behavior from state s2 or executing the transition (s1, b, s3).

The definition of hiding given above explicitly says that a task is executed,
but the external effect is ignored. However, the desired result when configuring
a process model differs slightly. In fact, instead of ignoring the transition’s ex-
ternal effects it should not even be executed. Only the non-observable, internal
effect of reaching a subsequent state and triggering subsequent transitions has
to occur. For that reason, hiding can be considered as skipping of the task.
As the perceived results are identical, we will continue to call this operation
hiding and thus stay consistent with the inheritance concept motivating this
configuration operation.

For LTSs the described algorithm of transforming a configuration of a process
model into a configured process model can be formalized as follows:

Definition 3.2 (Configured LTS) Let LTS = (S ,L,T , SI , SF) be an LTS
and CLTS ∈ T 9 {hide, block} be a configuration of LTS. The configured LTS
resulting from this configuration, LTSC = (SC ,LC ,T C , SI

C , SF
C), is defined as

follows:

• SC = S

• LC = {l ∈ L|∃s,s′∈S (s, l, s′) ∈ T \ dom(CLTS)}

• T C = (T \ dom(CLTS)) ∪ {(s, τ , s′) |∃l∈L (s, l, s′) ∈ dom (CLTS) ∧
CLTS ((s, l, s′)) = hide}

• SI
C = SI

• SF
C = SF

While the states remain the same in the configured process model as in the
original process model (they might just become unreachable and thus irrelevant),
the transition labels of the configured model are reduced to labels of transitions

3.1. Configuration versus Inheritance 51

traveling required

file travel request

approve &

book trip

pay trip

re-file travel request

book trip

refuse trip

trip booked

travel request filed

request refused

request processed

τ

traveling required

file travel request

approve &

book trip

re-file travel request

refuse trip

trip booked

travel request filed

request refused

request processed

τ τ
block

hide

Figure 3.4: Configuring the LTS of Figure 2.1

that are neither blocked nor hidden. The configured process model then contains
on the one hand the transitions that were neither hidden nor blocked, and on
the other hand a silent transition for each transition of the original process
model that was hidden. For example, in Figure 3.4 the LTS from Figure 2.1
(p. 20) is configured such that the transition book trip is blocked as employees
should not be able to book trips on their own, but should rather file travel
requests. In the configured LTS, the corresponding transition is thus removed.
Also, the payment for the trip happens independently of the processing of the
travel request. Hence, the processing of the request completes as soon as the
trip is booked. For this, the pay trip transition is configured as hidden, resulting
in replacing it with a silent transition labeled τ . In this way, the state request
processed can be reached from the trip booked state without the payment.

Note that we say in Definition 3.2 that the initial states and the final states
of the original and the configured net should be identical. This is to preserve
the situations which trigger the execution of the process, as well as to preserve
any potential behavior outside of the process model which is triggered through
reaching the final state. New initial or final states would require manual adap-
tations to the process’s environment. For the process in Figure 3.4 this, e.g.,
means that we cannot simply stop the process when reaching the state trip
booked but rather need to ensure that the process really completes with reach-
ing the state request processed. Hence, we cannot block the pay trip transition
but rather need to hide it. This is also shown in the second row of Figure 3.3:
Blocking the transition (s1, a, s2) would lead to a deadlock in state s1 which
cannot become a final state (Figure 3.3e). Hiding it, however, generates no
problems (Figure 3.3f).

Besides such technical reasons, also the domain of the process might inhibit
certain configurations. For example, a configuration that prevents the execution
of tasks which are essential for the overall business process should be avoided.
This means that in Figure 3.4 it would make no sense to, e.g., inhibit all ways
to book a trip if a traveling is required. Thus, because of such technical and

52 Chapter 3. Configuring Process Models

domain constraints, only a subset out of all possible configurations is valid.
A configurable process model should therefore consist on the one hand of a

process model which represents a subclass of all desired configurations, prefer-
ably their least common multiple, which we call the basic process model of a
configurable process model. On the other hand, it should contain a list of valid
configurations of the basic process model which leads to desired configured
models only. For LTSs we therefore say:

Definition 3.3 (Configurable LTS) A configurable process model is a tuple
CPM = (LTS ,CS) where:

• LTS = (S ,L,T , SI , SF) is a labeled transition system, and

• CS ⊆ T 9 {hide, block} is a set of valid configurations.

Configuring the configurable process model then means to select a configuration
CLTS ∈ CS for LTS and deriving the corresponding configured model.

3.2 Adding Configuration to Process Modeling

Advanced process modeling notations abstract from explicitly depicting each
system state. Instead they use a single syntactical element to model many tran-
sitions as we have seen when introducing workflow patterns in Section 2.3. Also,
the overall state of the system is broken down into many individual properties
that characterize the overall state by either holding or not holding. To apply the
depicted configuration ideas to advanced notations with multiple node types, we
thus have to identify in which way these notations depict state changes. This
then allows us to apply the techniques of blocking and hiding to these state
changes which will all be subject of the first part of this section.

Furthermore, we need to find a practical way to denote and verify the restric-
tions to configuration decisions, i.e. to ensure valid configurations in the second
part of this section. Through identifying the optimal basic process model and
combining it with a list of valid configurations, the last part of this section will
provide the basis for deriving configurable variants of advanced process modeling
notations.

3.2.1 Configuring Ports of Tasks

In process models, property changes and thus state changes are depicted through
nodes representing the tasks that are performed. For example, in a Petri net
the execution of a transition leads from one marking, i.e. one state of the Petri
net, to another marking representing a different state. In the same way, the
execution of a function of an EPC results in new events occurring, which mark
a new state of the process execution.

In all such notations the triggering of tasks is represented by arcs pointing
at the task. However, the meaning of these arcs varies not only among differ-
ent workflow modeling notations but also within a single modeling language.
Different join patterns for input paths of task nodes, i.e. paths that lead to

3.2. Adding Configuration to Process Modeling 53

AND XOR

ANDXOR

Figure 3.5: The number of a task’s ports depends on its joining and splitting behavior: Each
way a task can be triggered conforms to an inflow port (left) while each way subsequent paths
can be triggered after the task’s completion conforms to an outflow port (right)

the execution of the task, define in which circumstances the task will be trig-
gered. For example, some tasks require that all incoming paths are triggered
before the task itself can be triggered, i.e. all incoming process branches will
be synchronized through an AND-join behavior. Other tasks can immediately
be triggered if a single incoming process path is triggered (XOR-join). It might
therefore be possible, that a single task can be triggered in multiple ways. To
distinguish between the different ways how a task can be triggered, we call each
of these combinations of incoming paths through which a task can be triggered
an inflow port of the task (see the left side of Figure 3.5). Thus, a task with an
AND-join behavior for the incoming paths has just a single inflow port, whereas
a task with an XOR-join behavior has an inflow port for each incoming path.

After the execution of a task has completed, it releases the particular case by
triggering the arcs leaving the task. In this way, the execution of the task leads
to the marking of new properties, i.e. to a new state. The number of triggered
paths depends again on the semantics specified for the particular task. A task
with an AND-split behavior triggers all outgoing paths, whereas a task with an
XOR-split behavior only triggers one out of all the subsequent path. Of course,
some semantics also allow the triggering of selected paths (OR-split). Aligned
with the specification of inflow ports, we say that each case can ‘leave’ the task
only through one distinct outflow port, but then triggers all paths connected
to this outflow port (see the right side of Figure 3.5).

The state change of a task is thus always represented by combining one

54 Chapter 3. Configuring Process Models

AND XOR

ANDXOR

Figure 3.6: Through configuration the flow of cases through ports can be allowed, blocked,
and in case of inflow ports also hidden.

inflow port with one outflow port for the flow of a case through this task. As
the goal of process configuration is to decide between restricting and allowing
state changes, we thus need to allow or restrict the use of inflow and outflow
ports through configuration, i.e. ports are the elements whose use can be allowed,
blocked, or hidden. Hence, they are the configurable elements.

If we allow the use of an inflow port, the tasks can be triggered as implied
by the process model. In the same way, if the use of an outflow port is allowed,
the subsequent path can be triggered as implied by the model. If a port is,
however, blocked the process flow through this port is inhibited, i.e. a task
cannot be triggered through a blocked inflow port, and the (combination of)
paths connected to a blocked outflow port can then not be triggered after the
task’s completion (see Figure 3.6). Hence, in case of a blocked inflow port, a
case has to find a different path through the process model to continue, while in
case of a blocked outflow port, the case has to leave the task through a different
(non-blocked) outflow port of this task. Thus, the use of at least one outflow
port must remain allowed in any task configuration in which at least one inflow
port of the task is not blocked.

If we hide the observable behavior of a state change, the subsequent state is
still reached. For a process model this means, everything that is usually hap-
pening while the task is executed should not happen. Still, the subsequent paths
should be triggered such that the new state is reached. Thus, the triggering of
paths leading to hidden inflow ports implies the skipping of all task activities

3.2. Adding Configuration to Process Modeling 55

and a direct forwarding of the case to the outflow ports (see Figure 3.6). The
outflow ports themselves cannot be configured as hidden because outflow ports
trigger paths instead of tasks. A path just forwards the case to the next task
without implying any action itself. Thus, a path contains nothing that can be
skipped (and any subsequent task should be hidden via its own inflow ports).

To give a first, simple example how a configuration can be defined for a
concrete process modeling language, let us have a look at workflow nets (see
Definition 2.15, p. 23). Like in LTSs, tasks are called transitions in workflow
nets, but are depicted as nodes which can have several incoming and outgoing
arcs. They thus have completely different semantics compared to LTSs. The
semantics of workflow nets imply that a transition can only fire, i.e. a task
can only be executed, if all preceding places are marked with tokens. So, in line
with our previous argumentation we can say that an incoming arc of a transition
is triggered as long as the arc’s source place is marked with a token. Hence,
any workflow net transition implements an AND-join pattern. For that reason,
it only has a single inflow port. After the firing, i.e. after the completion of
the task, the transition marks all subsequent places. Thus, the transition also
implements an AND-split behavior. So, we can say that the transition has only
a single outflow port. As we showed that the use of at least one outflow port
must always remain allowed, this single outflow port of workflow net transitions
is not configurable. Any workflow net transition thus has a single configurable
port only and we can define a workflow net configuration as follows:

Definition 3.4 (Workflow net configuration) Let WF = (P ,T ,A,L, l) be
a workflow net. Then C ∈ T → {allow , hide, block} is a configuration for WF,
and ∁WF is the set of all such configurations of WF.

As workflow net transitions have only a single port, we can here say that the
use of the transition is allowed, hidden, or blocked instead of explicitly referring
to the port of the transition. Still, we should keep in mind that in fact we
configure the port. In Chapter 4 we will see that defining a single port per task
is also possible for a number of practical-oriented process modeling languages
like SAP WebFlow and BPEL. But, we will also define a configurable YAWL
notation which provides more than one port per task.

Figure 3.7 shows a configuration for the workflow net from Figure 2.2. The
configuration blocks all transitions in the simple process for domestic travels
to make the complex travel approval process compulsory for all travels. How-
ever, to not burden the employees with the whole complexity of this process, a
comparison of multiple accommodation quotes is not necessary. Thus, this task
can be skipped when executing the process which is achieved by configuring
the corresponding transition as hidden. Here, it is outside of the secretary’s
responsibility to prepare travel forms, which is enforced through blocking the
preparation of the form by the secretary. In this way, it becomes the employee’s
responsibility to prepare the travel form when the places p3 and p4 are both
marked to signal the completion of all quote comparisons.

Moreover, the rejection of requests by the administration is also blocked
which in the first moment does not look too bad for employees which have to

56 Chapter 3. Configuring Process Models

pI

p5 p6

pO

p2p1

p7

p9

Waiting for

Travel

Quotes

Waiting for

Accomodation

Quotes

p8

t8

t1

t2

t5 t6

t9

t10

t13 t14

t11

t7

t12

Request for International

Travel & Accommodation

Quotes (Employee)

Request for

Domestic Travel

Quote (Employee)

Prepare

Travel Form

(Secretary)

Prepare

Travel Form

(Employee)

Check & Update

Travel Form

(Employee) Report

Travel Form

(Employee)

Approve

Travel Form

(Admin)

Reject

Travel Form

(Admin)

Submit

Travel Form

for Approval

(Employee)

Request for Change

(Admin)

Drop

Travel Form

(Employee)

simple process for

domestic travels

complex process for

international travels

p4p3

t3 t4
Compare

Accommodation

Quotes (Employee)

Compare

Travel Quotes

(Employee)

Allowed

Blocked

Hidden

Figure 3.7: Configuring the workflow net of Figure 2.2

travel. Unfortunately, however, the administration just leaves the responsibility
for dropping the request to the employee himself by requesting from him a
change to the request if it cannot accept the submitted one, i.e. cases reaching
p9 must either be approved, or the administration needs to ask for an update
of the request.

The configuration values of transitions can be used to obtain a Petri net
representing the behavior of the process model that remains possible according
to the configuration. This new Petri net is a restriction of the behavior of the
original process model where all the hidden transitions are replaced by silent
τ transitions and all the blocked transitions are removed. Also, all the places
connected only to blocked transitions and all the flow relations from/to blocked
transitions have to be removed. Formally:

Definition 3.5 (Configured workflow net) Let WF = (P ,T ,A,L, l) be a
workflow net and let C ∈ ∁WF be a configuration of WF. The resulting configured
Petri net WF C = (PC ,T C ,AC ,LC , lC) is defined as follows:

• T C = T \ {t ∈ T | C(t) = block},

3.2. Adding Configuration to Process Modeling 57

pI

p5 p6

pO

p2p1

p9

Waiting for

Travel

Quotes

Waiting for

Accomodation

Quotes

p8

t8

t1

t6

t9

t10

t13

t7

t12

Request for International

Travel & Accommodation

Quotes (Employee)

Prepare

Travel Form

(Employee)

Check & Update

Travel Form

(Employee)

Approve

Travel Form

(Admin)

Submit

Travel Form

for Approval

(Employee)

Request for Change

(Admin)

Drop

Travel Form

(Employee)

complex process for

international travels

p4p3

t3
Compare

Travel Quotes

(Employee)

Figure 3.8: The configured workflow net derived from Figure 3.7

• LC = {l(t)|t ∈ T C ∧ C(t) = allow} ∪ {τ},

• for t ∈ T C: lC(t) =

{

l(t) if C(t) = allow
τ otherwise (i.e. C(t) = hide),

• AC = (A ∩ ((P ∪ T C) × (P ∪ T C))),

• PC = (P ∩
⋃

(x,y)∈AC{x, y}) ∪ {pI , pO}.

Figure 3.8 shows the configured net derived from the workflow net in Figure 3.7.
The Compare Accommodation Quotes (Employee) transition has been replaced
with a silent transition labeled τ , the transitions Prepare Travel Form (Sec-
retary), Request for Domestic Travel Quote (Employee), Report Travel Form
(Employee), and Report Travel Form (Employee) have been removed, as well as
place p7, as it is no longer connected to any of the remaining transitions.

3.2.2 Restricting Configuration Opportunities

As already indicated for LTSs, not all models derived in this way from the
configuration of a process model conform to the definition of the used modeling

58 Chapter 3. Configuring Process Models

language or represent desirable behavior. For example, blocking too many ports
or a ‘wrong’ port might result in an unconnected net. For many workflow mod-
eling languages this means that the model would become syntactically invalid.
In a similar way, hiding of essential tasks, i.e. preventing that important tasks
are executed, but continuing with executing the process, can prevent the practi-
cability of the depicted process and it can thus lead to a semantically incorrect
model. To avoid the occurrence of such situations, we previously suggested
to limit configurations to a pre-defined set of valid configurations. For models
with many configurable ports, explicitly listing each valid combination of port
configurations is practically infeasible, but also not necessary. The list of valid
configurations can be encoded through a configuration constraint, restrict-
ing the set of permitted combinations of configuration decisions and therefore
ensuring both the syntactic and semantic validity of models. Formally:

Definition 3.6 (Configuration constraint) Let WF = (P ,T ,A,L, l) be a
workflow net and ∁WF be the corresponding set of all its configurations. Then
PC : ∁WF → {true, false} is a process configuration constraint on WF, and

∁
valid

WF = {C ∈ ∁WF |PC (C) = true} is the set of valid configurations of WF.

An example of a syntactically motivated configuration constraint would be ‘Each
task must have at least one port which allows the outflow of cases from that
task’; an example of a semantically motivated constraint would be ‘It must
always be possible to accept travel requests as well as to reject or drop travel
requests’, or better ‘The use of the inflow port of the transition Approve Travel
Form must always be allowed. Furthermore, if the use of the inflow port of
the transition Reject Travel Form is blocked, the use of the inflow port of the
transition Drop Travel Form must be allowed and vice versa’. That means,
although this configuration constraint is semantically motivated, it should still
be formulated in terms of the model’s port configuration.

For a better understanding, we have presented this example constraint in
rather informal natural language. However, the configurable modeling language
must be able to test if a configuration of a model satisfies the constraint. Oth-
erwise, the transformation of the model should not be performed. Therefore,
a formal specification of configuration constraints is indispensable. We suggest
to use propositional logic expressions composed of atomic expressions that test
the individual port configurations. In practice, the semantic constraint sug-
gested above would rather look as follows (assuming the process is depicted as
a workflow net):

(C(Approve Travel Form) = allow) ∧

(C(Reject Travel Form) = block ⇒ C(Drop Travel Form) = allow) ∧

(C(Drop Travel Form) = block ⇒ C(Reject Travel Form) = allow)

Although solving of such a propositional logic formula is known to be NP-
complete, algorithms exist that can efficiently deal with systems of constraints
made up of around one million possibilities. This problem is known as the
Boolean Satisfiability Problem (SAT). For example, we will later on use a

3.2. Adding Configuration to Process Modeling 59

SAT solver which is based on Shared Binary Decision Diagrams (SBDDs)
[121]. It allows us to scale with configuration constraints yielding around one
million configurations.

How to set up a configuration constraint which preserves the correctness of
a configured workflow net will be discussed in more detail in Chapter 8.

3.2.3 Configurable Process Models

By deriving ports from the definition of a process modeling language instead of
defining them as elements which have to be added to the process models of the
language, each model can serve as the basis for a configurable model without
any change. This model represents a subclass of all possible, configured process
model variants. It contains the maximal possible behavior which can be achieved
by allowing all variants, i.e. configuring the use of all ports as allowed. Thus, it
is the basic process model of a configurable process model whose behavior can
be restricted by hiding or blocking of selected ports.

A configuration of a basic process model is valid if it satisfies all the configu-
ration constraints. The complete basic process model should always conform to
the used process modeling notation and thus be syntactically correct. Nonethe-
less, a configuration allowing the use of all ports is not necessarily valid as it
might contain semantically conflicting elements, i.e. the execution of one process
part might, e.g. for security reasons, prohibit the execution of another process
part. By requiring that every configurable process model should contain at least
one valid configuration as a default configuration, we ensure the existence of
such a valid configuration.

Definition 3.7 (Configurable workflow net) A configurable workflow net
is a tuple (WF ,PC , Cdef) where

• WF = (P ,T ,A,L, l) is the basic workflow net and ∁WF the corresponding
set of all its configurations,

• PC : ∁WF → {true, false} is a process configuration constraint on WF

and ∁
valid

WF the corresponding set of valid configurations, and

• Cdef ∈ ∁
valid

WF is a valid, default configuration of WF.

Thus, the process models derived from the basic process model through valid
configurations are the process variants that can be enacted. This, however, also
means that although the basic process model is a correct process model, the
complete basic process model is usually not the process model that should be
executed. Instead, it is built for being restricted through process configuration,
integrating the behavior of various individual process variants available as input.
Thus, in fact, we are searching for a common subclass of the available, individual
process model variants, optimally a least common multiple of them. In this
way, the individual models then represent superclasses, i.e. configurations, of
the basic process model (compare Figure 3.2, p. 48).

However, van der Aalst and Basten [5] have shown that a unique least com-
mon multiple, and thus an optimal basic process model, often does not exist.

60 Chapter 3. Configuring Process Models

pI

pO

t1

t4

t2

pI

pO

t1

t4

t3

pI

t1

t3

t2

pO

t4

pI

t1

t2

t3

pO

t4

t2

pI

pO

t1

t4

t3

Process Variant 1

Process Variant 2

WFA WFB WFC

Minimal Common Multiples

t2

pI

pO

t1

t4

t3

WFD

Figure 3.9: There are three different minimal subclasses for the process variants 1 and 2
(adapted from van der Aalst and Basten [5]).

Instead, there is a range of process models which are — from an inheritance
perspective — all equally good candidates to form the basic process model. For
example, have a look at Figure 3.9. The two process variants which we want to
be able to derive from the to-be-formed basic process model both start with an
execution of t1 and complete after firing t4. In between, the first variant fires
transition t2 while the second variant fires t3. The four processes WFA, WFB ,
WFC , and WFD are all subclasses of both processes as they all provide the same
behavior as the first process if we hide t3 in WFA, WFB , WFC , or block t3 in
case of WFD. Also, they all provide the same behavior as the second process if
we hide t2 in WFA, WFB , WFC , or block t2 in case of WFD. Furthermore, all
four subclasses contain only the four transitions, i.e. none of them provides any
transitions which are not motivated by one of the two process models. Hence,
none of them can be classified as the unique least common multiple of the two
input processes. Still, we could of course add further transitions to any of them

3.3. Related Work 61

in such a way that the resulting net would still be a subclass of the two process
models. For that reason, the number of transitions that are added to the process
model is minimal for all the four subclasses depicted in Figure 3.9. Thus, while
none of the classes can be considered as the least common multiple of the two
original processes, we can call all of them minimal common multiples of the
original processes [5].

The decision of which minimal common multiple represents the preferred
basic process model depends on both the content and the context of the config-
urable process model. In Figure 3.9, it seems that t2 and t3 are alternatives to
each other. Thus, WFD might be the optimal solution. However, if we consider
them as the serving of drinks and the serving of food, it is well possible that both
transitions can happen within a single process. For example, the first process
might be from a bar which only provides drinks but no food, the second one
might be from a place where you buy your drinks and order your meal directly
at the counter. As the food is freshly prepared after it has been ordered, it is
served to the table as soon as it is ready while the customer takes the drinks
directly herself. Still, this does not mean that there are no restaurants where
both drinks and food are served. Thus, in this case WFC might be the best
choice for a basic process model since it does not even prescribe a particular
order in which the serving has to happen.

The default configuration cannot only serve as a good example configuration,
but also as the ‘starting point’ for any individual configuration. In this way, con-
figuring a configurable workflow model to individual requirements just means
to modify those port configurations that need to deviate from the default con-
figuration. This can significantly limit the necessary configuration effort, even
for models with many configurable ports.

3.3 Related Work

Our goal in this chapter was to discover how the behavior of process models can
be configured, i.e. restricted. For this, we took a step backwards and analyzed
how this behavior is added to the model in the first place. Other authors took
slightly different approaches to identify adaptation options of process models
and thus the opportunities to configure process models. In particular, we can
compare our results (1) with the results of Puhlmann et al. [132] who searched for
adaptation mechanisms described in the literature, (2) with the results of Becker
et al. [33, 34] who studied adaptation practices for process models through
comparing models developed and adapted in industry, and (3) with the results
of Dreiling et al. [59] who analyzed typical control-flow patterns occurring in
process models on their configurability.

3.3.1 Literature Study on Variability Mechanisms

Puhlmann et al. [132] performed a literature study on ‘architecturally relevant
variability mechanisms’, i.e. variability mechanisms which have a visible impact

62 Chapter 3. Configuring Process Models

on the architecture or design of systems and their models. After identifying
these mechanisms, they made suggestions how these mechanisms can be applied
to process models, using Unified Modeling Language (UML) activity diagrams,
UML state machines, and BPMN as example notations.

The mechanisms identified by them which are relevant for process configura-
tion are parametrization, null classes, interface separation, and omission
of components. Through parametrization — as suggested by Bachmann and
Bass [31], Jacobson et al. [96], and Svahnberg and Bosch [173] — components of
a model can be selected or deselected simply by setting or deselecting parame-
ters. Through the re-use of parameters, parametrization thus allows controlling
the space of configuration opportunities and restricting it to valid configura-
tions. Nonetheless, if the de-selected behavior is completely blocked or just
hidden is unclear. The mechanism of null classes as suggested by Svahnberg
et al. [174] allows users to replace optional behavior with empty placeholders
which can then be used instead of the behavior. Thus, null classes quasi conform
to the τ transitions we introduced earlier when hiding tasks. Through interface
separation, also suggested by Svahnberg et al. [174], a number of alternative
implementations can be provided of which one is selected by configuration, i.e.
its usage is enforced while the others are blocked. The mechanism of omitting
components entirely is suggested by Clements and Northrop [43]. However, sim-
ilar to parametrization it remains unclear, if omitting means that components
should just be skipped or that the process flow needs to continue in alternative
ways.

3.3.2 Studying of Adaptation Practices

Becker et al. [33, 34] identified adaptation techniques of process models by study-
ing practical models and the changes that have been made to these models. They
then distinguish two general types of adaptation techniques: configuration
mechanisms eliminating irrelevant model elements, and generic adaptation
mechanisms, subsuming techniques that allow for creative additions to the
process model. The mechanisms for restricting the behavior of individual pro-
cess models out of these adaptation mechanisms is called element selection.
Similar to the parametrization identified by Puhlmann et al. [132], it allows for
the elimination of specific process model elements through setting or de-selecting
general configuration parameters or by evaluating logical terms over a number
of such parameters. The particular elements are then simply ‘faded out’ [34].
Although it is clear from the description of their approach that this implies a
skipping of these tasks, the information how the arcs of the process model con-
necting these elements should be re-connected after fading out a model element
remains fuzzy.

3.3.3 Restricting Choices in Workflow Patterns

For Dreiling et al. [59] process configuration means restricting the choices a user
has when executing a business process. For that reason, they examine the list

3.4. Conclusions 63

of control-flow workflow patterns [11] for the choices these patterns incorporate.
For eight workflow patterns, Dreiling et al. provide a set of configuration op-
tions restricting the behaviors possible according to the original pattern. All
the suggested configuration options can be mapped to blocking of process parts,
to hiding of process parts, or to creating dependencies between process parts
through constraints. In particular, they suggest an optionality pattern basically
conforming to the hiding of behavior; they suggest configuration patterns for
exclusive choices, multi-choices, simple merges, and interleaved parallel rout-
ings which all use the blocking mechanisms; and they suggest a sequence inter-
relationship pattern which aims at the restriction of configuration opportunities
similar to the configuration constraints we suggested. Dreiling et al. describe
the configuration opportunities within their parallel split, synchronization, and
synchronizing merge patterns only vaguely, but it seems that these configuration
patterns also correspond to the blocking of certain process branches.

3.4 Conclusions

Process configuration means restricting the behavior depicted by a process
model. As behavior cannot be inhibited as long as it is not supposed to happen,
we analyzed in this chapter how new behavior is added to process models in
the first place. For this, we used concepts of inheritance of dynamic behavior.
Configuration of a process model then is the inverse of inheritance of dynamic
behavior.

The two mechanisms used to detect inheritance relations between process
models, blocking and hiding, are already defined in this inverse direction. Hence,
these are the tools for process configuration. We can use them to inhibit be-
havior at inflow ports of tasks, i.e. the moment tasks are usually triggered, and
at outflow ports of tasks, i.e. the moment a task completes and indicates the
results of its execution.

Nonetheless, not all process model configurations achieved through blocking,
hiding, and allowing the use of ports are both syntactically and semantically
valid. Therefore, configuration constraints have to limit the configuration space
of a process model to those configurations yielding a syntactically and seman-
tically valid process model. The basic process model, used as basis for any
process configuration should always be syntactically correct, but might incorpo-
rate mutually exclusive behavior. For an easy start of the adaptation process,
the configurable process model should come with a default configuration that
conforms to the configuration constraints and thus yields to an also semantically
valid process model.

Independent of the concrete process modeling notation used, the develop-
ment of a configurable process model thus always requires the development of a
basic process model which integrates all the variants of executing the particu-
lar process as well as configuration constraints ensuring that only valid process
models, i.e. valid combinations of these process variants, can be derived from the
basic process models. How these ideas can be implemented in a sophisticated

64 Chapter 3. Configuring Process Models

and practically used process modeling notation will be subject of the next chap-
ter in which we will develop configuration extensions to the workflow languages
of SAP WebFlow, BPEL, and YAWL by applying the concepts suggested in this
chapter.

Every great and deep difficulty bears in itself its own solution.
It forces us to change our thinking in order to find it.

Niels Bohr (1885–1962)

Chapter 4

Configurable Workflow

Languages

Defining configurable workflow nets according to the ideas presented in Chap-
ter 3 was straightforward due to the simple semantics of Petri net transitions. As
we have seen in Chapter 2, sophisticated workflow notations like SAP WebFlow,
BPEL, or YAWL use various advanced, parameterizable node types to address
the different workflow patterns in a simple, i.e. compact, way. Thus, adding
configuration opportunities to these more complex notations is not as easy as
for workflow nets. In this chapter we will therefore discuss how such advanced
workflow notations can be transformed into configurable workflow languages.
That means that we will apply the ideas from Chapter 3 (e.g., the usage of
configurable ports) to these more advanced notations.

However, while doing so, we will not always ask for identifying each and every
port that corresponds to a transition in the underlying LTS and hence for making
all these ports configurable. Instead, like the developers of workflow notations,
we are looking for a practically manageable, but still sound implementations of
configuration opportunities.

For demonstrating how this can be achieved, we will in the following outline
how the three workflow notations introduced in Section 2.5 (i.e. SAP WebFlow,
BPEL, and YAWL) can be transformed into configurable workflow languages.
This chapter starts with sketching how SAP WebFlow can be made configurable.
Its block structure enables a very direct application of the configuration tech-
niques of allowing, hiding, and blocking behavior. Next, we will have a look
at BPEL to which we can add process configuration in a very similar way as
we do for SAP WebFlow, although some additional configurable ports can be
identified here. SAP WebFlow and BPEL will already give us a general feeling
on how to add configurability to workflow languages.

66 Chapter 4. Configurable Workflow Languages

In a third step, we will then use YAWL to precisely define a configuration
extension for a concrete workflow language. We treat YAWL in a more thor-
ough manner because of its extensive workflow pattern support, because both
the YAWL notation and its semantics are formally defined, as well as because
an open-source workflow system is available for YAWL which allows for an im-
plementation of our ideas. Hence, in the third part of this chapter we will not
only sketch, but formally define the configuration extension to YAWL, and we
will also provide a transformation algorithm which allows executing configured
YAWL models within the YAWL workflow engine.

Independent of the approach suggested in Chapter 3, other researchers have
already defined a number of configuration extensions for process modeling lan-
guages. In this chapter’s related work section we will therefore analyze in which
ways our ideas for defining configuration extensions can already be found within
these extensions. The chapter ends with drawing some general conclusions on
the extendability of process modeling languages with configuration options.

4.1 C-SAP WebFlow

To develop a configuration extension for SAP WebFlow we follow the ideas we
introduced in Chapter 3. Thus, we will first identify the ports of the tasks in
SAP WebFlow followed by a discussion on how these ports can be configured.
Next, we will show how we can depict constraints on these configurations. The
introduction of a C-SAP WebFlow (configurable SAP-WebFlow) notation in this
section will then end with outlining the changes necessary in SAP’s workflow
engine to make the configuration extension usable in practice.

4.1.1 Identifying Ports

As discussed in Section 2.5.2 (pp. 40ff), SAP WebFlow models are block struc-
tured. In the simplest case a single step, e.g. an activity, represents a block.
However, whenever a step causes the branching of the control-flow (as a fork, a
condition, a user-decision, or any other step that contains different outcomes)
the branching of the control-flow is matched by exactly one corresponding join
and all elements until (and including) the matching join belong to the block
of the branching step. The elements in each of the branches represent then
sub-blocks of the branching block. This is depicted in Figure 4.1. The block
of the fork is highlighted in light grey. This block contains two sub-blocks, one
for each of the two branches, both highlighted in dark gray. The block of the
user-decision step Approve travel request branches again in three branches, each
containing a block for the particular activity.

Each block can be seen as a task which can contain several sub-tasks. Blocks
which contain sub-blocks are tasks on a higher level of abstraction compared to
their sub-blocks. The sub-blocks can — as the Approve travel request step in
Figure 4.1 — again contain sub-blocks which are then on an even lower level of
abstraction. In any case, each block contains just one unique input arc and one

4.1. C-SAP WebFlow 67

Workflow
Started
Manually

RejectedChangeApproved

Travel
Request
Created

Event occured

YesNo

Wait for
event 'Trip
changed'

Approve
travel
request

Set trip
status to
approved

Change
trip

Enter and
send
message

1 from 2

Travel
request
approved?

Send mail:
Request
approved

Workflow
completed

Figure 4.1: SAP WebFlow’s block structure.

unique output arc, i.e. there is single entry and a single exit to/from the block.
These are thus the ports through which the block, and thus the corresponding
task can be triggered or completed. For that reason, let us call the inflow into
a block an input port and the outflow an output port.

The block on the highest level of abstraction is the block of the complete
workflow itself. It is the only block which can be triggered in multiple ways as it
cannot only be triggered by a manual start of the workflow but also by (various)
events which are linked to the workflow block. For example, the workflow from
Figure 4.1 cannot only be triggered manually, but also automatically as soon
as the event occurs which signalizes the creation of a travel request. Similarly,
events can also be linked to a workflow block to terminate it or to re-start it.
Thus, according to our definition of a port from Chapter 3, each of these links
connecting events to the workflow block can also be seen as a port to trigger
this block. As these ports have some different characteristics from the input
and output ports of a block, let us call them event ports. In the same way, we
also call the linkage between events and wait for event steps and between event
creator steps and events event ports.

In total, we therefore distinguish input ports, output ports, and event ports
in a C-SAP WebFlow notation.

68 Chapter 4. Configurable Workflow Languages

4.1.2 Port Configuration

In Chapter 3 we realized that the use of a task’s inflow port can be configured
as allowed, as hidden or it can be blocked, while the use of outflow ports can
only be allowed or blocked. For the input ports of blocks in SAP WebFlow we
can apply the possible inflow port configurations in a straightforward manner.
If using the input port of a block is allowed, cases of the particular process can
normally enter the block, i.e. the corresponding step can be executed. If the
input port is configured as hidden, a case entering the block is directly forwarded
to the unique output port of the block, bypassing all the content of the block.
If a block’s unique input port is blocked, the case cannot enter the block at all
and needs to continue via alternative branches of the workflow.

For example, let us have a look at Figure 4.2. It depicts a basic process
model which combines the process from Figure 4.1 with another travel approval
workflow template provided in SAP WebFlow that allows for an automatic ap-
proval of travel requests (accessible in SAP WebFlow as workflow WS12500021).
In the example, we allow for the entering of cases into most blocks, but we block
the input port of the Change trip activity (A in Figure 4.2) and we hide the
block labeled Travel request approved? (B). Thus, by blocking the Change trip
step the corresponding block is removed from the workflow, whereas the hid-
ing of the Travel request approved? step results in skipping this whole block
including the sub-block of the Send mail: Request approved step. Cases are for-
warded directly to the block’s output port which means here that the workflow
completes immediately after the join condition of the fork is fulfilled.

As the output port of a block is unique, each case entering a block must be
able to leave the block via this output port. Thus, a blocking of the output port
is not practical as long as cases are able to enter the block. Only if the input port
is blocked, the output port can be blocked as well. Such a blocking is however
irrelevant because if no cases can arrive at an output port, its configuration has
no influence on the process execution anyway. In addition, we already showed
in Chapter 3 that hiding of an output port is not really feasible either because
the path to the next block does not contain any tasks which could be skipped.
If any subsequent block should be hidden, this should rather be done on the
subsequent block’s input port1. We can therefore assume that the use of all
output ports in an C-SAP WebFlow model is always allowed and hence we
consider the configuration of output ports as practically irrelevant.

In SAP WebFlow the triggering of a workflow through an event requires
the activation of a link between the event and the workflow. Hence, the SAP
WebFlow system already supports the activation and deactivation of such a
link. This corresponds to allowing or blocking the particular event port as we
require for the configuration of these ports. Although a triggering event port is
an inflow port, hiding of such a port is not necessary: it would basically mean
skipping the block of the whole workflow without performing any tasks. Thus,

1To hide a series of blocks, there is an alternative way to using just one configuration port:
SAP WebFlow provides a block step into which a sequence of blocks can be encapsulated. In
this way, only one input port needs to be hidden.

4.1. C-SAP WebFlow 69

Change Approved

Automatically Approve Travel Request Manager must approve travel request

No

Wait for

event 'Trip

changed'

Approve
travel

request

Set trip
status to

approved

Change

trip

Enter and

send
message

Travel
request

approved?

Rejected

Set trip

status to

approved

Workflow
Started

Manually

Travel
Request

Created

1 from 2

Send
mail:

Request

approved

Yes

Workflow

completed

Allowed

Blocked

Hidden

Criteria for
Automatic

Approval

Event Occured

Figure 4.2: The combined workflow template of SAP’s travel approval workflow template
(WS20000050) and the automatic approval template (WS12500021), configured as the auto-
matic approval workflow.

the same behavior can be achieved by hiding the corresponding event creator
step, i.e. the step in another workflow which triggers the event that activates the
particular link. Terminating event ports for wait-for-event steps and the event
ports of event creator steps are outflow ports. Even though terminating events
are externally triggered, they enforce the termination of the case execution in
the particular block. Thus, while SAP WebFlow provides no support for the
configuration of input ports, it provides some functionality to allow or block
the use of event ports by offering the opportunity to activate or deactivate such
linkages.

The configuration depicted in Figure 4.2 corresponds exactly to the SAP
WebFlow template WS12500021 for the automatic approval of a travel request
which we merged with the template from Figure 4.1. By blocking the sub-block
of the Criteria for Automatic Approval step’s Automatically Approve Travel
Request outcome (see (C) in Figure 4.3) and instead enabling the Change trip
(A) and the Travel request approved? (B) blocks, the resulting process is exactly
the same approval workflow as the one that was shown in Figure 4.1 (compare
Figure 4.1 with Figure 4.3). Of course the workflow in Figure 4.3 still contains

70 Chapter 4. Configurable Workflow Languages

Change Approved

Automatically Approve Travel Request Manager must approve travel request

No

Wait for
event 'Trip

changed'

Approve
travel
request

Set trip

status to

approved

Change
trip

Enter and
send

message

Travel

request

approved?

Rejected

Set trip
status to

approved

Workflow

Started

Manually

Travel

Request

Created

1 from 2

Send

mail:

Request
approved

Yes

Workflow

completed

Allowed

Blocked

Hidden

Criteria for

Automatic

Approval

Event Occured

Figure 4.3: The combined workflow template configured such that it corresponds to SAP’s
travel approval workflow template (WS20000050).

the Criteria for Automatic Approval step. However, its only possible outcome
is the manual approval sub-block.

4.1.3 Configuration Constraints

As discussed, not all combinations of configuration decisions are feasible in prac-
tice. Some combination may lead to non-sound processes, e.g., because they
contain deadlocks, or they simply do not make any sense from a content point
of view.

The soundness criteria for workflow models as defined in Definition 2.18
(p. 24) require that cases must always have a chance to complete a workflow.
That means, they should never get stuck during the execution of a workflow. For
that reason, the input port of a block in SAP WebFlow can only be configured
as blocked if an alternatively executable process branch exists. In the example
from Figure 4.3, this is no problem in case of the (automatic) Set trip status
to approved step’s block (C in Figure 4.3) because alternatively the (manual)
Approve travel request step’s block (D) can be executed. It is however impossible
to block the input port of the Travel request approved? step’s block (B) as the

4.1. C-SAP WebFlow 71

workflow does not contain any alternative to it which leads to the completion of
the workflow. In the case of this particular fork step, it is theoretically possible
to block one of the two (dark grey) sub-blocks (E, F), but only because the
join requires just one of the two branches to complete. If the condition at the
join would have been 2 From 2 a blocking of one of the sub-blocks would have
made it impossible to later satisfy this condition and thus caused a deadlock.
Therefore, when configuring the sub-blocks of a fork, the condition at the joining
fork determines the maximal amount of sub-blocks that can be blocked.

Also from a content perspective the workflow of Figure 4.2 cannot be con-
figured freely. Although, it is, e.g., well possible to block or allow the use of the
Wait for event ‘Trip changed’ step’s block, hiding it would prevent the work-
flow from working correctly. It would cause a direct forwarding of cases to the
joining fork. Since only one of the two branches needs to complete, the join
condition would immediately be satisfied. Thus, the other branch would get
superfluous and canceled before any decision on the approval can be made. As
another example, the Approved sub-block of the Approve travel request step is
mandatory for this particular workflow (there is no point of having a travel ap-
proval process if it does not allow for the approval of the process). Hence, the
use of this block must be allowed in any configuration.

The setup of such constraints in first-order logic can be done exactly as
suggested in Chapter 3. That means, we can for example write C(Enter and
send short message) = allow to depict that the use of the particular block must
always be configured as allowed or C(Wait for event ‘Trip changed’) 6= hide for
the constraint that a block cannot be hidden.2 Such atomic statements can
then be combined, e.g., to formulate a constraint that if the Change trip block
is blocked then the block Travel request approved? must be hidden (C(Change
trip) = block ⇒ C(Travel request approved?) = hide). To test if a configuration
fulfills all such constraints, the constraints are concatenated using logical ∧
operators. Then, a SAT solver can be used to evaluate the constraints [121]. In
this way, the SAT solver identifies which blocks need to be bound to a certain
configuration value in order to fulfill the constraints. Thus, it identifies the
necessary configuration values from the constraint. Those blocks which are not
bound to a certain value are the blocks which really are configurable.

4.1.4 Process Enactment

The current SAP WebFlow templates allow for an easy integration of predefined
workflow templates into a running SAP system by just assigning the relevant
resources to the steps and activating the triggering events. To enable such an
easy activation for configurable workflow templates, each template has to have
a default configuration. A default configuration can be any configuration satis-
fying the constraints specified for the workflow. For example, the configuration
of Figure 4.2 representing the automatic approval template could be the default

2Note, that in a real implementation scenario we would rather use a unique block identifier
than a step’s name, as step names can occur multiple times in a single workflow.

72 Chapter 4. Configurable Workflow Languages

configuration for the combined travel approval workflow template. When ac-
tivating the triggering event, the workflow corresponding to this configuration
would automatically be enabled. However, if it is for example desired that it
can be asked for a change to the travel request, it is sufficient to assign the
responsible resource to the Change trip step and allow the use of the currently
blocked port. Without any modeling effort the new configuration of the work-
flow template can be used.

As configured templates can easily be transformed into executable workflow
models according to the current SAP WebFlow notation, it is not necessary to
change SAP’s WebFlow engine to run workflows derived through the suggested
configurable extension of SAP WebFlow. Instead, an implementation of the sug-
gested approach in the context of SAP’s enterprise system would solely require
(1) an extension of the user interface that depicts the configuration options as
well as allows managing configurations, (2) a tool that checks the fulfillment
of the configuration constraints to prevent invalid configurations, and (3) an
implementation of the transformation algorithm to derive configured workflow
models from configurations.

4.2 C-BPEL

As a second workflow language to which we add configuration, let us have a brief
look at BPEL. To add configuration options to BPEL, it is again necessary
to first identify the ports in the BPEL notation and define how they can be
configured before constraints among configuration decisions and their executions
can be discussed.

4.2.1 Ports and their Configurations

BPEL uses two ways to express the control-flow of processes. On the one hand,
BPEL activities are block structured, similar to steps in SAP WebFlow. On the
other hand outgoing and incoming control links can be used to break this block
structure (see Section 2.5.3, pp. 42ff).

Within the block structure BPEL activities have the same unique input ports
and the same unique output ports as the steps of SAP WebFlow. Thus, we can
allow, block, or hide the use of input ports of activity blocks in the same way as
we have suggested for SAP WebFlow and we do not need to configure the output
ports. For example, Figure 4.4 shows a configuration for the BPEL process
from Figure 2.12. In Line 17 the invoke activity getTicket is extended with
a configuration parameter, showing that the particular block is configured as
blocked. In the same way, the invoke activity orderCard in Line 20 is configured
as hidden.

Control links allow for expressing control-flow relations that break the block
structure of BPEL activities like sequence, flow, etc. To overcome the block
structure, an activity not only triggers the unique output port when it com-
pletes, but it can also activate a number of outgoing control links. Which

4.2. C-BPEL 73

1 <process ...>
2 <sequence ...>
3 <flow ...>
4 <links>
5 <linkName="trainTicket"/><linkName="reductionCard"/><linkName="hotel"/>
6 </links>
7 <invoke partner="BookingEngine" operation="requestTravel"
8 inputVariable=... outputVariable="travelNeeds" ...>
9 <source linkName="trainTicket"

10 transitionCondition="bpws:getVariableData(travelNeeds, trainReq)=true"

11 configuration="blocked" />
12 <source linkName="reductionCard"
13 transitionCondition="bpws:getVariableData(travelNeeds, cardReq)=true"/>
14 <source linkName="hotel"
15 transitionCondition="bpws:getVariableData(travelNeeds, hotelReq)=true"/>
16 </invoke>

17 <invoke partner="TicketProvider" operation="getTicket" configuration="blocked" ...>

18 <target linkName="trainTicket"/>
19 </invoke>

20 <invoke partner="CardProvider" operation="orderCard" configuration="hidden" ...>

21 <target linkName="reductionCard"/>
22 </invoke>
23 <invoke partner="HotelReservationSystem" operation="reserve" ...>
24 <target linkName="hotel"/>
25 </invoke>
26 </flow>
27 <flow ...>
28 <links>
29 <linkName="creditCardPayment"/><linkName="cashPayment"/>
30 </links>
31 <invoke partner="PaymentEngine" operation="getPaymentDetails"
32 inputVariable=... outputVariable="paymentDetails" ...>
33 <source linkName="creditCardPayment"
34 transitionCondition="bpws:getVariableData(paymentDetails, card)=true"/>
35 <source linkName="cashPayment"
36 transitionCondition="bpws:getVariableData(paymentDetails, cash)=true"/>
37 </invoke>
38 ...
39 </flow>
40 ...
41 </sequence>
42 </process>

Figure 4.4: The travel booking process from Figure 2.12 extended with configurations.

control links are activated depends on a condition that can be specified for
each outgoing control link separately. For example, the invoke operation request
travel, specified in Line 7 of Figure 4.4, incorporates three such outgoing control
links, named trainTicket, reductionCard, and hotel. Each of them is activated
if the corresponding parameter is true, i.e. the hotel link is only activated if the
hotelReq parameter is true (Line 14), the reduction card link is activated if the
cardReq parameter is true (Line 12) etc. Thus, outgoing control links are in an
OR-split relation and any combination of links can be activated.

According to the underlying LTS this means that each possible combination
results in a different state. Hence, in a direct application of the port concept
based on the LTS, we would need to introduce a dedicated link port for each
combination of outgoing links that can be activated at the same point in time.

However, as we said in the beginning of this chapter, practically such an

74 Chapter 4. Configurable Workflow Languages

enormous amount of configuration ports is often not manageable. For that
reason, we suggest addressing only a subset of all possible ports as an alternative
here:3 We simply say that each link depicts a dedicated outgoing link port
whose use can be allowed or blocked. Although, it is in this way, e.g., impossible
to say that tickets and reduction cards can only be ordered separately but not
together, this solution is quite natural for anyone familiar with BPEL: If the use
of such a port is allowed, the activation of the particular link is subject to the
corresponding condition. If the use of the port is blocked, the link of the port
can never be activated, i.e. a continuation of the process through the link will
always be inhibited. This, e.g., applies to the requestTravel invoke activity’s
trainTicket link in Figure 4.4, lines 9–11. As it is configured as blocked, it
cannot be activated anymore, even if the condition that the variable trainReq is
true would be fulfilled.

Incoming control links ensure that activities can only be executed if they are
on the one hand triggered through the structure of the workflow, and if all the
incoming links have been activated on the other hand. Therefore, all incoming
links and the input port of the activity synchronize the workflow in the same
way as an AND-join. For specifying ports this means that, even if we consider
incoming links in addition to the input port according to the block structure, an
activity only has a single input port which can be configured. Thus, this input
port is the same input port as the one based on the block structure mentioned
before whose use can be allowed, blocked, or hidden.

In a C-BPEL notation, each activity block can therefore be configured either
as allowed, as blocked, or as hidden, and each of the outgoing links of activity
blocks can be configured as either allowed or blocked.

4.2.2 Executability of BPEL Configurations

Configuration requirements for C-BPEL can be specified and evaluated using
boolean expressions, exactly as we sketched for C-SAP WebFlow. Hence, we
skip elaborations on configuration constraints in the context of C-BPEL here.
Instead, we focus on how a BPEL specification that behaves according to the
specified configurations can be constructed from the configuration decisions.
Thus, we have to analyze how the model has to change if an input port is
configured as hidden, if an input port is configured as blocked, and if an outgoing
link port is blocked.

Dealing with activities with input ports that are configured as hidden is
straightforward. As the corresponding activity needs to be skipped during pro-
cess execution, the activity is simply replaced with a dummy invoke activity,
which completes without executing any work.

Adapting the process to reflect blocked activities is in principle similarly
straightforward. All activities with blocked input ports and their sub-blocks
should be completely eliminated from the workflow. However, it is important

3Note that we will discuss the implementation of a configuration extension which addresses
all the ports of an OR-split according to the LTS in the context of YAWL in the next section.

4.2. C-BPEL 75

1 <process ...>
2 <sequence ...>
3 <flow ...>
4 <links>
5 <linkName="trainTicket"/><linkName="reductionCard"/><linkName="hotel"/>
6 </links>
7 <invoke partner="BookingEngine" operation="requestTravel"
8 inputVariable=... outputVariable="travelNeeds" ...>
9 <source linkName="reductionCard"

10 transitionCondition="bpws:getVariableData(travelNeeds, cardReq)=true"/>
11 <source linkName="hotel"
12 transitionCondition="bpws:getVariableData(travelNeeds, hotelReq)=true"/>
13 </invoke>
14 <invoke operation="dummy">
15 <target linkName="reductionCard"/>
16 </invoke>
17 <invoke partner="HotelReservationSystem" operation="reserve" ...>
18 <target linkName="hotel"/>
19 </invoke>
20 </flow>
21 <flow ...>
22 <links>
23 <linkName="creditCardPayment"/><linkName="cashPayment"/>
24 </links>
25 <invoke partner="PaymentEngine" operation="getPaymentDetails"
26 inputVariable=... outputVariable="paymentDetails" ...>
27 <source linkName="creditCardPayment"
28 transitionCondition="bpws:getVariableData(paymentDetails, card)=true"/>
29 <source linkName="cashPayment"
30 transitionCondition="bpws:getVariableData(paymentDetails, cash)=true"/>
31 </invoke>
32 ...
33 </flow>
34 ...
35 </sequence>
36 </process>

Figure 4.5: The travel booking process derived from the configuration of Figure 4.4.

to note that this results in semantic problems when sub-blocks of a sequence or
a while loop are blocked. If these sub-blocks are removed, the BPEL semantics
imply that the execution continues with the next task in the sequence or that
the workflow contains an empty loop. Thus, the activity’s execution would not
be blocked completely, but rather skipped — as if we would have configured the
activity as hidden. An obvious solution to prevent this, would be the introduc-
tion of new semantics in line with the configuration idea that could prevent this.
However, then the blocking of an activity in a sequence or a loop would result
in a deadlock or livelock which is undesired behavior as well. Hence, blocking
is generally considered as not possible for the input ports of sub-blocks of these
two BPEL activity types. Instead, the whole enclosing sequence or while activ-
ity should be blocked. Blocked outgoing link ports are simply removed from the
workflow. In this way they cannot be activated anymore and are thus effectively
blocked.

Figure 4.5 shows the resulting BPEL process for our example where the
link to the getTicket activity as well the activity itself are removed, and the
orderCard activity is replaced by a dummy activity (see Line 14).

The straightforward definitions of ports and transformation rules of C-BPEL,

76 Chapter 4. Configurable Workflow Languages

as well as the minor modification to the BPEL schema necessary for this, allow
for an easy implementation of process configuration within BPEL tools. For
this, the process definition tools could, e.g., provide a context menu for config-
urable items which allows for setting the configuration values. Furthermore, the
definitions tools should test if the desired configuration decisions fulfill the con-
figuration constraints. If not, the decisions should be automatically prevented.
BPEL workflow engines would need to apply the depicted transformation rules
when loading C-BPEL models. In this way, the execution engine itself would
be provided with a traditional BPEL process. Thus, it would not be required
to change the execution engine itself at all.

4.3 C-YAWL

While we rather informally described the C-SAP WebFlow and C-BPEL no-
tations, let us now discuss and define a configuration extension to YAWL, i.e.
C-YAWL, in detail. Since YAWL supports more workflow patterns than most
languages (including SAP WebFlow and BPEL), it is worthwhile to study this
language in more detail. This section is divided in five subsections. In the first
three subsections we will analyze how we can define a configuration extension
for EWF-nets as the notation for creating process models in YAWL. At first,
configuration ports are identified, as well as the concrete configuration options
available here. Secondly, a notation to specify configuration constraints over
these configuration opportunities is defined, before these two components are
combined into a notation for configurable EWF-nets (C-EWF-nets) in the third
subsection. In the fourth subsection, the configurability of the hierarchy among
the various C-EWF-nets will be analyzed. Last, an algorithm that transforms
configured YAWL models into traditional YAWL models is shown, along with
an outline of its implementation in the YAWL software system.

4.3.1 Configurable Elements of EWF-Nets

To determine the configurable elements of EWF-nets, the flow of cases through
the tasks of EWF-nets needs to be analyzed. Obviously, in EWF-nets the arcs
surrounding tasks depict how tokens can flow into and out of the tasks. However,
the execution of a task is only enabled if the tokens in the pre-conditions of the
task match the task’s join behavior. A task with an AND-join behavior (as task
Reserve in Figure 2.10, p. 37) can only be enabled and executed if tokens are
waiting at all conditions preceding the task. That means, in a similar way as the
blocks in SAP WebFlow or BPEL, this task contains only a single port through
which it can be enabled. However, in YAWL this is different for a task with an
XOR-join behavior. Such a task can be enabled via every arc pointing at it.
That means that such a task has a dedicated port for each of these arcs. Let us
use the EWF-net in Figure 4.6 (which is the main EWF-net from Figure 2.10,
p. 37) as an example to visualize this. For example, the task Send documents
in Figure 4.6 can be triggered either by a token in condition a4 or by a token

4.3. C-YAWL 77

Send
documents

Receive
order

a4

Select

payment
method

b4

Book
train

ticket

Book

reduction
card

Book

hotel

Collect

documents

Credit card
payment

Cash

payment

a1

b1

c1

a2

b2

c2

a3

b3

Cancel
booking

Figure 4.6: The main EWF-net from the booking process depicted in Figure 2.10.

in condition b4. Thus, it can be enabled through two different ports. A task
with an OR-join behavior (like the task Select payment method in Figure 4.6) is
only enabled if there is at least one token on one of its input conditions and if it
is impossible that further tokens can arrive. Thus, similar to the AND-join, it
synchronizes all branches. We therefore assign only a single port to the OR-join
even though it can be enabled via any combination of input branches. All ports
through which a task in an EWF-net can be enabled are called input ports in
the following.

Definition 4.1 (Input ports)
Let EWF = (K , i,o,T ,F , split , join, rem,nofi) be an EWF-net. Then

• portsXOR
in (EWF) = {(t, {c}) ∈ T × IP(K) | join(t) = XOR ∧ c ∈ •t} are

the input ports for all tasks with an XOR-join behavior,

• ports∧

in(EWF) = {(t, •t) ∈ T × IP(K) | join(t) = ∧} are the input ports
for all tasks with an AND-join behavior,

• ports∨

in(EWF) = {(t, •t) ∈ T × IP(K) | join(t) = ∨} are the input ports
for all tasks with an OR-join behavior,

• ports in(EWF) = portsXOR
in (EWF) ∪ ports∧

in(EWF) ∪ ports∨

in(EWF)
are all input ports of EWF, and

• for t ∈ T, ports in(t) = ports in(EWF) ∩ ({t} × IP(K)) are all input ports
of the task t.

Looking at the split behavior of tasks, we find similar semantics. If a task with an
XOR-split behavior completes, it can choose between all outgoing arcs through
which it will release the case. The task Select payment method from Figure 4.6
can, e.g., release a token either to condition a3 or to condition a4. That means,
each of the outgoing arcs from the task to the succeeding conditions has its
own port. A task with an AND-split behavior like the Start search task releases
tokens always via all outgoing arcs, i.e. it is only using a single port. Tasks with
an OR-split behavior can release tokens to post-conditions via any combination

78 Chapter 4. Configurable Workflow Languages

of outgoing arcs. This means for the task Receive order from Figure 4.6 that
after its completion it can put tokens either in a1, in b1, in c1, in a1 and b1, in
a1 and c1, in b1 and c1, or into all three of these conditions. According to the
underlying LTS each of these ways tokens can be released represents a different
state change. Hence, a port exists for each of these combinations.

Ports through which tokens are released to post-conditions are called output
ports in the following.

Definition 4.2 (Output ports)
Let EWF = (K , i,o,T ,F , split , join, rem,nofi) be an EWF-net. Then

• portsXOR
out (EWF) = {(t, {c}) ∈ T × IP(K) | split(t) = XOR ∧ c ∈ t•} are

the output ports for all tasks with an XOR-split behavior,

• ports∧

out(EWF) = {(t, t•) ∈ T ×IP(K) | split(t) = ∧} are the output ports
for all tasks with an AND-split behavior,

• ports∨

out(EWF) = {(t, cs) ∈ T × IP(K) | split(t) = ∨ ∧ cs ⊆ t• ∧ cs 6= ∅}
are the output ports for all tasks with an OR-split behavior,

• portsout(EWF) = portsXOR
out (EWF) ∪ ports∧

out(EWF) ∪ ports∨

out(EWF)
are all output ports of EWF, and

• for t ∈ T, portsout(t) = portsout(EWF) ∩ ({t} × IP(K)) are all output
ports of the task t.

Each input port can be configured as either allowed, as blocked, or as hidden.
This determines if the corresponding task can generally be triggered through
the particular port or not. For executing a task at run-time, it is therefore
necessary that the use of one of the ports through which the task is enabled is
configured as allowed, and that the particular task is enabled through tokens in
the corresponding pre-conditions.

The configuration of an output port determines which subsequent (post-)
conditions can be marked with tokens after a task has been completed. In line
with our definition of outflow ports in Chapter 3 its use can be configured either
as allowed or as blocked only.

Figure 4.7 provides two example configurations of the input and output ports
for the EWF-net from Figure 4.6. The travel agency depicted in Figure 4.7a
only sells reduction cards to those clients buying a train ticket at the same time.
Train tickets and hotel reservations can also be booked independently. For that
reason the output ports of the Receive order task which theoretically allow for
booking the reduction card without booking a train ticket are blocked (indicated
by the ‘Do not enter’-signs labeled b and b, c at the bottom-right corner of the
task). The use of the other five output ports, representing all other possible
booking combinations, is allowed (indicated by the arrows at the bottom-right
corner of the task). Only if the customer pays by credit card, the documents
can be sent to him. If the customer pays in cash, the documents cannot be sent.
Then he has to collect them. This policy is enforced by blocking the input port
b of the Send documents task (indicated by a ‘Do not enter’-sign at the bottom-

4.3. C-YAWL 79

a)

Send

documents

Receive

order

a4

Select
payment

method

b4

Book

train
ticket

Book
reduction

card

Book
hotel

Collect
documents

Credit card

payment

Cash
payment

a1

b1

c1

a2

b2

c2

a3

b3

Cancel

booking

a

b

c

a,b

a,c

b,c

a,b,c

a

b

b)

hiddenallowed blocked

Send

documents

Receive

order

a4

Select

payment
method

b4

Book
train

ticket

Book

reduction
card

Book

hotel

Collect

documents

Credit card

payment

Cash

payment

a1

b1

c1

a2

b2

c2

a3

b3

Cancel

booking

a

b

Figure 4.7: The booking process from Figure 4.6, configured to the requirements of (a) a
travel agency and (b) an internet shop.

left corner of the task). The use of all other tasks in the model is allowed, i.e.
all their ports are configured as allowed.4

The process of an internet shop depicted in Figure 4.7b is based on the same
basic process model, but uses a different port configuration. It sells reduction
cards also without train tickets, payments are only possible by credit card, and
documents cannot be collected. In addition, the internet shop does not allow
users to cancel their bookings. For that reason, all output ports of the Receive
order task are configured as allowed, the input port of the Cancel booking task
is blocked, output port b of the Select payment method task is blocked, and all
input ports of the Collect documents task are blocked. In addition, the Select
payment method task’s input port is configured as hidden (indicated by the

4Note that whenever all input or output ports of a task are configured to the same value,
we just show a single symbol without port names. For example, see the output ports of task
Select payment method.

80 Chapter 4. Configurable Workflow Languages

‘jumping’ arrow at the bottom-left corner of the task) because the internet shop
only offers a single payment method: A selection simply does not need to be
made.

In addition to the tokens consumed by a task via the input ports, a task in
YAWL can also consume all tokens from a cancelation region. For this reason,
we decided to define a cancelation port per task in addition to the input ports.

Definition 4.3 (Cancelation ports)
Let EWF = (K , i,o,T ,F , split , join, rem,nofi) be an EWF-net.
Then portsrem(EWF) = dom(rem) are all the cancelation ports of EWF.

The consumption of tokens from a cancelation region is similar to the consump-
tion of tokens by an OR-join. During the task’s execution always all available
tokens are consumed from the cancelation region. However, tokens in the cance-
lation region cannot trigger a task on their own. The triggering still happens via
the input ports, and the enabling of a task does not even require the availability
of tokens in the cancelation region. If the cancelation port’s use is configured as
allowed, tokens are removed from the cancelation region; if it is blocked, they
are not. The decision whether a task is executed or skipped remains determined
by the input port configuration. This means, the cancelation port is only a re-
finement of the input port — the inflow port according to the underlying LTS
is a combination of an input port with the cancelation port. This is also the
reason why only input ports can be configured as hidden, but cancelation ports
cannot.

To depict the configuration of cancelation ports, we use the same pictures of
an arrow for cancelation ports which are configured as allowed to be used and a
‘Do not enter’-sign for blocked cancelation ports (see icon on to the arc leaving
the top of the task Cancel booking in Figure 4.7).

If a task allows for the start of multiple instances, it in fact combines several
tasks of the process in a single task. To implement this behavior, we could, e.g.,
introduce an internal OR-split (see Figure 4.8) that enables the instances of the
task. Of course, the output ports of the OR-split can be configured as allowed
to be used or as blocked. If some ports of this OR-split are blocked, this might
decrease the maximal number of instances that can be started or increase the
minimal number of instances that have to be started. For example, the task
depicted in Figure 4.8 originally allowed a minimum of a single instance of the
task and a maximum of three instances of the task to be started. In the depicted
configuration the minimal number of instances that can be started is increased
to two. For this, all ports of the task that creates the individual instances
and that are connected to a single subsequent condition only are blocked. In
this way, at least two instances must be started in any execution of the Create
instances task. The maximal number of instances that can be started is also
reduced to two. For this, that output port of the Create instances task that
allows starting all instances is also blocked. Therefore, instead of saying that
instances are blocked, we will refer to increasing the minimum number
of instances to be started and decreasing the maximum number of
instances to be started in the following. If a task allows for the dynamic

4.3. C-YAWL 81

Create
Instances

Threshold
Instance

2

a1

a2

b1

b2

Instance
1

Instance
3

a3 b3

1
2

3

1,2
1,3
2,3

1,2,3

11

Figure 4.8: A multiple instance task with one to three instances implemented: the configu-
ration restricts the behavior to the start of exactly two instances.

creation of instances, the task has an additional internal task which creates new
instances. By blocking its input port, we restrict a task with a dynamic
creation of task instances to a static creation of task instances.

When configuring EWF-nets there is also the opportunity to reduce the
threshold value of the number of instances that have to be completed to consider
the whole task as being completed. This behavior — also known as N-out-of-M-
join pattern [11] — can be implemented in an EWF-net by using several AND-
joins instead of one OR-join for joining the multiple instances, each connected
to the required minimal number of completed instances. On firing, such an
AND-join could cancel all remaining instances. Figure 4.9 provides an example
for this behavior. Originally, the task required the creation of three instances,
but only two instances had to complete to consider the task as completed. By
blocking the input ports of those AND-joins that require only two instances to
be completed, we increase the threshold value of the task to three. Thus, also
the increase of the threshold value of a multiple instance task is possible by
means of configuration.

To formalize these four types of configuration opportunities we use four
configuration functions, one for each type. The configuration functions assign
the described configuration decisions to the ports of EWF-nets. To allow for
the configuration of selected parts of an EWF-net, we define the configuration
functions as partial functions. Then a configuration does not need to configure
every port in the EWF-net.

Definition 4.4 (EWF-net Configuration)
Let EWF = (K , i,o,T ,F , split , join, rem,nofi) be an EWF-net, ports in(EWF)
be the input ports of EWF, and portsout(EWF) be the output ports of EWF.
Then CEWF = (Cin , Cout , Crem , Cnofi) is a configuration of EWF with

82 Chapter 4. Configurable Workflow Languages

Create
instances

Threshold
3

Instance
2

a1

a2

b1

b2

Instance
1

Instance
3

a3 b3

Threshold

2

Threshold
2

Threshold
2

[3, 3, 2 , static]1

1
2

3

1,2
1,3
2,3

1,2,3

Figure 4.9: Increasing the threshold value from two to three within a task with three
instances to be started (example implementation).

• Cin defined as a partial function determining configurations for the input
ports of tasks:

Cin : ports in(EWF) 6→ {allow , block , hide}

• Cout defined as a partial function determining configurations for the output
ports of tasks:

Cout : portsout(EWF) 6→ {allow , block}

• Crem defined as a partial function determining configurations for the can-
celation regions of tasks:

Crem : portsrem(EWF) 6→ {allow , block}

• Cnofi defined as a partial function determining configurations for the mul-
tiplicity of tasks:

Cnofi : dom(nofi) 6→
(

N
0 ×N

0,∞ ×N
0,∞ × {restrict , keep}

)

such that

for all t ∈ dom(Cnofi) : (Cnofi(t) = (min,max , thres, dyn) and

π1(nofi(t)) + min ≤ π2(nofi(t)) − max .

∁EWF denotes the set of all such configurations of EWF.

4.3. C-YAWL 83

Similar as for EWF-nets, we use π1(Cnofi(t)) to refer to the increase of the
minimal number of instances that have to be created for task t, π2(Cnofi(t)) to
refer to the decrease of the maximal number of instances that can be created,
π3(Cnofi(t)) for the increase of the threshold value, and π4(Cnofi(t)) to indicate
whether the creation of instances for the task t should be restricted to a static
creation of instances only.

To be able to transform an EWF-net into a lawful, configured EWF-net, the
configuration functions must be defined on every port, i.e. they must be total
functions instead of partial functions. If all four configuration functions are
total functions, we call the configuration complete.

Definition 4.5 (Complete Configuration)
Let EWF = (K , i,o,T ,F , split , join, rem,nofi) be an EWF-net. Then the con-
figuration CEWF of EWF is complete if and only if

• dom(Cin) = ports in(EWF),

• dom(Cout) = portsout(EWF),

• dom(Crem) = portsrem(EWF), and

• dom(Cnofi) = dom(nofi).

∁
complete

EWF denotes the set of all complete configurations of EWF.

When configuring a process, we most of the time do not want to configure all
ports explicitly, but rather only those ports that deviate from a standard con-
figuration. Then it is necessary to combine the partial, individual configuration
with a default configuration to form a complete configuration. To form complete
(or at least ‘more complete’) configurations out of incomplete configurations the
domains of the configuration functions from the first configuration have to be
extended with the domains of the configuration functions from the second con-
figuration. If, for example, a configuration has only configuration values for
the ports of the task Select payment method from Figure 4.7 while a second
configuration has configuration values for the ports of the tasks Receive order
and Book train ticket, the combined configuration has configuration values for
all three tasks. In case both configurations contain a configuration value for
a particular port, the value of the first configuration is used. Therefore, the
resulting, combined configuration depends on the order of the input configu-
rations which means, combining configurations is not a symmetric operation.
But, in this way, combining incomplete configurations with complete configu-
rations always creates complete configurations. The configuration values of the
incomplete configuration then overwrite the ones of the complete configuration
— as we need it when we want to add individual configuration decisions to a
default configuration.

Definition 4.6 (Combining configurations)
Let CX = (CXin , C

X
out , C

X
rem , C

X
nofi) and CY = (CYin , C

Y
out , C

Y
rem , C

Y
nofi) be two (par-

tial) configurations of EWF-nets. Then CX and CY can be combined and gen-
erate configuration CX ⊕ CY = (CZin , C

Z
out , C

Z
rem , C

Z
nofi) where

84 Chapter 4. Configurable Workflow Languages

• dom(CZin) = dom(CXin) ∪ dom(CYin) and

CZin(p) =

{

CXin(p) if p ∈ dom(CXin)

CYin(p) else, i.e. p ∈ dom(CYin) \ dom(CXin),

• dom(CZout) = dom(CXout) ∪ dom(CYout) and

CZout(p) =

{

CXout(p) if p ∈ dom(CXout)
CYout(p) else, i.e. p ∈ dom(CYout) \ dom(CXout),

• dom(CZrem) = dom(CXrem) ∪ dom(CYrem) and

CZrem(p) =

{

CXrem(p) if p ∈ dom(CXrem)

CYrem(p) else, i.e. p ∈ dom(CYrem) \ dom(CXrem),

• dom(CZnofi) = dom(CXnofi) ∪ dom(CYnofi) and

CZnofi(p) =

{

CXnofi(p) if p ∈ dom(CXnofi)

CYnofi(p) else, i.e. p ∈ dom(CYnofi) \ dom(CXnofi),

4.3.2 Configuration Requirements and Validity

Like for C-SAP WebFlow and for C-BPEL, also for C-YAWL not all configu-
rations make sense. For example, in the workflow from Figure 4.6 (p. 77), it is
impossible to book any travel without receiving a corresponding order. Hence,
it must be ensured that the Receive order task is always performed, i.e. the use
of its input port must always be configured as allowed. In the same way, it must
be ensured that if the customer has paid the booked travel, the documents are
either sent out or collected. That means, for each payment method at least
the use of one of the subsequent input port of the tasks Send documents and
Collect documents must be configured as allowed. Similarly, we cannot block
the input ports of the tasks Credit card payment and Cash Payment as long as
the customer can choose the corresponding payment method in task Select pay-
ment method. Otherwise, the case might deadlock in the conditions a3 or b3, i.e.
soundness would not be preserved. Hence, in fact, quite restrictive dependencies
exist among the configuration decisions for the individual ports.

To formulate such dependencies and restrictions of allowed configurations,
let us again use logical expressions. The logical expressions combine constraints
on the configuration of single elements of the EWF-net — the so-called atomic
requirements — by means of common logical operators and quantifiers. The
requirement that the use of the input port of the task Receive order must be
allowed is for example atomic and written as (in, (‘Receive order’ , {i}), allow).
The requirement that at least the use of one of the input ports of the task Send
documents or of the task Collect documents must be allowed after a credit card
payment has been made (i.e. from condition a4), is composed of two atomic
requirements, connected by a logical operator as

(in, (‘Send documents’ , {a4}), allow) ∨

(in, (‘Collect documents’ , {a4}), allow).

Definition 4.7 provides a list of all atomic requirements that can be imposed on
a configuration of an EWF-net.

4.3. C-YAWL 85

Definition 4.7 (Atomic configuration requirements)
Let EWF = (K , i,o,T ,F , split , join, rem,nofi) be an EWF-net, ports in(EWF)
be the input ports of EWF, and portsout(EWF) be the output ports of EWF.
Then

• req in = {in}×ports in(EWF)×{allow , hide, block} is the set of all atomic
requirements on the configurations of input ports,

• reqout = {out} × portsout(EWF) × {allow , block} is the set of all atomic
requirements on the configuration of output ports,

• reqrem = {rem} ×T × {allow , block} is the set of all atomic requirements
on the configuration of cancelation regions,

• reqnofi = {nofi}×T×(N0×N
0,∞×N

0,∞×{restrictable,non-restrictable})
is the set of all atomic requirements on the configurations of the multiplic-
ity of a task5 (maximal increase of the minimum, maximal decrease of
the maximum, maximal increase of the threshold for continuation, and if
restriction to static creation of instances is possible), and

• reqEWF = req in ∪ reqout ∪ reqrem ∪ reqnofi is the set of all atomic require-
ments for EWF.

To combine atomic requirements we allow the use of all the common logical
operators (¬,∧,∨,XOR,⇒,= etc.) as well as the use of the quantifiers ∀ and
∃ over elements of the configurable net, i.e. tasks, conditions, ports, etc. With
quantifiers, we enable the specification of requirements which have to hold for
the configurations of sets of model elements. In this way it is possible to specify
general requirements which are independent of a particular net.

We distinguish general requirements, which have to hold for every, or at
least a certain group, of EWF-nets, from specific requirements, which only
have to hold in a specific net. Specific requirements are typically content-driven.
Therefore, the example requirements provided above are specific requirements.

General requirements mainly ensure the construction of well-formed nets, i.e.
they ensure that the configured EWF-net can be transformed into a syntactically
valid EWF-net which also conforms to any applicable modeling guidelines like
the soundness of the resulting process model. Typically, general requirements
are content-independent and make extensive use of quantifiers. For example, the
requirement ‘each task of an EWF-net which can be enabled, i.e. which has at
least one allowed or hidden input port, must also have at least one output port
whose use is allowed’ would be a general requirement. It is necessary (but not
sufficient) to ensure the flow of tokens through the net and thus its soundness.
It can formally be specified as follows:

5Note that a configuration requirement on the number of instances specifies requirements
on all parameters of multiple instance tasks at once. However, when combining multiple of
such requirements through logical ∧ connectors, the strongest restriction is applied for each
of the parameters individually.

86 Chapter 4. Configurable Workflow Languages

∀t ∈ T :

(∃p∈portsin(t)(in, p, allow) ∨ (in, p, hide))

⇒ (∃p∈portsout (t)
(out , p, allow))

If all input ports of a task are blocked, then there will never be any inflow to
the task and consequently also no outflow. For that reason, we could formulate
the configuration requirement that if all input ports of a task are blocked also
all output ports must be blocked (although this is irrelevant from a behavioral
point of view):

∀t ∈ T :

(∀p∈portsin(t)(in, p, block))

⇒ (∀p∈portsout (t)
(out , p, block))

Using general requirements, it is also possible to impose requirements on condi-
tions although configuration is defined only on elements of tasks. For example,
to ensure the flow of tokens through the net, every token that flows into a con-
dition must also be able to flow out of it (unless it is in the final condition).
Therefore, the use of at least one subsequent port must be allowed or hidden
for such conditions:

∀c ∈ (K \ {o}) :

(∃(t1,cs1)∈portsout (EWF) c ∈ cs1 ∧ (out , (t1, cs1), allow)) ⇒

(∃(t2,cs2)∈portsin(EWF) c ∈ cs2∧

((in, (t2, cs2), allow) ∨ (in, (t2, cs2), hide)))

A requirement is fulfilled if it evaluates to true. To evaluate a requirement,
its atomic requirements have to be evaluated first. An atomic requirement is
fulfilled if the specific port or task addressed by the requirement is configured ac-
cordingly. For example, the requirement (in, (‘Receive order’ , {i}), allow) eval-
uates to true if the use of the particular port between the input condition i
and the task Receive order is configured as allowed, otherwise it evaluates to
false. In the same way requirements for hidden or blocked input ports, and
for output or cancelation ports whose use is allowed or blocked can be evalu-
ated. A requirement on the configuration of the number of task instances like
(nofi , ‘Book train ticket’ , (min,max , thres, dyn)) evaluates to true only if

• π1(Cnofi(t)) ≤ min,

• π2(Cnofi(t)) ≤ max ,

• π3(Cnofi(t)) ≤ thres, and

• dyn = non-restrictable ⇒ π4(Cnofi(t)) = keep.

4.3. C-YAWL 87

After all the atomic requirements within a composed requirement are evaluated
to true or false, the composed requirement can be evaluated as in propositional
logic6. Of course, the evaluation of an atomic requirement is only possible if a
configuration is defined for the element of the EWF-net that is addressed by the
atomic requirement. For that reason, we assume complete configurations here.7

We say that a complete configuration is valid for an EWF-net, if the configu-
ration fulfills all configuration requirements that are imposed on the EWF-net,
i.e. if the concatenation of all requirements can be evaluated to true. Thus, this
concatenation conforms to the process constraint ensuring the correctness of a
workflow net in Definition 3.7 (p. 59).

Definition 4.8 (Valid configuration)
Let EWF = (K , i,o,T ,F , split , join, rem,nofi) be an EWF-net and reqEWF

be the set of all atomic requirements that can be imposed on EWF. Then

PC : ∁
complete

EWF → {true, false} is a configuration constraint expressed as proposi-
tional formula using reqEWF as propositional letters. A complete configuration

CEWF ∈ ∁
complete

EWF is valid, if PC evaluates to true using the values of CEWF to
valuate the propositional letters, i.e. the atomic requirements contained in PC .

4.3.3 Components of C-EWF-Nets

To ensure complete configurations without requiring the user of a C-EWF-net
to configure every single element, a C-EWF-net includes a default configuration.
This default configuration must be complete and valid for the EWF-net that
should be configured. Then, each (incomplete) configuration can be combined
with this complete default configuration to form a new complete configuration
(as explained in Definition 4.6). The configuration decisions missing in the
incomplete configuration are filled up with the default configuration for these
elements. The so-created complete configuration can again be tested on its
validity. If it is valid, we also consider the incomplete configuration as valid for
the particular C-EWF-net.

Summarizing, a C-EWF-net consists of a syntactically correct EWF-net serv-
ing as the basic process model, a set of configuration requirements ensuring
syntactic and semantic correctness of the configuration, and the default config-
uration.

Definition 4.9 (C-EWF-net) A configurable extended workflow net (C-
EWF-net) is a tuple (EWF ,PC , def) where

• EWF is an EWF-net,

• PC : ∁
complete

EWF → {true, false} is a configuration constraint on EWF, and

6Although quantifiers are used in the expressions, these are always expressed on a finite set
of elements (e.g. ‘for all the conditions of the EWF-net’). So this is referable to the conjunction
of a set of propositional logic requirements, each of them expressed over an element (e.g. over
a condition).

7If a configuration is not complete, it should be combined with a complete configuration
first. In this way, also incomplete configurations can be tested on their validity.

88 Chapter 4. Configurable Workflow Languages

• def ∈ {C ∈ ∁
complete

EWF | PC (C) = true} is the complete and valid default
configuration of EWF.

Note that the basic EWF-net might contain semantically conflicting behavior
like tasks that exclude each other. Thus, if no explicit configuration decisions
are made, the default configuration also ensures that a semantically correct
EWF-net can be derived for the basic EWF-net.

4.3.4 Configurable Workflow Specifications

A YAWL workflow specification organizes EWF-nets hierarchically by mapping
tasks of EWF-nets onto other EWF-nets (see Definition 2.26). Using C-EWF-
nets instead of EWF-nets, this section outlines how a configurable workflow
specification can be build-up on top of C-EWF-nets. In this context we will use
the expression (C-)EWF-net in statements that hold for both EWF-nets and
C-EWF-nets.

In a workflow specification each composite task of a (C-)EWF-net is mapped
onto a set of (C-)EWF-nets. Whenever the task is triggered, one (C-)EWF-net
from the set is chosen as an implementation for the task and initiated. That
means, there is a choice between the different nets in the set. The task only
completes when the selected (C-)EWF-net signals its completion. This means
that the mapping between tasks and (C-)EWF-nets determines the control-flow
between the nets. Hence, this mapping offers configuration opportunities in a
configurable workflow specification in addition to the configuration opportuni-
ties of C-EWF-nets.

Every (C-)EWF-nets has a unique input condition through which it can be
triggered. Thus, the interface between the upper level, composite task and the
input condition of an implementing (C-)EWF-net represents the unique inflow
port of the task’s implementation in the mapped (C-)EWF-net.

The completion of a (C-)EWF-net is signaled via its unique output condition.
The interface from the output condition back to the upper level, composite task
therefore represents the unique outflow port of a (C-)EWF-net. However, as the
net needs at least one outflow port that can be used to forward the control to
subsequent tasks of the superior net, the use of this outflow port must always be
allowed, i.e., like in the block structures of SAP WebFlow or BPEL, it cannot
be configured.

Hence, on the level of the workflow specification, the only configurable port
of an (C-)EWF-net is its inflow port, which we will call hierarchy port in the
following.

Definition 4.10 (Hierarchy ports) Let (Q⋄, Q, top, T ⋄,map) be a workflow
specification. Then portsmap = {(t,EWF) ∈ T ⋄×Q⋄ | t ∈ dom(map)∧EWF ∈
map(t)} are all the hierarchy ports of the workflow specification.

As hierarchy ports are inflow ports, they can be configured as allowed, hidden, or
blocked. If a hierarchy port is configured as blocked, the particular (C-)EWF-net
cannot be triggered at run-time, i.e. it cannot be chosen as an implementation

4.3. C-YAWL 89

Figure 4.10: The dummy net replacing a hidden net, i.e the τ task corresponds to the
skipped behavior of the original net.

Send

documents

Receive
order

a4

Select
payment

method

b4

Book

train

ticket

Book
reduction

card

Book

hotel

Collect

documents

Credit card

payment

Cash

payment

a1

b1

c1

a2

b2

c2

a3

b3

Cancel

booking

E

F

G

Hi1
E

F

G

Hi1

Start

search

Reser

ve

SignSwipe

CallCall

Catalo

gue

Figure 4.11: The hierarchy within the workflow specification of Figure 4.7 configured.

for the task on the superior workflow defintion level. Instead, another (C-)EWF-
net from the set of EWF-nets mapped onto the task has to be selected whose
hierarchy port is configured either as allowed to be used or as hidden. The nets
with allowed or hidden hierarchy ports can be normally selected and triggered.
Then, nets with a hierarchy port whose use is allowed are executed in the same
way as ordinary (C-)EWF-nets while the behavior of (C-)EWF-nets which have
a hidden hierarchy port must be skipped completely. For this reason, we replace
such a (C-)EWF-net with the ‘dummy’ EWF-net shown in Figure 4.10 where
the τ task corresponds to the skipped behavior of the original net. Figure 4.11
depicts an example configuration for the workflow specification of Figure 4.7.

Besides the hierarchy configuration, a configuration of a workflow specifica-
tion also requires a configuration for each individual EWF-net. Hence, workflow
specification configurations can be defined as on the one hand the configuration
of the hierarchy and on the other hand a combination of complete configurations
for each of the individual EWF-nets in the workflow specification.

Definition 4.11 (Workflow specification configuration)
Let SPEC = (Q⋄, Q, top, T ⋄,map) be a workflow specification and let portsmap

be the hierarchy ports of the workflow specification. Then

90 Chapter 4. Configurable Workflow Languages

• Cmap : portsmap 6→ {allow , block , hide} is a (partial) configuration of the

workflow specification’s hierarchy, and ∁map is the set of all such configu-
rations. Cmap is complete, if and only if dom(Cmap) = portsmap. The set

of all such complete configurations is denoted as ∁
complete

map .

• ∁
complete

Q⋄ = {
⊕

EWF∈Q⋄ CEWF | ∀EWF∈Q⋄CEWF ∈ ∁
complete

EWF } is the set of
all complete configurations for the EWF-nets contained in Q⋄.8

• CSPEC ∈ ∁
complete

map × ∁
complete

Q⋄ is a configuration of workflow specification

SPEC, and ∁SPEC = ∁
complete

map × ∁
complete

Q⋄ is the set of all such configura-
tions.

Like for C-EWF-nets, not all combinations of configurations among the different
(C-)EWF-nets are feasible. For example, it is not possible to block all the
(C-)EWF-nets implementing a task because every composite task must have at
least one usable, i.e. either allowed or hidden, implementation. For that reason,
atomic requirements must also be imposable on the configuration of mappings
between a composite task and a (C-)EWF-net.

Definition 4.12 (Atomic hierarchy configuration requirements)
Let (Q⋄, Q, top, T ⋄,map) be a workflow specification, and portsmap be the hier-
archy ports of the workflow specification. Then reqmap = {map} × portsmap ×
{allow , hide, block} is the set of all atomic requirements on the configuration of
hierarchy ports.

An atomic requirement that the use of the port between a composite task
t and an EWF-net EWF must always be allowed would thus be written as
(map, (t,EWF), allow). Such requirements can be combined and evaluated as
the requirements on configurations of C-EWF-nets. This also enables us to com-
bine requirements on the higher-level configurable workflow specification with
requirements on specific C-EWF-nets within the configurable workflow specifi-
cation. For example, the possibility to book reduction cards in the workflow of
Figure 4.11 might require the use of a certain implementation of the payment
tasks that includes an address, age, or student status verification. Some imple-
mentations of a task may also depend on the data output of a preceding task
while others do not. Thus, this might lead to missing data if an implementation
is used for the latter task which needs the data while the data-creating task is
not executed because it has been configured as hidden or blocked. Hence, the
implementations requiring the data must then be blocked as well.

For that reason, when configuring a configurable workflow specification, not
only each of its C-EWF-nets has to fulfill the particular configuration constraint

8
⊕

EWF∈EWFS CEWF denotes the combination of all configurations CEWF such that
EWF is contained in the set of EWF-nets EWFS . Note that this operator requires that
the combination of any two configurations CEWF for which EWF ∈ EWFS is associative
and commutative. (C1

in , C1
out , C

1
rem , C1

nofi) ⊕ (C2

in , C2
out , C

2
rem , C2

nofi) is associative and com-
mutative if the domains of the two configurations’ configuration functions are distinct, i.e.
(dom(C1

in) ∩ dom(C2

in) = ∅) ∧ (dom(C1
out) ∩ dom(C2

out) = ∅) ∧ (dom(C1
rem) ∩ dom(C2

rem) =
∅) ∧ (dom(C1

nofi) ∩ dom(C2

nofi) = ∅). For the EWF-nets in Q⋄ this is guaranteed by the

definition of workflow specifications (see Definition 2.26, p. 39).

4.3. C-YAWL 91

on the net, but the configurations of the hierarchy ports as well as the configu-
rations of the individual EWF-nets also have to fulfill the specification’s over-
all workflow specification constraint. Similar to the default configuration
for C-EWF-nets, a configurable workflow specification should include a default
configuration for hierarchy ports which is complete and which conforms to the
workflow specification constraint, i.e. is valid. In this way, any partial config-
uration of hierarchy ports can be combined with the default configuration to
form a complete configuration. Such a configuration can then be tested on its
validity according to the workflow specification constraint and thus be used to
generate a configured workflow specification based on a partial configuration.

Definition 4.13 (Configurable workflow specification)
Let SPEC = (Q⋄, Q, top, T ⋄,map) be a workflow specification, PC ⋄ be a set of
configuration constraints and def ⋄ be a set of default configurations such that

• PC ⋄ = {PCEWF | EWF ∈ Q⋄},

• def ⋄ = {def EWF | EWF ∈ Q⋄}, and

• any (EWF ,PCEWF , def EWF) ∈ Q⋄ × PC ⋄ × def ⋄ represents a C-EWF-
net.

Then the tuple (SPEC ,PC ⋄, def ⋄,PC SPEC , def map) represents a configurable
workflow specification with

• PC SPEC : ∁SPEC → {true, false} being the workflow specification con-
straint, and

• def map ∈ ∁
complete

map such that PC SPEC ((def map ,
⊕

def∈def ⋄def)) = true
being a complete and valid default configuration of the hierarchy ports of
SPEC.

Altogether, C-YAWL provides two levels for configuring a workflow. Distinct
approaches can be handled by different (C-)EWF-nets mapped onto a single
task. Different variants of the same approach should be handled within a single
C-EWF-net by using its configuration opportunities.

4.3.5 From C-YAWL to YAWL

To demonstrate the applicability of configurable workflow models, let us discuss
the implementation of a transformation from C-YAWL to YAWL such that we
can derive YAWL models which are executable in the YAWL workflow engine. In
this section we focus first on the transformation from C-EWF-nets to EWF-nets
before outlining the rather trivial selection mechanism of configurable workflow
specifications.

The transformation from C-EWF-nets to EWF-nets is performed in two
steps. First, the elements directly affected by configuration decisions are re-
moved; secondly, a cleanup algorithm removes those elements which became
obsolete in the first step. The latter step ensures that the created EWF-net
conforms to Definition 2.24, which requires that every element is on a path
between i and o. In this way, we can neglect this requirement in the first step.

92 Chapter 4. Configurable Workflow Languages

As input to the transformation, let CEWF = (EWF ,PC , def) be a C-EWF-
net with EWF = (K , i,o,T ,F , split , join, rem,nofi). In addition, let CEWF =
(Cin , Cout , Crem , Cnofi) be a complete, and valid configuration of CEWF that is
applied to CEWF to create a configured EWF-net (if CEWF is not complete, it
can easily be transformed into a complete configuration by combining it with
def).

As conditions are not configurable, we initially keep all conditions from the
C-EWF-net also in the configured EWF-net and remove the superfluous con-
ditions later during the cleanup. The input i and output conditions o are the
same in the configured net as in the configurable net.

For transforming the tasks’ behavior, we will start with the Crem and Cnofi

configurations as these can be applied to tasks in as straightforward manner.

The configuration of the cancelation region Crem restricts the set of elements
returned by the rem function. Whenever the cancelation region is blocked, the
function returns an empty list:

• remC(t) =

{

rem(t) if t ∈ dom(rem) ∧ Crem(t) 6= block
∅ otherwise.

The nofi function, assigning the number of instances that can be started
to each task, must be adapted according to the configuration Cnofi . Here,
the configured increase of the minimal number of instances to be started is
added to the predefined minimal number of instances, and the configured de-
crease of the maximal number of instances to be started is subtracted from
the predefined value. The configured increase of the threshold value is added
to the predefined threshold value. If the predefined task enables the dynamic
creation of task instances and the task is configured to keep the current defini-
tion, the creation of task instances remains dynamic, otherwise it is set to static.

• T dyn = {t ∈ dom(nofi) | π4(Cnofi(t)) = keep ∧ π4(nofi(t)) = dynamic}
• For all t ∈ dom(nofi) :

− π1(nofiC(t)) = π1(nofi(t)) + π1(Cnofi(t))

− π2(nofiC(t)) = π2(nofi(t)) − π2(Cnofi(t))

− π3(nofiC(t)) = π3(nofi(t)) + π3(Cnofi(t))

− π4(nofiC(t)) =

{

dynamic if t ∈ T dyn

static otherwise

The configuration of output ports Cout influences the flow relations which orig-
inate from a task. If the use of an output port which refers to a particular flow
relation is allowed, the flow relation remains part of the configured EWF-net.
Otherwise it does not. As tasks with AND-split behavior have just a single
port, all flow relations originating from such tasks must be removed if the port
is configured as blocked. In case of an XOR-split, each flow relation is addressed
by exactly one port. Thus, a flow relation must be removed if the corresponding
port is blocked. The output ports of a task with an OR-split semantics can be
configured in different ways even if the different ports refer to the same flow
relation. Then, as said above, the flow relation must be kept as part of the

4.3. C-YAWL 93

cTask B

b
c

d

a

b

d
b,c

b,d
c,d

b,c,d

cTask B

d

a

b

Figure 4.12: Transforming the output port configuration into a YAWL model

cTask C

b
c

d

a

b

d
b,c

b,d
c,d

b,c,d

cTask C

d

a

b

Figure 4.13: Transformation of an OR-split into an XOR-split.

configured EWF-net if the use of any output port referring to the flow relation
is allowed. For example, in Figure 4.12 only the two ports connecting Task B
either with condition b or with conditions b and c are allowed to be used. All
other output ports are blocked. Therefore, the flow relation from Task B to
d can be removed, but the flow relations to the conditions b and c cannot be
removed. The blocking of ports referring to these flow relations that must be
kept in the net, e.g. the blocking of the output port c, is realized by adapting
the flows’ predicates. Based on process data, predicates determine at run-time
if a flow relation is triggered or not. Thus, the new predicate should exclude
the activation of c in isolation.

• F C
out = {(t, c) ∈ F | t ∈ T ∧ c ∈ K ∧ ∃(t,cs)∈portsout (EWF) c ∈ cs∧

Cout((t, cs)) 6= block}

The split behavior of a task basically corresponds to its behavior in the EWF-
net. Only in two special configuration cases of a task with an OR-split behavior
the splitting changes. If all the output ports of such a task which refer to more
than a single flow are blocked, only ports that refer to a single flow relation
remain in the net. This corresponds to the split behavior of an XOR-split.
Hence, the task’s split behavior is changed accordingly (see Figure 4.13). If all
the output ports of a task are blocked except a single port, all flow relations
remaining in the net are always triggered through this port. Thus, the split
behavior is transformed into an AND-split (see, e.g., Figure 4.14). In all other

94 Chapter 4. Configurable Workflow Languages

cTask D

b
c

d

a

b

d
b,c

b,d
c,d

b,c,d

cTask D

d

a

b

Figure 4.14: Transformation of an OR-split into an AND-split.

cases the split behavior remains the same as in the original net.

• T C
XOR = {t ∈ T |∀(t,cs)∈portsout (t)

(|cs| > 1 ⇒ Cout((t, cs)) = block)}

• T C
∧

= {t ∈ T |∀(t,cs)∈portsout (t)
(|cs| < |{c ∈ K | (t, c) ∈ F C

out}| ⇒
Cout((t, cs)) = block)}

• splitC(t) =







XOR if t ∈ T C
XOR

∧ if t ∈ T C
∧
\ T C

XOR

split(t) otherwise

Finally, the configuration of the join behavior Cin has to be applied to the EWF-
net. If a task has an AND-join or an OR-join behavior, it just has a single input
port. If this port is blocked, the task can never be enabled and thus be executed.
Hence, all inflows into the task are not part of the configured EWF-net. If the
input port of a task t is hidden, this means that the execution behavior of the
task must be skipped. For that reason, a bypass to the task has to be introduced
that skips all the behavior, i.e. a silent task. The silent task does not include any
‘action’ as, e.g., any execution of work from the original task but has exactly the
same join, split, and cancelation behavior as the original task. We thus label
this task τ t.

A task with an XOR-join behavior can have different configurations for
different input ports. In this case, it might be required that a net includes both
a silent version and an active version of a task. For example, in Figure 4.15 the
input ports from the conditions a and b are configured as hidden, the use of
the input port from condition c is allowed and the input port from condition d
is blocked. Then the conditions a and b should trigger the silent task τTaskA,
whereas condition c should trigger the active task. Therefore, we split up the
set of tasks for the configured net into a set of allowed and a set of hidden tasks,
i.e. T C = T C

allow ∪ T C
hide . The silent task must be introduced whenever a task

has at least one hidden input port. The (normal) allowed task remains in the
net as long as there is at least one input port whose use is configured as allowed.

4.3. C-YAWL 95

c

d

Task A

a
b

e

Task A

eTask A

a

b

c

d

c

d

a

b
f

g
e
f

g

f

Figure 4.15: Transforming the input port configuration into a YAWL model.

• T C
allow = {t ∈ T | ∃(t,cs)∈portsin(t)Cin((t, cs)) = allow}

• T C
hide = {τ t | t ∈ T ∧ ∃(t,cs)∈portsin(t)Cin((t, cs)) = hide}

• For all τ t ∈ T C
hide :

− joinC(τ t) = join(t)∧

− splitC(τ t) = splitC(t)∧
− remC(τ t) = remC(t)∧

− nofiC(τ t) = nofiC(t)

To connect the tasks with conditions, all flow relations connected to an input
port whose use is allowed remain in the net. All flow relations connected to a
hidden port are reconnected to the hidden (silent) task. Therefore, conditions
a and b in the example of Figure 4.15 are connected to the silent task, whereas
c remains connected to Task A. All flow relations connected to a blocked input
port are not part of the configured net. For that reason, the flow relation
connecting d with Task A is not part of the configured net. The outflow is the
same for silent tasks as it is for active tasks. Hence, the configured output flow
relation is added to silent tasks in the same way as it is to active tasks.

• F C
in = {(c, t) ∈ F | ∃cs⊆K (t, cs) ∈ ports in(EWF) ∧ c ∈ cs∧

Cin((t, cs)) = allow} ∪
{(c, τ t) | (c, t) ∈ F ∧ ∃cs⊆K (t, cs) ∈ ports in(EWF) ∧ c ∈ cs∧
Cin((t, cs)) = hide}

• F C,τ
out = {(t, c) ∈ F C

out | ∃cs⊆K (t, cs) ∈ ports in(EWF)∧
Cin((t, cs)) = allow} ∪
{(τ t, c) | (t, c) ∈ F C

out ∧ ∃cs⊆K (t, cs) ∈ ports in(EWF)∧
Cin((t, cs)) = hide}

The join behavior of all tasks allowed in the configured net is the same as the
join behavior in the configurable net.

96 Chapter 4. Configurable Workflow Languages

Send
documents

Receive
order

a4

b4

Book
train

ticket

Book

reduction
card

Book
hotel

Credit card
payment

Cash

payment

a1

b1

c1

a2

b2

c2

a3

b3

Select

payment

method

Figure 4.16: The net derived from the internet shop’s configuration, but without the removal
of any “dead” parts.

• ∀t∈TC
allow

joinC(t) = join(t)

Altogether, we transformed the C-EWF-net into the net EWF C = (K , i,o,

T C
allow ∪ T C

hide ,F
C
in ∪ F C,τ

out , split
C , joinC , remC ,nofiC).

However, as mentioned in the beginning of this section, the resulting net
does not necessarily conform to the requirements of an EWF-net in which every
node in the graph must be on a directed path from i to o. Due to the removal of
flow relations, some conditions and tasks might not be reachable anymore from
i. For example, have a look at Figure 4.16. It depicts the net resulting from
the internet shop’s configuration from Figure 4.7b. The conditions b3 and b4
as well as the task Cash payment are no longer reachable from i. To create an
EWF-net from EWF C , it is therefore necessary to remove all nodes which are
not on a path from i to o.

This cleanup step can be performed as a depth-first search, starting with the
input condition, looking for all paths to the output condition. If such a path
is found, all elements on this path are marked for being kept in the process.
In addition, all visited elements are marked, such that elements do not need
to be visited multiple times. All tasks and conditions not on such a path are
afterwards removed.

However, note that removing of individual flow relations preceding an AND-
join would lead to changes in the semantics of the net as we would suddenly
say that not all preceding conditions must be marked, but rather only those
which can be marked. This is in fact an OR-join behavior instead of an AND-
join behavior. Similarly, removing an individual flow relation originating from
a task with an AND-split behavior would mean not marking all subsequent
condition, but only a subset. Again, this then represents an OR-split behavior
instead of conforming to the AND-split semantics. Thus, if such a flow relation
must be removed because its originating or target condition is removed, then
not only the condition and the flow relation must be removed, but the whole
task with the AND-join/AND-split behavior must be removed even if the task
is located on a path from i to o. In this way we prevent changing the semantics
of the task.

4.3. C-YAWL 97

Send

documents

Receive

order

a4

Book

train
ticket

Book
reduction

card

Book
hotel

Credit card

payment

a1

b1

c1

a2

b2

c2

a3

Select

payment

method

Figure 4.17: The YAWL net derived from the configuration of the internet shop having all
“dead” model parts removed.

Send
documents

Receive
order

a4

Select

payment
method

b4

Book
train

ticket

Book

reduction
card

Book

hotel

Collect

documents

Credit card
payment

Cash

payment

a1

b1

c1

a2

b2

c2

a3

b3

Cancel
booking

Figure 4.18: The YAWL net derived from the configuration of the travel agency.

But this might make additional elements ‘loosing’ their path from i to o. For
that reason, we repeat the whole cleanup process either until in one iteration
no such tasks are removed or until no path remains between i and o at all. If
there is no path from i to o at all, the configuration is not transformable into
a well defined EWF-net and should be forbidden in the requirements on the
C-EWF-net.

Figure 4.17 shows the EWF-net derived using this cleanup algorithm from
the net in Figure 4.16. Furthermore, Figure 4.18 shows the EWF-net derived
from the example configuration for a travel agency as depicted in Figure 4.7a.

Deriving a configured workflow specification from a configuration for a con-
figurable workflow specification is straightforward. On the one hand, for all
C-EWF-nets of the workflow specification, configured EWF-nets must be de-
rived from the particular configurations. On the other hand, the mapping func-
tion needs to be updated according to its configuration. That means, blocked
implementations must be excluded from the specification while hidden imple-
mentations must be replaced by the dummy net shown in Figure 4.10.

98 Chapter 4. Configurable Workflow Languages

4.3.6 C-YAWL Implementation

We implemented the transformation from C-YAWL to YAWL in the context
of the YAWL system. Using the YAWL editor the basic process model which
incorporates the different process variants can be defined as depicted in Fig-
ure 2.10 (p. 37). The basic process model can then be loaded directly into
the YAWL workflow engine. This enables the engine to execute the workflow
while providing choices between all the different variants at the run-time of the
process. In practice, however, the basic process model will seldom be loaded
completely into the workflow engine. Instead a particular variant of the pro-
cess is selected. To restrict the workflow to desired variants only, the discussed
configuration decisions can be added to the workflow definition. Without any
manual modeling effort, the algorithm depicted in this section can then gener-
ate a new workflow definition in line with the configuration decisions. As the
original definition, the generated definition can directly be used in the workflow
engine to execute the desired workflow variant. For example, Figure 4.19 shows
a screenshot depicting the worklist of the travel booking workflow configured
according to the requirements of the internet shop (as depicted in Figure 4.7b)
with several bookings in progress. As already depicted in Figure 4.17, the con-
figured workflow definition can also be imported back into the YAWL editor to
inspect or further adapt the resulting workflow.

The technical details on how configuration decisions are added to YAWL’s
XML schema can be found in [78]. Further details on the implementation of the
YAWL system itself can be found in the work of van der Aalst et al. [13] as well
as in the technical documentation of YAWL which can be found on the YAWL
website9. Both C-YAWL and the C-YAWL to YAWL transformation algorithm
will be part of future YAWL releases and thus be available to all YAWL users.

4.4 Related Work

Adaptation opportunities for process modeling notations have also been sug-
gested by other authors. Although the ideas of blocking and hiding behavior
have not been explicitly taken into account during the various adaptation no-
tions, there are obvious relationships. The configuration extension for EPCs
suggested by Rosemann and van der Aalst [143], known as C-EPCs, is very
close to the notations we have discussed in this chapter. For that reason, we
will elaborate on how the blocking and hiding ideas are implicitly considered in
this notation in more detail in the first part of this section. Afterwards, we will
point to a range of further suggestions for configuring process models which all
use concepts that can be related to the ideas of blocking and hiding.

9see http://www.yawl-system.com/

http://www.yawl-system.com/

4.4. Related Work 99

Figure 4.19: The worklist of the internet shop’s travel booking workflow with several book-
ings in progress

4.4.1 C-EPCs

For Rosemann and van der Aalst [143] the configuration of a business process
modeling language represents a second level of decision making. Therefore,
they require that these decisions must be clearly identifiable and distinguish-
able from decisions made while the process is executed. To demonstrate this,
they developed a concrete language based on EPCs supporting such configura-
tion decisions. Their C-EPCs extend EPCs with configuration opportunities
by adding process configuration options to functions, i.e. the tasks, and connec-
tors of EPCs. Both configurable functions as well as configurable connectors
are highlighted in the traditional EPC using bold borders. Configurable func-
tions can then be configured such that they are included (on), skipped (off)
or conditionally skipped (optional) in the configured model. Configurable con-
nectors can be restricted to a subset of their theoretic routing opportunities.
A configurable connector of type ∨ may be mapped onto an ∧-connector, an
XOR-connector, or a sequence, i.e. an elimination of the connector by connect-
ing exactly one of the incoming arcs directly to exactly one of the outgoing
arcs. Also, an XOR-connector can be mapped onto a sequence if necessary.

100 Chapter 4. Configurable Workflow Languages

1

2

1

XOR

1

2 2

B1

Configurable EPC Configured EPC Configurable LTS

1

43

()a dom c∈

2

Configured LTS

1

4

2

()a dom c∈

1

3

2

1

3

2

Figure 4.20: Configuring C-EPCs and the corresponding LTS

An ∧-connector cannot be reduced at all (for further details see Rosemann and
van der Aalst [143], Section 5.2.).

Figure 4.20 shows the relation between C-EPCs and the configuration of
the underlying LTSs. In the first row the function a within the C-EPC process
fragment is switched off. If a function is turned off, the process flow continues
after the function without actually executing the function. It is thus replaced
in the resulting, configured EPC with a direct arc (to generate a lawful EPC
also one of the events surrounding a must be removed, which is indicated by
the brackets around event A in Figure 4.20). This corresponds to replacing the
transition a in the corresponding LTS with a silent τ transition. Turning off
functions of a C-EPC thus corresponds to the notion of hiding tasks.

The process fragment in the second row of Figure 4.20 shows a configurable
XOR-connector. It can be configured to remain an XOR-connector or it can be
restricted to a sequence. In the example, it is configured to a sequence, enforcing
that only the right process branch can be executed. From the corresponding LTS
it can be seen that this conforms to blocking the other process path originating
from the XOR-connector.

Within C-EPCs, configuration choices like turning a function off may be

4.4. Related Work 101

limited by configuration requirements in the same way as we have introduced
for C-YAWL. Requirements therefore ensure that only valid configurations are
generated. In addition to these requirements it is also possible to add guidelines,
which are depicted in the same way as configuration requirements, but are only
recommendations and thus not enforced.

Altogether, C-EPCs therefore support the three main aspects which we re-
quired for configurable process modeling languages: hiding behavior, blocking
behavior, and enforcing valid configuration through process constraints, i.e. re-
quirements.

4.4.2 Further Process Configuration Extensions

EPCs are also used by Becker et al. [34] to depict techniques for process model
adaptations. For configuring the elements of an EPC they distinguish between
the deselection of irrelevant element types on a meta level, and the deselection
of specific elements on the modeling level itself. The first mechanism mainly
assumes that models integrate different user perspectives and thus include ele-
ments for these different types. For the individual user, a lot of this information
is often superfluous and thus rather confusing. Hence, the deselection of ele-
ment types influences the model visualization instead of dealing with changing
the behavior depicted by the model.

The second mechanism allows for deselecting specific functions of the EPC.
When deselecting functions, this implies according to Becker et al. that the
corresponding tasks are skipped. Thus, even though Becker et al. do not provide
a formal definition of how the arcs which incorporate the deselected functions
into the overall process should be re-connected, this corresponds to hiding the
tasks in an underlying LTS.

Reijers et al. [137] introduce a modeling technique called aggregated EPCs,
which is similar to the deselection of specific functions introduced by Becker
et al. Based on parameters attached to EPC functions and events, aggregated
EPCs are capable of selecting certain parts of the process. Arcs and connectors
are only incorporated into the resulting EPC if the preceding and succeeding
nodes are also selected. Thus, the selection mechanism can be compared to the
blocking of certain task executions. However, the technique itself only works
on the graph level, i.e. it does not consider the EPC semantics. For example,
an AND-split implies that all paths originating from a particular node must
be triggered at run-time. If a task succeeding the AND-split is not selected,
the corresponding arc is removed while all other arcs connected to the AND-
split remain in the model. As the deselected function was always triggered in
the aggregated EPC, such a behavior was not possible in the original model.
Hence, the selection mechanism of aggregated EPCs might add new behavior
when determining a relevant subset of the model. To counteract this, Reijers
et al. require from aggregated EPC designers that they ensure a structure of
the aggregated EPC and its attributes which avoids such situations. As the
technique does not provide the opportunity to hide functions, this, e.g., also

102 Chapter 4. Configurable Workflow Languages

includes that in the aggregated EPC a bypass exists for functions which must
be skipped when the parameters are set correspondingly.

Czarnecki and Antkiewicz [49] present an approach to include or exclude
elements from UML activity diagrams. While Becker et al. and Reijers et al.
focus on the nodes of the process model, Czarnecki and Antkiewicz allow for
the inclusion or exclusion of both nodes and arcs of the graphs. Thus, as in
the approach of Reijers et al., in the approach of Czarnecki and Antkiewicz
unnecessary arcs are not re-connected, but simply deleted. This can here even
be done without removing any activities from the UML diagram. As the arcs
depict the routing of cases through the process model, this technique can thus
not only be used to restrict the behavior of process models through eliminating
activities but also to restrict the routing possibilities, similar to the configuration
of connectors in C-EPCs. Thus, this adaptation is closely related to the blocking
of behavior.

However, as the approach of Reijers et al., the approach of Czarnecki and
Antkiewicz is applied directly to the graph structure of the process model and
ignores any underlying semantics when doing such changes. Thus, after deleting
one of the outgoing arcs of an AND-split through process configuration only a
subset of these paths can be triggered in the future. As explained for the ap-
proach of Reijers et al., this corresponds to creating new behavior which did not
exist in the original model. Hence, the approach of Czarnecki and Antkiewicz
not only enables a restriction of the run-time behavior like blocking of behavior
does, but — as Czarnecki and Antkiewicz do not forbid such constructs — it
also allows for state changes which were originally not possible.

As already indicated in the related work section of Chapter 3, Puhlmann
et al. [132] also use UML activity diagrams to depict their configuration mecha-
nisms of omitting tasks and parameterizing decision nodes and join nodes. They
allow the omission of tasks only for nodes which have exactly one incoming and
one outgoing arc. These are directly connected if the task should be omitted.
Hence, the omission of tasks corresponds to the hiding of the particular activity.
The values of parameters which are added to decision and join nodes determine
if a particular control-flow arc can be followed or not. If a certain path cannot
be followed this corresponds to blocking the particular behavior. Besides for
UML, Puhlmann et al. also demonstrate how parametrization can be used in
BPMN.

4.5 Conclusions

Based on the ideas for configuring process models from Chapter 3, this chapter
has shown how process configuration can be added to existing process modeling
languages. We informally introduced configuration extensions for the workflow
notations of SAP WebFlow and BPEL. Also, we formally defined such an ex-
tension for YAWL and discussed its application extensively. Furthermore, we
discussed how the ideas of blocking and hiding are implicitly used in process
modeling notations which can be found in the existing literature like C-EPCs.

4.5. Conclusions 103

When introducing the different configuration extensions, the goal was to
develop configurable notations that can be as easily used as the notations to
which it is added — even if the number of ports grows significantly. Thus,
we did not always provide a configuration option for each and every transition
which can be blocked or hidden in the underlying LTS. Instead, we looked for
intuitive configuration options, considering the characteristics of the particular
process modeling notation while keeping the blocking and hiding techniques
in the back of our minds. For example, we used the block structure of SAP
WebFlow and BPEL to introduce configuration mechanisms for these notations,
and we provided direct configuration options for the multiplicity of tasks and
cancelation regions in YAWL. These configuration options were derived from the
implicit meaning of these parameters in an underlying LTS and the principles
introduced in Chapter 3 (hiding and blocking of ports).

Of course, these generalizations limit the configuration opportunities com-
pared to the configuration opportunities in the corresponding LTS. However,
this is done for the same purpose as for which these advanced process model-
ing notations have been defined: for making the creation of complex business
process models easy and intuitive. Any configurable process modeling language
should thus be defined such that its complexity is in line with the complexity
of the process modeling notation on which it is based.

In general, we can conclude that the idea of configuring process models
through hiding or blocking ports can and should be applied to basic control-flow
patterns [11] like exclusive choices, simple merges, parallel splits, or synchroniza-
tion in a straightforward manner. This especially holds if the particular process
modeling notation expresses the control-flow similar to Petri nets through to-
kens that can move along the process model’s control-flow arcs. Applying the
port concept to advanced branching and synchronization patterns, like multi-
choice or synchronizing merge, results in a high number of ports. Thus, de-
pending on the target group of the particular modeling notation, designers of
configurable process modeling languages might already consider simplifications
in the application of the port concept for constructs representing patterns of
this group. While in theory it is also possible to represent patterns involving
multiple instances through a direct application of the port concept, the amount
of configurable ports explodes for these constructs. Thus, simplifications like we
introduced for multiple instance tasks in C-YAWL are usually more appropriate
for making constructs configurable that deal with multiple instances of a task.

If advanced process modeling constructs allow to determine the executed
state change through several distinct parameters, it often helps to address the
distinct parameters through dedicated ports. Examples for such constructs are
implementations of cancelation patterns in YAWL or links that break BPEL’s
main control-flow block structure. In such cases, the combination of the distinct
ports represents the inflow port according to the theory of process configuration
as it was explained in Chapter 3. In order to develop a configurable language
that can be used intuitively, Figure 4.21 provides an overview of which pattern
types can be addressed by the ports concept in a direct way, and which patterns
should better be addressed in a simplified way.

104 Chapter 4. Configurable Workflow Languages

Figure 4.21: How to implement the port concept for the various pattern types [11] occurring
in process modeling notations.

To execute the process restricted by process configuration in the correspond-
ing workflow engine, a transformation algorithm can translate a process model’s
configuration into a new process model without the unwanted behavior. As the
definition of executable workflows usually involves defining the resource and
data requirements, an adaptation of a workflow is far more cumbersome than
adapting a business process model which primarily depicts control-flow aspects
of a business process. Hence, a workflow configuration promises even more
workload-saving over a manual adaptation than configurable business process
models as defined in previous work, like C-EPCs, do.

Moreover, for a successful process execution, the correctness of the derived
workflow’s syntax, semantics, and contents is essential. Hence, we also showed
in this chapter how constraints on the workflow configurations can be formal-
ized for the configurable notations. Still, this only restricts the configuration
space without providing any guidance to the model user for finding the next
configuration decision that leads to a good, desired configuration. Hence, we
will discuss in the next chapter how the constraints defined on the individual
process models (as depicted in this chapter) can be used to guide the user to a
suitable, executable workflow configuration.

A lot of times, people don’t know what
they want until you show it to them.

Steve Jobs (1998)

Chapter 5

Guiding the Configuration

Process

While the configuration opportunities described so far allow for an easy adap-
tation of process models to individual needs, the configuration of a particular
process still requires a thorough analysis of the basic process model and its
various options. Only if users have understood the various possible process
executions, they can decide which paths need to be preserved in a configured
process variant and which can be eliminated.

These configuration decisions are based on information from the domain to
which the model should be applied. If we, e.g., consider the travel booking
process from the last chapter (Figure 4.7, p. 79), the configuration decisions
to implement the process for a travel agency are different from the decisions
made for a travel booking website in the internet. We call the differences in
requirements for different organizations the domain variability.

The variability of the domain that guides the process model configuration
can be captured independently of the process model. For example, it is the
decision of a travel agent if payments can be made by credit card or if they
must be made in cash. A simple question for the payment methods which can
be answered with ‘cash’ or ‘credit card’ does not require detailed knowledge of
the process model. Still, such an answer provides the information necessary to
configure the payment methods that will be allowed in the configured process
model. Hence, we suggest in this chapter to first capture domain knowledge and
then map the variations in the domain to configuration decisions of the process.

For this, the chapter’s first section shows ideas of La Rosa et al. [111, 113] on
how the variability of the domain can be captured in structured questionnaires.
Afterwards, Section 5.3 depicts how the domain variability can be linked to the
variability of process models, i.e. how answers given in a questionnaire can be
used to make process configuration decisions while conforming to constraints of

106 Chapter 5. Guiding the Configuration Process

both the domain and the process model. The implementation of these ideas in
the context of C-YAWL is described in Section 5.4. The chapter concludes with
some links to related approaches capturing domain variability and a summary
of the suggested approach.

5.1 Capturing Domain Variability

In line with ideas of La Rosa et al. [111, 113], we suggest to specify the vari-
ability of a domain of a business process independently of specific notations or
languages, by means of a set of domain facts that form the space of possible
answers to a set of questions. A domain fact is a boolean variable represent-
ing a feature of the domain, e.g. ‘credit card payment’, that can be enabled or
disabled. Questions group domain facts according to their content such that
all the facts of the same question can be set at once by answering the question.
For example, the question Which payment methods are available? allows users
to specify the domain context to choose the payment methods available among
fact Credit card and Cash. A domain fact may even appear in more than one
question: in this case it is set the first time and its value is preserved in the
subsequent questions. Therefore, if a domain requires multiple payments and if
different payment methods are available at these different stages, an individual
domain fact must be explicitly referring to each particular payment.

A domain fact always has a default value (true or false). For example,
fact Credit card is true by default as the majority of travel agents allows for
credit card payments. Still, a domain fact can also be marked as mandatory.
Then, it needs to be set explicitly when defining the domain, i.e. the default
configuration value must at least be explicitly confirmed through answering a
corresponding question when defining a particular domain context. If a non-
mandatory fact is left unset, i.e. if no corresponding question is answered, the
default value can be used instead. This way, each domain fact will always have
a value set — either by giving an answer explicitly, or by using its default value.

To illustrate these concepts, let us have a look at Figure 5.1. It presents a
possible structure of questions and domain facts to capture the variability for
travel booking processes. All questions and facts are assigned a unique identifier
and a description. The questionnaire first determines through question q1 if the
booking of trips is done via the internet or in a shop. This is indicated through
facts f1 and f2 . By default, f2 is true. Thus, the trips are booked in a shop.
Travel bookings can be made for train tickets, reduction cards, or hotel stays,
represented by the facts f3 , f4 , and f5 , and grouped through question q2 . Here,
all three facts are true by default, i.e. all items can be booked.

Although, all these domain facts have a default value, facts f1 to f5 are also
mandatory to be confirmed. Therefore, the selection that trips are booked in
a shop and that all three types of bookings can be made must be confirmed
explicitly.

If f3 or f5 are set, then question q3 can be used to determine how many items
can be booked within a single booking process. By default, multiple items can

5.1. Capturing Domain Variability 107

��� ����	
��	�
	����
�� ��� �����	��
�
��

��� �
��
����	
����

��� ���
�	�����

��� ���
�	�� �
��	�
�����	��
	�!������
�

�"#� $�
���	
���

�%� $���

�&� ��'	��
	��
	���!
�	��
��
���	����
�	���� �"�� ��
 	��
	�
��	���	� 	����

�"�� ��
 	
��	�
	
���

�
�

��� ���
�	!
����
�����	������	�
	��
��

�"�� ()*

�"�� +

��
$��

��� ��'	��� 	��
��	
��	�
	����
�	��	��

�

�,� -������
	��
��

�&� .�
	��
�	�
�	������/

�"� ��'	
��	�����	�
	����
�� �"� 0��	��
	���
��
�

���)�	��
	����

�""� +�/�����

�1� -������
	��
��	��	���
	� �

T

M

Figure 5.1: A questionnaire for the booking of travels.

be booked within a single booking process (f8). However, some systems might
only allow for a single item type at a time (f7), i.e. within a single booking either
train tickets can be bought, a reduction card can be bought, or hotel stays can
be booked. Again other systems only allow for one item at all at any time (f6),
i.e. for booking a single train ticket or a single hotel stay at a time. Facts f6 ,
f7 , and f8 partially depend on f3 and f5 , but not on f4 as there is only one
reduction card allowed per (ordering) person. Thus, if the process only allows
the booking of reduction cards, there is always only one item per booking.

Interactions like these, which occur among the values of the domain facts,
are modeled by a set of domain constraints in propositional logic that prune
the configuration space. The constraints for the facts of Figure 5.1 are depicted
in Figure 5.2.

The constraints therefore ensure that at least one of the two distribution
channels must be chosen (DC 1) and that at least one item type can be booked
(DC 2). Furthermore, the exclusive choice between f6 , f7 , and f8 ensures a
distinct decision on how many items can be booked within a single booking
process (DC 3).

1 If only reduction cards can be booked, but no train tickets
or hotel stays, then this is always a single item only, i.e. a single reduction

1Note that f1 ∨̇ f2 is true if f1 or f2 holds but not both.

108 Chapter 5. Guiding the Configuration Process

DC 1: f1 ∨ f2 DC 2: f3 ∨ f4 ∨ f5

DC 3: f6 ∨̇ f7 ∨̇ f8 DC 4: (f4 ∧ f3 ∨ f5) ⇒ f6
DC 5: f9 ∨ f10 DC 6: f10 ⇒ (f11 ∨ f12) ∨̇ f13

DC 7: (f1 ∧ f2) ⇒ (f13 ∧ f9 ∧ f10) DC 8: f14 ∨ f15
DC 9: f4 ⇒ f14 DC 10: (f9 ∨ f11 ∨ f12 ∨ f15) ⇒ f2

Figure 5.2: The domain constraints for the questionnaire in Figure 5.1.

card (DC 4).
2 DC 5 enforces that at least one payment method is selected. If

a credit card payment is possible, i.e. f10 is true, then a verification method
must be selected for credit card payments as well. If the SecureCode system is
selected, this excludes the use of a PIN or a Signature as verification mechanism
(DC 6). If a booking can only be made via the internet, but not in a shop,
the SecureCode system must be used in any case (DC 7). The last question q6
requires the selection of at least one way how the travel documents are handed
over to the client (DC 8). Still, reduction cards are always send out by mail.
Hence, if reduction cards can be booked, this must always be possible (DC 9).
The existence of a shop is required for the collection of documents as well as for
the payment in Cash or when using PIN or Signature as verification method for
credit cards (DC 10).

A domain configuration is a possible valuation over the domain facts that
does not violate the domain constraints.

Order dependencies determine the order in which questions are presented
to users. The dependencies for determining the order of questions are specified
between facts, i.e. between the answering options to questions. If a fact A
depends on another fact B, this implies that A can only be set after B has been
set. This then means, the question that provides A as an answering option can
only be posed after B got a value assigned, i.e. the question to which B is an
answering option has been answered.

Facts can also depend on multiple other facts. For this, two types of depen-
dencies must be distinguished: simple dependencies and strict dependencies. A
fact that simply depends on multiple other facts requires that only one out
of the facts it depends on is set before itself can be set, while a strict depen-
dency requires that all these other facts must be set before the dependent fact
can be set. For example, in Figure 5.1 f6 simply depends on f3 or f5 (captured
by a dashed arrow). Hence, the question containing f6 , i.e. q3 , can be posed
after one of the facts f3 or f5 has been set, i.e. q2 has been answered. Fact f11
strictly depends on f10 and f2 (plain arrow). Therefore, before question q5 can
be answered, questions q1 and q4 must be answered to set the values of both
these facts.

This way, the most discriminating questions — like q1 and q2 in Figure 5.1
— can be asked first. By means of domain constraints, this enables to (partly)
answer subsequent questions automatically. If, e.g., we answer q4 with Cash
only, the question about the verification method (q5) becomes irrelevant. Order

2f is true if and only if f is false.

5.2. Capturing Process Variability 109

dependencies between domain facts and questions can be arbitrary, as long as
cycles are avoided.

The above concepts form the definition of a domain configuration model
— a first-class model to capture domain variability. The complete formal def-
inition of domain configuration models can be found in [111]. In the following
sections we show how domain configuration models can be applied to support
the configuration of process models.

5.2 Capturing Process Variability

While domain configuration models depict the variability of a given domain,
the variability of a process is captured by configurable process models as we
have defined them in Chapters 3 and 4. Similar to domain facts, variation
options in a process model can be identified through so-called process facts.
Independently of the configurable process modeling notation adopted, a process
fact is a boolean variable set to true if the variation option it refers to is selected
in a given process configuration, and to false otherwise. Thus, process facts refer
to the variation options of a process model’s ports.

Let us, for example, consider an inflow port. It can be configured either as
allowed, as blocked, or as hidden. Therefore, there are three variation options for
this port, meaning there are three process facts associated with the configurable
port, one for each option. Each of the process facts is true if the particular
configuration option is selected. If it is not selected, the process fact is false.

Figure 5.3 shows the various process facts for some of the tasks in the
travel booking process from Figure 4.6 (p. 77). To depict process facts,
we use a notation very similar to the notation that we use for atomic pro-
cess requirements (as listed in Definition 4.7, p. 85). In this way, setting
the process fact (in, (‘Receive Order’ , {i}), allow) to true implies that the in-
put port of the Receive order task is configured as allowed, while setting
(in, (‘Receive Order’ , {i}), block) to true implies that the port is configured as
blocked, and setting (in, (‘Receive Order’ , {i}), hide) to true implies that it is
configured as hidden.

Obviously, a single port cannot be configured in different ways at the
same time, i.e. it is not possible to block and hide, to hide and allow, or to
block and allow the same port in the same configuration. Thus, in each con-
figuration, only one of the three facts can be set to true. Ensuring this is
trivial by setting up a process constraint that puts the three process facts into
an exclusive disjunction. Thus, for the example port this constraint would
be: (in, (‘Receive Order’ , {i}), allow) ∨̇ (in, (‘Receive Order’ , {i}), block) ∨̇
(in, (‘Receive Order’ , {i}), hide).

The number of process facts related to a task’s multiplicity configuration
can be unlimited (indicated as ‘...’ in Figure 5.3). Still, it is sufficient to specify
only those process facts that might be set to true. All other facts represent
irrelevant configurations. As only one process fact can be set to true at a time,
these irrelevant facts are automatically set to false.

110 Chapter 5. Guiding the Configuration Process

Receive

order

Book

train
ticket

Book
reduction

card

Book

hotel

a1

b1

c1

...

...

Figure 5.3: Process facts of the travel booking process.

All in all, the valuation of process facts of a configurable model therefore
has to satisfy both the constraints guaranteeing an unambiguous configuration
for each port, and any configuration constraints imposed on the configurable
process model in general (as outlined in Section 4.3.2). Let us therefore in the
following assume that the constraint on the process configuration PC enforces
such a configuration, i.e. a valuation of process facts that results in a valid, an
unambiguous port configuration.

5.3 Linking Domain and Process Variability

In principle, the domain configuration model and the configurable process model
are independent models. Both models can be linked by mapping domain facts
to process facts. To define this mapping, a two-way impact analysis is required:

• from domain to process: given a domain fact, we need to estimate what
are the implications in the process model of setting such a fact to true or
false;

• from process to domain: given a variation point in the process model, we
need to consider which domain facts are impacted by configuring such a
point to a particular variant.

Figure 5.4 illustrates the mapping. On the one hand, we have a domain
configuration model. It consists of a set of domain facts FD = {f1 , ..., fn}
with DC being a boolean function representing the conjunction of the domain

5.3. Linking Domain and Process Variability 111

Configurable Process ModelDomain Configuration Model

Mapping

Facts: FD = {f1,…,fn} Facts FP = reqEWF

Constraints: DC Constraints: PC

Constraints: MC(FD,FP)

Figure 5.4: Mapping domain configuration and process configuration.

constraints over the domain facts FD . In other words, DC = DC 1 ∧ ...∧DCm,
such that DC holds for every domain configuration. On the other hand, we have
a configurable process model which represents the process variability through
a set of process facts FP . For example, we say for EWF-nets FP = reqEWF

(Definition 4.7, p. 85). But note again, that process facts can be identified
for any configurable process modeling notation, which is indicated through also
depicting a C-EPC in Figure 5.4. The process constraint PC is a boolean
function guaranteeing the correctness of the process configuration as we have
depicted in chapters 3 and 4 as well as in Section 5.2 above. Thus, PC holds
for every process configuration.

Domain facts and process facts can be mapped onto each other using a
third boolean function MC (FD ,FP). MC (FD ,FP) is set up such that each
process fact equals a boolean expression over the domain facts. For example,
the input ports of the task Send documents in Figure 4.6 (p. 77) directly depend
on the domain fact They are sent out by mail (f14) from Figure 5.1 (p. 107).
To send the documents out if f14 holds, the use of both input ports of the
task must be allowed, i.e. (in, (‘Send documents’ , {a4}), allow) ⇔ f14 , and
(in, (‘Send documents’ , {b4}), allow) ⇔ f14 . In contrast, the ports must be
blocked if the documents should not be sent and therefore f14 does not hold,
i.e. (in, (‘Send documents’ , {a4}), block) ⇔ f14 , and (in, (‘Send documents’ ,
{b4}), block) ⇔ f14 . As our simple example always produces some tickets that
have to be handed out, neither the sending of documents nor the collection of
documents can be skipped. Thus, the input ports of both tasks should never be
configured as hidden and we can bind the corresponding process facts to false,
i.e. (in, (‘Send documents’ , {a4}), hide), (in, (‘Send documents’ , {b4}), block),
(in, (‘Collect documents’ , {a4}), hide), and (in, (‘Collect documents’ , {b4}),
block). As another example, the task Select payment method should be used
if both cash and credit card payments are possible, otherwise it should be
skipped. Hence, we map (in, (‘Select payment method’ , {a2, b2, c2}), allow) ⇔
f9 ∧ f10 and (in, (‘Select payment method’ , {a2, b2, c2}), hide) ⇔ f9 ∧ f10 . As
blocking it would cause a deadlock of the process before this task, we set
(in, (‘Select payment method’ , {a2, b2, c2}), hide).

112 Chapter 5. Guiding the Configuration Process

The following list provides the mapping constraints between the domain facts
from Figure 5.1 and the process facts of the YAWL model from Figure 4.7. Any
process facts that are not contained in the list below are simply set to false.

MC 1 : (in, (‘Receive order’ , {i}), allow) ⇔ true ∧

MC 2 : (out , (‘Receive order’ , {a1}), allow) ⇔ f3 ∧

MC 3 : (out , (‘Receive order’ , {a1}), block) ⇔ f3 ∧

MC 4 : (out , (‘Receive order’ , {b1}), allow) ⇔ f4 ∧

MC 5 : (out , (‘Receive order’ , {b1}), block) ⇔ f4 ∧

MC 6 : (out , (‘Receive order’ , {c1}), allow) ⇔ f5 ∧

MC 7 : (out , (‘Receive order’ , {c1}), block) ⇔ f5 ∧

MC 8 : (out , (‘Receive order’ , {a1, b1}), allow) ⇔ f3 ∧ f4 ∧ (f7 ∨ f8) ∧

MC 9 : (out , (‘Receive order’ , {a1, b1}), block) ⇔ f3 ∧ f4 ∧ (f7 ∨ f8) ∧

MC 10 : (out , (‘Receive order’ , {a1, c1}), allow) ⇔ f3 ∧ f5 ∧ (f7 ∨ f8) ∧

MC 11 : (out , (‘Receive order’ , {a1, c1}), block) ⇔ f3 ∧ f5 ∧ (f7 ∨ f8) ∧

MC 12 : (out , (‘Receive order’ , {b1, c1}), allow) ⇔ f4 ∧ f5 ∧ (f7 ∨ f8) ∧

MC 13 : (out , (‘Receive order’ , {b1, c1}), block) ⇔ f4 ∧ f5 ∧ (f7 ∨ f8) ∧

MC 14 : (out , (‘Receive order’ , {a1, b1, c1}), allow) ⇔ f3 ∧ f4 ∧ f5 ∧ (f7 ∨ f8) ∧

MC 15 : (out , (‘Receive order’ , {a1, b1, c1}), block) ⇔ f3 ∧ f4 ∧ f5 ∧ (f7 ∨ f8) ∧

MC 16 : (in, (‘Book train ticket’ , {a1}), allow) ⇔ true ∧

MC 17 : (out , (‘Book train ticket’ , {a2}), allow) ⇔ true ∧

MC 18 : (nofi , ‘Book train ticket’ , (0,∞, 0, keep)) ⇔ f6 ∧

MC 19 : (nofi , ‘Book train ticket’ , (0, 0, 0, keep)) ⇔ f7 ∨ f8 ∧

MC 20 : (in, (‘Book reduction card’ , {b1}), allow) ⇔ true ∧

MC 21 : (out , (‘Book reduction card’ , {b2}), allow) ⇔ true ∧

MC 22 : (in, (‘Book hotel’ , {c1}), allow) ⇔ true ∧

MC 23 : (out , (‘Book hotel’ , {c2}), allow) ⇔ true ∧

MC 24 : (nofi , ‘Book hotel’ , (0,∞, 0, keep)) ⇔ f6 ∧

MC 25 : (nofi , ‘Book hotel’ , (0, 0, 0, keep)) ⇔ f7 ∨ f8 ∧

MC 26 : (map, (‘Book hotel’ , ‘Call and Catalogue’), allow) ⇔ true ∧

MC 27 : (in, (‘Cancel booking’ , {...}), allow) ⇔ true ∧

MC 28 : (out , (‘Cancel boooking’ , {o}), allow) ⇔ true ∧

MC 29 : (rem, ‘Cancel boooking’ , allow) ⇔ true ∧

MC 30 : (in, (‘Select payment method’ , {a2, b2, c2}), allow) ⇔ f9 ∧ f10 ∧

MC 31 : (in, (‘Select payment method’ , {a2, b2, c2}), hide) ⇔ f9 ∧ f10 ∧

MC 32 : (out , (‘Select payment method’ , {a3}), allow) ⇔ f10 ∧

MC 33 : (out , (‘Select payment method’ , {a3}), block) ⇔ f10 ∧

5.3. Linking Domain and Process Variability 113

MC 34 : (out , (‘Select payment method’ , {b3}), allow) ⇔ f9 ∧

MC 35 : (out , (‘Select payment method’ , {b3}), block) ⇔ f9 ∧

MC 36 : (in, (‘Credit card payment’ , {a3}), allow) ⇔ true ∧

MC 37 : (out , (‘Credit card payment’ , {a4}), allow) ⇔ true ∧

MC 38 : (map, (‘Credit card payment’ , ‘Signature verification’), allow) ⇔ f11 ∧

MC 39 : (map, (‘Credit card payment’ , ‘Signature verification’), block) ⇔ f11 ∧

MC 40 : (map, (‘Credit card payment’ , ‘PIN verification’), allow) ⇔ f12 ∧

MC 41 : (map, (‘Credit card payment’ , ‘PIN verification’), block) ⇔ f12 ∧

MC 42 : (map, (‘Credit card payment’ , ‘SecureCode verification’), allow) ⇔ f13 ∧

MC 43 : (map, (‘Credit card payment’ , ‘SecureCode verification’), block) ⇔ f13 ∧

MC 44 : (in, (‘Cash payment’ , {b3}), allow) ⇔ true ∧

MC 45 : (out , (‘Cash payment’ , {b4}), allow) ⇔ true ∧

MC 46 : (in, (‘Send documents’ , {a4}), allow) ⇔ f14 ∧

MC 47 : (in, (‘Send documents’ , {a4}), allow) ⇔ f14 ∧

MC 48 : (out , (‘Send documents’ , {o}), allow) ⇔ true ∧

MC 49 : (in, (‘Collect documents’ , {b4}), allow) ⇔ f15 ∧

MC 50 : (in, (‘Collect documents’ , {b4}), allow) ⇔ f15 ∧

MC 51 : (out , (‘Collect documents’ , {o}), allow) ⇔ true

Through such a mapping, answering a question in the questionnaire may
affect one or multiple variation points, i.e. process facts. For example, if we
answer question q1 in such a way that bookings can only be made via the
internet, i.e. f1 is true and f2 is false, the domain constraints lead to f13
and f10 becoming true, while f9 becomes false (DC 7, see Figure 5.2, p. 108).
Furthermore, as a result of this, f11 and f12 become false (DC 6). The mapping
uses these values to configure the process model: due to MC 31, the selection of a
payment method is configured as hidden, and MC 32 and MC 35 enforce a credit
card payment. Moreover, the only possible verification method for the credit
card is the SecureCode verification, all other implementations of the Credit card
payment task are blocked (MC 39, MC 41, MC 42).

In addition, it is possible that the configuration of a variation point is de-
termined through more than one question. For example, the configurations of
the output ports of task Receive order which put tokens into multiple succeed-
ing conditions are determined through the domain facts f3 – f8 , i.e. through
answering questions q2 and q3 (MC 8 – MC 15).

A valid process configuration with respect to the domain is given by any
domain configuration that leads to a process configuration via a valid mapping.
That means, the conjunction DC ∧ PC ∧ MC must be satisfiable. The config-
uration space is obtained by the intersection of the domain configuration space
and the process configuration space via the mapping. Thus, like we suggested

114 Chapter 5. Guiding the Configuration Process

for checking process constraints in Chapter 3, SAT solvers [121] can be used
to check the satisfiability of the conjunction of process constraints with domain
constraints and the mapping.

As the process constraint incorporates the exclusive disjunction of the differ-
ent configuration values referring to a single port (see Section 5.2), concatenating
the mapping with the process constraint automatically enforces that each port
can refer only to one process fact that is true at a time. This allows us to specify
mappings only for those process facts which together guarantee a true process
fact. For example, MC 30 configures the input port of the Select payment method
task as allowed if f9 and f10 both are true, while MC 31 hides the port if this is
not the case. Hence, any other process fact referring to this port (like the one
blocking the port) can never become true, even if we do not explicitly specify
that it is always false. If we explicitly set a process fact to true like in MC 1,
MC 16, MC 17, MC 20 – MC 23, etc., it is not necessary to specify a mapping for
any other process fact referring to the same port. If the number of port configu-
rations is limited, like it is for input ports, output ports, cancelation ports, and
hierarchical mappings of YAWL tasks, we can even ‘underspecify’ the mapping
of process facts for a port by one process fact: If the given mapping does not
lead to a true process fact, the exclusive disjunction among the process facts,
automatically sets the non-mapped process fact to true. For that reason, we
could, e.g., also drop one of the two process fact mappings for output ports
from the list above, i.e. either MC 2 or MC 3, either MC 4 or MC 5, either MC 6

or MC 7, etc.

By representing the domain variability in a separate model, we can avoid cap-
turing the interdependencies of the domain in the configurable process model.
They are represented by the domain constraints in the domain configuration
model and propagated to the process model via the mapping. Constraints over
process facts have thus to deal with the preservation of the model correct-
ness only. The correctness of the model with respect to the domain is achieved
through the mapping which propagates the domain constraints from the domain
configuration model to the process model.

The other way around, as a result of the application of the mapping, the
process constraints might also restrict the configuration space of the domain.
That means, some answering options in the questionnaire are denied as, based
on the mapping, they would lead to non-executable process models. Hence, the
process model and its constraints are also measures to check and guarantee the
feasibility of what is possible according to the domain model. If the mapping
between domain facts and process facts is so restrictive that no correct process
model is allowed at all, i.e. DC ∧PC ∧MC is not satisfiable, then there is either
an obvious discrepancy between the domain model and the process model in the
depiction of the process domain, or the mapping is incorrect. Thus, checking
this constraint provides a good tool for detecting semantic errors in both models.

Once each variation point has been configured, i.e. each process fact is set
to true or false, these configuration decisions can be used to derive a configured
process variant as depicted in Chapters 3 and 4.

5.4. Tool Support 115

Configured

C-EPC (.epml)
Mapping

(.cmap)

answers

Questionnaire

Model (.qml)

Configured

C-YAWL (.yawl)
YAWL Engine

spec. (.yawl)

C-YAWL model

(.yawl)

Quaestio

Questionnaire

Designer

Mapper Process

Configurator

Process

Individualizer

Configuration Model

(.cml)

C-EPC model

(.epml)

EPC

(.epml)

On

Off

Seq

Figure 5.5: The software architecture of the tools implemented.

5.4 Tool Support

Synergia3 is a set of tools supporting process configuration by practically es-
tablishing the sketched configuration framework. Each of Synergia’s tools is a
stand-alone application responsible for a specific task in the configuration pro-
cess, from the design of the questionnaire and the collection of its answers, to
the release of a configured process model. Figure 5.5 provides an overview of
the toolset’s architecture.

In a first step, a domain configuration model like the one from Figure 5.1 and
the corresponding domain constraints can be set up using the Questionnaire
Designer. The Questionnaire Designer saves the domain configuration model
as an XML serialization which represents the input to Quaestio.

Quaestio presents the domain configuration model as an interactive question-
naire guiding one through the configuration process by posing only the relevant
questions in an order consistent with the order dependencies. Questions can be
either answered explicitly, or, if they are not set to mandatory in the domain
configuration model, they can be answered automatically by using the default
values given in the domain configuration model. Questions which have already
been answered can also be rolled back to re-consider a decision.

Quaestio prevents users from entering conflicting answers among different
questions by dynamically checking the domain constraints. For this, it embod-
ies a SAT solver based on SBDDs.4 Algorithms based on SBDDs can easily
deal with systems made up of around one million of possibilities [121]. As a
result, Quaestio can scale with domain configuration models yielding around
one million domain configurations.

For example, Figure 5.6 provides a screenshot of Quaestio. Here, the first
question How can trips be booked? is answered with Via the internet only. In
the next question on what can be booked (compare Figure 5.1) we further-
more answer that both train tickets and reduction cards can be booked, but no
hotels. Figure 5.7 shows that Quaestio is able to automatically determine the

3available via http://www.processconfiguration.com
4Available at http://www-verimag.imag.fr/~raymond/tools/bddc-manual.

http://www.processconfiguration.com
http://www-verimag.imag.fr/~raymond/tools/bddc-manual

116 Chapter 5. Guiding the Configuration Process

Figure 5.6: Answering the questionnaire from Figure 5.1 (I).

Figure 5.7: Answering the questionnaire from Figure 5.1 (II).

5.4. Tool Support 117

answer for the next questions on which payment methods are available, on which
verification should be used, and on how the travel documents are handed out
(indicated by their grey font color in the list of answered questions). For this,
Quaestio evaluates the domain constraints from Figure 5.2 on f1 ∧ f2 . This sets
f10 and f13 automatically to true while f9 becomes false (Domain constraint
DC 7). Thus, all facts connected to the question on the payment method (q4)
are immediately set. As f2 is set to false, neither f9 nor f11 , nor f12 , nor f15
can be true (DC 10). Thus, all facts connected to the question for the verifica-
tion method (q5) are also set. Furthermore, DC 8 requires that at least one of
f14 or f15 must be true. As f15 is set to false, this can only be f14 . Hence,
all facts about handing out travel documents are set automatically as well and
question q6 is answered.

The last question that remains open is how many items can be booked at
once. As this question is not mandatory, Quaestio asks if the question should
be answered automatically with the default answer, or if it should be answered
manually. Here, we opt for making this decision manually. Figure 5.7 thus shows
the available answering options. Quaestio automatically discovers through DC 3

that only one of the three answer can be given. Thus, different from the first
question shown in Figure 5.6, it uses now radio buttons instead of check boxes.
In this way, the user can really chose only one of the options. However, so
far, we have not selected any answer while at least one of the facts must be
selected according to the constraints. For that reason, the button to answer
the question is currently disabled. The Answer button only becomes enabled
when we have made our choice. Alternatively, we can simply press the button
Default Answer in which case the corresponding answer Multiple items (f8) will
be chosen (indicated by the circled T next to it). Let us do so here. The given
answers are then saved as the domain configuration.

The Mapper provides an interface to map process facts from a configurable
process model to domain facts from the domain configuration model and create
an XML serialization of it. Besides C-YAWL, the framework also supports C-
EPCs. In C-EPCs, process facts correspond to the various variants to which a
configurable connector can be set, as well as to turning a configurable function
on or off. However, note that while a domain configuration is independent of the
chosen process modeling notation, a mapping is always created specifically for a
particular configurable process modeling language because it has to address the
configurable elements which — as we have seen in Chapter 4 — differ among
languages. The mapper uses the SAT solver that is also used in Quaestio to
check the consistency of the domain constraints and of the process constraints,
i.e. if they can be satisfied and if each fact can be freely set or if the mapping
already binds certain facts to true or false. Thus, it also verifies the validity of
the generated mapping, checks for redundancies, and shows possible restrictions
of the single configuration spaces (domain and process) that may occur from
the application of the mapping. The mapping for our C-YAWL example was
already shown in Section 5.3.

The domain configuration, the mapping, and the corresponding configurable
process model available serve as input for the Process Configurator (see Fig-

118 Chapter 5. Guiding the Configuration Process

Figure 5.8: The Process Configurator takes the domain configuration, a mapping, and a
process model as input to annotate the process model with the configuration decisions.

Send

documents

Receive

order

a4

Select
payment

method

b4

Book

train
ticket

Book
reduction

card

Book
hotel

Collect
documents

Credit card

payment

Cash
payment

a1

b1

c1

a2

b2

c2

a3

b3

Cancel

booking

a

b

c

a,b

a,c

b,c

a,b,c

a

b

Figure 5.9: The configuration decisions according to the domain configuration decisions
given in Quaestio (Figures 5.6/5.7).

ure 5.8). Through the mapping, it generates the process configuration decisions
for the configurable process model from the domain configuration and adds these
configuration decisions to the configurable process model. That means that the
resulting model, which depending on the input is either a C-EPC or a C-YAWL
model, contains annotations about the process configuration decisions that cor-
respond to the provided domain configuration. The decisions resulting from our
example are shown in Figure 5.9 5.

In a last step, the Process Individualizer uses the annotated, configured
process model to generate a configured process model in the original process
modeling language which corresponds to the configuration decisions (see Fig-

5Note that the result of the Process Configurator is an XML serialization of the depicted
model, which can be loaded into the YAWL editor.

5.4. Tool Support 119

Figure 5.10: The Process Individualizer generates a classical process model according to the
configuration decisions provided in the model.

Figure 5.11: The YAWL model produced by the Process Individualizer loaded into the
YAWL editor.

ure 5.10). That means, depending on the input, the Process Individualizer is
able to generate either an EPC or a YAWL specification. For generating YAWL
specifications, the tool uses the algorithm depicted in Section 4.3.5 (pp. 91ff).
Thus, the resulting models are directly executable using the YAWL workflow
engine or can be edited further using the YAWL editor. For our example, a
screenshot of the YAWL editor is shown in Figure 5.11. To generate EPCs that
conform to the configuration annotations of C-EPCs, the Process Individualizer
uses an algorithm adopted from Rosemann and van der Aalst [143], which can
be found in the PhD thesis of La Rosa [110].

120 Chapter 5. Guiding the Configuration Process

5.5 Related Work

The separation of process configuration from the context domain has been inves-
tigated, among others, by Becker et al. [33, 34]. In their approach, adaptation
parameters and their possible values are linked to model elements to indicate
which sections of the model are relevant or not to a specific application sce-
nario. By assigning values to these parameters, a user can configure a process
model without looking at the process flow. However, the approach does not
yet offer guidance to users when assigning values to the adaptation parameters.
Moreover, although it is possible to specify local constraints among parame-
ters, no method is provided to check for model-wide consistency that could,
e.g., inhibit deadlocks in the process flow or deny parameter settings that are
not feasible from a domain perspective. Hence, to overcome these issues, the
approach could be integrated into the configuration framework by mapping the
adaptation parameters to domain facts of domain configuration models. Then,
Quaestio can be used also to steer the suggested configuration opportunities
also in this context.

The use of questions to steer the selection of process alternatives is also ad-
vocated by Soffer et al. [170]. Their approach depicts alternatives in the process
execution as process specializations. The activation of these specializations is
linked to conditions expressed as questions. Thus, the conditions are similar to
domain facts. However, constraints over these conditions are not defined and
no tool support is offered for this.

More generally, modeling the variability of information systems is a common
approach to achieve the reuse of software, known as Software Product Line
Engineering [129]. Here, models capture how a collection of available options
impact the way a software system is built from a set of available software com-
ponents. Thus, like we integrate several process variants into a single process
model and then provide tools to derive an individual process variant from the
package, in software product line engineering different software assets are joined
into a large package and through selecting the necessary components, a software
containing the specifically necessary features can be derived [50].

For example, to capture configuration processes for the Linux kernel the
language CML2 was designed [135]. It allows to select or deselect components,
like the drivers for specific hardware, that should be compiled into the Linux
kernel. For this, CML2 supports the definition of validity constraints based on
propositional formulas over so-called symbols and the checking of their consis-
tency. Similar to domain configuration models suggested here, a configuration
model in CML2 is composed of questions guiding the configuration process and
leading giving values to pre-defined symbols.

A detailed comparison of how domain configuration models address the do-
main variability with software product line engineering approaches is provided
by La Rosa et al. [111]. Especially, two research streams in this field should
be mentioned here: software configuration management and feature di-
agrams. While software configuration management deals with managing soft-
ware development projects, feature diagrams describe software product lines

5.6. Conclusions 121

in terms of their particular features. Readers interested in details on software
configuration management also in the work of Pressman [130]. For details on
feature diagrams, interested readers find details in the work of Kang et al. [100]
which introduces a feature oriented domain analysis. Schobbens et al. [166]
provide a survey on feature diagram techniques.

5.6 Conclusions

This chapter presented a framework that captures the domain variability inde-
pendent from the variability of a configurable process modeling language. It
does so through a questionnaire offering pre-defined answers to the questions.
By mapping these answers, so-called domain facts, to the variability of the
configurable process models, so called process facts, the process model config-
uration can be steered through natural language instead of technical constructs
likes configurable ports. Once the questionnaire is answered, an individualized
model can automatically be derived from the configurable process model.

Through the mapping, also constraints on the possible answers in the ques-
tionnaire are linked to configuration constraints of the configurable process
model. In this way, a unified set of constraints is obtained which ensures that
the answers given always lead to a correct process model configuration, i.e. to a
model that is correct both from a context point of view as well as syntactically.

The Synergia toolset implements this approach. It contains tools for defin-
ing questionnaires as well as for posing the questions to the user and collecting
the corresponding answers. Furthermore, it contains a tool for mapping the do-
main facts corresponding to these answers to the configurable ports of a process
model as well as a tool for deriving the particular process configuration deci-
sions. Finally, the toolset also provides a software for generating the configured
process models. Synergia supports both C-EPCs and C-YAWL. It is thus able
to generate YAWL specifications and EPCs that conform to the given answers
in the natural language questionnaire.

In this way, Synergia allows abstracting from concrete process modeling
notations when making configuration decisions. Without confronting subject
matter experts with any process models, it guides them through the configu-
ration process and helps them to derive a valid process configuration. Process
configuration is reduced to answering a questionnaire.

Obviously, the framework requires to construct both a domain configura-
tion model and a mapping between the domain configuration model and the
configurable process model in addition to the configurable process model. Still,
as the domain configuration model is based on natural language, constructing
a domain configuration model is a far easier task than the construction of a
configurable process model. Each domain fact, i.e. each possible answer of the
questionnaire, should simply refer directly or indirectly to at least one pro-
cess variation opportunity identified during the development of the configurable
process models. Following this guideline thus helps in defining both relevant
questions and relevant process facts.

122 Chapter 5. Guiding the Configuration Process

To test the practical feasibility of the framework (and thus the ease of con-
structing both the models as well as the mapping between them), we conducted
a case study. This case study is described in the next chapter and uses the
toolset discussed in this chapter, as well as the ideas on configurable YAWL
models developed and discussed in Chapter 4.

We’ll do this as long as it’s effective. And feasible.
Devin K. Grayson (2003)

Chapter 6

Configurable Process

Models for Municipalities

Many processes in public administration are driven by legislation [141]. There
are laws about registering a child, when a deceased can be buried, what is
necessary to get married, etc. For that reason, processes executed in the admin-
istration of municipalities are extensively regulated. Still, municipalities have
some freedom regarding the concrete implementation of such processes. Thus,
they can adapt the particular process executions to local needs and preferences.
For example, municipalities with many inhabitants may choose to organize their
processes differently from rather small municipalities, or the services provided
along with these processes might vary depending on local conditions.

Hence, it is likely that such administration processes are executed similarly
among municipalities with small variations. Therefore, these processes are good
candidates for being implemented as configurable process models which each
municipality can adjust to own requirements. Furthermore, municipalities as
public entities have no issues with reporting on their processes, which makes
them easily accessible for researchers.

The goal of this chapter is therefore to report on a case study in which con-
figurable process models have been implemented for four registration processes,
which are executed on a daily basis in municipalities. The four configurable
models, which are created using the configuration extension to YAWL presented
in Chapter 4, incorporate all the variations in the execution of these processes
among four Dutch municipalities as well as the suggestions of a reference model
for these processes. Therefore, a total of 5 × 4 = 20 processes were used as
input for creating these models. Moreover, a questionnaire was developed for
each process that allows steering the configuration of the particular processes
through natural language questions as depicted in Chapter 5. Afterwards, the
practical usefulness of the resulting models was evaluated through focus group
interviews with software providers and consultants. During these interviews the

124 Chapter 6. Configurable Process Models for Municipalities

stakeholders could derive individual process models for these four processes. To
test whether the resulting models conform to what was intended by answering
the questionnaires, the stakeholders could execute the resulting process defini-
tions using the YAWL system. In this way, end-users could execute example
scenarios (in which input screens for the various process steps were provided)
to validate the model.

This chapter is organized as follows. First, Section 6.1 depicts how the con-
figurable process models were created and summarizes the practical experiences
gained during the model creation phase. Afterwards, Section 6.2 provides details
on the interviews performed with the stakeholders and their results. Section 6.3
provides a brief overview on similar case studies before conclusions are drawn
in Section 6.4.

6.1 Creating Configurable Process Models

The goal of creating configurable process models for municipality processes is to
show the feasibility of building and using, i.e. executing, such models. Thus, it
is here sufficient to create configurable process models for a certain selection of
the processes executed by municipalities. To build configurable process models,
it was therefore necessary to first of all select the processes that should be de-
picted as configurable process models. Afterwards, it was required to document
how these processes are executed in a number of municipalities which forms the
basis for the variations in the particular processes. These models then had to be
integrated to an executable basic process model, a questionnaire had to be de-
veloped covering the variation options, and the questionnaire had to be mapped
onto configuration decisions for the basic process model. This then allowed to
derive a particular process configuration and execute the corresponding process.
The first part of this section explains these steps in more detail. In the second
part, we then summarize the challenges that arose during the creation of such
models and how they were addressed.

6.1.1 Building the Models

As the purpose of this case study is to determine if configurable process models
can improve process model reuse, the processes chosen are deliberately pro-
cesses for which process model configuration is likely to provide high benefits,
i.e. these are processes which are not only highly standardized with small vari-
ations, but also executed frequently. Registration processes executed in civil
affairs departments are examples of standardized processes of which some are
executed relatively frequent. Hence, we chose four of the five most often exe-
cuted processes in this area:1

1The process excluded in this case study is the registration of a couple’s divorce. Its
main steps are usually a matter of judicature, while the steps taken in the administration of
municipalities are trivial.

6.1. Creating Configurable Process Models 125

• Acknowledging an unborn child: This process is executed when a man
wants to register that he will be the father of a child still to be born while
he is not married to his pregnant partner.

• Registering a newborn: This process is executed by the municipality to
register a newborn child and hand out a birth certificate.

• Marriage: This process includes the steps formally necessary before a
couple can get married in a Dutch municipality.

• Issuing a death certificate: This process is executed when a person deceases
to provide the relatives with the documentation necessary to bury the
deceased.

The Nederlandse Vereniging Voor Burgerzaken (NVVB2), i.e. the Dutch as-
sociation for services to the public, offers reference process models for these
processes. These reference models provide a single process model for each of
the processes which describes the ‘best-practice’ of how the particular process
should be executed. They are developed based on the input from the legislative
body as well as from municipalities executing these processes.

To detect variations in the process execution in daily practice, the processes
of four municipalities in the Netherlands were documented. The selection of
these four municipalities was done such that the municipalities vary in the size
of their population (between 26.000 and 201.000 inhabitants), as well as such
that they use software from different providers to support the process execution.
In this way, we can identify a broad spectrum of how these processes can vary.3

Without using the reference model of the NVVB as basis for the discussion,
the process owners of the selected municipalities explained how they execute
each of the four processes. Based on this input, a separate Protos process model
was created for each process in each municipality. Protos was selected as process
modeling notation because Protos is very popular among Dutch municipalities
for depicting inhouse processes. Thus, the stakeholders of the municipalities
were familiar with it. Some of the municipalities even provided us with process
models which they had already created to document their processes. Some of
these models were clearly adapted from the reference models of the NVVB.
If models were provided by the municipalities, the models used in the case
study are based on these models. The models were only modified where it
became clear from the process descriptions of the particular process owners
that a process model did not reflect what was actually happening. To make
sure that the processes depict the processes correctly, the final versions of the
individual process models were provided to the particular process owners with
the request to confirm the validity of the model.

2see http://www.nvvb.nl
3Note that besides the broad spectrum of variations, the number of four municipalities is

too small to assume that the variations detected are all possible variations, i.e. the input is
not sufficient to claim completeness of the variation options.

http://www.nvvb.nl

126 Chapter 6. Configurable Process Models for Municipalities

OK

Not OK

Not OK

Citizen

Confirm identi fy

Determine i f
authorisation

Check for
permiss ion

Draw up ackn.
document

Hand over copy

Archive
documents

Dec ide choice
of name

Request
Acknowledgement

Archive

No
acknowledgement

Yes

No

Yes

No

No

Yes

Yes

No

Yes

No

Unmarried

Not OK

OK

Not OK

Last name

mother

Citizen

Firs t child of the
relation

Decide choice
of name (under

Reques t
Acknowledgement

Both live in the
munic ipality

Identify

Unmarried

Both parents

present

min. 1 person
present

Contact liv ing
munic ipality

No
acknowledgement

Archive

Determine if

authorisation

Draw up ackn.
document

Hand over copy

Process ackn.
at birth

Dec laration
unmarried

Check for
permiss ion

Yes

No

Yes

No

No

Yes

Yes

No

No

Yes

Unmarried

Not OK

OK

Not OK

Citizen

Decide choice
of name (for

Unmarried

Request
Acknowledgement

Both live in the
municipality

Last name
mother

Confirm identify

Draw up ackn.
document

Inform of
authority over

Process ackn.
at birth

Hand over copy

Both parents
present

Firs t child of the
relation

Decide choice
of name (under

Determine
nationality

No
acknowledgement

Contac t liv ing
municipality

Check for
permission

Determine if
authorisation

Dec laration
unmarried

Archive

min. 1 person
present

not ok

ok

not ok

ok

Decide choice
of name (Dutch

Citizen

Draw up ackn.
certificate

Check for
permission

Request
Acknowledgement

Confirm identi fy

Determine if
authorisation

Determine
nationali ty

Hand over copy

Archive
documents

Decide choice
of name

No
acknowledgement

Archive

Figure 6.1: The different process variants of how municipalities perform the acknowledge-
ment of an unborn child (enlarged figures can be found in Appendix A).

6.1. Creating Configurable Process Models 127

Yes

No

Yes

No

Yes

No

No

Yes

Yes

No

Unmarried

Not OK

OK

Not OK

OK

Not OK

Last name
mother

Citizen

Confirm identify

Request
Acknowledgement

First child of the
relation

Both live in the
municipality

Decide choice
of name (under

Unmarried

Both parents
present

Determine
nationality

Decide choice
of name (for

No
acknowledgement

Contact living
municipality

Archive

min. 1 person
present

Process ackn.
at birth

Draw up ackn.
document

Hand over copy

Inform of
authority over

Check
permission

Declaration
unmarried

Determine if
authorisation

OK

Not OK

Not OK

Citizen

Confirm identi fy

Determine i f
authorisation

Check for
permiss ion

Draw up ackn.
document

Hand over copy

Archive
documents

Dec ide choice
of name

Reques t
Acknowledgement

Archive

No
acknowledgement

Figure 6.2: Adding a process variant (left) to the integrated process model for acknowledging
an unborn child (right).

Figure 6.1 provides an overview of the four Protos models for the process
of acknowledging an unborn child, derived from the four municipalities.4 While
the control-flow of these four processes is similar, the number of steps taken
and the concrete order of executing tasks varies among municipalities. This can
easily be seen when comparing the four models in Figure 6.1. Thus, the four
process models provide sufficient variations to construct a configurable process
model.

In addition to these four models, also the NVVB provides their reference
models in Protos (and several other notations). Thus, the models of the NVVB
even serve as yet another variant of how the described processes can executed.5

Hence, we have 4+1 = 5 process variants per process available as Protos models.

These variants need to be combined into an integrated process model, cover-
ing the behavior of the five individual variants. For this, real differences among
the process variants had to be distinguished from those differences which refer to
the same behavior, i.e. where just different names are used for identical behav-
ior. While naming of identical behavior must be harmonized, the behavior that
is really different had to be combined into a single model by introducing choices
between the various behaviors of the different models. In this way, we created
for each business process a single Protos model that incorporates all the varia-
tions from the five input models as ordinary run-time choices. Figure 6.2 shows

4The individual models of the other three processes as well as enlarged figures of the four
processes depicted in Figure 6.1 are provided in Appendix A.

5The reference process models for the four processes are provided in Appendix A.

128 Chapter 6. Configurable Process Models for Municipalities

Yes

No

Yes

No

Yes

No

No

Yes

Yes

No

Unmarried

Not OK

OK

Not OK

OK

Not OK

Last name
mother

Citizen

Confirm identify

Request
Acknowledgement

First child of the
relation

Both live in the
municipality

Decide choice
of name (under

Unmarried

Both parents
present

Determine
nationality

Decide choice
of name (for

No
acknowledgement

Contact living
municipality

Archive

min. 1 person
present

Process ackn.
at birth

Draw up ackn.
document

Hand over copy

Inform of
authority over

Check
permission

Declaration
unmarried

Determine if
authorisation

Figure 6.3: All variants for acknowledging an unborn child integrated into a single Protos
model.

how the individual model for acknowledging an unborn child on the lower-right
of Figure 6.1 was added to the integrated model of the other three models in
order to derive the complete basic process model. The complete model is also
depicted in Figure 6.3. Note that out of the four business processes in this case
study, the process of acknowledging an unborn child is the simplest, i.e. the
three other combined process models include both more tasks and more arcs.6

To be able to configure and execute the processes, we have to switch to
a workflow environment that supports both the configuration and execution
of process models. Hence, YAWL is used here such that we can benefit from

6Figures A.7 – A.28 in Appendix A provide the integrated Protos models for all processes.

6.1. Creating Configurable Process Models 129

Figure 6.4: The model from Figure 6.3 translated into YAWL

the tools explained in Chapter 5 (Section 5.4, pp. 115ff). The translation from
Protos to YAWL was done manually because deriving executable process models
not only requires translating the pure control-flow depicted in the figures above,
but it also requires implementing the data-flow upon which the process relies.
The Protos models provide the data-flow only in a descriptive way, i.e. the
definitions cannot be interpreted automatically by a workflow engine. Thus,
the resulting YAWL models are fully executable in YAWL’s workflow engine.
When executing the process, input screens are provided and the entered data
is used to determine the necessary run-time decisions. Figure 6.4 shows the
YAWL model for the process of acknowledging an unborn child.7

When looking at the integrated models of figures 6.3 and 6.4, and comparing
these models with the original models in Figure 6.1, it becomes obvious that
especially the number of arcs has significantly increased in the combined model.
Such YAWL models are far too complex to be used and configured by the
stakeholders of the municipalities. To let them configure these basic process
models, natural language questionnaires as explained in Chapter 5 are needed.
In the questionnaires, each variation opportunity for the process execution is
addressed by at least one question. For example, the questionnaire model for the
process of acknowledging an unborn child is shown in Figure 6.7. The questions
mainly ask if certain tasks should be executed, or in which order these tasks
should be executed during the process execution.

The answers to the questions are then mapped to allowing, hiding, or block-
ing the process flow through various ports. The mapping between the domain

7Figures A.8 – A.29 in Appendix A provide the basic YAWL models for all processes.

130 Chapter 6. Configurable Process Models for Municipalities

O
u
tp

u
t

p
o
r
t

(u
n
le

ss
o
th

e
r
w

is
e

st
a
te

d
)

f1
f2

f3
f4

f5
f6

f6
f7

f8
1

C
o
n
fi
rm

id
en

ti
ty

→
B
o
th

li
ve

in
th

e
m

u
n
ic

ip
a
li
ty

B
2

C
o
n
fi
rm

id
en

ti
ty

→
D

et
er

m
in

e
if

a
u
th

o
ri

za
ti
o
n

n
ec

es
sa

ry
B

B
B

3
D

ec
id

e
ch

o
ic

e
o
f
n
a
m

e
(u

n
d
er

D
u
tc

h
la

w
)
→

D
ra

w
u
p

a
ck

n
o
w

le
d
ge

m
en

t
D

oc
u
m

en
t

B
B

4
L
a
st

n
a
m

e
m

o
th

er
→

D
ra

w
u
p

a
ck

n
o
w

le
d
ge

m
en

t
D

oc
u
m

en
t

B
5

B
o
th

pa
re

n
ts

p
re

se
n
t
→

D
ra

w
u
p

a
ck

n
o
w

le
d
ge

m
en

t
d
oc

u
m

en
t

B
6

m
in

.
1

pe
rs

o
n

p
re

se
n
t
→

D
ra

w
u
p

a
ck

n
o
w

le
d
ge

m
en

t
d
oc

u
m

en
t

B
7

C
h
ec

k
fo

r
pe

rm
is
si
o
n
→

F
ir

st
ch

il
d

o
f
th

e
re

la
ti
o
n
sh

ip
B

B
8

C
h
ec

k
fo

r
pe

rm
is
si
o
n
→

D
ec

id
e

ch
o
ic
e

o
f
n
a
m

e
(u

n
d
er

D
u
tc

h
la

w
)

B
B

9
D

et
er

m
in

e
n
a
ti
o
n
a
li
ty

→
D

ec
id

e
ch

o
ic
e

o
f
n
a
m

e
(u

n
d
er

D
u
tc

h
la

w
)

1
0

C
o
n
fi
rm

id
en

ti
ty

→
F
ir

st
ch

il
d

o
f
th

e
re

la
ti
o
n
sh

ip
B

1
1

C
h
ec

k
fo

r
pe

rm
is
si
o
n
→

D
ra

w
u
p

a
ck

n
o
w

le
d
ge

m
en

t
d
oc

u
m

en
t

B
1
2

L
a
st

n
a
m

e
m

o
th

er
→

B
o
th

li
ve

in
th

e
m

u
n
ic

ip
a
li
ty

B
B

1
3

B
o
th

pa
re

n
ts

p
re

se
n
t
→

B
o
th

li
ve

in
th

e
m

u
n
ic

ip
a
li
ty

B
B

1
4

m
in

.
1

pe
rs

o
n

p
re

se
n
t
→

B
o
th

li
ve

in
th

e
m

u
n
ic

ip
a
li
ty

B
B

1
5

D
ec

id
e

ch
o
ic

e
o
f
n
a
m

e
(u

n
d
er

D
u
tc

h
la

w
)
→

L
a
st

n
a
m

e
m

o
th

er
B

1
6

D
ec

id
e

ch
o
ic

e
o
f
n
a
m

e
(u

n
d
er

D
u
tc

h
la

w
)
→

B
o
th

pa
re

n
ts

p
re

se
n
t

B
B

1
7

C
h
ec

k
fo

r
pe

rm
is
si
o
n
→

D
et

er
m

in
e

n
a
ti
o
n
a
li
ty

1
8

D
ra

w
u
p

a
ck

n
o
w

le
d
ge

m
en

t
d
oc

u
m

en
t
→

h
a
n
d

o
ve

r
co

p
y

1
9

D
ra

w
u
p

a
ck

n
o
w

le
d
ge

m
en

t
d
oc

u
m

en
t
→

In
fo

rm
o
f
a
u
th

o
ri

ty
o
ve

r
ch

il
d

2
0

F
ir

st
ch

il
d

o
f
th

e
re

la
ti
o
n
sh

ip
→

D
ec

id
e

ch
o
ic
e

o
f
n
a
m

e
(u

n
d
er

D
u
tc

h
la

w
)

B
2
1

D
ec

id
e

ch
o
ic

e
o
f
n
a
m

e
(u

n
d
er

D
u
tc

h
la

w
)
→

B
o
th

li
ve

in
th

e
m

u
n
ic

ip
a
li
ty

B
B

B
B

A
B

B
2
2

D
ec

id
e

ch
o
ic

e
o
f
n
a
m

e
(u

n
d
er

D
u
tc

h
la

w
)
→

D
et

er
m

in
e

if
a
u
th

o
ri

za
ti
o
n

n
ec

es
sa

ry
B

A
B

B
B

B
B

B
2
3

L
a
st

n
a
m

e
m

o
th

er
→

D
et

er
m

in
e

if
a
u
th

o
ri

za
ti
o
n

n
ec

es
sa

ry
B

A
B

B
B

B
B

B
2
4

B
o
th

pa
re

n
ts

p
re

se
n
t
→

D
et

er
m

in
e

if
a
u
th

o
ri

za
ti
o
n

n
ec

es
sa

ry
B

A
B

B
B

B
B

B
2
5

m
in

.
1

pe
rs

o
n

p
re

se
n
t
→

D
et

er
m

in
e

if
a
u
th

o
ri

za
ti
o
n

n
ec

es
sa

ry
B

A
B

B
B

B
B

B
2
6

C
o
n
ta

ct
li
vi

n
g

m
u
n
ic

ip
a
li
ty

→
D

et
er

m
in

e
if

a
u
th

o
ri

za
ti
o
n

n
ec

es
sa

ry
B

2
7

U
n
m

a
rr

ie
d
→

D
et

er
m

in
e

if
a
u
th

o
ri

za
ti
o
n

n
ec

es
sa

ry
B

2
8

C
o
n
ta

ct
li
vi

n
g

m
u
n
ic

ip
a
li
ty

→
D

ra
w

u
p

a
ck

n
o
w

le
d
ge

m
en

t
d
oc

u
m

en
t

B
2
9

U
n
m

a
rr

ie
d
→

D
ra

w
u
p

a
ck

n
o
w

le
d
ge

m
en

t
d
oc

u
m

en
t

B
3
0

A
ll

in
p
u
t

p
o
rt

s
o
f
B
o
th

li
ve

in
th

e
m

u
n
ic

ip
a
li
ty

B
3
1

A
ll

in
p
u
t

p
o
rt

s
o
f
D

et
er

m
in

e
n
a
ti
o
n
a
li
ty

B
3
2

A
ll

in
p
u
t

p
o
rt

s
o
f
F
ir

st
ch

il
d

o
f
th

e
re

la
ti
o
n
sh

ip

Figure 6.5: Mapping of domain facts to port configurations (I): A=Allowed, B=Blocked,
H=Hidden

6.1. Creating Configurable Process Models 131

f1
1

f1
2

f1
3

f1
4

f1
5

f3
∧

f7
f2

∧
f4

f4
∧

f5
f6

∧
f7

f1
∧

f6
f2

∧
f6

f5
∧

f7
f4

∧
f1

4
f4

∧
f1

5
1

B
2

A
A

3
B

4
B

5
B

6
B

7
B

B
8

B
B

9
1
0

1
1

1
2

1
3

1
4

1
5

1
6

1
7

B
B

1
8

B
1
9

B
2
0

2
1

B
B

B
B

B
2
2

B
B

B
B

B
2
3

B
B

B
B

B
2
4

B
B

B
B

B
2
5

B
B

B
B

B
2
6

2
7

2
8

2
9

3
0

3
1

3
2

H

Figure 6.6: Mapping of domain facts to port configurations (II): A=Allowed, B=Blocked,
H=Hidden

132 Chapter 6. Configurable Process Models for Municipalities

q1: Do you want to check if the informer and the mother both are not married?

f1: Yes f2: No

q2: In which order do you want to execute the process?

f3: Name choice -> Permission f4: Permission -> Name Choice

f5: Yes

f6: The order does not matterr

q3: Do you want to perform a nationality check?

f7: Yes f8: No

q5: Do you want to inform the parents about who is getting the authority?

f11: Yes f12: No

q6: Do you want to have name choice as one task?

f13: No

q7: Do you want to check in a seperate task if this is the first child out of the relation?

f14: Yes f15: No

Figure 6.7: The questionnaire model addressing the various options in performing the process
of acknowledging an unborn child.

facts of Figure 6.7 and the YAWL model from Figure 6.4 is shown in the table
in figures 6.5/6.6. For example, if the question q1: Do you want to check if the
informer and mother both are not married is answered with Yes, i.e. f1 is true,
the output port of task Decide choice of name (under Dutch law) to Draw up
acknowledgement document must be blocked (Line 3 of Figure 6.5). This port
must also be blocked if f3 is true or if f13 is true. Some port configurations
also depend on multiple answers. For example, the output port of the task Last
name mother to Draw up acknowledgement document (Line 4 of figures 6.5/6.6)
is not only blocked if f3 is true, but also if f1 and f6 both are true, i.e. if ques-
tion q2: In which order do you want to execute the process? is either answered
with Name choice → Permission, or if it is answered with The order does not
matter and question q1: Do you want to check if the informer and mother both
are not married is at the same time answered with Yes.

In this way, the configuration of the process model integrating the five pro-
cess variants can be done by the stakeholders through simply answering the
questionnaire in Quaestio (see Figure 6.8). There is no need for the stakeholders
to understand the implications of blocking or hiding certain ports. In fact, they
do not even need to be confronted with the integrated process models. After
all, the configuration decisions resulting from the answers to the questionnaire
can be applied automatically to this model, i.e. a simple specific model is shown
rather than a more complicated general model. Using the Process Configurator
and the Process Individualizer, for example, the process model shown in Figure
6.9 can be derived from the integrated model in Figure 6.4, using the answers
given by one of the involved municipalities. This model can then be loaded into
the YAWL workflow engine. Executing the process in the engine, the users of

6.1. Creating Configurable Process Models 133

Figure 6.8: Quaestio allows users to answer the questionnaire. Based on the answers the
model can be configured automatically.

Figure 6.9: The individual process for acknowledging an unborn child.

the model will be filling out input screens, which are generated based on the
information of the configured process model. Thus, the users do not see the
configured model at all in between answering the questionnaire and executing
the process in the engine.

6.1.2 Observations

While performing the case study, several observations were made. Let us thus
list which steps of building a configurable process models could be done easily,
as well as the biggest issues discovered in this section.

Most important, and thus first of all, it should be noted that for all four
business processes it was possible to create integrated process models and ques-
tionnaires that allow users to derive an individual model. For each process and
each municipality it was possible to generate a YAWL model which is equivalent
to the original Protos model by answering the questionnaire and applying the
resulting configuration to the YAWL model. That means, the four configurable
models capture all 20 process variants. For example, the process in Figure 6.9

134 Chapter 6. Configurable Process Models for Municipalities

is equivalent to the process on the lower right of Figure 6.1 (Figure 6.2 high-
lighted this behavior in the integrated Protos model). This illustrates that it is
possible to integrate several process variants of a real business process such that
the different desired — and thus realistic — individual variants can be derived
from it.

Besides this general satisfaction of the case study’s goal, the creation of
the configurable models still came with several challenges. While deriving the
individual process variants was straightforward, the first challenges arose when
integrating the different variants into a single process model: Matching identical
tasks among the variants was often only possible after comparing the exact task
descriptions. Moreover, during the manual compilation of the integrated model,
some paths, i.e. process flows, of the individual models were easily overlooked
and thus not incorporated into the integrated model. Only by carefully ‘re-
playing’ the processes of the individual models in the combined models [144]
these ‘forgotten scenarios’ were discovered. Also, it was sometimes hard to
decide, if tasks should be executed in a certain order or if the order does not
matter and these tasks could be executed in parallel.

Due to the extensive support of control-flow patterns in YAWL, translating
the control-flow from the Protos models to YAWL models was trivial. More
difficult, however, was the implementation of the data-flow for determining the
precise run-time routing of cases through the integrated process model. This was
especially the case when a choice between various options was introduced in the
integrated model while in fact there is no such run-time decision while executing
the process in any of the municipalities. The variation is thus a combination
of features encountered in the five initial models, while the combination itself
was never actually encountered. For example, this applies for the task Con-
firm identity in Figure 6.4 which uses an OR-split to branch into four outgoing
paths. The decision, which combination of paths should be triggered after the
completion, is partly a run-time decision and partly a configuration decision.
During run-time it is decided if the identification was successful or not. If not,
the process completes immediately. However, the decision which combinations
of the remaining three arcs are triggered in case the identification was successful
is already a configuration decision (it might be desired to transform this into a
run-time decision, but this was not the case in any of the involved municipalities
and is thus no option in the resulting model either). A correct definition of the
process flow details in such situations requires the implementation of a ‘default’
decision as well as a very good anticipation of the implications when this default
decision has to change due to a configuration decision.

Questions in the questionnaire abstract from the control-flow of the process
and usually address larger process parts. Thus, the interdependencies between
the answers that can be given in the questionnaire are not always obvious or
immediately derivable from the process’s control-flow. Hence, ordering of ques-
tions and defining constraints between the answers turned out to be challenging
and required a good anticipation of the desired impact of the configuration deci-
sions. This becomes more difficult when the model is complex. Thus, it turned
out that defining constraints among the domain facts and defining the mapping

6.2. Evaluation of the Approach 135

between the domain facts and the configurable ports are in practice not separate
phases. They rather have to go hand in hand with each other. That means,
‘bug-fixing’ a domain constraint always had some implication on the mapping
between domain facts and process facts and vice versa. Therefore, this was
rather an interactive phase between updating the mapping and updating the
domain constraints.

In total, the creation of the four configurable process models took approxi-
mately six months for a single process designer — from collecting the data of the
municipalities to being able to present the stakeholders with the configurable
and executable process model. This timeframe also includes the familiariza-
tion of the process designer with the process configuration techniques and tools
which were new to him at the beginning of the project.

6.2 Evaluation of the Approach

To get insights into the practical applicability of the described models, an ad-
ditional evaluation was carried out by performing three focus group interviews
with one to three employees of the following three organizations, each with a
duration of approximately two hours:

• Pallas Athena8 as a vendor of BPM products and the supplier of Protos
which is actively used by over 250 of the in total 441 Dutch municipalities,

• PinkRoccade Local Government9 which provides software to execute mu-
nicipality processes used by more than half of the Dutch municipalities,
and

• a world-wide operating consultancy firm who adapts their own reference
process models during process implementations for their clients.

All interview partners were first given a presentation on the techniques used
during this project as well as on details of how the four configurable models
and their questionnaires were created. Afterwards, the interview partners had
the opportunity to derive their own executable process models through answer-
ing the questionnaires. The models resulting from the answers given in the
questionnaire during the interview were immediately presented to them. Not
all the interview partners were domain experts for the given processes. Thus,
they were allowed to ask questions on the implications of the various possible
configuration decisions in the questionnaire.

Subsequently, we triggered a discussion with the interview partners focussing
on potential practical needs for adaptable process models, on the feasibility of
creating such configurable models in real-life environments, and on the practical
usefulness of applying such configurable models. Sections 6.2.1 – 6.2.3 outline
the input received during these interviews. The key results are also summarized
in Figure 6.10.

8http://www.pallas-athena.com/
9http://www.pinkroccadelocalgovernment.nl/

http://www.pallas-athena.com/
http://www.pinkroccadelocalgovernment.nl/

136 Chapter 6. Configurable Process Models for Municipalities

Interview
partner

Potential applications and advantages (+) as well as con-
cerns (–)

Pallas Athena (+) Configurable Process models would have been useful for
the development of a “one point of contact” workflow prod-
uct for municipalities developed based on a new law that
requires municipalities to re-structure the customer interac-
tion of their business processes
(+) Potential applications in highly regulated, publicly doc-
umented and accessible, or non-core business processes like
HR processes.
(–) The integrated model must be complete. Is this possi-
ble? How can this be derived from existing processes?

PinkRoccade
Local
Government

(+) Questionnaire answers can be linked to other config-
urable elements, like the configuration of software screens
and windows as well as data fields.
(+) Configuration through questionnaires enables software
providers to create applications that prevent that stake-
holders can fail during the process configuration.
(+) Stakeholders see in the questionnaire the configuration
freedom they have rather than limitations to the configura-
tion space.
(+) Clients often ask for software adaptation and modifica-
tions for a better support of their desired business processes
which is currently expensive due to the need for external
consultants. Currently, this often results into workarounds.
(–) The configurable models created do not allow for a con-
figuration of the resources that are involved in a process.

Consultancy
Firm

(+) Best-practice reference models are often not sufficient:
there is no single best-practice.
(+) It would have been useful in a world-wide role-out of
new business processes where it was a headquarter policy
that 80 % of the processes needed to remain conform to the
global process while it was allowed to deviate by 20 % to
make the process compliant to local regulations.
(+)In some industries production processes are so standard-
ized that the technique might even be applicable to core
processes.
(–) The creation of configurable models seems to require big
efforts. Thus, model providers might hesitate to invest in
creating such models.
(–) The identification of variations between processes is dif-
ficult, i.e. tools are necessary for this.

Figure 6.10: The main comments of the interviewed stakeholders

6.2. Evaluation of the Approach 137

6.2.1 Provider of BPM Solutions

Besides being the software provider offering Protos, Pallas Athena also offers
a workflow engine (Flower, like Protos part of BPM|one) and performs BPM
projects. After configurable process models were introduced to them, the inter-
view partners immediately saw the applicability of the approach to one of their
recent BPM projects in the municipality domain: New laws will require from
Dutch municipalities that they provide a ‘single point of contact’ for inhabitants
through which these can make any request dealing with issues in the scope of
the municipality administration. Hence, many municipalities currently have
to restructure their business processes to conform to these new requirements.
Therefore, it would have been attractive to Pallas Athena to offer a configurable
process models that provides a standard solution. This not only simplifies the
adaptation of the processes to individual requirements for the municipalities, but
also improves the maintainability of the varying process definitions for Pallas
Athena.

The main concerns of the interview partners from Pallas Athena were the
completeness of the configurable model. They believe that it is hard to achieve
that the model contains all desired options, as well as that the configuration
constraints cover all configuration restrictions, i.e. it should be guaranteed that
only desired process models can be derived from configurable process models.
Hence, they were also very interested in ideas of mining the configurable pro-
cesses and guaranteeing the correctness of the configured process models as we
will discuss in chapters 7 and 8.

The interview partners liked the ideas of steering the process configuration
through natural language questionnaires, as it gives process adaptation oppor-
tunities to people not familiar with process modeling. Beyond the municipality
domain, they also indicated potential opportunities for building configurable
process models for non-core, i.e. support processes (e.g. in the human resources
domain). The applicability to core business processes, however, is seen as very
limited as organizations are usually hesitant to provide insights into their busi-
ness processes and the corresponding models. Thus, it will be hard to collect the
data necessary to identify the process variation options and thus to construct a
high-quality configurable process model.

6.2.2 Provider of Municipality Software

PinkRoccade Local Government looked at process configuration from the view-
point of how this could improve their own software provided to municipalities.
They, especially liked the fact that through imposing constraints on the config-
uration options, correct configurations can be guaranteed. Furthermore, they
found it very useful that the process execution can be steered through a pro-
cess model while abstracting from the model is possible when presenting the
configuration options to stakeholders in the particular process. They were thus
also looking into linking configurations of further elements like a software’s in-
put screens and windows to the domain facts through the same framework as

138 Chapter 6. Configurable Process Models for Municipalities

we used to link process configuration decisions to domain facts. Especially,
a linkage to adapting the resource involvement in the process through such a
framework would in their opinion provide further benefits.

They see the main benefits of the approach for the model user because
questionnaires offer only feasible configuration decisions. All the configuration
constraints are hidden, but applied and enforced in the background. Thus,
adapting process models is simplified compared to the current situation, where
any change of the process requires the involvement of expensive, external consul-
tants. Hence, the interviewed stakeholders expect that this simplification could
lead to quicker adaptations of the software to requirements that have changed
over time, and thus to less workarounds by process participants that have to
use an ‘outdated’ software process.

6.2.3 Consultancy Firm

The consultancy firm interviewed has its own industry-specific reference model
which is used as initial template for process implementations. During these
implementations, they adapt the reference model to individual needs. These
adaptations are, however, not recorded, i.e. the reference model is hardly up-
dated with new insights after projects have been completed successfully. This
means that if similar or identical adaptations are required in further projects,
these updates need to be performed from scratch. The reason why the reference
models are not enriched which knowledge from successful projects is that this
update is usually not billable to a customer. Hence, this is also a major issue
raised by the consultants interviewed. It will be hard to find a sponsor for the
obviously very cumbersome task to create and maintain a configurable process
model. According to the consultants, the only way that this issue can be over-
come, is by providing a sophisticated tool which builds the configurable process
model automatically from the modifications made in various implementation
projects.

Still, the consultancy firm could also see benefits of using configurable mod-
els. For example, they had done an international process implementation project
in which a globally operating organization aimed at standardizing processes
worldwide. However, local requirements like local law prevented the implemen-
tation of exactly identical processes everywhere. Hence, there was a global policy
imposed that stated that local implementations were permitted to deviate at
most 20 percent from the globally used process templates. After the presenta-
tion of process configuration, the consultancy firm came up with the idea that
process configuration could have been a good instrument for measuring these
variations during the project.

Furthermore, it is very interesting to see that the consultancy firm had the
impression that, based on their experience, core processes in certain industries
(like the automotive industry or banks) are organized very similarly. Hence, it
would very well be possible to develop configurable process models also for such
processes — if the development of the models would not be that costly.

6.3. Related Work 139

6.3 Related Work

Public administration has already been the subject of several other case stud-
ies in the reference modeling domain. For example, Algermissen et al. [23]
performed a case study with municipalities to identify best-practice in public
administration. Similar to the approach shown here, Algermissen et al. initially
visited a number of municipalities to observe and depict their business processes.
However, different from our approach, they do not focus on providing a model
with various configuration options, but rather aim at deriving a single, ‘ideal’
process model from these variants. Thus, their approach is similar to the one
taken by the NVVB, whose best-practice recommendation we incorporated in
our models.

Karow et al. [102] provide guidelines specifically for the construction of refer-
ence models in public administration. While the goal of the case study presented
in this chapter was to test the feasibility of using configurable process models in
a reference modeling context and to identify the opportunities provided by such
models, we would need to address such guidelines more rigorously if we want to
extend our work to providing a complete configurable reference model covering
more municipality processes and more process variants in the future.

As mentioned in the introduction, best-practice reference models have also
been investigated in several further case studies and projects. For example,
Thomas et al. [176] developed a reference model for event management, and
Scheer [161] designed a reference model for industrial enterprises. Moreover,
commercial process modeling tools often come with standardized libraries of
reference process models such as the IT Infrastructure Library (ITIL)10, the
Supply Chain Operations Reference (SCOR) model [171], or IBM’s Rational
Process Library11. SAP provides both a reference model [48] depicting a collec-
tion of process models corresponding to common business operations supported
by SAP’s enterprise system, as well as a repository of workflow templates that
can be used to automate processes in the enterprise system (which was already
discussed in the introduction of this thesis, as well as in Chapter 4, Section 4.1).
Also, consultancy firms often have reference models depicting experiences from
their own processes12. An overview and classification of 30 different reference
models is provided by Fettke et al. [67]. However, note that none of all these
reference models comes with an explicit tool support to adapt the models to a
particular context (like the option for process model configuration we tested in
this case study).

A practical case study that resulted in configurable process models was per-
formed by La Rosa et al. [114], building on initial results of Seidel et al. [168].
This case study was conducted in the screen business (post production) and
uses the same configuration framework as we use here, but with EPCs a differ-
ent process modeling notation. Furthermore, instead of applying the techniques

10see www.itil-officialsite.com
11see http://www-01.ibm.com/software/awdtools/rmc/library/
12e.g., see http://www.deloitte.org/dtt/article/0,1002,cid%253D45276%2526pv%253DY,

00.html

www.itil-officialsite.com
http://www-01.ibm.com/software/awdtools/rmc/library/
http://www.deloitte.org/dtt/article/0,1002,cid%253D45276%2526pv%253DY,00.html
http://www.deloitte.org/dtt/article/0,1002,cid%253D45276%2526pv%253DY,00.html

140 Chapter 6. Configurable Process Models for Municipalities

to very standardized processes as we do here, they aimed at developing config-
urable process models in a creative domain.

Further details on the case study presented in this chapter from the viewpoint
of the designer of the configurable models can also be found in the work of
Wagemakers [185].

6.4 Conclusions

The goal of the case study presented in this chapter was to develop configurable
process models for four business processes of municipalities based on informa-
tion from four different municipalities and a corresponding reference model.
Afterwards, the potential use of these models and the underlying process model
configuration techniques were evaluated through expert interviews with various
stakeholders potentially developing and using such process models.

During the case study, the suggested techniques proved to be suitable for
the intended purpose: It was possible to derive all the initial, individual models
of the various municipalities as well as further model variants from the inte-
grated models by answering simple questionnaires. Despite that, the creation
of the configurable models required significant efforts, modeling experience, and
domain knowledge. Moreover, the resulting configurable models do not yet pro-
vide a set of variation options for which completeness can be claimed. For this,
the amount of five input models is too small.

From interviews with stakeholders in the created models, we can summa-
rize that all interviewees immediately saw a potential value of the technique
of configurable process models, which they stressed by mentioning current or
past projects where configurable process models could have provided additional
benefits. The steering of the actual process configuration is seen as a useful tool
to assist end users, but even without this support direct process configuration
might prove to be beneficial in various projects where process adaptation is nec-
essary. The interview partners were also concerned about the efforts necessary
to create configurable process models, questionnaires, and to establish the links
between the potential answers and all the ports.

Thus, the simplified adaptation of process models achieved by using config-
urable process models is at the expense of an increased amount of efforts required
to create configurable models.

Still, the interviewed stakeholders had the impression that many of the time-
consuming issues that arose could be improved or even avoided by further tool
support, e.g. ensuring consistencies and configuration correctness, or automati-
cally identifying and integrating process variations. Thus, all interview partners
were interested in techniques that can help here. Furthermore, the intervie-
wees also made clear that process configuration should not be restricted to the
control-flow perspective of business processes, but should also incorporate the
resource and data perspectives to provide a strong and universal configuration
tool.

6.4. Conclusions 141

We will discuss tools that are beneficial for developing configurable process
models in the next chapter, as well as we will develop techniques guaranteeing
the applicability of derived configurations in Chapter 8. There, we will also
briefly consider the influence of the data-flow and resource involvements on a
configuration’s correctness.

142 Chapter 6. Configurable Process Models for Municipalities

Combine the extremes, and you will have the true center.
Friedrich von Schlegel (1800)

Chapter 7

Building the Configurable

Process Model

A basic process model that integrates the behaviors of different variants of a
business process is the basis for any configurable process model. Configuration
then enables deriving these and further process variants from the basic process
model. The question in this chapter is therefore how such an integration of
different process variants into a single basic process model can be achieved.

Usually, the processes represented by configurable process models are not
new and do not need to be highly innovative processes. Hence, it should be possi-
ble to derive configurable models from best-practices, i.e. from well-established
implementations which have proven to perform well. That means that when a
configurable process model is built, various variants of the process are already
operational in different organizations. For example, in the case study from
Chapter 6 we started the development of configurable process models based on
information on the particular processes given to us by various municipalities.
The basic process model thus needs to incorporate the variations among these
process variants. The starting point for building a configurable process model is
therefore the information available about these best-practice process variants.

Today’s IT systems usually generate extensive protocols of what has hap-
pened in the form of log files (often just called logs for short). Thanks to
their use in almost any process execution, such detailed process information is
nowadays widely available. Data and process mining techniques have been de-
veloped by researchers and practitioners to gain condensed information about
the process behavior from such log files. If log files from existing process imple-
mentations are available, it thus seems obvious to use these techniques to derive
configurable process models from the log files of various systems.

Figure 7.1 explains this approach. At first, the available log files from the
different systems must be prepared through filtering of irrelevant content and
mapping of different naming conventions among different log files. Afterwards,

144 Chapter 7. Building the Configurable Process Model

bfwghgf8

73wr

8byarybw

fb wyrfoa

bw4rf

a9wyrfhw

e784yrfh

bfwghgf8

73wr

8byarybw

fb wyrfoa

bw4rf

a9wyrfhw

e784yrfh

bfwghgf8

73wr

8byarybw

fb wyrfoa

bw4rf

a9wyrfhw

e784yrfh

bfwghgf8

73wr

8byarybw

fb wyrfoa

bw4rf

a9wyrfhw

e784yrfh

bfwghgf8

73wr

8byarybw

fb wyrfoa

bw4rf

a9wyrfhw

e784yrfh

bfwghgf8

73wr

8byarybw

fb wyrfoa

bw4rf

a9wyrfhw

e784yrfh

bfwghgf8

73wr

8byarybw

fb wyrfoa

bw4rf

a9wyrfhw

e784yrfh

bfwghgf8

73wr

8byarybw

fb wyrfoa

bw4rf

a9wyrfhw

e784yrfh

bfwghgf8

73wr

8byarybw

fb wyrfoa

bw4rf

a9wyrfhw

e784yrfh

L1

L2

Ln

raw

raw

raw

..

.

bfwghgf8

73wr

8byarybw

fb wyrfoa

bw4rf

a9wyrfhw

e784yrfh

bfwghgf8

73wr

8byarybw

fb wyrfoa

bw4rf

a9wyrfhw

e784yrfh

bfwghgf8

73wr

8byarybw

fb wyrfoa

bw4rf

a9wyrfhw

e784yrfh

bfwghgf8

73wr

8byarybw

fb wyrfoa

bw4rf

a9wyrfhw

e784yrfh

bfwghgf8

73wr

8byarybw

fb wyrfoa

bw4rf

a9wyrfhw

e784yrfh

bfwghgf8

73wr

8byarybw

fb wyrfoa

bw4rf

a9wyrfhw

e784yrfh

bfwghgf8

73wr

8byarybw

fb wyrfoa

bw4rf

a9wyrfhw

e784yrfh

bfwghgf8

73wr

8byarybw

fb wyrfoa

bw4rf

a9wyrfhw

e784yrfh

bfwghgf8

73wr

8byarybw

fb wyrfoa

bw4rf

a9wyrfhw

e784yrfh

L1

L2

Ln

..

.

n raw logs n logs

hsu

gdr

serg

gdr

sreg

M1 M2 Mn

...

hsu

gdr

serg

sreg

hsu

serg

sreg

M1..n

hsu

gdr

serg

sreg

hsu

gdr

serg

sreg

hsu

gdr

serg

sreg

C1

C2

Cn

+ + +

n models

process

mining

pre-

processing

process

configuration

c
le

a
n

,
fi
lt
e

r,
 m

a
p

,
..

.

1 model

ontology

n configurations

based on 1 model

...

Sec
tio

n
7.

1.
2

Sec
tio

n
7.

2

Sec
tio

n
7.

3

Sec
tio

n
7.

1.
1

Figure 7.1: Deriving the basic process model and its configurations

process mining techniques can be used not only to create process models for
individual systems but also to build process models which are valid for all the
systems, i.e. which integrate the various process variants.

Besides the log files, the information available over well-established and well-
running processes might already include process models or workflow specifica-
tions of these processes. For example, in the case study from Chapter 6, some
of the municipalities as well as the NVVB provided us with existing process
models documenting the particular processes. In these cases, it can be better to
build the basic process model of a configurable model directly from these pro-
cess models instead of mining such models from log files which might include
noise and where the model quality depends on the mining algorithm. Thus, the
configurable model is then built by merging the good-quality models (see the
vertical arrows from the n individual models to the single integrated process
model in Figure 7.1).

In the following we will discuss the details of these two approaches to build
the basic process model. In Section 7.1 we will first elaborate on the mining
approach before we suggest an algorithm to merge process models directly in
Section 7.2.

As the goal of building configurable process models is not the direct exe-
cution of these models, but rather the execution of its configured variants, the
question that arises when building the integrated process model is how this
model can or must be configured. Obviously good configurations are the ones

7.1. Generating Configurable Process Models from Log Files 145

used for building the basic process model. Thus, the third section of this chapter
shows which configurations of the basic process model lead back to the original
processes that were used to create the configurable process model.

Having developed the various techniques for improving building configurable
process models, Section 7.4 will briefly re-visit the examples from the munici-
pality case study to see to what extent the tools suggested in this chapter help
addressing the issues of building configurable process models raised during the
case study. Readers interested in further details on the techniques suggested in
this chapter as well as on similar approaches, find an overview of related work
in Section 7.5 before we conclude this chapter with a brief summary.

7.1 Generating Configurable Process Models

from Log Files

In the first approach we assume that the only input we have available for build-
ing the configurable process model are log files. Many of today’s IT systems
constantly write events to log files to record functions that are executed in the
system, changes that are made to the system or its data, ‘system alive’ status
updates and so on. For example, most web servers write an entry into a log file
for each single requested page including information about the time of access,
the IP address of the user, whether the access was successful, and maybe even a
user name or submitted data. Due to today’s extensive use of information sys-
tems in all business areas, such log files containing detailed information about
the executed business processes are usually widely available.

Process mining techniques have been developed to discover a model of the
behavior behind log files. Our goal here is to use these techniques for discovering
the basic process model of a configurable process model as we discussed in chapter
3. That means that we want to discover a process model which is valid for all
the different variants of a process based on the log files of multiple systems.

Process mining of real-world log files is usually split up into two phases.
First the log files are pre-processed, i.e. the input log files are adapted such
that they form an optimal basis for a process mining algorithm (see the left of
Figure 7.2) which secondly generates a process model from the pre-processed
log files (see the middle of Figure 7.2). Many techniques have been developed
for both these phases. Hence, we will in the following highlight those aspects
for each of the two phases that are especially relevant when the mining should
lead to a process model that covers multiple systems, i.e. when mining a basic
process model.

7.1.1 Pre-processing the Log Files

While almost all IT systems record the executed behavior, there is no common
standard for the logging of information. Thus, each application usually uses its
own format. To provide a common format focused on the information required
by process mining algorithms, the Mining XML (MXML) format has been

146 Chapter 7. Building the Configurable Process Model

bfwghgf8

73wr

8byarybw

fb wyrfoa

bw4rf

a9wyrfhw

e784yrfh

bfwghgf8

73wr

8byarybw

fb wyrfoa

bw4rf

a9wyrfhw

e784yrfh

bfwghgf8

73wr

8byarybw

fb wyrfoa

bw4rf

a9wyrfhw

e784yrfh

bfwghgf8

73wr

8byarybw

fb wyrfoa

bw4rf

a9wyrfhw

e784yrfh

bfwghgf8

73wr

8byarybw

fb wyrfoa

bw4rf

a9wyrfhw

e784yrfh

bfwghgf8

73wr

8byarybw

fb wyrfoa

bw4rf

a9wyrfhw

e784yrfh

bfwghgf8

73wr

8byarybw

fb wyrfoa

bw4rf

a9wyrfhw

e784yrfh

bfwghgf8

73wr

8byarybw

fb wyrfoa

bw4rf

a9wyrfhw

e784yrfh

bfwghgf8

73wr

8byarybw

fb wyrfoa

bw4rf

a9wyrfhw

e784yrfh

L1

L2

Ln

raw

raw

raw

...

bfwghgf8

73wr

8byarybw

fb wyrfoa

bw4rf

a9wyrfhw

e784yrfh

bfwghgf8

73wr

8byarybw

fb wyrfoa

bw4rf

a9wyrfhw

e784yrfh

bfwghgf8

73wr

8byarybw

fb wyrfoa

bw4rf

a9wyrfhw

e784yrfh

bfwghgf8

73wr

8byarybw

fb wyrfoa

bw4rf

a9wyrfhw

e784yrfh

bfwghgf8

73wr

8byarybw

fb wyrfoa

bw4rf

a9wyrfhw

e784yrfh

bfwghgf8

73wr

8byarybw

fb wyrfoa

bw4rf

a9wyrfhw

e784yrfh

bfwghgf8

73wr

8byarybw

fb wyrfoa

bw4rf

a9wyrfhw

e784yrfh

bfwghgf8

73wr

8byarybw

fb wyrfoa

bw4rf

a9wyrfhw

e784yrfh

bfwghgf8

73wr

8byarybw

fb wyrfoa

bw4rf

a9wyrfhw

e784yrfh

L1

L2

Ln

...

n raw logs n logs

hsu

gdr

serg

gdr

sreg

M1 M2 Mn

...

hsu

gdr

serg

sreg

hsu

serg

sreg

M1..n

hsu

gdr

serg

sreg

hsu

gdr

serg

sreg

hsu

gdr

serg

sreg

C1

C2

Cn

+ + +

n models

process

mining

pre-

processing

process

configuration

c
le

a
n

,
fi
lt
e

r,
 m

a
p

,
..

.

1 model

ontology

n configurations

based on 1 model

..

.

Figure 7.2: After pre-processing the log files, process mining generates the basic process
model.

defined [83]. By converting the output files of IT systems into this format, all
mining algorithms that use MXML files as input can be applied to these log
files. Knowing the information available in the log files, this conversion can be
automated. For major process aware information systems this conversion has
been implemented in the ProM import framework1. Hence, we assume in the
following that the log files we want to use are available in the MXML format.

As an example, Figure 7.3 shows an extract from an MXML log file. It shows
a workflow log which consists of logs of the travel request processing process we
showed when introducing Protos in Figure 2.8 (p. 33). The log of the process
contains recorded information on the process instances, i.e. executions, of this
process in the form of a number of audit trail entries. Each audit trail entry
incorporates the saved information about a particular task execution. This
should include a name of the executed task, saved as <WorkflowModelElement>
and information on what type of event the audit trail entry represents, e.g. if
the audit trail entry was saved when the particular task was started or when it
was completed. Furthermore, an audit trail entry can include information on
when and by whom the particular task was executed, as well as further data
that has been relevant to the particular task’s execution and thus logged. In
this way, we can see in the example in Figure 7.3 that Michael Smith started
requesting quotes for a travel he wanted to do on the 27th October 2008 at
13.45h (lines 5–10. Following up on this, the secretary, Tom Brown, started
preparing the travel form two days later at 10:07 in the morning (lines 11–16).

1available via promimport.sf.net

promimport.sf.net

7.1. Generating Configurable Process Models from Log Files 147

1 <WorkflowLog ...>
2 <Process id="TRAVEL" description="travel request processing">
3 ...
4 <ProcessInstance id="154">
5 <AuditTrailEntry>
6 <WorkflowModelElement>Request Quotes</WorkflowModelElement>
7 <EventType >start</EventType>
8 <Timestamp>2008-10-27T13:45:08.000+01:00</Timestamp>
9 <Originator>Michael Smith</Originator>

10 </AuditTrailEntry>
11 <AuditTrailEntry>
12 <WorkflowModelElement>Prepare Travel form - Secretary</WorkflowModelElement>
13 <EventType >start</EventType>
14 <Timestamp>2008-10-29T10:07:50.000+01:00</Timestamp>
15 <Originator>Tom Brown</Originator>
16 </AuditTrailEntry>
17 <AuditTrailEntry>
18 <WorkflowModelElement>Check and Update Travel Form</WorkflowModelElement>
19 <EventType >start</EventType>
20 <Timestamp>2008-10-29T17:51:33.000+01:00</Timestamp>
21 <Originator>Michael Smith</Originator>
22 </AuditTrailEntry>
23 <AuditTrailEntry>
24 <WorkflowModelElement>Submit Travel form</WorkflowModelElement>
25 <EventType >start</EventType>
26 <Timestamp>2008-10-29T17:59:30.000+01:00</Timestamp>
27 <Originator>Michael Smith</Originator>
28 </AuditTrailEntry>
29 ...
30 </ProcessInstance>
31 <ProcessInstance id="155">
32 ...
33 <AuditTrailEntry>
34 <WorkflowModelElement>Submit Travel form</WorkflowModelElement>
35 <EventType >start</EventType>
36 <Timestamp>2008-10-28T16:21:12.000+01:00</Timestamp>
37 <Originator>Tina Williams</Originator>
38 </AuditTrailEntry>
39 <AuditTrailEntry>
40 <WorkflowModelElement>Decision Making</WorkflowModelElement>
41 <EventType >start</EventType>
42 <Timestamp>2008-10-28T17:20:08.000+01:00</Timestamp>
43 <Originator>Martin Thomas</Originator>
44 </AuditTrailEntry>
45 <AuditTrailEntry>
46 <WorkflowModelElement>Check and Update Travel Form</WorkflowModelElement>
47 <EventType >start</EventType>
48 <Timestamp>2008-10-30T09:55:54:00.000+01:00</Timestamp>
49 <Originator>Tina Williams</Originator>
50 </AuditTrailEntry>
51 <AuditTrailEntry>
52 <WorkflowModelElement>Decision Making</WorkflowModelElement>
53 <EventType >start</EventType>
54 <Timestamp>2008-10-30T13:48:25.000+01:00</Timestamp>
55 <Originator>Martin Thomas</Originator>
56 </AuditTrailEntry>
57 <AuditTrailEntry>
58 <WorkflowModelElement>End Process</WorkflowModelElement>
59 <EventType >start</EventType>
60 <Timestamp>2008-10-30T14:02:40.000+01:00</Timestamp>
61 <Originator>automatic</Originator>
62 </AuditTrailEntry>
63 </ProcessInstance>
64 ...
65 </Process>
66 </WorkflowLog>

Figure 7.3: A log file of the processing of travel requests in MXML.

148 Chapter 7. Building the Configurable Process Model

In the afternoon of the same day, Michael checked this travel form (lines 17–22)
and submitted it (lines 23–28).

Although such log files are widely available today, the purpose of their cre-
ation and their level of details varies. For example, the transaction management
of databases requires very explicit and detailed logs for being able to undo all
changes completely automatically. However, sometimes log files just serve a
programmer to debug a software or system. Then, the log entries are often
rather unspecific messages temporarily introduced by the programmer to find
errors in the code but never removed. In any case, the log files are rarely created
for deriving process models, i.e. to support process mining. Thus, to discover
meaningful behavioral patterns in these log files through process mining, the
log files must be trimmed to a data basis that promises good process mining
results. We call this phase pre-processing of the log files.

When aiming at the mining of configurable process models, four aspects are
especially relevant in this data collection and pre-processing phase:

• For generating configurable process models, it is very important to gather
log files from various systems executing the process in question. The selec-
tion of the data sources of course depends on the purpose of the model that
should be created. If a model should represent configuration options of a
software that is distributed internationally, various sites running success-
ful implementations of the software in different countries would provide a
good data basis. If a model should represent good examples for a certain
process, various successful implementations of that process which might
be supported by different applications can provide a nice fundament for
the process mining. All in all, the source of the used log files should widely
cover the targeted scope and all aspects of the model which should be cre-
ated.

• At first, the data in the log files has to be made anonymous. Log files
usually contain a lot of personal data. For example, in Figure 7.3 we
can see exactly when Tom Brown was preparing the travel form. This
information may be confidential and the usage of such data is in most
countries strongly restricted through privacy rights and laws. As con-
figurable process models target at their re-use by others, it is especially
important that no personal information is retained in the model. After all,
it would be only too interesting for competitors to see on whose processes
and process executions the various configurations of the process model
were based. Hence, the elimination of such personal information should
take place before any data is processed.

• Secondly, the level of detail of the log files has to be balanced among the
different input log files and adjusted to the level targeted for the resulting
model by aggregating related log events. Otherwise, the level of detail in
the generated process model will later on be highly inconsistent among
different process branches. To reach this balanced level of details an on-
tology can, for example, be used. Then both single log events as well

7.1. Generating Configurable Process Models from Log Files 149

as groups of log events can be mapped onto an agreed level of ontology
classes.

• As the same ontological concept is hardly called in the same way by dif-
ferent sources, it must also be ensured that log events from the different
source log files are mapped onto each other. The use of a common ontology
for adjusting the level of details might already guarantee this. Otherwise,
a direct matching of event names is also possible.

Further details on how to use ontologies in the context of process mining can,
e.g., be found in the work of Alves de Medeiros et al. [26]. General information
on pre-processing steps in the context of data mining can also be found in the
work of Cabena et al. [40], Pyle [133], and Zhang et al. [193]. In their experi-
ence, the overall result of automated mining efforts — as also described in the
remainder of this chapter — heavily depends on the quality of the pre-processed
log files. Therefore, in data mining projects pre-processing comprises 60–80 per-
cent of the whole processing effort. To get meaningful results in the context of
process mining, these numbers are probably similar, if not even higher.

We focus here on deriving the control-flow among the different activities
executed in a business process from such log files. For our discussion, it is thus
sufficient if we consider a log file as being a set of event traces. Thus, we abstract
in the following from the details of log files like execution times, data, or the
originators of task executions. Each event trace is simply an ordered set of the
log event identifiers. Each of these log event identifiers classifies a log event as
the execution of the particular activity by using an unambiguous name for the
executed activity, but it ignores any of the mentioned particularities of a specific
task execution.

Definition 7.1 (Log file) LOG ∈ IB(I ∗) is a log file, i.e. a multi-set of event
traces, such that:

• I is a set of log event identifiers,

• I ∗ is the set of all possible event traces, i.e. 〈e1, ..., en〉 ∈ I ∗,

• events : I ∗ → IP(I) is a function defined such that events(〈e1, ..., en〉) =
{e1, ..., en} is the set of all log event identifiers in an event trace 〈e1, ..., en〉,
and

• Γ = IB(I ∗) is the set of all such log files.

For example, if a set of log event identifiers I would contain the log events a, b,
c, and d, i.e. I = {a, b, c, d}, a log file LOG could consist of several of the event
traces 〈a, b, c, d〉, 〈a, b, d〉, 〈a, c, d〉, e.g. LOG(〈a, b, c, d〉) = 3, LOG(〈a, b, d〉) =
12, and LOG(〈a, c, d〉) = 5.

Comparing this formal definition of a log file with an MXML log file, the log
event identifiers e ∈ I conform to <WorkflowModelElement> elements, and an
event trace θ ∈ I ∗ conforms to a <ProcessInstance>.

Let us thus assume that a comprehensive set Γraw = {LOGraw
i |1 ≤ i ≤ n}

of n such raw input log files is available (see the far-left of Figure 7.2). The pre-
processing of such a raw log file is then a function prep : Γ → Γ which performs

150 Chapter 7. Building the Configurable Process Model

all mentioned pre-processing steps for a log file, including the re-naming of
log events which belong to an identical ontology class. The result of the pre-
processing is then a consistent set of log files Γprep = {prep(LOG)|LOG ∈ Γraw}
which we can use for the process mining of a configurable process model in the
following.

7.1.2 Mining the Basic Process Model

Process mining techniques have been developed to help process analysts with
determining the processes executed by organizations — either to document or
to improve them. Process mining thus supports gaining objective insights into
business processes which are already in place in organizations.

Although configurable process models are derived from the behavior of well-
running systems, this does not imply that these processes are documented by
models which are correctly describing the executed behavior. For example,
by translating models from the SAP reference model [48], i.e. models which are
supposed to be of ‘good’ quality, into executable process models, Mendling et al.
[119] discovered that quite a number of these models contained errors which
made these models non-executable. Hence, these models can hardly depict
the behavior which is indeed successfully executed by the SAP system. Thus,
process mining can also support the designer of a configurable process model if
she has log files from successful process implementations available.

Process mining algorithms search for recurring patterns in the pre-processed
log files, i.e. the execution traces, of the systems in question and generalize
the overall process behavior as process models. Simplified2, a process mining
algorithm splits a log file into the event traces of individual cases, i.e. process
instances. It then constructs the process model by analyzing and comparing the
events in the traces. Each log event is mapped onto a corresponding task in the
model. For each event that occurs in the event trace, the algorithms checks in
the the so-far derived model if the corresponding task can be reached from the
task corresponding to the preceding log event. Is this not the case, a choice is
introduced after the task corresponding to the preceding log event, giving the
opportunity to choose at run-time between the tasks that already followed the
preceding task and this new task that according to the previously derived model
did not follow the preceding task. The resulting process model will thus depict
that when reaching the particular point of the process, the process flow can
either continue as all the previous traces did or it can continue as this deviating
event trace did. Figure 7.4 illustrates this. After having processed I1 and I2
of the log file, there is a choice between executing ABCD and AEFD. In the
third process instance, AEGD is executed. Thus, the algorithm needs to add
the choice between F and G after E has been executed.

2The description here provides a brief idea of what a process mining algorithm does. In
practice, process mining is far more complex as the algorithms, e.g., have to take concurrency,
incomplete logs, noise, or invisible tasks into consideration. For further details on these issues
the reader is referred to the work of van der Aalst and Günther [6], Alves de Medeiros et al.
[27], Günther and van der Aalst [84], and Weijters and van der Aalst [186].

7.1. Generating Configurable Process Models from Log Files 151

1

2

3

Figure 7.4: Process Mining adds choices according to the log file.

Abstracting from such particularities of the mining algorithms, we say:

Definition 7.2 (Mining algorithm) A mining algorithm α maps a log file
onto a workflow net, i.e.

α : Γ → ∆.

For each log file LOG i ∈ Γ that is used for the creation of a reference model,
a process mining algorithm can therefore generate a process model WF i =
α(LOG i) depicting the behavior of the log file’s original system (see Figure 7.5a).
Thus, αmay be any process mining algorithm (e.g., see the work of van der Aalst
and Günther [6], van der Aalst et al. [15], Alves de Medeiros et al. [27], Günther
and van der Aalst [84], and Weijters and van der Aalst [186] for descriptions of
a range of concrete algorithms). Furthermore, we assume that the result of the
algorithm fulfills the requirements of a workflow net. This is trivial to achieve
for any algorithm that provides a Petri net (or a model that can be transformed
into a Petri net) by connecting a unique input place to all its initial elements
and a unique output place from all its final elements [57].

Traditionally, a mining algorithm derives a process model for the log file
of one system, i.e. if multiple log files are available, it can generate a process
model for each of these systems (see Figure 7.5a). However, we aim here on one
process model that covers multiple systems, i.e. that is valid for all the log files.

Still, process mining algorithms can also be used to directly generate an
integrated model valid for all available log files, i.e. for all the log files in Γprep .
If we concatenate all the log files LOG i ∈ Γprep into a single log file LOG1..n =
⋃

i=1..n LOG i, the process mining algorithm α still works in exactly the same
way on LOG1..n as it did for each of the individual log files. Due to the alignment
of event names in the pre-processing, the algorithm is able to recognize which log
events belong to the same class of events and match them. Thus, the algorithm
just processes more process instances and creates a process model WF 1..n =
α(LOG1..n) that is valid for all these instances. Figure 7.5b demonstrates this.
Assuming all process instances in a first log file are ABCD, the process model
after completing the processing of the first log file is the simple chain of these
log events. The second log file of a different system contains also contains
process instances ABCD, but also process instances AEFD. When the mining
algorithm now discovers these new instances it just adds this new behavior to

152 Chapter 7. Building the Configurable Process Model

1

2

3

1

2

3

Figure 7.5: A mining algorithm can (a) generate a process model for each system by process-
ing the particular log file. If multiple log files are (b) concatenated, the algorithm processes
them in the same way as a single log file (compare figures 7.4).

the model as it did when adding new behavior which was contained in the same
log file (compare figures 7.4 and 7.5b). A third log file contains only process
instances AEGD. Hence, again a choice is added after the execution of E to
permit the execution of G instead of F .

Two capabilities are important when selecting a process mining algorithm
for building a process model integrating various process variants, namely the
introduction of silent tasks and over-approximation:

• Among different systems it is well possible that steps executed in the
process of one system are skipped in the other system. In such cases,

7.1. Generating Configurable Process Models from Log Files 153

the process mining algorithm must be able to introduce a bypass for the
skipped tasks in the generated process model, e.g. through adding invisible
or silent tasks as an alternative to the skipped tasks. The invisible tasks
then allow for state changes without corresponding to any log events and
thus without representing any ‘real’ behavior. Thus, the algorithm has
to integrate the choice between executing the task or configuring it as
hidden as we have discussed in Chapter 3 into the run-time behavior of
the model. The process model in Figure 7.6 was, e.g., mined from the
log file shown in Figure 7.3 (p. 147) using an algorithm that supports
the creation of such bypasses: after the decision making has taken place
some process instances caused the execution of the Drop Travel Request
transition before the process execution ends, while for others the process
execution ends directly after the decision making. Thus, the algorithm
introduces a silent transition which allows for the skipping of the Drop
Travel Request transition.

• When a process model is configured later on, it might be desired that the
derived process model does not conform exactly to the behavior of one of
the systems that was used for the development of the configurable pro-
cess model. Instead, it might be necessary to combine various aspects of
different systems. This requires that the used process mining algorithm
over-approximates the behavior of the input systems. Most process min-
ing algorithms achieve this as they analyze choices between events only
locally and neglect dependencies between choices that do not directly fol-
low each other. By neglecting such non-local dependencies, the resulting
process models permit for example that users can chose in the beginning
of the process a process part that only occurred in a subset of the process
instances, while at a later stage a choice is made for a process part that
was not part of any of these process instances.

Figure 7.8 shows a process model which was mined from a log file that combined
the log shown in Figure 7.3 (and which was also used to mine the process model
shown in Figure 7.6) with the log file that was used to mine the model shown
in Figure 7.7. The algorithm used to mine all these models is the Multi-phase
Miner as suggested by van Dongen and van der Aalst [56, 57] and implemented
in the ProM process mining framework3. It neglects non-local dependencies as
can be seen when looking at the transitions Request Quotes, Decision Making,
and Check Travel Form. Both the transitions Request Quotes and Decision
Making are based on log events occurring in the log file from Figure 7.3, but
not in the other log file. Thus, looking at the individual models for each of the
log files in figures 7.6 and 7.7, the transition Request Quotes is always later on
followed by the transition Decision Making (Figure 7.6), but it is never followed
by the transition Check Travel Form. This transition only occurs in Figure 7.7
which on the other hand does not include the transition Request Quotes. In
the combined model of Figure 7.8 it is then well possible that the transition
Request Quotes is later on followed by the transition Check Travel Form. Thus,

3available via http://prom.sf.net, also see van der Aalst et al. [15]

http://prom.sf.net

154 Chapter 7. Building the Configurable Process Model

Request Quotes

Prepare Travel form (Secretary)

Check and Update Travel Form

Submit Travel form

Decision Making

End Process

Drop Travel Request

Prepare Travel form (Employee)

Figure 7.6: The mined model of the log file
from Figure 7.3. Note the two silent tasks:
one to loop back and the other to skip Drop
Travel Request.

Quote AccomodationQuote Flight

Prepare Travel form (Employee)

Submit Travel form

Check Travel Form

Forward Travel Request

End Process

Check and Update Travel Form

Figure 7.7: The mined model of a log
file generated from the BPMN process model
shown in Figure 2.9.

7.1. Generating Configurable Process Models from Log Files 155

Request Quotes

Prepare Travel form (Secretary)

Check and Update Travel Form

Submit Travel form

Decision Making

End Process

Drop Travel Request

Prepare Travel form (Employee)

Quote Accomodation

Quote Flight

Check Travel Form

Forward Travel Request

Figure 7.8: Using the multi-phase miner [56, 57], the model was constructed from a combined
log file of the one of Figure 7.3 and the one generated from the BPMN process model shown
in Figure 2.9.

156 Chapter 7. Building the Configurable Process Model

the non-local choice that the transition Request Quotes must be followed by the
transition Decision Making is ignored and new combinations of process parts
from different sources become possible.

Note that the model resulting from mining the log files of multiple systems
usually contains more choices than any model Mi that is derived for a log file
Li of a single system. This is because a combined set of event traces normally
contains more process variants than a subset of these traces. For example, the
model derived from the log file L1 in Figure 7.5 contains only one choice after
executing A while a model derived from L2 only would contain no choices at all.
The combined model then contains two choices, i.e. the one after A plus the one
after E. The second choice conforms in fact to the choice between the system
of the first log file and the system of the second log file. Thus, when aiming
at introducing configuration choices into a process model, we obviously aim at
introducing such generalizations, i.e. additional choices that allow for behavior
not necessarily seen in one the logs. For realistic models, this effect usually
increases, which already comes apparent if we compare the model in Figure 7.8
with the ones mined on a subset of the combined log file and shown in figures
7.6 and 7.7.

For our example, we used the multi-phase miner [56, 57]. In controlled
experiences with high-quality input data, it provides good results because it
guarantees the fitness of all the event traces to the resulting model. In practice,
the choice for a concrete algorithm and the quality of the resulting model very
much depends on the input log files [44, 84, 147]. For example, larger, real-world
data usually contains a lot of noise, i.e. incomplete or wrong information. Even
the best pre-processing thus hardly delivers the log file quality required by the
multi-phase miner. Hence, in these cases other algorithms that are capable of
dealing with noise might perform better. Readers interested in details on the
concrete capabilities of various process mining algorithms should have a look
at the corresponding publications [6, 15, 27, 56, 57, 84, 186]. An overview and
comparison between various techniques can be found in the work of Alves de
Medeiros [25] while the ProM framework provides implementations for many of
these algorithms.

In any case, process mining usually does not provide a perfect model that
can be used without any manual updates. This already becomes apparent when
looking at the example of Figure 7.8. Here, the transitions Check Travel Form
and Decision Making might in reality refer to the same task and should have
been mapped onto each other already during the pre-processing of the log files.
But due to the completely different names of the corresponding log events, this
was not obvious as long as we did not see the process models mined from the
log files. In addition, this mined model is not sound (see Definition 2.18, p. 24)
as the silent transitions before the quoting allow the triggering of the request
of quotes along with the quote of an accommodation or a flight while if the
secretary prepares the travel form these execution branches are not synchronized
later on in the model. These examples thus illustrate that current process
mining algorithms are a tool for delivering ideas for the basic process model of
a configurable model. However, most of the time they are not yet capable of

7.2. Merging Process Models 157

bfwghgf8
73wr
8byarybw
fb wyrfoa
bw4rf
a9wyrfhw
e784yrfh

bfwghgf8
73wr
8byarybw
fb wyrfoa
bw4rf
a9wyrfhw
e784yrfh

bfwghgf8
73wr
8byarybw
fb wyrfoa
bw4rf
a9wyrfhw
e784yrfh

bfwghgf8
73wr
8byarybw
fb wyrfoa
bw4rf
a9wyrfhw
e784yrfh

bfwghgf8
73wr
8byarybw
fb wyrfoa
bw4rf
a9wyrfhw
e784yrfh

bfwghgf8
73wr
8byarybw
fb wyrfoa
bw4rf
a9wyrfhw
e784yrfh

bfwghgf8
73wr
8byarybw
fb wyrfoa
bw4rf
a9wyrfhw
e784yrfh

bfwghgf8
73wr
8byarybw
fb wyrfoa
bw4rf
a9wyrfhw
e784yrfh

bfwghgf8
73wr
8byarybw
fb wyrfoa
bw4rf
a9wyrfhw
e784yrfh

L1

L2

Ln

raw

raw

raw

...

bfwghgf8
73wr
8byarybw
fb wyrfoa
bw4rf
a9wyrfhw
e784yrfh

bfwghgf8
73wr
8byarybw
fb wyrfoa
bw4rf
a9wyrfhw
e784yrfh

bfwghgf8
73wr
8byarybw
fb wyrfoa
bw4rf
a9wyrfhw
e784yrfh

bfwghgf8
73wr
8byarybw
fb wyrfoa
bw4rf
a9wyrfhw
e784yrfh

bfwghgf8
73wr
8byarybw
fb wyrfoa
bw4rf
a9wyrfhw
e784yrfh

bfwghgf8
73wr
8byarybw
fb wyrfoa
bw4rf
a9wyrfhw
e784yrfh

bfwghgf8
73wr
8byarybw
fb wyrfoa
bw4rf
a9wyrfhw
e784yrfh

bfwghgf8
73wr
8byarybw
fb wyrfoa
bw4rf
a9wyrfhw
e784yrfh

bfwghgf8
73wr
8byarybw
fb wyrfoa
bw4rf
a9wyrfhw
e784yrfh

L1

L2

Ln

...

n raw logs n logs

hsu

gdr

serg

gdr

sreg

M1 M2 Mn

...

hsu

gdr

serg

sreg

hsu

serg

sreg

M1..n

hsu

gdr

serg

sreg

hsu

gdr

serg

sreg

hsu

gdr

serg

sreg

C1

C2

Cn

+ + +

n models

process
mining

pre-
processing

process
configuration

c
le

a
n

,
fi
lt
e

r,
 m

a
p

,
..

.

1 model

ontology

n configurations
based on 1 model

...

Figure 7.9: After pre-processing the log files, process mining generates the basic process
model.

generating ‘perfect’ models. Thus, creating the integrated, basic process models
as depicted in Figure 7.2 is still an interactive approach with manual efforts for
trimming and improving the quality of both the log files and the generated
models.

7.2 Merging Process Models

Often process models are already available for those process implementations
that should serve as the basis for the development of a configurable process
models. For example, such models were the basis for the case study in Chapter 6.
If the models accurately document the process, manually (like in the case study)
or even automatically aligning and merging these high-quality models can result
in a far better basis for the basic process model than what can be produced by
process mining. Have a look at Figure 7.9: during such a merge the various
process models Mi with i = 1..n which belong to and depict the behavior of
individual systems (indicated by the dashed-arrows from the n individual system
log files to the n individual models) are merged into a single process model
M+

1..n = M1 ⊕ M2 ⊕ ... ⊕ Mn representing the behavior of all the individual
models, i.e. a basic process model for all these process variants.

While plenty of algorithms are suggested in literature to mine process mod-
els, algorithms that can automatically merge business process models are rare.
On the one hand, this can be attributed to the lack of consistency among dif-
ferent models and thus the need to a pre-adjustment of process models before
they can be merged similar to the pre-processing of log files. This makes a

158 Chapter 7. Building the Configurable Process Model

quick application of such algorithms impossible. On the other hand, a concrete
implementation of a merge of models depends on the purpose for which the
models are merged. That means, such an implementation depends on which
implications depicted by the different models should be preserved and which
can be relaxed during the merge.

Here, we aim at a model that can serve as the basic process model within a
configurable process model. Thus, our goal is to automatically merge multiple
process models into a single process model such that the behavior that is possible
according to the new process model is at least the behavior that was possible
in each of the original process models. As the behavior of this process model
can later on be restricted through process configuration, we do not mind if
some additional behavior which was not possible in any of the original process
models becomes possible in the new model. Quite the opposite: as explained
in the previous section, we even strive for this, especially if this also leads to a
more compact and clear model (i.e. less model elements and arcs). Therefore,
the resulting model may allow for more behavior than the sum of the parts’
behaviors. Hence, the merge algorithm should generalize.

In this section, we will discuss an algorithm explicitly developed for this
context. The algorithm is based on a graph notation for business processes called
function graphs which we will define specifically for merging process models.
It is inspired by the multi-phase miner [56, 57] (which we already used to mine
the examples of the previous section) as it combines all the behaviors that are
possible according to the individual models and introduces choices whenever the
behavior varies. To keep the models compact and clear, it relies on the concepts
of OR-splits and OR-joins when there is not a clear XOR-split/AND-split or
XOR-join/AND-join situation.

As the multi-phase miner which inspired this algorithm uses EPCs, we will
depict the approach using EPCs. Any Petri net or Protos model can automat-
ically be translated into a corresponding EPC, and an EPC can be translated
back into a Petri net (see [57] for the corresponding algorithm) or a Protos
model. Implementations of the corresponding transformation algorithms are,
e.g., provided by ProM. Thus, if we want to stay in the Petri net or Protos do-
mains, we can consider EPCs in the same way an intermediate format necessary
for the algorithm as we do for function graphs. In principle, the algorithm is
applicable to any process modeling notation that directly or indirectly supports
the concepts of OR-splits and OR-joins. Thus, besides the direct implemen-
tation for EPCs depicted here, and the indirect application for Petri nets and
Protos models, it can, e.g., also be applied when merging YAWL models.

The algorithm can be split up into three phases: the conversion of the process
models that should be merged into function graphs (see Figure 7.10a to c, and
b to d), the merge of the function graphs (see Figure 7.10c and d to e), and the
conversion of the resulting function graph back into the used process modeling
notation (see Figure 7.10e to f). After giving a definition for function graphs,
we will use EPCs in the following to give precise definitions for the algorithm’s
three phases.

7.2. Merging Process Models 159

f) Merged EPCe) Merged Function Graphc) Function Graph 1a) EPC 1

V

A

C

F

B

E

V

A

C

F

B

E
D

V

B C

E

A

Split
Join

FD

Λ Λ

XORXOR

Split
Join

XOR XOR

Λ

B C

E

A

XOR

Split
Join

F

Λ Λ

XORXOR

Split
Join

XOR

XOR

XOR

V

A

C

F

B

X

ED

V

B C

E

A

VXOR

Split

Join

FD

Λ Λ

XORXOR

XOR

Split
Join

XOR
XOR

b) EPC 2 d) Function Graph 2

X X

X X

XOR

XOR

XOR

XOR Λ

V

X

Figure 7.10: Merging two EPCs: The input EPCs (a,b) are transformed into function graphs
(c,d) which can be merged. The resulting graph (e) is transformed back to an EPC (f).

7.2.1 Function Graphs

Function graphs reduce process models to tasks as the sole nodes of the model.
Thus, all that is depicted in a function graph is the active behavior of the
original process model. Like for EPCs, we call these task nodes functions. To
represent the process behavior, functions are connected through directed arcs.
The arcs depict in which order the functions can be executed. The concrete
behavior depends on the marking of the arcs with tokens. To determine the
marking of arcs during the process execution, a split type and a join type is
assigned to each arc. Both types can have either the value ∧, XOR, or ∨ (see
Figure 7.10c,d,e).

Definition 7.3 (Function graph) A function graph is a four-tuple
FG = (F ,A, l join , l split) such that

• F is a finite (non-empty) set of functions,

• A ⊆ (F × F) is a set of arcs,

• (F ,A) is a graph4,

• l join ∈ A → {∧,XOR,∨} is a function which maps each arc onto a join re-
lation type such that ∀f1,f2,f3∈F ((f1, f2) ∈ A∧ (f3, f2) ∈ A∧ l join(f1, f2) =
∧) ⇒ (l join(f3, f2) 6= XOR), and

4Hence,
FG
• x depicts the set of functions preceding a function x in FG and x

FG
• depicts the

set of its succeeding functions (see Definition 2.11, p. 19).

160 Chapter 7. Building the Configurable Process Model

Join

Split

Join

Split

Join

Split

Marking: before and after executing A

Figure 7.11: The marking of arcs after executing a function in a function graph.

• l split ∈ A → {∧,XOR,∨} is a function which maps each arc onto a
split relation type such that ∀f1,f2,f3∈F ((f1, f2) ∈ A ∧ (f1, f3) ∈ A ∧
ljoin(f1, f2) = ∧) ⇒ (ljoin(f1, f3) 6= XOR).

Which arcs are marked after the execution of a function depends on the split
type. If an arc has an ∧ split type, a token has to be added to this arc after the
execution of its source function (see Figure 7.11c,g,h). In case of an XOR split
type, a token can only be added to the arc if none of the other arcs having the
same source function receives a token at the same time (see Figure 7.11a,b,i–l).
Therefore, a function cannot be the source of arcs with split types XOR and ∧

at the same time. From a logical point of view, such type values would imply
that the arc with the XOR type could never be marked as the arc of type ∧

must always be marked with a token. That means, the arcs of type XOR would
never be followed and should thus be omitted.

The ∨ type depicts that the marking of the arc is optional. However, if a
function is the source of a set of arcs, at least one of these arcs must be marked
with a new token after any of the function’s executions (see Figure 7.11d–l).

7.2. Merging Process Models 161

For example, have a look at Figure 7.10e: Both arcs leaving function A are
of split type ∧. Thus, like in Figure 7.11c, both these arcs are marked after A
has been executed. Both arcs leaving function B are of split type XOR. Thus,
like in Figure 7.11a/b each of these arcs can only be marked exclusively without
the other arc being marked. As one arc must always be marked this means
that either the arc to D is marked or the arc to E is marked after B has been
executed. Both arcs leaving function C are of split type ∨. Thus, at least one
of them must be marked after C has been executed, but also both these arcs
can be marked (like in Figure 7.11d–f).

The execution of a (non-initial) function then depends on the tokens on its
incoming arcs. The join types of the arcs determine when their joined target
function can be executed. In case an arc is assigned the join type ∧, the target
function needs to consume a token from that arc when it is executed, i.e. for
the function’s execution this arc must be marked with at least one token (see
Figure 7.12c,g,h). An arc of type XOR implies that the target function can be
executed if this arc is marked with a token, independent of the markings of the
other incoming arcs. In this case this token is then also the only token consumed
during the function’s execution (see Figure 7.12a,b,i–l). Thus, a function can
never be the target of an arc of type ∧ and of an arc of type XOR at the same
time. In such a case, the type values would imply that the function must always
consume a token from the arc of type ∧ and thus can never consume a token
from the arc of type XOR exclusively. As this means that these tokens would
never be consumed, it is not necessary to produce them and the arc should be
omitted.

An ∨ join type means that the consumption of a token from that arc is
optional for the execution of its target function (see Figure 7.12d–l). How long
the execution of a process waits for a token to arrive on such an optional arc
depends on the OR-join semantics of the models that should be merged through
the use of function graphs. Independent of the precise semantics, a function with
at least one incoming arc can only be executed if it consumes at least one token
from one of its incoming arcs.

7.2.2 From EPCs to Function Graphs

Let us now discuss how function graphs can be used to merge two process
models, denoted as EPCs. However, note that the same algorithm can also
be applied to the core elements of other languages like BPMN, YAWL, UML
activity diagrams, etc. and that Petri nets can easily be transformed into cor-
responding EPCs.

The goal of the merge algorithm is the preservation of all the behavior de-
picted by the process models that should be merged. Thus, when transforming
the input EPCs into function graphs, we have to ensure that the behavior that
was possible according to the original EPCs remains possible according to the
derived function graphs. Within an EPC, tasks, i.e. the elements depicting ac-
tive behavior, are represented by functions. Therefore, we preserve the functions
of an EPC as functions of the function graph. To preserve the process behav-

162 Chapter 7. Building the Configurable Process Model

Join

Split

Marking: before and after executing A

Join

Split

Join

Split

Figure 7.12: The marking of arcs necessary to execute a function in a function graph.

ior of the EPC, i.e. the order in which these functions can be executed, every
function in the function graph is connected by arcs to exactly those functions
which could be reached in the EPC through a path which does not pass any
other function. The arcs’ join and split types are afterwards calculated based
on the EPC’s split and synchronization behavior along these paths, i.e. based
on the values of the join/split connectors. If no connectors exist along the path
or if all these connectors are of type XOR, the corresponding arc is assigned the
type XOR. If all the connectors are of type ∧, the corresponding arc is assigned
the type ∧. Otherwise the value ∨ is assigned to the arc.

Definition 7.4 (Function graph from EPC) Let EPC = (E ,F ,X ,m,A)
be a well-formed EPC. Then FG = (FFG ,AFG , lFG

join , l
FG
split) is a function graph

with

• FFG = F,

• AFG = {(x, y) ∈ (F × F)|∃z1,...,zn∈X∪E 〈x, z1, ..., zn, y〉 ∈ A⋆},

7.2. Merging Process Models 163

• lFG
join ∈ AFG → {∧,XOR,∨} is a function which maps each arc onto a

join relation type as follows:

lFG
join((x, y)) =































XOR if ∀n≥0∀z1,...,zn∈X∪E 〈x, z1, ..., zn, y〉 ∈ A⋆ ⇒
∀1≤i≤n,zi∈X join

m(zi) = XOR
∧ if ∀n≥1∀z1,...,zn∈X∪E 〈x, z1, ..., zn, y〉 ∈ A⋆ ⇒

(∃1≤i≤n zi ∈ X join) ∧
(∀1≤i≤n,zi∈X join

m(zi) = ∧)
∨ otherwise,

• lFG
split ∈ AFG → {∧,XOR,∨} is a function which maps each arc onto a
split relation type as follows:

lFG
split((x, y)) =































XOR if ∀n≥0∀z1,...,zn∈X∪E 〈x, z1, ..., zn, y〉 ∈ A⋆ ⇒
∀1≤i≤n,zi∈X split

m(zi) = XOR
∧ if ∀n≥1∀z1,...,zn∈X∪E 〈x, z1, ..., zn, y〉 ∈ A⋆ ⇒

(∃1≤i≤n zi ∈ X split) ∧
(∀1≤i≤n,zi∈X split

m(zi) = ∧)
∨ otherwise.

The two examples in figures 7.13a and 7.13b show the relation between the splits
of the control-flow in an EPC and in the function graph as well as the possible
behaviors of these control-flow splits. In both figures, we analyze the behavior
that can happen after a single execution of A. If all the split connectors between
two functions of an EPC are of type ∧, then the execution of the first function
implies the execution of the second function as it is the case for functions A and
D in Figure 7.13a. The ∧ split type of the corresponding arc in the function
graph therefore requires the marking of the arc after the execution of A. As this
arc is the only incoming arc of D, D requires only this token for its execution.
Hence, D can be executed after A in the function graph as in the EPC. If all
the split connectors between two functions of an EPC are of type XOR, then
the execution of the first function implies the exclusive execution of the second
function among all its subsequent functions. This is the case for functions A
and D in Figure 7.13b. The corresponding function graph thus requires that
after A’s execution the arc to D is marked exclusively as indicated by its XOR
split type.

If the path between two functions of an EPC contains ∨ connectors, or if
it contains connectors of different types, then the succeeding function might or
might not be triggered. As an example, in the model in Figure 7.13a either B or
C can follow A (but always in combination with D). Within the function graph,
this behavior is reproduced by assigning the split value ∨ to the arc between A
and B and also to the arc between A and C. In this way, it is optional for each
of these arcs if it is marked after A’s execution. The function graph thus allows
for executing B or C after A as the EPC. But in addition to marking one of
the two arcs, the function graph also allows marking both or none of them as
the marking of an arc in a function graph is independent from the marking of
other arcs. Thus, in addition to the behavior of the EPC, behaviors where both
B and C or none of them follow A are also possible in the function graph.

164 Chapter 7. Building the Configurable Process Model

EPC

Function Graph

..ABD.. ..BAD.. ..CD..
Possible Behavior:

a)

XOR

V

..ACD.. ..CAD.. ..BCD.. ..CBD..
Possible Behavior:

XOR

V

V V

XOR XOR XOR Split

Join
XOR

Possible Behavior:

..AD.. ..BD.. ..CD..
..ABD.. ..BAD..

..CD.. ..ACD.. ..CAD.. ..BCD..
..CBD.. ..ABCD.. ..ACBD..

..BACD.. ..BCAD.. ..CABD..
..CBAD..

Possible Behavior:

XOR

V

..ADB.. ..ADC.. ..ABD.. ..ACD..

..AD.. ..ABD.. ..ACD.. ..ADB..
..ADC.. ..ABCD.. ..ABDC..

..ACBD.. ..ACDB.. ..ADBC..
..ADCB..

Possible Behavior:

Possible Behavior:

..AD.. ..ABC.. ..ACB..
Possible Behavior:

Possible Behavior:

XOR

V

..AD.. ..AB.. .AC..
..ABC.. ..ACB..

V V XOR

XOR XOR XOR

Split

Join

V V Λ
XOR XOR XOR

Split

Join
V V Λ

XOR XOR XOR Split

Join

b) c) d)

Figure 7.13: The relation between EPCs and function graphs (extracts)

Figures 7.13c and 7.13d show the corresponding behavior relation for join
connectors of an EPC. Here we analyze the behavior that leads to a single
execution of D. If all the connectors join the control-flow between two functions
are of type ∧, then the first function always has to precede the second one, as
e.g. in the case of functions C and D in Figure 7.13c. The corresponding arc’s ∧

join type in the function graph also ensures that D can only be executed after C
has been executed and produced a token on this arc. In case all join connectors
between two functions in an EPC are of type XOR, the first function always
precedes the second one exclusively. Functions C and D in Figure 7.13d provide
an example for this. In the function graph an arc’s XOR join type implies exactly
this behavior. The target function requires and exclusively consumes a token
from that arc. In case different join connectors exist between two functions in
an EPC (or if there are only ∨ connectors), there are several combinations of
preceding function executions possible before the execution of the succeeding
function. The join type ∨ in the corresponding function graph thus specifies
that the consumption of tokens from each corresponding arc is optional for the
execution of the target function. However, although this covers the behavior of
the EPC, it might also allow for executing the target function in cases for which
this was not allowed in the EPC.

All in all, whenever the split or join type of an arc in the function graph
is XOR or ∧, the behavioral relation between those two functions corresponds
to the one in the EPC. When the split/join type is set to ∨ the behavior of

7.2. Merging Process Models 165

the EPC is also covered by the function graph. Then, however, also additional
behavior might be possible as we saw in Figure 7.13.

7.2.3 Merging Function Graphs

Two function graphs can be merged by merging the sets of functions, merging
the sets of arcs, and calculating the split and join types of the arcs based on the
values in the two function graphs.

To do this, we add a unique initial, i.e. first executed, function τI to each
function graph. This function is connected to all initial functions of the par-
ticular function graphs via arcs with split type ∨ and join type XOR. In the
same way, a unique final, i.e. last executed, function τO is added to each func-
tion graph. All originally final functions of the particular function graph are
connected via an arc with split type XOR and join type ∨ to this new final
function.

Adding such unique start and end functions is essential for preserving the
characteristics of initial and final functions. If an initial function of a process is
preceded by other functions in another process (like function B in the function
graphs FG1 and FG2 of Figure 7.14a), the simple merge of the sets of arcs of
the two function graphs would otherwise add the incoming arc to the function
in the merged model (see FG3 of Figure 7.14a). According to the semantics
of the function graph, this implies that the function can only be triggered if
the incoming arcs are marked with tokens. Thus, the function would loose its
initial character which it had in one of the models. In the same way, final func-
tions might become incorporated into a further process flow. This then prevents
that the process execution can complete with this function (see function C in
Figure 7.14a). If all executions are, however, started through the function τI
(Figure 7.14b), the initial functions remain the first functions that represent
some real behavior as all executions start through the silent function. Then
the arcs’ ∨ split types provide a choice which of the originally initial functions
are used to really start the process execution. Similarly, all process executions
are completed through τO which can be reached from any set of originally final
functions. Hence, without adding new functionality, these silent functions guar-
antee the presence of unique entry and completion points of the process and
thus preserve the behavioral requirements of initial or final functions (see FG6

of Figure 7.14b).

For calculating the split types of arcs, it is needed to analyze if functions are
succeeded by the same functions in both models:

• If an arc is of split type XOR in one of the two function graphs and does
not exist in the other graph, or if it has type XOR in both graphs, then
the arc to the target function is either marked exclusively or not marked
(a non-existent arc cannot be marked). This corresponds to the behavior
of an XOR split type which is thus assigned to the arc in the resulting
function graph as well.

166 Chapter 7. Building the Configurable Process Model

Split

Join

XOR

XOR

Split

JoinXOR

XOR

XOR

XOR

XOR

XOR

XOR

XOR

Split

JoinXOR

XOR

FG4 FG5 FG6 (merged)

XOR

O

I

XOR

I

XOR

XOR

O

XOR

XOR

Split

Join

XOR

XOR

Split

JoinXOR

XOR

XOR

XOR

XOR

XOR

XOR

XOR

Split

JoinXOR

XOR

FG1 FG2 FG3 (incorrect merge)a)

b)

I
V

XOR

XOR

O

Split

Join

Split

JoinXOR

XOR

XOR

XOR

V V V

V V V V

Figure 7.14: Initial and final functions must be unique among the models

• The split type ∧ is only assigned to an arc if it either is of split type ∧

in both input function graphs or if it has the value ∧ in one of the input
function graphs and there is no outgoing arc at all from the arc’s source
function in the other function graph.

• In case there is an ∧ split type assigned to the arc in one model and the
arc does not exist in the other model, but the source function of the arc
has other successor functions in the other model, the ∧ value cannot be
assigned to the resulting arc. It would imply that the arc must always be
marked in the resulting model. This conflicts with the model without the

7.2. Merging Process Models 167

arc where a non-existent arc can obviously not be marked. Thus, in such
cases the arc gets the more general split type ∨ assigned as it gets in all
other cases.

The join types of arcs are calculated in line with the split types. Thus, the
corresponding line of argumentation also holds for the three join types of arcs:

• If an arc is of join type XOR in one function graph and does not exist in
the other, or if it has type XOR in both graphs, the arc is assigned the
join type XOR.

• The join type ∧ is assigned if the arc is either of join type ∧ in both
function graphs or if it is of type ∧ in one of them and the arc’s target
function has no predecessors in the other function graph.

• In all other cases the arc is assigned join type ∨.

Definition 7.5 (Merging function graphs) Two function graphs FG1 =
(F 1,A1, l1join , l

1
split), FG2 = (F 2,A2, l2join , l

2
split) can be merged to a new func-

tion graph FG3 = (F 1 ∪ F 2,A1 ∪ A2, l3join , l
3
split) where:5

• l3split ∈ (A1 ∪A2) → {∧,XOR,∨} is a function which maps each arc onto
a split relation type as follows:

l3split((x, y)) =























































XOR if ((l1split((x, y)) = XOR) ∧ (x, y) 6∈ A2) ∨

((l1split((x, y)) = XOR) ∧

(l2split((x, y)) = XOR)) ∨

((x, y) 6∈ A1 ∧ (l2split((x, y)) = XOR)),

∧ if ((l1split((x, y)) = ∧) ∧ x
FG2

• = ∅) ∨

((l1split((x, y)) = ∧) ∧ (l2split((x, y)) = ∧)) ∨

(x
FG1

• = ∅ ∧ (l2split((x, y)) = ∧)),
∨ otherwise,

• l3join ∈ (A1 ∪A2) → {∧,XOR,∨} is a function which maps each arc onto
a join relation type as follows:

l3join((x, y)) =























































XOR if ((l1join((x, y)) = XOR) ∧ (x, y) 6∈ A2) ∨

((l1join((x, y)) = XOR) ∧

(l2join((x, y)) = XOR)) ∨

((x, y) 6∈ A1 ∧ (l2join((x, y)) = XOR),

∧ if ((l1join((x, y)) = ∧) ∧
FG2

• y = ∅) ∨

((l1join((x, y)) = ∧) ∧ (l2join((x, y)) = ∧)) ∨

(
FG1

• y = ∅ ∧ (l2join((x, y)) = ∧)),
∨ otherwise.

Figure 7.15 shows an example for the arc values resulting from merging two
function graphs. If an arc between two functions has the split type XOR assigned
(as, e.g., the arc between A and C in Figure 7.15a), then this succeeding arc
can be marked either exclusively or not at all after the execution of its source

5Note that if x 6∈ FG2, then x
FG2

• = ∅ and
FG2

• x = ∅ (Definition 2.11, p. 19)

168 Chapter 7. Building the Configurable Process Model

c)

V V

XOR

Split

Join

XOR

..AB.. ..AC.. ..AD.. ..ABD.. ..ADB..
AED.. ..EAD.. ..ABED.. ..AEBD..

..AEDB.. ..ACED.. ..AECD.. ..AEDC..

..EDAB.. ..EABD.. ..EADB.. ..EDAC..
..EACD.. ..EADC..

Possible Behavior:

V

Λ
Λ

Possible Behavior:

..ABD.. ..ADB.. ..AEBD..
..AEDB.. ..EABD.. ..EADB..

..ABED..

XOR V

Split

Join

Λ Λ

Λ

Λ

a)

..AB.. ..AC..
Possible Behavior:

XOR

XOR

Split

Join

XOR

Λ

Λ
b)

Figure 7.15: Merging two function graphs (extracts) and the behavior possible according to
each of the function graphs such that no tokens remain on the arcs

function. This behavior must be preserved in the resulting function graph. As
there is no arc from A to C in Figure 7.15b, this function graph only requires that
the arc between A and C cannot be marked during execution which is covered
by the opportunity not to mark the arc of the XOR split type. Thus, the
corresponding arc of the resulting function graph gets the type XOR assigned.
The same would hold if both input function graphs would require an XOR split
type here as this would still cover all possibilities allowed by the two input
graphs.

If, however, one model requires that the arc succeeding a function is ex-
clusively marked after its execution (as the arc from A to B in Figure 7.15a)
while the other model allows for a combined marking of the arc with other arcs
through an ∧ or ∨ split type (as in Figure 7.15b), then the arc is assigned the
split type ∨ in the resulting model (see the arc from A to B in Figure 7.15c).
In this way, both combining the marking of this arc with other arcs (as required
by Figure 7.15b) as well as its exclusive marking (as required by Figure 7.15a)
remains possible as long as none of the other arcs leaving the first function is
assigned the split type ∧.

According to the definition of function graphs (Definition 7.3, p. 159), a
single function that is the the source of an arc with split type XOR cannot be
the source of an arc with type ∧ in the same graph. However, it is well possible
that a function like function A in Figure 7.15 is source of an arc of type XOR
in one of the merged function graphs (e.g., the arc to C in Figure 7.15a) and in

7.2. Merging Process Models 169

the other graph it is the source of an arc non-existent in the first graph which
is of type ∧ (the arc to D in Figure 7.15b). In this case, the function is the
source of the arc between functions A and D which must be marked after A’s
execution in the function graph of Figure 7.15b while this arc is not part of the
graph in Figure 7.15a. Thus, the marking of the arc cannot be made obligatory
in the resulting model in Figure 7.15c because the obligatory marking of the
arc would then conflict with the behavior of the function graph in Figure 7.15a.
Here, the marking of the arc between A and D was not necessary. Hence, in
such cases the marking of the arc becomes optional by assigning it the ∨ split
type. In this way, it is also guaranteed that functions cannot be succeeded by
arcs of split type ∧ and of split type XOR at the same time.

In case of the join type of the arc between A and D, there is no such function
D in the function graph of Figure 7.15a and thus also no incoming arc to D.
Hence, the only way in which D can be executed is depicted in Figure 7.15b
where it always requires a token on the arc from A as specified by the arc’s ∧

join type. Therefore, the corresponding arc in Figure 7.15c preserves the ∧ join
type.

As the ∨ split and join types are less restrictive than the ∧ and the XOR
split/join types, using the ∨ for an arc which had type ∧ or type XOR in one of
the initial function graphs not only allows for the same behavior as in the original
graphs. It also allows for a number of additional behaviors that were not possible
in any of the original graphs. The behavior depicted in Figure 7.15 provides
an example for this. The figure shows the behavior required and possible such
that A is executed at least once and such that no tokens remain on the arcs
of the function graph. The behavior possible in both initial graphs is shown in
boldface while the new behavior is shown using non-boldface characters.

7.2.4 From Function Graphs to EPCs

A function graph can be transformed back into an EPC. For this, we first
generate an EPC where each non-initial function is preceded by a dedicated
join connector and each non-final function is succeeded by a dedicated split
connector (see Figure 7.16b). Arcs connect these connectors in line with the
arcs connecting the functions of the function graph via an event for each such
arc. Start events are directly connected to initial functions while final functions
are directly connected to end events. The connector types are calculated for
each connector based on the values of all arcs originating or ending in the
corresponding function in the function graph. If all arcs originating from a
function in the function graph are of split type XOR, the split connector of
this function in the EPC becomes an XOR connector (as for function B in
Figure 7.16). If all arcs are of split type ∧, it becomes an ∧ connector (as for A
in Figure 7.16). In all other cases, it becomes an ∨ connector. In the same way
the join connector before each function in the EPC becomes an XOR connector
if all arcs pointing at this function in the function graph are of join type XOR,
it becomes an ∧ connector if the arcs are of join type ∧, and it becomes an ∨

connector otherwise (as for E in Figure 7.16).

170 Chapter 7. Building the Configurable Process Model

b) EPCa) Function Graph

V

A

B C

E

A

V

V ΛXOR

XOR

XOR

Split

Join

FD

Λ Λ
XORXOR

Λ Λ
Split

Join

XOR

C

F

XOR

B

XOR

E

XOR

D

V

V

V

c) well-formed EPC

V

A

C

F

B

XOR

E

D

V

V

Figure 7.16: Transforming a function graph back into an EPC

Definition 7.6 (Generating EPCs from function graphs) A function
graph FG = (F ,AFG , lFG

join , l
FG
split) can be converted into an event-driven process

chain EPC = (E ,F ,XEPC
join ∪ XEPC

split ,m,A) as follows:

• XEPC
join = {cfjoin |f ∈ F ∧ |

FG
• f | ≥ 1} assigns a join connector to each

function,

• XEPC
split = {cfsplit |f ∈ F ∧ |f

FG
• | ≥ 1}} assigns a split connector to each

function,

• E = {e(f1,f2)|(f1, f2) ∈ AFG} ∪ {efstart |f ∈ F ∧
FG
• f = ∅} ∪ {efend |f ∈ F ∧

f
FG
• = ∅} is the set of events,

• A = {(f, cfsplit)|f ∈ F ∧cfsplit ∈ XEPC
split }∪{(cfjoin , f)|f ∈ F ∧cfjoin ∈ XEPC

join }

∪ {(cf1split , e
(f1,f2))|(f1, f2) ∈ AFG} ∪ {(e(f1,f2), cf2join)|(f1, f2) ∈ AFG}

∪ {(efstart , f)|f ∈ F ∧
FG
• f = ∅} ∪ {(f, efend)|f ∈ F ∧ f

FG
• = ∅},

• for all cfjoin ∈ XEPC
join : m(cfjoin) =























XOR if ∀x∈F (x, f) ∈ AFG ⇒

lFG
join((x, f)) = XOR

∧ if ∀x∈F (x, f) ∈ AFG ⇒

lFG
join((x, f)) = ∧

∨ otherwise,

• for all cfsplit ∈ XEPC
split : m(cfsplit) =























XOR if ∀x∈F (f, x) ∈ AFG ⇒

lFG
split((f, x)) = XOR

∧ if ∀x∈F (f, x) ∈ AFG ⇒

lFG
split((f, x)) = ∧

∨ otherwise.

When transforming a function graph into an EPC, the connector values deter-
mining the possible behavior of the resulting EPC are calculated from the split

7.2. Merging Process Models 171

and join type values of the function graph’s arcs. Only if each arc originating
from a function is assigned the split type XOR, then also the corresponding
EPC connector determining the successors of the function in the EPC is of type
XOR allowing for an exclusive choice of one of the succeeding functions. This
corresponds exactly to the behavior possible in the function graph. If all these
arcs are of type ∧, also the corresponding connector in the EPC becomes an
∧ connector. Again, the behavior of triggering all succeeding paths is in line
with the behavior of the function graph. If the arcs are of type ∨ or if there
is a mixture of different split types among the arcs originating from a function
of a function graph, then the corresponding EPC connector is assigned type
∨. The resulting behavior then corresponds to exactly the behavior if all the
corresponding arcs of the function graph are of type ∨. Each other combination
of arc types in the function graph allows for a subset of this behavior. Thus,
by assigning the EPC connector the type ∨, additional behavior might become
possible in the EPC compared to the behavior allowed in the function graph.

The argumentation for the behavior allowed by join connectors in the result-
ing EPCs is in line with the behavior of split connectors.

The EPC generated in this way might not be well-formed because it can
violate the Requirement 7 of Definition 2.23 (p. 31): It may contain connectors
which have only one incoming and at the same time only one outgoing arc (e.g.,
see functions B, C, D, and F in Figure 7.16b). However, such connectors can
simply be eliminated from the net by replacing each of these connectors with a
direct arc from its predecessor node to its successor node (see Figure 7.16c).

Definition 7.7 (Generating well-formed EPCs from function graphs)
If an EPC ⋄ = (E⋄,F ⋄,X ⋄,m⋄,A⋄) was derived from a function graph, it can
be converted into a well-formed EPC = (E ,F ,X ,m,A) as follows:

• E = E⋄,

• F = F ⋄,

• X = {c ∈ X ⋄ | (|
EPC⋄

• c| ≥ 2) ∨ (|c
EPC⋄

• | ≥ 2)},

• m ∈ X → {∧,∨,XOR} such that m(c) = m⋄(c) for all c ∈ X ,

• N ′ = E⋄ ∪ F ⋄ ∪ X ,

• A = (A⋄∩ (N ′×N ′))∪{(x, y) ∈ N ′×N ′|∃z1,...,zn∈(X⋄\X)〈x, z1, ..., zn, y〉 ∈
(A⋄)∗}.

Using the transformation algorithm of van Dongen and van der Aalst [57], the
resulting EPC can also be translated back into a Petri net. OR-splits and OR-
joins are then simply replaced by a set of transitions describing all possible
combinations of paths that can be triggered respectively synchronized.

All in all, in each of the merge algorithm’s three steps the possible behavior
of the input model(s) is at least preserved in the resulting model, but usually
even extended with additional behavior. This even holds if we only transform a
single EPC into a function graph and back into an EPC without merging it with
any other process model in-between. As explained earlier, for the creation of a
configurable process model, this over-approximation of the behavior is a desired

172 Chapter 7. Building the Configurable Process Model

property aimed at during the development of this algorithm. We prefer such
generalized models over models that match the behavior of the input models
exactly. For that reason, we also rather stick to the ‘simple’ EPC derived in the
last transformation step although introducing additional connectors to create
an EPC that preserves the behavior of the function graph more exactly would
well be possible. Still, it must also be noted that in extreme cases, this over-
approximation might lead to over-generalized models, e.g., if all connectors end
up being ∨-connectors. Thus, if a merged model and thus the depicted algorithm
is appropriate or not always depends on the individual context. In any case,
the resulting model is a subclass of the original models. Hence, through process
configuration the additionally allowed behavior can always be re-restricted to a
desired amount of behavior.

In Section 7.1.2 we generated the basic process model of a configurable pro-
cess model M1..n directly from log files through process mining. Originally,
process mining techniques have been developed to generate individual models
from individual log files as indicated through the dashed arrows from L1 to M1,
from L2 to M2, etc. in Figure 7.1 (p. 144). Hence, in principle, it is also possible
to first generate individual models through process mining and then use the
model merging algorithm depicted in this section to generate a merged model
M+

1..n = M1 ⊕M2 ⊕ ...⊕Mn. Whether M1..n and M+
1..n depict exactly the same

behavior as implied in Figure 7.1 depends on the generalization of the mining
and merging algorithms. As the depicted merge algorithm is inspired by the
multi-phase miner, we achieved an approximately identical behavior of the two
models here by also using the multi-phase miner for the mining of process mod-
els. Both these techniques guarantee to preserve all the behavior represented
in the log files and process models and over-approximate this behavior through
using OR-joins and OR-splits whenever necessary.

7.2.5 Tool Support

We have implemented the merge algorithm as a plug-in of ProM which provides
the necessary functionality to transform Petri nets to EPCs and vice versa, to
import EPCs created with various software tools, to illustrate both Petri nets
and EPCs, and to re-use EPCs with other data mining techniques. Figure 7.17
shows two EPCs for travel approval processes loaded in ProM, which we want to
merge in the following for illustration purposes. The model on the upper right
is the process from Figure 2.7 (p. 29) while the one on the left is a new process
variant. In this new variant, reservations are made directly before the travel
form is filled in and submitted. The travel is afterwards either approved and
the form forwarded to the clearing center or rejected and the form is archived.

Before performing the actual merge of two selected EPCs as described in
sections 7.2.2 to 7.2.4, the ProM plug-in allows users to create a mapping be-
tween the functions of the two input EPCs (see Figure 7.18) as well as between
their events. In this way, it can be avoided that different names for the same
functions or events (as e.g. defined through ontology classes or caused by ty-
pos etc.) cause superfluous additional elements in the resulting model. In the

7.2. Merging Process Models 173

Figure 7.17: The two EPCs depict both a travel approval process. The goal is to merge
them using the implementation of the EPC merge in ProM.

example, the functions of the EPC on the left in Figure 7.17 are listed on the
left of the screen. In the middle, a corresponding function from the right EPC
can be selected. To help the user with this mapping, the plug-in automatically
suggests possible corresponding elements using a library provided by ProM for
matching identifiers. The right column provides the opportunity to provide a
name that will be used for the mapped functions in the resulting process model.
In Figure 7.18, the functions Prepare and Submit Travel Form, Check Travel
Form, and Forward Travel Request from the EPC on the left can in this way
be mapped to equivalent functions of the EPC on the right. However, there
are no corresponding elements for the functions Archive Travel Request and
Make Reservations. Thus, we simply select None from the corresponding list of
functions from the right EPC. Based on this mapping of functions and events

174 Chapter 7. Building the Configurable Process Model

Figure 7.18: Before two EPCs can be merged, function and events names of both models
have to be mapped onto a commonly agreed upon set of names.

between the two EPCs, the merge algorithm is then executed.6

As the behavior of an EPC is determined by the order of executing its func-
tions, the names of the events between the functions are irrelevant from a behav-
ioral point of view and thus ignored in the algorithm presented in sections 7.2.2
to 7.2.4. The algorithm simply creates new events when transforming the func-
tion graph back into an EPC. However, for the depiction and understanding of
the process, the event names are of course important. Thus, after merging the
two models, the implementation of the algorithm re-names each event of the
resulting model based on the event names of the corresponding event(s) in the
original models. Considering that the implementation introduces unique initial
functions before each start event in the original model, and unique final func-
tions after each end event of the original models, an event is always located on
a path between two functions. Thus, for each event in the resulting model the
algorithm can identify its preceding and succeeding functions. Then, it looks up
these functions in the original models and identifies which events are located on
the path between the two functions in the original models. If there is a unique
event among all the original models, the event in the resulting model is named
accordingly. If there are varying events on this path among the different EPCs,
an XOR connector is added after the split connector of the preceding function
in the resulting model. This connector splits the control-flow to all the different

6An illustrated description of how to use the EPC merge plug-in can be found at
http://www.floriangottschalk.de/epcmerge.

http://www.floriangottschalk.de/epcmerge

7.2. Merging Process Models 175

events from the original models. Afterwards, another XOR connector re-joins
the control-flow before the join connector of the succeeding function.

The EPC resulting from this merge is shown in Figure 7.19. In the integrated
model, an ∨ connector allows in the beginning for both the request of quotes for
accommodation and flights as in the model on the right of Figure 7.17 as well as
for making directly a reservation as in the model on the left of Figure 7.17. Due
to the use of the ∨ connector even solely quoting a flight or combining such a
quote with a reservation of an accommodation would in contrast to the original
models be possible according to this new model. While in each of the original
models the check of the travel form could result in an acceptance of the travel
request, the alternative to this was a rejection in one of the models, while it was
the request for a change in the other model. Thus, the new, merged model in
Figure 7.19 allows for a choice of one of these three options.

The algorithm, and thus also its implementation in ProM, is very efficient.
All iterations over arcs to calculate the new arcs and connector values are lim-
ited to the paths in between two functions. In the transformation from EPCs
to function graphs, the algorithm iterates over two trees per function, one for
incoming paths from preceding functions to calculate the join type for the func-
tion graph, and one for outgoing paths to succeeding functions to calculate the
split type of the corresponding arcs. Thus, the time complexity of this transfor-
mation is linear to the number of functions times the maximal number of arcs
in these trees leading to predecessor and successor functions. As the number
of a function’s predecessor and successor functions is usually very limited com-
pared to the overall number of functions in an EPC, and as this number usually
remains constant even with an increasing number of functions in larger EPCs,
i.e., the ratio even decreases, the time complexity of this transformation step
can even be considered as linear to the number of functions for large models.
The same argumentation holds for merging two function graphs. Again, the
new split types and join types are calculated based on the incoming and out-
going arcs of each function. As their numbers remain limited compared to the
overall number of functions in the merged model, also this can be performed in
quasi linear time compared to the number of functions. Also, the transforma-
tion of function graphs back into EPCs implies just an iteration over the arcs
of the merged function graph. Even determining the event names corresponds
to determining the events along the paths between two functions in the original
EPCs which has the same computational complexity as the determination of
the split types and join types.

By implementing the merge of EPCs as a ProM plug-in, it can be used and
combined with existing process mining techniques like the ones mentioned in
Section 7.1 to create integrated process models from both models and log files.
Moreover, ProM provides a range of conversion tools to and from EPCs. Thus,
the algorithm is in this way also applicable to other notations like Protos or
YAWL. Furthermore, as mentioned before, ProM plug-ins allow applying the
algorithm to Petri nets although Petri nets do not support OR-joins and OR-
splits directly. In the conversion from EPCs to Petri nets, OR-join and OR-
split connectors are simply replaced by a range of silent transitions allowing

176 Chapter 7. Building the Configurable Process Model

Quote
Accomodation

Quotes available

Prepare and Submit
Travel Form

X

Check
Travel Form

X

Check and Update
or Drop Travel Request

X

Forward
Travel Request

X

Quote
Flight

Quotes available

Make
Reservations

Reservations succesful

Archive
Travel Request

Change Requested Travel Request Approved

Travel Required

V

Travel Request Rejected

V

Travel Form Submitted

Request Processed

Figure 7.19: The EPC resulting from merging the two EPCs of Figure 7.17

the marking of each possible combination of subsequent places. This can be
seen in the beginning of the Petri net in Figure 7.20 which shows the Petri net
transformation of the EPC from Figure 7.19.

7.2. Merging Process Models 177

Quote Accomodation

Prepare and Submit
Travel Form

Check Travel Form

Check and Update
or Drop Travel Request

Forward Travel Request

Quote Flight Make Reservations

Archive Travel Request

Figure 7.20: The merged EPC from Figure 7.19 transformed into a Petri net using ProM:
∨ connectors are replaced by a set of transitions describing all possible subsets.

178 Chapter 7. Building the Configurable Process Model

7.3 Deriving Configurations

The basic process model of a configurable process model — regardless whether
it is generated through process mining, model merging, or manual construction
— allows for the execution of all the process’s various variants. It covers all
possible combinations of process parts, which is usually impossible to achieve by
providing a set of individual process variants. But naturally, the model users do
not need all these variations. Instead, they like to have a specific model covering
exactly the required process behavior. Hence, the user of a configurable process
model needs to configure the integrated model to that subset which depicts this
desired behavior. That means, for a workflow net WF = (P ,T ,A,L, l) we need
to find a configuration C : T → {allow , hide, block} such that the workflow net
resulting from C only depicts the behavior necessary for a particular application.

Examples for such configurations are the systems used to create the basic
process model. These established variants of the process could thus provide
a better starting point for the users of the configurable process model than
the complete integrated model of all process variants can be. If we know the
configurations of the basic process model leading to the selected, established
process variants, and if we know which of these variants might probably be the
closest to our requirements (e.g. because of a comparable company size and
target market), then the derivation of an individual process would normally be
limited to amending this given configuration by adding a number of elements
from the basic process model to the configuration and/or removing some of
them. In this way, the risky and time-consuming task of configuring the process
from scratch can be avoided.

To determine such a configuration, we can (re-)use log files of the particular
system. These log files contain information about all behavior that was used
in the particular system. Thus, we can utilize this information for identifying
which tasks of the basic process model are used in the particular system and
which are not. That means that the configuration of the basic process model
(and hence a configured process model) can be derived from the log files of
successful process implementations (see Figure 7.21).

For this, we simply need to map the event identifiers from the log file onto
tasks depicted in the basic process model. We assume here that all log events
from the log file correspond to tasks in the basic process model as otherwise its
configuration would obviously not be able to cover the behavior in the log file. If
this is not the case, the integrated model must either be adapted to also include
this additional behavior, this additional behavior must be eliminated from the
log file in a pre-processing step by removing the non-covered log events, or all
event traces with such additional behavior are simply discarded. This issue has,
e.g., been addressed by Rozinat and van der Aalst [144] in detail and is thus of
no further concern here. For simplicity, let us in the following just discard all
event traces which are not covered by the basic process model.

While the mapping of log events to tasks already provides an indication
about which visible tasks are required in the configuration, it alone does not pro-
vide details on the concrete configuration of the invisible and the non-required

7.3. Deriving Configurations 179

bfwghgf8
73wr
8byarybw
fb wyrfoa
bw4rf
a9wyrfhw
e784yrfh

bfwghgf8
73wr
8byarybw
fb wyrfoa
bw4rf
a9wyrfhw
e784yrfh

bfwghgf8
73wr
8byarybw
fb wyrfoa
bw4rf
a9wyrfhw
e784yrfh

bfwghgf8
73wr
8byarybw
fb wyrfoa
bw4rf
a9wyrfhw
e784yrfh

bfwghgf8
73wr
8byarybw
fb wyrfoa
bw4rf
a9wyrfhw
e784yrfh

bfwghgf8
73wr
8byarybw
fb wyrfoa
bw4rf
a9wyrfhw
e784yrfh

bfwghgf8
73wr
8byarybw
fb wyrfoa
bw4rf
a9wyrfhw
e784yrfh

bfwghgf8
73wr
8byarybw
fb wyrfoa
bw4rf
a9wyrfhw
e784yrfh

bfwghgf8
73wr
8byarybw
fb wyrfoa
bw4rf
a9wyrfhw
e784yrfh

L1

L2

Ln

raw

raw

raw

...

bfwghgf8
73wr
8byarybw
fb wyrfoa
bw4rf
a9wyrfhw
e784yrfh

bfwghgf8
73wr
8byarybw
fb wyrfoa
bw4rf
a9wyrfhw
e784yrfh

bfwghgf8
73wr
8byarybw
fb wyrfoa
bw4rf
a9wyrfhw
e784yrfh

bfwghgf8
73wr
8byarybw
fb wyrfoa
bw4rf
a9wyrfhw
e784yrfh

bfwghgf8
73wr
8byarybw
fb wyrfoa
bw4rf
a9wyrfhw
e784yrfh

bfwghgf8
73wr
8byarybw
fb wyrfoa
bw4rf
a9wyrfhw
e784yrfh

bfwghgf8
73wr
8byarybw
fb wyrfoa
bw4rf
a9wyrfhw
e784yrfh

bfwghgf8
73wr
8byarybw
fb wyrfoa
bw4rf
a9wyrfhw
e784yrfh

bfwghgf8
73wr
8byarybw
fb wyrfoa
bw4rf
a9wyrfhw
e784yrfh

L1

L2

Ln

...

n raw logs n logs

hsu

gdr

serg

gdr

sreg

M1 M2 Mn

...

hsu

gdr

serg

sreg

hsu

serg

sreg

M1..n

hsu

gdr

serg

sreg

hsu

gdr

serg

sreg

hsu

gdr

serg

sreg

C1

C2

Cn

+ + +

n models

process
mining

pre-
processing

process
configuration

c
le

a
n

,
fi
lt
e

r,
 m

a
p

,
..

.

1 model

ontology

n configurations
based on 1 model

...

Figure 7.21: After pre-processing the log files, process mining generates the basic process
model.

tasks of the model, i.e. must their use be configured as blocked or as hidden.
To identify these configuration decisions, we need to ‘replay’ the log file on the
basic process model. That means that we need to take each event trace from
the log file as ‘a guide’ through the basic process model, while we execute the
tasks listed in the trace within the basic process model. Considering a workflow
net, this means that the event traces have to lead from its initial marking to its
final marking.

Definition 7.8 (Complete Firing Sequences) Let WF be a workflow net,
MI be the initial marking of WF, and MO be the final marking of WF. Then
ΦIO

WF = {σ|MI
σ

։
WF

MO} is the set of all complete firing sequences of WF from
MI to MO.

The log replay works as follows: Starting with the initial marking MI for each
trace, the log replay searches for a way to fire the transition which conforms
to the first log event without firing any other visible transitions before that. If
the initial marking does not enable the corresponding transition directly, the
replay has to find a firing sequence of silent transitions that enables the firing
of the transition conforming to the first log event. After the firing of this first
transition, the replay continues with finding a firing sequence of silent transitions
which enables the transition conforming to the second event in the log file and
fires this one. This continues until the transition conforming to the last log event
has been fired. If the marking of the workflow net resulting from the firing of
this last transition is not yet the final marking MO, then an additional firing
sequence of silent transitions has to be found that leads to the final marking.
For any event trace θ of the log file, θ must thus correspond to the identifiers

180 Chapter 7. Building the Configurable Process Model

p2pI

Log File Process Model

p3

p2

HIDDEN

pI p3

a) b)

c)

pO

pO

Figure 7.22: For replaying a log file, the potential of hidden transitions must be taken into
account.

of a complete sequence of transition firings σ in the workflow net while ignoring
all the firings of silent transitions in σ, i.e. θ = πL\{τ}(l(σ)).

By remembering all the transitions that we fired while replaying all the traces
in a log file, we do not only know which visible transitions have to remain possi-
ble in the configured net, but also which silent transitions have to be preserved
in the configuration. However, this replay fails if transitions of the basic process
model are hidden in the configuration that leads to the replayed log file. For
example, take the simple event trace 〈A,B〉 as shown in Figure 7.22a and the
workflow net shown in Figure 7.22b. Obviously, transition H needs to be hid-
den during the execution of the workflow net to generate the event trace 〈A,B〉.
However, if we replay 〈A,B〉 on the workflow net, we only reach a marking of p2.
There is no sequence of silent transitions that could lead to the marking of p3

and thus enable B. To be able to replay the log file, we therefore need to add a
silent transition as an alternative to transition H, enabling the replay to bypass
the firing of the transition that is configured as hidden (see Figure 7.22c).

To replay a log file, generated from a configuration of a basic process model
on the basic process model, we hence have to introduce such bypasses for any
visible transition, i.e. for all transitions which are not labeled τ .

Definition 7.9 (Expanded Workflow Net) Let WF = (P ,T ,A,L, l) be a
workflow net. Then WF exp = (P ,T ∪ T hid ,A ∪ Ahid ,L ∪ {τ}, lexp) is the ex-
panded workflow net of WF with

• T hid = {τ t|t ∈ T ∧ l(t) 6= τ} being a set of silent transitions of which each
silent transition corresponds to a visible transition of WF,

• Ahid = {(p, τ t)|p ∈ P ∧ τ t ∈ T hid ∧ (p, t) ∈ A} ∪ {(τ t, p)|τt ∈ T hid ∧ p ∈
P ∧(t, p) ∈ A} being the set of arcs incorporating the transitions τ t ∈ T hid

into WF,

• lexp : T ∪ T hid → L ∪ {τ} being a function assigning labels to transitions

such that lexp(t) =

{

l(t) if t ∈ T
τ otherwise (i.e. t ∈ T hid),

By adding such a potential bypass to any visible transition in the workflow net for
the replay, we can clearly identify and distinguish transitions that are allowed
to be used, transitions that are blocked, and transitions that are hidden in
the configuration that has led to the particular log file. All visible and silent
transitions of the original workflow net, i.e. the net without the bypasses added

7.3. Deriving Configurations 181

for the replay, which are used during the replay of all the traces of the log file
are configured as being allowed to be used. If a transition’s bypass is used
during the log replay, but the transition itself is not used during the replay, the
transition is configured as hidden. If both the transition and the bypass are
used, the transition’s use remains allowed. In this case, the original workflow
net should already contain a silent transition as bypass to the transition to be
able to produce the behavior that both the transition and its bypass are used.
Hence, the use of the bypass already included in the original workflow net then
remains allowed as well while this silent transition will be configured as blocked
if all traces use the visible transition. Finally, if neither a transition nor its
bypass is used during the replay, the transition must be configured as blocked.

Definition 7.10 (Configuration of Log) Let WF = (P ,T ,A,L, l) be a
workflow net, WF exp = (P ,T ∪ T hid ,A ∪ Ahid ,L ∪ {τ}, lexp) be the expanded
workflow net of WF, and ΦIO

WF exp be the set of all complete firing sequences of
WF. Moreover, let LOG be a log file such that

⋃

θ∈LOG events(θ) ⊆ {l(t) ∈
L|t ∈ T ∧ l(t) 6= τ}, i.e. all events of LOG correspond to a label of a visible
transition of WF. Then

ΦLOG
WF exp = {σ ∈ ΦIO

WF exp |∃θ∈LOG θ = πL\{τ}(l(σ))}

is the set of all firing sequences that correspond to behavior depicted in the log
file and

V =
⋃

σ∈ΦLOG
WFexp

{t ∈ T ∪ T hid |t ∈ σ}

is the set of transitions of WF exp that can fire when replaying LOG. The
corresponding configuration of WF is C : T → {allow , hide, block} such that

C(t) =







allow if t ∈ T ∩ V
hide if t ∈ T \ V ∧ τ t ∈ V
block otherwise.

In Figure 7.23 we replayed a log file of a concrete travel approval process on
the workflow net from Figure 7.8 (p. 155) and marked all the used, visible tran-
sitions with a bold border and all used, silent transitions as completely black.
In addition, we also marked paths that were followed in bold, while all paths
that are not followed are played down through dashed arcs. The visible transi-
tions Prepare Travel Form (Secretary), Prepare Travel Form (Employee), Submit
Travel Form, Decision Making, Drop Travel Request, Check and Update Travel
Form, and End Process are used in the log and thus allowed in the correspond-
ing configuration of the workflow net. Prepare Travel Form (Secretary) and
Prepare Travel Form (Employee) are the initial transitions according to the log
file. As both are preceded by other visible transitions in the original workflow
net (Quote Accommodation, Quote Flight, and Request Quotes), the sequences
of transition firings enabling these transitions have to bypass these preceding
transitions through the added, silent transitions labeled HIDDEN. As the cor-
responding transitions are not used during the replay these transitions must be

182 Chapter 7. Building the Configurable Process Model

t107

t16 t17

f1

f0

Forward Travel Request

Check Travel Form

HIDDEN

HIDDEN

t86 t85

t46

Quote Flight

Quote Accommodation

Prepare Travel Form (Employee)

Drop Travel Request

End Process

Decision Making

Submit Travel form

Check and Update Travel Form

Prepare Travel Form (Secretary)

Request Quotes

HIDDEN

HIDDEN

HIDDEN

HIDDEN

HIDDEN

HIDDEN

HIDDEN

HIDDEN

HIDDEN

HIDDEN

t108 t106

t88

t105t104

t70

t109

t89t91

t103

t90

t66

t87

Figure 7.23: A log file replayed on the workflow net of Figure 7.8.

7.4. Case Study Re-visited 183

configured as hidden while all the silent transitions along these paths that be-
long to the original workflow net, remain configured as allowed. The transitions
Check Travel Form and Forward Travel Request, as well as the silent transitions
t16 and t17 are not used at all and thus configured as blocked. As a last remark,
note that for the transition Drop Travel Request both the visible transition as
well as the bypass is used. This is the case because the model already contained
a bypass to this transition and traces from the log file can thus use either the
bypass or the visible transition. Hence, both the silent transition of the original
workflow net as well as the visible transition are configured as allowed and the
fact that the bypass of the expanded workflow net was also used during the
replay is irrelevant.

Using this configuration, the individual process model corresponding to this
behavior can then be derived from the basic process model as depicted in Defi-
nition 3.5 (p. 56). The resulting workflow net is shown in Figure 7.24.

7.4 Case Study Re-visited

To test the practical applicability of the tools and algorithms discussed in this
chapter, let us re-visit the processes from the case study described in Chapter 6.
In this chapter we manually merged the Protos process models of the individual
municipalities into an integrated basic process model, which (at first) was also
created in Protos. This approach turned out to be cumbersome and error-
prone. Both the mining of the basic process models if log files of various systems
are available (discussed in Section 7.1) and the merging of existing process
models (discussed in Section 7.2) aim at improving and automating the creation
of the basic process model. Therefore, let us test these approaches with the
models from the case study in this section. Afterwards, we will also show how
the approach from Section 7.3 can be used to identify configurations for the
configurable process models from the case study.

7.4.1 Mining Models from Log Files

In the case study we used individual models as input to create the basic process
model, while the mining approach from Section 7.1 requires log files of the
executed processes. Process simulation engines are able to generate log files
from process models by simulating the execution of the particular processes.
For verifying the applicability of process mining to generate configurable process
models, simulated log files are better suited than log files taken directly from
the computer systems of the municipalities: As the simulated log files conform
exactly to the behavior we want to have in the resulting model, we do not need
to deal with the noise occurring in log files from real systems (i.e. we save most
of the pre-processing efforts described in Section 7.1.1). Furthermore, we can
in this way use a common approach for all models and do not have to deal
with the completely different log formats of the different systems used by the
municipalities. Hence, in this way we avoid having to perform extensive pre-

184 Chapter 7. Building the Configurable Process Model

t107

f1

f0

t86t85

t46

Prepare Travel Form (Employee)

Drop Travel Request

End Process

Decision Making

Submit Travel form

Check and Update Travel Form

Prepare Travel Form (Secretary)

HIDDEN

HIDDENHIDDEN

t108 t106

t88

t105 t104

t70

t109

t89t91

t103

t90

t66

t87

Figure 7.24: The configured workflow net derived from the configuration highlighted in
Figure 7.23.

7.4. Case Study Re-visited 185

Figure 7.25: Key data of the combined log files of the various municipalities for acknowl-
edging an unborn child (ProM screenshot).

processing steps, while still having ‘optimal’ log files for the verification of the
mining approach available.

To generate log files for the case study’s Protos models, Protos2CPN [75]
(see Section 2.4.2, pp. 32f) can translate the Protos models into colored Petri
nets which write log files during their simulation. Using the ProM import frame-
work [83, 146], these log files can be translated into the MXML format required
by ProM.

The individual log files generated from the different variants of a process can
then simply be merged. For example, we generated in this way logs for in total
over 3800 cases of the various process variants for acknowledging an unborn child
(see Figure 7.25). Using the multi-phase miner [56, 57] on the combined log file,
we generated an EPC from this log file. The resulting EPC was translated into
a Protos model using ProM. This allows an easier comparison of the resulting
models with the process from Figure 6.3 (p. 128). Figure 7.26 shows the model
mined from the combined log file.

When looking at the mined model, it becomes immediately apparent that
some log events with different names represent the same behavior. For example,
the events identify, identify, and Confirm Identity which are highlighted on the
top-left of the model all represent the same identification task — they were just
named differently in the various models. In the same way Decide choice of name
(foreign country) and Decide choice of name (for foreign country) represent the
same tasks, as well as Decide choice of name (Dutch law) and Decide choice of
name (under Dutch law). For that reason, such log events should be harmonized
before mining the model (again). The model mined after harmonizing these (and
further) log events is depicted in Figure 7.27.

186 Chapter 7. Building the Configurable Process Model

end process
[xor,none]

Request Acknowledgement
[none,xor]

Identify
[none,xor]

identify
[none,none]

Confirm
Identity

[none,none]

First child of the relation
[xor,xor]

Determine if authorisation
necessary
[xor,xor]

Both live in the
municipality

[xor,xor]

Determine nationality
[xor,xor]

Decide choice of name
(for foreign country)

[none,none]

Decide choice of name
(foreign country)

[none,none]

Decide choice of
name (Dutch law)

[none,none]

Decide choice of name
(under Dutch law)

[xor,xor]

Draw up ackn. document
[xor,xor]

Draw up ackn.
certificate
[xor,none]

min. 1 person
present

[none,xor]

Check for permission
[none,xor]

No acknowledgement
[xor,none]

Contact living
municipality
[none,xor]

Both parents
present

[none,xor]

Last name mother
[xor,xor]

Archive documents
[none,none]

Hand over copy
[xor,xor]

Inform of authority over child
[none,none]

Decide choice of name
[none,none]

Process ackn. at birth
[none,none]

Unmarried
[none,xor]

Figure 7.26: Protos model for acknowledging an unborn child, mined from the combined log
files of the various municipalities using the multi-phase miner [56, 57]. Note that some tasks
seem identical but have different labels.

7.4. Case Study Re-visited 187

No acknowledgement
[xor,none]

end process
[xor,none]

Request Acknowledgement
[none,none]

identify
[none,xor]

Decide choice of name
(Dutch law)

[xor,xor]

Draw up ackn.
document
[xor,xor]

Both parents
present

[none,xor]

Last name mother
[xor,xor]

Hand over copy
[xor,xor]

Inform of authority
over child

[none,none]

Process ackn.
at birth

[none,none]

Decide choice of name
(foreign country)

[none,none]

Contact living
municipality
[none,xor]

Determine if authorisation
necessary
[xor,xor]

Both live in the
municipality

[xor,xor]

Unmarried
[none,xor]

Check for permission
[none,xor]

Determine nationality
[xor,xor]

First child of
the relation

[xor,xor]

min. 1 person
present

[none,xor]

Figure 7.27: Protos model for acknowledging an unborn child, mined from the combined
log files of the various municipalities after unifying equivalent log events.

188 Chapter 7. Building the Configurable Process Model

When carefully comparing it with the manually integrated Protos model
from Figure 6.3 (p. 128), it turns out that both models are equivalent, i.e. each
graph node has a corresponding node in the other graph, and the equivalent
nodes of two connected nodes in one graph are also connected in the other
graph and vice versa. Given that we have simulated in average over 750 process
instances per process model, and given that all decisions during this simulation
were made randomly with an equal distribution of choosing possible process con-
tinuations, we assume that the used log files represented the complete possible
behavior of the individual models. Furthermore, van Dongen and van der Aalst
[56, 57] have proven that the multi-phase mining algorithm preserves all behav-
ior when building a process model. Hence, it is not surprising that the model
generated through process mining conforms to the model that was manually
created with the same goal.

Still, it also shows that with good quality log files available, process mining
is a useful tool for creating the basic process model of a configurable process
model. In the example of the case study, the manual creation of the merged
model including elimination of errors took the process designer several days.
Producing the log files, identifying and mapping identical log events, and mining
the integrated process model was however just a matter of several hours.

7.4.2 Merging Individual Models

A direct merge of the process models from the case study according to the
merge algorithm presented in Section 7.2 seems to be even more attractive as
we can avoid generating log files of the individual models. For this, we first
need to convert the Protos models from Chapter 6 into EPCs as the merge
algorithm is based on EPCs. As mentioned before, ProM provides the necessary
functionality for this. After all individual Protos models have been converted
into EPCs, we can use the implementation of the merge algorithm as described
in Section 7.2.5. In this way, we can add one EPC after the other to the merged
EPC. In each step, the merge algorithm provides the opportunity to match
the various function names. Thus, it can easily be seen and specified that, for
example, the function Identify of one of the models is identical to the function
Confirm identity in the other model (see Figure 7.28).

After merging all four individual models and the model of the NVVB, the
final EPC is converted back into a Protos model. The resulting model for the
process of acknowledging an unborn child is depicted in Figure 7.29. It is again
equivalent to the manually merged model shown in Figure 6.3 (p. 128), and thus
to the model generated using the multi-phase miner shown in Figure 7.27.

Also this is not a surprising result. The merge algorithm is inspired by the
multi-phase miner [56, 57] which was used to create the model from Figure 7.27.
In fact, the merge algorithm merges behavior locally in an identical manner as
the multi-phase miner. The difference is that the merge algorithm performs this
local merge systematically, i.e. once per any combination of functions. Thus,
it guarantees that any behavior possible according to one of the input models
is preserved in the resulting model. When using the multi-phase miner, such

7.4. Case Study Re-visited 189

Figure 7.28: Mapping functions from different EPCs before merging the EPCs into a single
model.

behavior is only merged if it occurs in one of the process instances contained in
one of the log files. Hence, it is necessary to assume completeness of the log files
in order to assume a complete merge of the possible behaviors. Furthermore,
the multi-phase miner re-checks already merged behavior with any new process
instance following the same path as previous instances.

We can therefore conclude that if correct models of process variants that
should be combined to a basic process model are available, then the merge
algorithm presented in Section 7.2 is able to generate models that are at least
as good as the models that we can create by mining a process model from
log files using the multi-phase miner. In scenarios similar to the case study
from Chapter 6 the merge algorithm can therefore help in significantly reducing
the workload of creating a basic process model. For example, creating the
process model depicted in Figure 7.29 from the original Protos models took by
automatically merging the individual models less than half an hour. This is
again significantly less time than the time needed using the mining approach
which, in turn, took less time than merging the models manually.

190 Chapter 7. Building the Configurable Process Model

Both parents present
[none,xor]

Both live in the municipality
[xor,xor]

Draw up ackn.
document
[xor,xor]

Last name mother
[xor,xor]

min. 1 person present
[none,xor]

Hand over copy
[xor,none]

Process ackn. at birth
[none,xor]

Decide choice of name
(Dutch law)

[xor,xor]

end process
[xor,none]

Inform of authority
over child

[none,none]

Unmarried
[none,xor]

Contact living
municipality
[none,xor]

No acknowledgement
[xor,none]

Determine if authorisation
necessary
[xor,xor]

Confirm identity
[none,xor]

First child of
the relation

[xor,xor]

Determine nationality
[xor,xor]

Decide choice of name
(for foreign country)

[none,none]

Check for permission
[none,xor]

Request Acknowledgement
[none,none]

Figure 7.29: Protos model resulting from the merge of all five process variants for acknowl-
edging an unborn child.

7.4. Case Study Re-visited 191

7.4.3 Identifying Individual Configurations

To identify the configuration of a process model that is used by a particular
system, we suggested in Section 7.3 to replay a log file of this system on the
basic process model. To be able to do this on the basic process models derived
in the case study from Chapter 6, let us use again ProM to convert the Protos
models into Petri nets. ProM’s conformance checker [144] then provides the
opportunity to replay the individual log files which we generated for mining
basic process models in Section 7.4.1 on these Petri nets.

Figure 7.30 shows the Petri net that is derived from the integrated Protos
model for the various variants of acknowledging an unborn child which was
shown in Figure 6.3 (p. 128). As Petri net transitions do not support an XOR-
join behavior, each transition that has a corresponding join behavior in the
Protos model is preceded by a dedicated place for this. Thus, the transitions
leading to such a place represent the different ports of the Protos task that
corresponds to the particular transition. For example, the silent transitions t130
and t185 in Figure 7.30 represent in this way the input ports of the task First
child of the relation. In the same way, there is also a dedicated place after each
transition in the Petri net in case of an XOR-split behavior of the corresponding
Protos task. The transitions subsequent to this place thus represent the different
output ports of the task.

To detect the configuration of this process that is, for example, used by
the NVVB in their reference model, the transitions and arcs that were visited
during the replay of the corresponding log file are highlighted in Figure 7.30.
In this way, it is easy to see that neither transition t130 nor transition t185
was used when replaying the log file. For that reason, we can assume that
both these input ports of the task First child of the relation must be blocked
in order to achieve a configuration of the basic process model that matches the
NVVB model. Of course, this means that the task’s output ports are not used
either and can thus be blocked as well. In the same way, none of the transitions
leading to the transitions Both live in the municipality, min. 1 person present,
Contact living municipality, Unmarried, or Last name mother has fired during
the replay. Hence, all their input and output ports must be blocked as well.

Also, the transition Inform of authority over child has not fired. However,
the transition Draw up ackn. certificate that leads to the preceding place did fire.
All cases then just follow a silent transition that represents a simple alternative
to the transition Inform of authority over child. This alternative path also exists
in the Protos model from Figure 6.3. Hence, it is fine to block the input and
output ports of task Inform of authority over child. Still, it could be investigated
if there is a configuration of this integrated model that uses both the task Inform
of authority over child as well as its bypass. If this is not the case, the input
port of task Inform of authority over child could also be configured as hidden
which then allows deleting the bypass in the configurable process model.

The same argumentation as for task Inform of authority over child holds
for task Both parents present as it is bypassed using a silent transition as well.
Special attentions needs to be paid to the silent transitions t183 and t187 which

192 Chapter 7. Building the Configurable Process Model

Request Acknowledgement

Draw up ackn. certificate

Archive documents

No acknowledgement

First child of the relation

Decide choice of name (Dutch law)

Contact living municipality

Decide choice of name (foreign country)

Determine if authorisation necessary

Confirm Identity

Inform of authority over child

Both live in the municipality

Determine nationality

Hand over copy

Unmarried

min. 1 person present

Both parents present

Check for permission

Last name mother

t168

t156

t180

t130

t201

t73

t199

t134

t108

t106

t94

t191

t132

t115

t92

t113

t178

t173

t189

t171

t176

t125

t183

t187

t185

t166

Figure 7.30: Replaying the logs on the Petri net which conforms to the Protos model for
acknowledging an unborn child, reveals the parts actually used. These are highlighted.

7.4. Case Study Re-visited 193

Yes

No

Yes

No

Yes

No

No

Yes

Yes

No

Unmarried

Not OK

OK

Not OK

OK

Not OK

Last name
mother

Citizen

Confirm identify

Request
Acknowledgement

First child of the
relation

Both live in the
municipality

Decide choice
of name (under

Unmarried

Both parents
present

Determine
nationality

Decide choice
of name (for

No
acknowledgement

Contact living
municipality

Archive

min. 1 person
present

Process ackn.
at birth

Draw up ackn.
document

Hand over copy

Inform of
authority over

Check
permission

Declaration
unmarried

Determine if
authorisation

Figure 7.31: Configuration of the process for acknowledging an unborn child according to
the reference model of the NVVB.

connect transition Check for permission with the transitions Decide Choice of
name (Dutch law) and Draw up ackn. certificate respectively. Although these
surrounding transitions do fire, the silent transitions themselves do not fire
during the replay. Hence, the corresponding output ports of task Check for
permission (and the input ports of the other two tasks) must be configured as
blocked as well.

Figure 7.31 shows all these configuration decisions in the integrated Protos
model from Figure 6.3.

194 Chapter 7. Building the Configurable Process Model

7.5 Related Work

The techniques suggested in this chapter use and build up on ideas developed for
generating process models from log files, by merging several process models, and
through synthesizing state based models. Moreover, they use ideas developed
to check if a log file conforms to a process model or not. Therefore, we will in
the following depict the relation between this related work and the techniques
presented here as well as point the interested reader to the relevant sources for
further details.

7.5.1 Process Mining

Process mining techniques aim at extracting information from log files that
are generated by information systems. In this chapter we suggested the use
of algorithms that derive a process model from such log files, depicting the
process behavior in a graphical manner. For our example, we used the so-called
multi-phase miner, developed by van Dongen and van der Aalst [56, 57]. This
algorithm guarantees that any event trace of the log file can be replayed on the
process model that was generated using this algorithm, i.e. the model fits 100
percent to the log file. While this is nice for our examples, this is not always a
necessary property, especially if a log file not only contains desired information,
but also undesired information. This so called ‘noise’ can, e.g., be the result
of uncompleted, failed, or exceptionally deviating executions of the particular
process. Thus, most of the time such noise should be ignored.

Figure 7.32 provides an overview of process mining algorithms and their
characteristics: Event log determines if the algorithm considers each log event
as an atomic task, or if the algorithm is also able to deal with separate log events
for the start and the completion of a task. Mined model provides information
on the nature of the generated model, i.e. if only dependencies between tasks
are depicted, if the branching and synchronization behavior of splits and joins is
determined, or if a process model is derived covering all events of the log or only
a subset. Sequence, Choice, Parallelism, Loops, and Non-free-choice refer to the
corresponding workflow patterns [11]. Invisible tasks can be used to skip tasks
(as we did for hidden transitions), or they can be used for silently branching
and synchronizing the control-flow. The most common way to deal with noise
is pruning of dependencies that occur only rarely, i.e. less often than a certain
threshold. A more detailed discussion on the different issues and approaches to
process mining can be found in the work of van der Aalst et al. [10], Alves de
Medeiros [25], van Dongen [55], Günther [82].

The ProM process mining framework which we already used several times in
this chapter supports most of the listed process mining algorithms through about
50 plug-ins dedicated to process mining. It furthermore enables the combined
use of these and a wide variety of other process analysis techniques through a
total of more than 250 process mining, analysis, import, export, conversion, and
filter plug-ins [15].

7.5. Related Work 195

C
o
ok

et
al

.
[4

5]

A
gr

aw
al

et
a
l.

[2
2]

P
in

te
r

an
d

G
ol

an
i
[1

28
]

H
er

b
st

an
d

K
ar

ag
ia

n
n
is

[9
0
]

S
ch

im
m

[1
65

]

G
re

co
et

al
.
[8

1]

va
n

d
er

A
al

st
et

al
.
[1

4
]

W
ei

jt
er

s
an

d
va

n
d
er

A
a
ls

t
[1

8
6
]

va
n

D
on

ge
n

a
n
d

va
n

d
er

A
a
ls

t
[5

7
]

W
en

et
al

.
[1

88
]

A
lv

es
d
e

M
ed

ei
ro

s
[2

5
]

G
ü
n
th

er
an

d
va

n
d
er

A
a
ls

t
[8

4
]

va
n

d
er

W
er

f
et

al
.
[1

8
9
]

va
n

d
er

A
al

st
et

al
.
[1

8
]

Event log:
- Atomic tasks X X X X X X X X X X X X

- Non-atomic tasks X X

Mined model:
- Dependencies X X X X X X X X X X X X X X

- Nature split/join X X X X X X X X X X X

- Whole model X X X X X X X X X X X X X

Sequence: X X X X X X X X X X X X X X

Choice: X X X X X X X X X X X X X X

Parallelism: X X X X X X X X X X X X X X

Loops:
- Structured X X X X X X X X X X X X X

- Arbitrary X X X X X X X X X X

Non-free-choice:
- Local X X X X X X X X X X X

- Non-local X X X X X

Invisible Tasks:
- Skip X X X X X X X X X X

- Split/join X X

Noise:
- Depend. pruning X X X X X X

- Other X X X

Figure 7.32: An overview of process mining algorithms and their characteristics (adapted
from Alves de Medeiros [25]).

7.5.2 Model Merging

Process models are used to provide abstract views on the process behavior of
complex systems. As various models are usually inconsistent [152] even if they
are intended to depict the same behavior, several frameworks to align the de-
picted system descriptions for being able to merge them are suggested in liter-

196 Chapter 7. Building the Configurable Process Model

b) Mendling and Simona) EPCs 1 & 2 c) EPC Merge of Section 4.2

X

X

V

V

Figure 7.33: Merging the EPCs from (a) according to the algorithm of Mendling and Simon
[118](b) and as depicted in Section 7.2 (c).

ature, e.g. by Brunet et al. [39] as well as in Sabetzadeh and Easterbrook [152]
and Sabetzadeh et al. [153].

Algorithms that aim at merging two process models are typically developed
for a particular purpose. For example, it is interesting to compare the approach
suggested here with an algorithm suggested by Mendling and Simon [118]. Both
algorithms are capable of merging process models that are depicted as EPCs.
Our goal is to merge EPCs depicting different processes that are executed simi-
larly. Thus, whenever the merged processes deviate, our approach here provides
a choice between the varying behavior. The goal of Mendling and Simon [118]
is to integrate different views on the same process. Thus, they assume that all
the tasks from all the models need to be executed. If the same task occurs in
different views, i.e. different models, the overall process has to be synchronized,
and if tasks vary between the views, all those tasks can be executed. Hence,
the algorithm of Mendling and Simon [118] synchronizes and de-synchronizes
(see Figure 7.33b) through ∧ connectors whenever the algorithm depicted in
Section 7.2 provides a choice between the varying behavior through XOR or ∨

connectors (see Figure 7.33c).

7.5.3 Synthesis

At the beginning of Section 2.2 (pp. 19ff), we showed how behavior can be rep-
resented as a state-transition system which explicitly shows each state a system
can be in and how it can change between these states. Thus, besides generat-
ing integrated models through the mining from event logs, and the merging of

7.5. Related Work 197

the models, also the synthesis of such state-based models into process models
might be able to generate a process model covering multiple variants of how a
process can be executed. The goal is here, to find a process model that covers
exactly the behavior of all the considered transition systems. Thus, while being
as compact as possible — like in our approach — the resulting process model
should allow for all the behavior that is represented by the state transition sys-
tems. But different from our approach, it should not over-approximate, i.e. not
allow for any additional behavior. For example, Cortadella et al. [46] present an
algorithm for the synthesis of state-based models into Petri nets by using mini-
mal regions which is also implemented in a tool called Petrify [47]. Also ProM
provides several region-based approaches to synthesis [15]. Details of the merge
of transition systems and properties of such a merge of behavior are discussed
in the work of Brunet et al. [39] and Uchitel and Chechik [180].

7.5.4 Identifying Configurations and Conformance

Identifying a configuration for a process model that matches a log file is closely
related to research on checking the conformance of a log file to a process model.
Besides checking for the fitness of a log file to a process model, conformance
checking also tests the appropriateness of a process model to a log file, i.e.
how much additional behavior does the process model allow compared to the
behavior occurring in a log file. If we compare a process variant with the basic
process model, this additional behavior corresponds to the behavior we disallow
through configuration.

Metrics to identify the fitness and the appropriateness of a log file to a
process model have been developed by Rozinat and van der Aalst [144, 145]. To
determine the fitness and a simple appropriateness measurement, Rozinat and
van der Aalst use an advanced log replay which has been implemented in ProM.
In addition to marking visited arcs and nodes of a process model, it precisely
counts the number of visits as well as it searches for partial matches of a log file
to a process model. Still, the implementation of the log replay as part of the
conformance checker in ProM can also be used to determine configurations as
explained in Section 7.3.

Instead of replaying a log file on the model, Cook and Wolf [44] generate
event streams from a process model and then compare these event streams with
the event streams in the log files. However, for detecting configurations of a
process model a comparison of behavior on the log level instead of on the model
level is less suitable as it would be necessary to translate the differences back
onto the model.

While not completely replaying log files, Jansen-Vullers et al. [97] use fre-
quency profiles, depicting how many times each task is executed according to a
particular log file. By generating different frequency profiles from different log
files, they determine optional tasks and routings, i.e. configuration options, for
EPCs. Different from the complete replay of a log files, generating frequency
profiles does not lead to a concrete configuration, but produces a range of config-

198 Chapter 7. Building the Configurable Process Model

uration variants. The approach of Jansen-Vullers et al. [97] therefore determines
the ‘best’ solution by resolving an integer programming problem.

7.6 Conclusions

In this chapter, we discussed tools that can help the developer of a configurable
process model in constructing such models. As configurable process models
aim at integrating and providing the variations among several variants of a
business process, the different variants of the process are often already in place
somewhere. In such cases, information about the individual process variants is
most of the time available, typically in the form of log files that have recorded
executed work, or as process models documenting the work that should be
executed.

Log files of a business process are composed of traces that document each
execution of the business process. Process mining can be used to generate
process models from these traces. To generate a process model that covers
multiple process variants through process mining, the traces of the individual
variants need to be combined and aligned such that semantically equivalent log
events are mapped onto each other. A process mining algorithm can then build
a process model such that it is valid for all traces. Hence, the resulting model
then integrates the behavior of the different process variants.

For providing good results, process mining algorithms require a proper, but
often difficult and cumbersome, pre-processing, i.e. cleaning and aligning, of the
log files of the different systems. Therefore, if process models are already avail-
able for different process variants, directly merging these models often returns
better results. When constructing a configurable process model, it is important
that the merge algorithm preserves at least the behavior depicted by the individ-
ual models as it would otherwise be impossible to derive this behavior through
process configuration later on. The presented merge algorithm achieves this
through generalizing specific AND-join, AND-split, XOR-join, and XOR-split
synchronization and branching patterns to more general OR-join and OR-split
patterns whenever necessary.

Of course, a process model integrating various process models can also be
constructed from log files by first mining individual process models and af-
terwards merging the individual models. However, note that in practice the
resulting model will hardly depict exactly the same behavior as a model which
is created by combining the log files first and then mining the integrated model
directly from the combined log file. The reason for this is that process min-
ing as well as the model merging algorithms both over-approximate resulting
behavior, but hardly in an identical manner. Still, by using similarly over-
approximating algorithms, like combining the depicted model merging algorithm
with the multi-phase miner of van Dongen and van der Aalst [56, 57], a similar
behavior can be captured. For example, we generated identical process models
by merging process models from the municipality case study from Chapter 6

7.6. Conclusions 199

and by mining a process model from log files of the various input models using
the multi-phase miner.

The additional behavior made possible through integrating and over-
approximating the behavior of different process variants can be re-restricted
through configuring the integrated model, i.e. the basic process model. To
identify a complete configuration of the basic process model, log files can also
be used. For this, the log file of an individual system can be replayed on the
integrated model. The configuration then results from the transitions that are
used, skipped, or completely avoided during the replay.

The configuration that is derived from the log file of an existing system is
then obviously a feasible configuration of the process model (otherwise it would
not have been possible to create the log file). However, configurable process
models also aim at providing the model users with options to deviate from
such universal solutions by combining options from different systems. Thus, the
configuration of an individual process variant provides a good starting point
for deriving an individual process variant, but we need to determine in the
following which changes to this configuration are possible and which should
better be avoided as they would lead to incorrect process models.

200 Chapter 7. Building the Configurable Process Model

The more constraints one imposes, the more one
frees one’s self of the chains that shackle the spirit.

Igor Stravinsky (1942)

Chapter 8

Executability of

Configurations

Tasks of a basic process model cannot be configured freely as being allowed,
blocked or hidden. Usually, some tasks are essential for a process’s execution.
For example, a travel approval process that does not allow for executing the ap-
proval of the request would be rather meaningless. Besides such content issues,
a configured process model can also become structurally or semantically incor-
rect, i.e. it is technically no longer executable. For example, let us have a look
at the top half of Figure 8.1. It shows a configuration for the workflow net from
Figure 2.2, but the blocking of the transition Compare Accommodation Quotes
is problematic here. In the resulting process model (lower half of Figure 8.1),
p2 and p4 are not on some path from pI to pO. Thus, the resulting Petri net is
not a correct workflow net (see Definition 2.15, p. 23). Moreover, the Petri net
deadlocks as soon as t1 and τ t3 have fired because both t5 or t6 would require
a token in p4 to be able to fire.

To restrict the configuration space and thus prevent such improper configura-
tions, configurable process modeling languages as we defined them in Chapter 4
allow for the specification of configuration constraints. Only if the configuration
constraint of a configurable process model evaluates to true, a configuration is
valid. Still, the question that remained open so far is how to find such con-
straints.

In the following, we will therefore explore, how we can setup constraints
on configurations which ensure the executability of a configured process model.
Thus, we will have a look on the correctness of a process model’s configuration
from different perspectives. As we have clearly defined syntactical and seman-
tical correctness of process models using the formal workflow net notation in
Chapter 2 (Definitions 2.15, p. 23, and 2.18, p. 24), we will first analyze how
a correct workflow net syntax can be preserved during configuration as well as

202 Chapter 8. Executability of Configurations

pI

p5 p6

pO

p2p1

p7

p9

Waiting for
Travel
Quotes

Waiting for
Accomodation

Quotes

p8

t8

t1

t2

t5 t6

t9

t10

t13 t14

t11

t7

t12

Request for International
Travel & Accommodation

Quotes (Employee)

Request for
Domestic Travel

Quote (Employee)

Prepare
Travel Form
(Secretary)

Prepare
Travel Form
(Employee)

Check & Update
Travel Form
(Employee) Report

Travel Form
(Employee)

Approve
Travel Form

(Admin)

Reject
Travel Form
(Admin)

Submit
Travel Form
for Approval
(Employee)

Request for Change
(Admin)

Drop
Travel Form
(Employee)

simple process for

domestic travels

complex process for

international travels

p4p3

t3 t4
Compare
Accommodation
Quotes (Employee)

Compare
Travel Quotes
(Employee)

pI

p5 p6

pO

p2p1

p9

Waiting for
Travel
Quotes

Waiting for
Accomodation

Quotes

t1

t5 t6

t9

t13 t14

t7

Request for International
Travel & Accommodation

Quotes (Employee)

Prepare
Travel Form
(Secretary)

Prepare
Travel Form
(Employee)

Check & Update
Travel Form
(Employee)

Approve
Travel Form

(Admin)

Reject
Travel Form
(Admin)

Submit
Travel Form
for Approval
(Employee)

complex process for

international travels

p4p3

p8

t8

t10
Request for Change

(Admin)

t3τ

Figure 8.1: This configuration leads to a non-executable process model

8.1. Preserving Syntactic Correctness 203

for which models a correct semantics, i.e. soundness, can also be preserved in
this way. Thereafter, Section 8.3 will briefly analyze how these results can be
applied in the context of C-YAWL and the configuration framework presented
in Chapter 5. How it can be ensured that missing data or resources cannot
cause a deadlock of the process is subject of Section 8.4.

8.1 Preserving Syntactic Correctness

Let us start this chapter with analyzing how we can preserve a correct workflow
net syntax for configured workflow nets. Thus, we assume that we want to
configure a workflow net which is syntactically correct. The configured Petri
net (as derived according to Definition 3.5, p. 56) thus needs to have unique
source and sink places, as well as each node of the configured net needs to
remain on a path between these two places (Definition 2.15, p. 23). Only then
the configured net is also a workflow net.

By definition of a configured workflow net, the source place pI and the
sink place pO remain in the configured net. As no arcs are added during the
configuration, these places also preserve their character as source place and sink
place. Thus, during configuration we only need to test if a configuration violates
the requirement that each node of the resulting, configured workflow net is on
a path between pI and pO.

Transitions that are configured as hidden are replaced with silent transitions
during the configuration. For example, the hidden transition Compare Travel
Quotes (Employee) is replaced with the silent transition τ t3 in Figure 8.1. In-
coming and outgoing arcs are identical to the ones of the original transitions.
Thus, these replacements do not interrupt any of the paths between the source
place and the sink place.

Blocked transitions, however, are removed from the net including their in-
coming and outgoing arcs. Thus, this removal can disconnect parts of previously
existing paths between the source and the sink place as we have seen with re-
moving transition Compare Accommodation Quotes (Employee) in Figure 8.1.
Due to the removal of this transition, both p2 and p4 are no longer on such a
path.

But not every blocking really causes problems. As both transitions Request
for Domestic Travel Quote (Employee) and Report Travel Form (Employee) of
the simple process for domestic travels are blocked, both transitions are removed
including their surrounding arcs. In this way, p7 is not connected to any arc
any longer and is removed from the net as well (Definition 3.5, p. 56). Also,
the blocking of the transition Drop Travel Form (Employee) is unproblematic.
Although its surrounding arcs are removed and thus the paths from p8 to the
sink place pO via this transition, there is a second path from p8 to pO via t8,
p5, t7, p6, t9, p9, and t13 or t14. Hence, we only have to forbid the blocking of
transitions that would remove the last paths from pI to any node remaining in
the configured net, or from any node remaining in the net to pO.

204 Chapter 8. Executability of Configurations

Process configuration is usually a staged process, i.e. not all configuration
decisions are made at one point in time but users make them one after another
in a stepwise manner. Thus, the viable configuration options change after each
step. To determine the viable configuration options at any point in time, boolean
expressions can be used. Here, we distinguish nodes which remain in the net
from nodes which do not by using a boolean variable for each node. If the
variable is set to true, the node remains part of the net; if it is set to false,
the node is dropped in the configured net. Accordingly, we assign a blocked
transition the value false, while a transition that is allowed or hidden is assigned
the value true. All transitions that are not explicitly configured remain as
variables (i.e. unset).

According to Definition 3.5, any internal place remains in the net if there
is a non-blocked transition in its pre-set or post-set. This can be translated
into a configuration constraint in boolean logic as follows. If any transition
variable is set to true, i.e. it remains in the net, the places both in its pre-set
as well as in its post-set must also be set to true to remain in the net, formally:
∧

t∈TC (t⇒ (
∧

p∈•t p ∧
∧

p∈t• p)).
1

By valuating places and transitions in this way, we can now ensure the
requirement that any node remains on a path from pI to pO. For this, we test
for each node that remains in the net if there is a path from the source place pI
to this node of which no node is assigned the value false, and if there is a path
from the node to the sink place pO of which no node is assigned the value false.
If both these paths exist, then none of the nodes on these paths are removed,
i.e. the path from pI via this node to pO is preserved. In fact, if a non-blocked
transition t has at least one place in its pre-set which is on a directed path from
pI , then t is also on such a path. In the same way, if it has at least one place
in its post-set which is on a directed path to pO, then a path exists that leads
from t to pO. Thus, while the user configures the model and thus sets the values
of the transitions to true or false, the configuration constraint implies that we
only need to test the paths from pI to the places preceding the transitions that
are unset or set to true, respectively the paths from the places succeeding these
transitions to pO. Furthermore, when searching for such paths we can restrict
our analysis to acyclic paths as a cycle2 always leads back to the same node,
therefore not providing any valuable progress on a path from pI to pO. Formally,
we define an acyclic path as follows:

Definition 8.1 (Acyclic Path) Let PN = (P ,T ,A,L, l) be a Petri net:

• ψ = 〈n1, n2, ..., nk〉 is an acyclic path of PN if (ni, ni+1) ∈ A for 1 ≤
i ≤ k − 1 and 1 ≤ i < j ≤ k ⇒ ni 6= nj for any i and j,

• ΨPN is the set of all acyclic paths of PN .

Furthermore, if PN is a workflow net then

1Where with t, p we indicate a transition, respectively a place, which is set to true.
2Note that in this context cycles refer to the net structure and not to the dynamic behavior.

Therefore, it suffices to consider only acyclic paths.

8.1. Preserving Syntactic Correctness 205

• for all n ∈ P ∪T, ψI(n) = {〈n1, n2, ..., nk〉 ∈ ΨPN | n1 = pI ∧ nk = n} is
the set of all acyclic paths from pI to n,

• for all n ∈ P ∪ T, ψO(n) = {〈n1, n2, ..., nk〉 ∈ ΨPN | n1 = n ∧ nk = pO}
is the set of all acyclic paths from n to pO.

The following definition then summarizes the depicted constraint on the cor-
rectness of a configured workflow net.

Definition 8.2 (Process Correctness Constraint) Let WF = (P ,T ,A,L,
l) be a workflow net. Treating each place and each transition of WF with a
propositional variable, the process correctness constraint PCC (WF) is a propo-
sitional logic formula over these variables, given by the conjunction of the fol-
lowing expressions:

i) pI and pO are always true, i.e. pI ∧ pO;

ii) each place p that evaluates to true implies the disjunction of all acyclic
paths from pI to p and the disjunction of all acyclic paths from p to pO:
∧

p∈P [p⇒
∨

ψ∈ψI(p)
(
∧

n∈ψ n) ∧
∨

ψ∈ψO(p)(
∧

n∈ψ n)].

In the way the process correctness constraint PCC is constructed, it guarantees
that any process configuration of a workflow net whose valuation satisfies PCC ,
results in a syntactically correct configured workflow net:

Theorem 8.1 Let WF = (P ,T ,A,L, l) be a workflow net and PCC (WF)
be its process correctness constraint. Let C be a configuration of WF and let
WF C = (PC ,T C ,AC ,LC , lC) be the resulting configured net. Let v ∈ T ∪ P →
{true, false} be such that v(q) = true iff q ∈ T C ∪PC. Then WF C is a workflow
net ⇔ v |= PCC (WF).

Proof

(⇒) Let WF C be a workflow net and let v ∈ T ∪ P → {true, false} such that
v(n) = true iff n ∈ T C ∪ PC . As pI ∈ PC and pO ∈ PC (Definition 3.5,
p. 56), v(pI) = true and v(pO) = true, hence v |= pI ∧ pO.

Since WF C is a workflow net, for all p ∈ PC there exists at least one
directed path from pI to p. Let ψ ∈ ψI(p) be such a path, thus
for all n ∈ ψ we have n ∈ PC ∪ T C , hence v(n) = true. There-
fore, v |=

∧

n∈ψ n. Hence, v |=
∨

ψ∈ψI(p)
(
∧

n∈ψ n). Similarly, as there

is at least one path from p to pO, v |=
∨

ψ∈ψO(p)(
∧

n∈ψ n), hence

v |=
∨

ψ∈ψI(p)
(
∧

n∈ψ n) ∧
∨

ψ∈ψO(p)(
∧

n∈ψ n). Thus, for all p ∈ PC :

v |=
∨

ψ∈ψI(p)
(
∧

n∈ψ n) ∧
∨

ψ∈ψO(p)(
∧

n∈ψ n) and therefore for all p ∈

PC : v |= p⇒
∨

ψ∈ψI(p)
(
∧

n∈ψ n) ∧
∨

ψ∈ψO(p)(
∧

n∈ψ n). If p ∈ P \PC then

v(p) = false and thus v |= p ⇒
∨

ψ∈ψI(p)
(
∧

n∈ψ n) ∧
∨

ψ∈ψO(p)(
∧

n∈ψ n).

Hence v |=
∧

p∈P [p⇒
∨

ψ∈ψI(p)
(
∧

n∈ψ n) ∧
∨

ψ∈ψO(p)(
∧

n∈ψ n)].

(⇐) Let v |= PCC (WF). Assume WF C is not a workflow net. Since pI and
pO belong to WF C by definition, choose p ∈ PC such that there is either
(1) no path from pI to p or (2) no path from p to pO.3 If (1) then for

3This covers both the case if a node is not on path from pI to pO as well as the case of
multiple source or sink places.

206 Chapter 8. Executability of Configurations

all ψ ∈ ψI(p) there is a node n ∈ ψ such that n 6∈ PC ∪ T C and thus
v(n) = false, v 6|= n and hence for all ψ ∈ ψI(p) v 6|=

∧

n′∈ψ n
′ and thus

v 6|=
∨

ψ∈ψI(p)
(
∧

n′∈ψ n
′). If (2) then for all ψ ∈ ψO(p) there is a node n ∈

ψ such that n 6∈ PC∪T C and thus v(n) = false, v 6|= n and hence for all ψ ∈
ψO(p) v 6|=

∧

n′∈ψ n
′ and thus v 6|=

∨

ψ∈ψO(p)(
∧

n′∈ψ n
′). From both cases

we can conclude v 6|=
∨

ψ∈ψI(p)
(
∧

n′∈ψ n
′) ∧

∨

ψ∈ψO(p)(
∧

n′∈ψ n
′). Given

that v |= p, v 6|= p ⇒
∨

ψ∈ψI(p)
(
∧

n′∈ψ n
′) ∧

∨

ψ∈ψO(p)(
∧

n′∈ψ n
′). This

implies that v 6|=
∧

p∈P [p ⇒
∨

ψ∈ψI(p)
(
∧

n′∈ψ n
′) ∧

∨

ψ∈ψO(p)(
∧

n′∈ψ n
′)],

hence v 6|= PCC (WF) (Contradiction). ✷

A valuation of the transitions of a configurable workflow net is therefore cor-
rect if the conjunction of the configuration constraint and PCC can be sat-
isfied. Checking the satisfiability is an NP-complete problem. To tackle this
complexity, we propose to use a SAT solver4 based on Shared Binary Decision
Diagrams (SBDDs). Existing SBDD solvers can easily deal with systems made
up of around one million possibilities [121]. Hence they are reasonably adequate
to handle all the configurations produced by a configurable process model.

During the staged configuration, we propose to use the solver to obtain a
reduced representation of the conjunction of the configuration constraint and
PCC in conjunctive normal form, where each variable is initially unset. For
example, Figure 8.2 shows the constraints derived for the workflow net of Fig-
ure 2.2 (p. 22). Using the solver, we can reduce this constraint to its conjunctive
normal form:

pI∧pO∧ (p1∨ t1)∧ (p1∨ t1)∧ (t1∨p2)∧ (t1∨p2)∧ (p2∨p3)∧ (p2∨p3)∧ (p3∨
t3)∧ (p3∨ t3)∧ (t3∨p4)∧ (t3∨p4)∧ (p4∨ t4)∧ (p4∨ t4)∧ (t4∨p5∨p6)∧ (t4∨p5)∧
(t4 ∨p6)∧ (p5 ∨ t5)∧ (p5 ∨ t5)∧ (t5 ∨p6)∧ (t5 ∨ t7)∧ (t5 ∨p6 ∨ t7)∧ (p6 ∨ t7 ∨ t6)∧
(p6∨ t7)∧(p6∨ t6)∧(t7∨p7∨p8∨p9)∧(t7∨ t6∨p7)∧(t7∨ t6∨p8)∧(t7∨ t6∨p9)∧
(t7 ∨ p8 ∨ t12)∧ (t7 ∨ p8 ∨ t8)∧ (t6 ∨ p7 ∨ p8 ∨ p9)∧ (p7 ∨ t2)∧ (p7 ∨ t2)∧ (t2 ∨ p8 ∨
t11)∧ (t2∨p9∨ t11)∧ (t2∨p8∨p9)∧ (t2∨ t11)∧ (p8∨ t10)∧ (p8∨ t10)∧ (t10∨p9)∧
(t10∨t12∨t8)∧(t10∨p9∨t12)∧(t10∨p9∨t8)∧(p9∨t9)∧(p9∨t9)∧(t9∨t13∨t14)∧
(t9∨ t12)∧ (t9∨ t13)∧ (t9∨ t14)∧ (t12∨ t13∨ t14)∧ (t13∨ t14∨ t11)∧ (t13∨ t14∨ t8).

Then we conjunct this formula with each new transition valuation as provided
by the user during the configuration process, and further reduce the formula.
However, the solver can only reduce the formula if it is satisfiable, i.e. if the
configuration can yield a syntactically correct process model. This may imply
to automatically force to true or false the conjunction or disjunction of other
transitions that are still unset, in order to keep the formula satisfiable.

For example, let us start the configuration of the process from Figure 2.2 with
blocking the transition Request for Domestic Travel Quote (Employee). Thus,
the transition is assigned the value false, i.e. we concatenate the constraint above
with ∧ t2 and again use the SBDD solver to reduce the constraint further:

4Available at http://www-verimag.imag.fr/~raymond/tools/bddc-manual.

http://www-verimag.imag.fr/~raymond/tools/bddc-manual

8.1. Preserving Syntactic Correctness 207

(t1 ⇒ pI ∧ p1 ∧ p2) ∧ (t2 ⇒ pI ∧ p7) ∧ (t3 ⇒ p1 ∧ p3) ∧ (t4 ⇒ p2 ∧ p4)∧
(t5 ⇒ p3 ∧ p4 ∧ p5) ∧ (t6 ⇒ p3 ∧ p4 ∧ p6) ∧ (t7 ⇒ p5 ∧ p6) ∧ (t8 ⇒ p8 ∧ p5)∧
(t9 ⇒ p6 ∧ p9) ∧ (t10 ⇒ p9 ∧ p8) ∧ (t11 ⇒ p7 ∧ pO) ∧ (t12 ⇒ p8 ∧ pO)∧
(t13 ⇒ p9 ∧ pO) ∧ (t14 ⇒ p9 ∧ pO)∧











∧

t∈T : t ⇒
(
∧

p∈•t p∧
∧

p∈t• p)

pI ∧ pO∧

((pI ⇒ pI)∧
(p1 ⇒ p1 ∧ t1 ∧ pI)∧
(p2 ⇒ p2 ∧ t1 ∧ pI)∧
(p3 ⇒ p3 ∧ t3 ∧ p1 ∧ t1 ∧ pI)∧
(p4 ⇒ p4 ∧ t4 ∧ p2 ∧ t1 ∧ pI)∧
(p5 ⇒ ((p5 ∧ t5 ∧ p3 ∧ t3 ∧ p1 ∧ t1 ∧ pI) ∨ (p5 ∧ t5 ∧ p4 ∧ t4 ∧ p2 ∧ t1 ∧ pI)))∧
(p6 ⇒ ((p6 ∧ t7 ∧ p5 ∧ t5 ∧ p3 ∧ t3 ∧ p1 ∧ t1 ∧ pI)∨

(p6 ∧ t7 ∧ p5 ∧ t5 ∧ p4 ∧ t4 ∧ p2 ∧ t1 ∧ pI)∨
(p6 ∧ t6 ∧ p3 ∧ t3 ∧ p1 ∧ t1 ∧ pI) ∨ (p6 ∧ t6 ∧ p4 ∧ t4 ∧ p2 ∧ t1 ∧ pI)))∧

(p7 ⇒ p7 ∧ t2 ∧ pI)∧
(p8 ⇒ ((p8 ∧ t10 ∧ p9 ∧ t9 ∧ p6 ∧ t7 ∧ p5 ∧ t5 ∧ p3 ∧ t3 ∧ p1 ∧ t1 ∧ pI)∨

(p8 ∧ t10 ∧ p9 ∧ t9 ∧ p6 ∧ t7 ∧ p5 ∧ t5 ∧ p4 ∧ t4 ∧ p2 ∧ t1 ∧ pI)∨
(p8 ∧ t10 ∧ p9 ∧ t9 ∧ p6 ∧ t6 ∧ p3 ∧ t3 ∧ p1 ∧ t1 ∧ pI)∨
(p8 ∧ t10 ∧ p9 ∧ t9 ∧ p6 ∧ t6 ∧ p4 ∧ t4 ∧ p2 ∧ t1 ∧ pI)))∧

(p9 ⇒ ((p9 ∧ t9 ∧ p6 ∧ t7 ∧ p5 ∧ t5 ∧ p3 ∧ t3 ∧ p1 ∧ t1 ∧ pI)∨
(p9 ∧ t9 ∧ p6 ∧ t7 ∧ p5 ∧ t5 ∧ p4 ∧ t4 ∧ p2 ∧ t1 ∧ pI)∨
(p9 ∧ t9 ∧ p6 ∧ t6 ∧ p3 ∧ t3 ∧ p1 ∧ t1 ∧ pI)∨
(p9 ∧ t9 ∧ p6 ∧ t6 ∧ p4 ∧ t4 ∧ p2 ∧ t1 ∧ pI)))∧

(pO ⇒ ((pO ∧ t12 ∧ p8 ∧ t10 ∧ p9 ∧ t9 ∧ p6 ∧ t7 ∧ p5 ∧ t5 ∧ p3 ∧ t3 ∧ p1 ∧ t1 ∧ pI)∨
(pO ∧ t12 ∧ p8 ∧ t10 ∧ p9 ∧ t9 ∧ p6 ∧ t7 ∧ p5 ∧ t5 ∧ p4 ∧ t4 ∧ p2 ∧ t1 ∧ pI)∨
(pO ∧ t12 ∧ p8 ∧ t10 ∧ p9 ∧ t9 ∧ p6 ∧ t6 ∧ p3 ∧ t3 ∧ p1 ∧ t1 ∧ pI)∨
(pO ∧ t12 ∧ p8 ∧ t10 ∧ p9 ∧ t9 ∧ p6 ∧ t6 ∧ p4 ∧ t4 ∧ p2 ∧ t1 ∧ pI)∨
(pO ∧ t13 ∧ p9 ∧ t9 ∧ p6 ∧ t7 ∧ p5 ∧ t5 ∧ p3 ∧ t3 ∧ p1 ∧ t1 ∧ pI)∨
(pO ∧ t13 ∧ p9 ∧ t9 ∧ p6 ∧ t7 ∧ p5 ∧ t5 ∧ p4 ∧ t4 ∧ p2 ∧ t1 ∧ pI)∨
(pO ∧ t13 ∧ p9 ∧ t9 ∧ p6 ∧ t6 ∧ p3 ∧ t3 ∧ p1 ∧ t1 ∧ pI)∨
(pO ∧ t13 ∧ p9 ∧ t9 ∧ p6 ∧ t6 ∧ p4 ∧ t4 ∧ p2 ∧ t1 ∧ pI)∨
(pO ∧ t14 ∧ p9 ∧ t9 ∧ p6 ∧ t7 ∧ p5 ∧ t5 ∧ p3 ∧ t3 ∧ p1 ∧ t1 ∧ pI)∨
(pO ∧ t14 ∧ p9 ∧ t9 ∧ p6 ∧ t7 ∧ p5 ∧ t5 ∧ p4 ∧ t4 ∧ p2 ∧ t1 ∧ pI)∨
(pO ∧ t14 ∧ p9 ∧ t9 ∧ p6 ∧ t6 ∧ p3 ∧ t3 ∧ p1 ∧ t1 ∧ pI)∨
(pO ∧ t14 ∧ p9 ∧ t9 ∧ p6 ∧ t6 ∧ p4 ∧ t4 ∧ p2 ∧ t1 ∧ pI)∨
(pO ∧ t11 ∧ p7 ∧ t2 ∧ pI)))∧























































































































































































































∧

p
∈

P
:
p
⇒

∨

ψ
∈
ψ
I
(
p
)
(∧

n
∈
ψ
n
)

((pO ⇒ pO)∧
(p9 ⇒ ((p9 ∧ t13 ∧ pO) ∨ (p9 ∧ t14 ∧ pO)))∧
(p8 ⇒ ((p8 ∧ t12 ∧ pO) ∨ (p8 ∧ t8 ∧ p5 ∧ t7 ∧ p6 ∧ t9 ∧ p9 ∧ t13 ∧ pO)∨

(p8 ∧ t8 ∧ p5 ∧ t7 ∧ p6 ∧ t9 ∧ p9 ∧ t14 ∧ pO)))∧
(p7 ⇒ p7 ∧ t11 ∧ pO)∧
(p6 ⇒ ((p6 ∧ t9 ∧ p9 ∧ t13 ∧ pO) ∨ (p6 ∧ t9 ∧ p9 ∧ t14 ∧ pO)))∧
(p5 ⇒ ((p5 ∧ t7 ∧ p6 ∧ t9 ∧ p9 ∧ t13 ∧ pO) ∨ (p5 ∧ t7 ∧ p6 ∧ t9 ∧ p9 ∧ t14 ∧ pO)))∧
(p4 ⇒ ((p4 ∧ t5 ∧ p5 ∧ t7 ∧ p6 ∧ t9 ∧ p9 ∧ t13 ∧ pO)∨

(p4 ∧ t5 ∧ p5 ∧ t7 ∧ p6 ∧ t9 ∧ p9 ∧ t14 ∧ pO)∨
(p4 ∧ t6 ∧ p6 ∧ t9 ∧ p9 ∧ t13 ∧ pO) ∨ (p4 ∧ t6 ∧ p6 ∧ t9 ∧ p9 ∧ t14 ∧ pO)))∧

(p3 ⇒ ((p3 ∧ t5 ∧ p5 ∧ t7 ∧ p6 ∧ t9 ∧ p9 ∧ t13 ∧ pO)∨
(p3 ∧ t5 ∧ p5 ∧ t7 ∧ p6 ∧ t9 ∧ p9 ∧ t14 ∧ pO)∨
(p3 ∧ t6 ∧ p6 ∧ t9 ∧ p9 ∧ t13 ∧ pO) ∨ (p3 ∧ t6 ∧ p6 ∧ t9 ∧ p9 ∧ t14 ∧ pO)))∧

(p2 ⇒ ((p2 ∧ t4 ∧ p4 ∧ t5 ∧ p5 ∧ t7 ∧ p6 ∧ t9 ∧ p9 ∧ t13 ∧ pO)∨
(p2 ∧ t4 ∧ p4 ∧ t5 ∧ p5 ∧ t7 ∧ p6 ∧ t9 ∧ p9 ∧ t14 ∧ pO)∨
(p2 ∧ t4 ∧ p4 ∧ t6 ∧ p6 ∧ t9 ∧ p9 ∧ t13 ∧ pO)∨
(p2 ∧ t4 ∧ p4 ∧ t6 ∧ p6 ∧ t9 ∧ p9 ∧ t14 ∧ pO)))∧

(p1 ⇒ ((p1 ∧ t3 ∧ p3 ∧ t5 ∧ p5 ∧ t7 ∧ p6 ∧ t9 ∧ p9 ∧ t13 ∧ pO)∨
(p1 ∧ t3 ∧ p3 ∧ t5 ∧ p5 ∧ t7 ∧ p6 ∧ t9 ∧ p9 ∧ t14 ∧ pO)∨
(p1 ∧ t3 ∧ p3 ∧ t6 ∧ p6 ∧ t9 ∧ p9 ∧ t13 ∧ pO)∨
(p1 ∧ t3 ∧ p3 ∧ t6 ∧ p6 ∧ t9 ∧ p9 ∧ t14 ∧ pO)))∧

(pI ⇒ ((pI ∧ t1 ∧ p1 ∧ t3 ∧ p3 ∧ t5 ∧ p5 ∧ t7 ∧ p6 ∧ t9 ∧ p9 ∧ t13 ∧ pO)∨
(pI ∧ t1 ∧ p1 ∧ t3 ∧ p3 ∧ t5 ∧ p5 ∧ t7 ∧ p6 ∧ t9 ∧ p9 ∧ t14 ∧ pO)∨
(pI ∧ t1 ∧ p1 ∧ t3 ∧ p3 ∧ t6 ∧ p6 ∧ t9 ∧ p9 ∧ t13 ∧ pO)∨
(pI ∧ t1 ∧ p1 ∧ t3 ∧ p3 ∧ t6 ∧ p6 ∧ t9 ∧ p9 ∧ t14 ∧ pO)∨
(pI ∧ t1 ∧ p2 ∧ t4 ∧ p4 ∧ t5 ∧ p5 ∧ t7 ∧ p6 ∧ t9 ∧ p9 ∧ t13 ∧ pO)∨
(pI ∧ t1 ∧ p2 ∧ t4 ∧ p4 ∧ t5 ∧ p5 ∧ t7 ∧ p6 ∧ t9 ∧ p9 ∧ t14 ∧ pO)∨
(pI ∧ t1 ∧ p2 ∧ t4 ∧ p4 ∧ t6 ∧ p6 ∧ t9 ∧ p9 ∧ t13 ∧ pO)∨
(pI ∧ t1 ∧ p2 ∧ t4 ∧ p4 ∧ t6 ∧ p6 ∧ t9 ∧ p9 ∧ t14 ∧ pO)∨
(pI ∧ t2 ∧ p7 ∧ t11 ∧ pO))))















































































































































































































∧

p
∈

P
:
p
⇒

∨

ψ
∈
ψ
O

(
p
)
(∧

n
∈
ψ
n
)

Figure 8.2: The concatenation of the configuration constraint and the process correctness
constraint for the workflow net from Figure 2.2 (p. 22).

208 Chapter 8. Executability of Configurations

pI∧pO∧p1∧t1∧p2∧p3∧t3∧p4∧t4∧(p5∨t5)∧(p5∨t5)∧(p6)∧(t5∨t7)∧
(t5∨ t7)∧ (t7∨ t6)∧ (t7∨p8∨ t12)∧ (t7∨p8∨ t8)∧p7∧ (p8∨ t12∨ t8)∧ (p8∨ t12)∧
(p8 ∨ t8)∧p9 ∧ (t12 ∨ t10)∧ (t12 ∨ t8 ∨ t10)∧ (t8 ∨ t10)∧ t2 ∧ t11 ∧ t9 ∧ (t13 ∨ t14).

As we can see, when illustrating the result in the net (see Figure 8.3) setting t2
to false also causes setting the place p7 to false as there is no longer any path
that leads from pI to p7, i.e. it cannot be reached from pI any longer. As p7

is set to false, also t11 must be set to false because p7 is the only place in the
pre-set of t11, i.e. there is no longer a place in the pre-set of t11 that can be set to
true. Hence, the blocking of the transition Request for Domestic Travel Quote
(Employee) makes the complex process for international travels the only feasible
way to get from pI to pO which must always be true. The only transition in the
post-set of pI which can actually cause pI to be true according to the process
correctness constraint PCC is t1. Thus, the truth value of t1 is set to true.
Together with this, the configuration constraint sets all the variables of places
in t1’s pre-set and post-set to true, i.e. p1 and p2 become true as well. Any
path that leads from p1 to pO includes t3 and p3, while any place from p2 to
pO includes t4 and p4. Thus, these nodes are automatically set to true as well.
Furthermore, also p6, t9, and p9 are on a critical path between pI and pO. All
remaining nodes remain unset, as there are multiple paths from all of them to
pO or from pI to them.

As hiding a transition does not change the value assigned to a transition, we
can in the next configuration step hide the transition Compare Travel Quotes
(Employee) without causing any further valuations of nodes in the net (see
Figure 8.4). If we block in a third configuration step the transition Request for
Change (Admin) as travel request should only be accepted or be rejected, t10 is
set to false. Now, we do not need to re-evaluate the whole, original constraint,
but we can add ∧ t10 to the reduced form of the constraint that was the result
of the previous configuration step which results in the following constraint:

pI ∧ pO ∧ p1 ∧ t1 ∧ p2 ∧ p3 ∧ t3 ∧ p4 ∧ t4 ∧ (p5 ∨ t5)∧ (p5 ∨ t5)∧ p6 ∧ (t5 ∨
t7)∧ (t5∨ t7)∧ (t7∨ t6)∧p7∧p8∧p9∧ t12∧ t8∧ t2∧ t11∧ t10∧ t9∧ (t13∨ t14).

Setting t10 to false thus results in p8 becoming false as well (see Figure 8.5),
and therefore also t8 and t12 are set to false. However, note that p5 still remains
unset as it can be required if t5 is allowed or hidden, but it should become false
if t5 would be set to false in further configuration steps.

If all transitions for which the variables are still unset should remain in the
net, i.e. they are set to true, this configuration leads to the syntactically correct
workflow net shown in Figure 8.6. Thus, as nodes that are automatically set
to true by using and evaluating the depicted constraints cannot be configured
as blocked any longer, a configuration decision leading to a syntactically wrong
workflow net (like the one shown in Figure 8.1 at the beginning of this chapter)
can be prevented.

8.1. Preserving Syntactic Correctness 209

pI

p5 p6

pO

p2p1

p7

p9

Waiting for
Travel
Quotes

Waiting for
Accomodation

Quotes

p8

t8

t1

t2

t5 t6

t9

t10

t13 t14

t11

t7

t12

Request for International
Travel & Accommodation

Quotes (Employee)

Request for
Domestic Travel

Quote (Employee)

Prepare
Travel Form
(Secretary)

Prepare
Travel Form
(Employee)

Check & Update
Travel Form
(Employee) Report

Travel Form
(Employee)

Approve
Travel Form

(Admin)

Reject
Travel Form
(Admin)

Submit
Travel Form
for Approval
(Employee)

Request for Change
(Admin)

Drop
Travel Form
(Employee)

simple process for

domestic travels

complex process for
international travels

p4p3

t3 t4
Compare
Accommodation
Quotes (Employee)

Compare
Travel Quotes
(Employee)

true

false

d
e

d
u

c
te

d

s
e

t

Figure 8.3: Configuration step 1: Blocking the transition Request for Domestic Travel Quote
(Employee).

pI

p5 p6

pO

p2p1

p7

p9

Waiting for
Travel
Quotes

Waiting for
Accomodation

Quotes

p8

t8

t1

t2

t5 t6

t9

t10

t13 t14

t11

t7

t12

Request for International
Travel & Accommodation

Quotes (Employee)

Request for
Domestic Travel

Quote (Employee)

Prepare
Travel Form
(Secretary)

Prepare
Travel Form
(Employee)

Check & Update
Travel Form
(Employee) Report

Travel Form
(Employee)

Approve
Travel Form

(Admin)

Reject
Travel Form
(Admin)

Submit
Travel Form
for Approval
(Employee)

Request for Change
(Admin)

Drop
Travel Form
(Employee)

simple process for
domestic travels

complex process for
international travels

p4p3

t3 t4
Compare
Accommodation
Quotes (Employee)

Compare
Travel Quotes
(Employee)

Figure 8.4: Configuration step 2: Hiding the transition Compare Travel Quotes (Employee).

210 Chapter 8. Executability of Configurations

pI

p5 p6

pO

p2p1

p7

p9

Waiting for
Travel
Quotes

Waiting for
Accomodation

Quotes

p8

t8

t1

t2

t5 t6

t9

t10

t13 t14

t11

t7

t12

Request for International
Travel & Accommodation

Quotes (Employee)

Request for
Domestic Travel

Quote (Employee)

Prepare
Travel Form
(Secretary)

Prepare
Travel Form
(Employee)

Check & Update
Travel Form
(Employee) Report

Travel Form
(Employee)

Approve
Travel Form

(Admin)

Reject
Travel Form
(Admin)

Submit
Travel Form
for Approval
(Employee)

Request for Change
(Admin)

Drop
Travel Form
(Employee)

simple process for
domestic travels

complex process for
international travels

p4p3

t3 t4
Compare
Accommodation
Quotes (Employee)

Compare
Travel Quotes
(Employee)

Figure 8.5: Configuration step 3: Blocking the transition Request for Change (Admin).

pI

p5 p6

pO

p2p1

p9

Waiting for
Travel
Quotes

Waiting for
Accomodation

Quotes

t1

t5 t6

t9

t13 t14

t7

Request for International
Travel & Accommodation

Quotes (Employee)

Prepare
Travel Form
(Secretary)

Prepare
Travel Form
(Employee)

Check & Update
Travel Form
(Employee)

Approve
Travel Form

(Admin)

Reject
Travel Form
(Admin)

Submit
Travel Form
for Approval
(Employee)

complex process for
international travels

p4p3

τ t4
Compare
Accommodation
Quotes (Employee)

Figure 8.6: The workflow net resulting from the configuration shown in Figure 8.5.

8.2. Preserving Semantic Correctness 211

pI

p5

t7

p6

t8

pO

t2

p3

t1

p2

t4

t5

p4

t6

t3

a) b)

p7

pI

p5

t7

p6

t8

pO

t2

p3

t1

p2

t4

t5

p4

t6

p7

Figure 8.7: Blocking t3 in (a) leads to an unsound workflow net (b)

8.2 Preserving Semantic Correctness

In addition to being structurally correct (i.e. being a workflow net), a configured
process model must also be executable, i.e. sound. Not every model that is
syntactically a correct workflow net is indeed sound, even if it is derived from a
sound workflow net. The example in Figure 8.7 shows this. The workflow net
in (a) is a sound workflow net: if p2 and p6 are marked, and t8 fires before t4,
the token in p2 can reach p5 via t3. However, if t3 is blocked (b), t4 needs to fire
before t8 as t4 depends on the token in p6. However, this token is removed when
t8 fires before t4 has fired. Since it is not enforced that t4 indeed fires before t8,
the process in (b) might deadlock. Thus, it is not sound, although (b) is still a
syntactically correct workflow net.

While the example in Figure 8.7 shows that syntactic correctness is not a
sufficient requirement for preserving soundness for all workflow nets, it can be
shown that this is sufficient for a certain subclass of workflow nets, namely
free-choice workflow nets (see Definition 2.20, p. 25). The restriction to this
class of Petri nets often provides a good compromise between expressiveness
and verification complexity. Not only do free-choice workflow nets have several
desirable properties [54], but the most frequently used constructs of process
modeling languages such as EPCs or BPEL can be mapped to Petri nets in
this class. Thus, let us show here, how the process correctness constraint that
preserves syntactic correctness for these models can also preserve their semantic
correctness.

212 Chapter 8. Executability of Configurations

Assuming the basic process model which should be configured is a sound,
free-choice workflow net, we are able to identify several configuration properties
relevant for the preservation of soundness during the configuration process:

Proposition 8.1 (Properties of Configuration) Let WF = (P ,T ,A,L, l)
be a sound, free-choice workflow net with source place pI and sink place pO, let C
be a configuration of WF, and let WF C = (PC ,T C ,AC ,LC , lC) be the configured
net resulting from C. If WF C is a workflow net (i.e. PCC (WF) evaluates to
true), then:

a) ∀t∈TC [(
WF
• t =

WFC

• t) ∧ (t
WF
• = t

WFC

•)],

b) pI ∈ PC and pO ∈ PC,

c) ∀t∈{t∈T |C(t)=block} [(
WF
• t∩PC = ∅) ∨ ∃t′∈TC (

WF
• t =

WF
• t′)] (a blocked tran-

sition is either not consuming any tokens from PC or there is a transition
in T C with the same pre-set),

d) ∀σ∈TC∗ (MI
σ

։
WF

) ⇔ (MI
σ

։
WFC

) (the pre-sets and post-sets of transitions

in T C are the same in both nets, therefore, the respective behaviors are
identical when considering only firing sequences σ ∈ T C∗),

e) ∀σ∈TC∗ ∀M [(MI
σ

։
WF

M) ⇔ (MI
σ

։
WFC

M)],

f) WF C [MI〉 ⊆ WF [MI〉 (all firing sequences of WF C are also possible in
WF),

g) WF C is free-choice,

h) ∀M∈WFC [MI〉\{MO} ∃t′∈TC [M [t′〉] (WF C has no deadlock markings).

Proof

a) Follows directly from the construction of WF C .

b) Idem.

c) Suppose that some blocked t ∈ T , i.e. C(t) = block , consumes a token from
a place p ∈ PC in WF . Because WF C is a workflow net with source place
pI and sink place pO, there has to be a path from p to pO. Hence, there
is a transition t′ ∈ T C consuming a token from p. Hence

WF
• t ∩

WF
• t′ 6= ∅,

thus
WF
• t =

WF
• t′ (because WF is free-choice and places are only removed

if unconnected).

d) Follows directly from (a).

e) Follows directly from (d).

f) Follows directly from (e).

g) Let t, t′ ∈ T C such that
WFC

• t ∩
WFC

• t′ 6= ∅. Given that
WF
• t′ =

WFC

• t′ and
WF
• t =

WFC

• t, we have
WFC

• t ∩
WFC

• t′ =
WF
• t ∩

WF
• t′ 6= ∅. Hence

WF
• t =

WF
• t′ and

thus
WFC

• t =
WFC

• t′. Therefore WF C is free-choice.

h) Let M ∈ WF C [MI〉 \ {MO}. Then using (e) we can deduce that there is a
σ such that MI

σ

։
WFC

M and MI
σ

։
WF

M , thus there exists a t ∈ T such

that M [t〉 (as WF is sound). If t ∈ T C then we are done. If C(t) = block

then there exists a t′ ∈ T C such that
WF
• t =

WFC

• t′ (c). Therefore M [t′〉. ✷

8.2. Preserving Semantic Correctness 213

While propositions a, b, d, e and f follow directly from the construction of con-
figured nets and also hold for workflow nets that are not free-choice, propositions
c, g, and h are particularly interesting regarding the preservation of soundness
during process configuration. The problem in the example of Figure 8.7 is that
the configuration may yield an unsound model when a transition is blocked
whose pre-set is also partly the pre-set of another transition (in this case t3
shares p2 in its pre-set with t4 whose pre-set also includes p6). By definition, in
a free-choice workflow net such a situation cannot exist and therefore a deadlock
marking cannot occur (as stated by propositions 8.1c and h). Furthermore, the
deadlock in the example prevents all tokens from reaching the final place. But if
a configured net is derived from a free-choice workflow net, also the configured
net will be free-choice (Proposition 8.1g). The free-choice property, however,
permits any token to freely move towards the final place. Thus, it prevents the
problem occurring in the example (see also the works of Kiepuszewski et al.
[105] and van der Aalst [2]).

Therefore, these properties allow us to prove that if a configured net which
was derived from a sound, free-choice workflow net is still a workflow net, then
it fulfills the soundness criteria. Formally:

Theorem 8.2 Let WF = (P ,T ,A,L, l) be a sound, free-choice workflow net
with source place pI and sink place pO, let C be a configuration of WF and
let WF C = (PC ,T C ,AC ,LC , lC) be the resulting configured net. If WF C is a
workflow net, then WF C is sound.

Proof

• proper completion: since WF C [MI〉 ⊆ WF [MI〉 (Proposition 8.1f), MO is
the only state marking pO.

• option to complete: because WF C is a free-choice workflow net (Proposi-
tion 8.1g), any token can decide to move towards pO. If pO is marked, all
other places are empty (WF C has proper completion). Hence, marking
MO can be reached (and the property holds) or the net is in a dead-
lock M . However, this is not possible as WF C has no deadlock markings
(Proposition 8.1h).

• no dead transitions: we define a length function as follows: length :
T C → N. If pI ∈ •t then length(t) = 0. Otherwise length(t) =
1 + minp∈•t,t′∈•p length(t′). Given that every transition in WF C is
on a path from pI , the function is well-defined. Using induction we prove
that for all n ∈ N: ∀t∈TC [length(t) = n⇒ t is not dead in WF C].

– Base case: If n = 0 then •t = {pI} and as pI ∈ PC (Proposition
8.1b), MI [t〉, hence t is not dead.

– Induction hypothesis: If t ∈ T C is such that length(t) = n + 1, there
exists a transition t′ such that length(t′) = n and a place p′ ∈ t′•∩•t.
t′ is not dead (Induction Hypothesis), hence there exists a M ∈

WF C [MI〉 such that M [t′〉. Let M ′ be such that M t′−→ M ′, then M ′

marks place p′. As WF C has the option to complete, M ′ ։ MO.

214 Chapter 8. Executability of Configurations

This implies that some transition t′′ exists which removes the token
from p′ in some marking M ′, hence p ∈ •t′′. Therefore •t ∩ •t′′ 6= ∅,
and thus, given that WF C is free-choice (Proposition 8.1g) •t = •t′′.
Therefore M ′[t〉 and t is not dead. ✷

Theorems 8.1 (p. 205) and 8.2 can be combined to show for free-choice workflow
nets that a configured net is sound if and only if the process correctness con-
straint PCC is satisfied for the corresponding configuration. If the configured
net is not a free-choice workflow net, PCC is still a necessary requirement as
the syntax of a workflow net is the basis for the soundness property5. However,
as the example from Figure 8.7 shows, it is not a sufficient requirement for such
nets. The process correctness constraint PCC can in this case still be used
during the staged configuration process to rule out any syntactically incorrect
process models, but it is necessary to use conventional soundness analysis tools
such as Woflan [182] to verify the executability, i.e. soundness, of the configured
net.

8.3 Correctness in C-YAWL

In principle, the transformation from C-YAWL to YAWL as depicted in Sec-
tion 4.3.5 (p. 91) ensures the same correctness in the configured process model
as the process correctness constraint and the configuration constraint do for the
configuration of workflow nets. In fact, what we described as cleanup algorithm
in the second part of Section 4.3.5 (see p. 96) identifies and removes behavior in
a comparable way to the blocking of transitions enforced by the two constraints.

The cleanup algorithm first identifies all flows and nodes in a YAWL model
that are not on a path between the input condition i and the output condition o.
This is exactly the same as what the process correctness constraint does: It
assigns the configuration value false to those nodes of a workflow net that after
the application of the other configuration decisions are no longer on a path
between the workflow net’s input place pI and its output place pO.

Thereafter, the cleanup algorithm for YAWL removes all those flows and
nodes that are not a path from i to o. At the same time, it checks if any
removed flow targets a task with an AND-join semantics or has its source at a
task with an AND-split semantics. In these cases, removing only this single flow
would change the behavior of the task. Hence, the cleanup algorithm removes
all flows and the whole task even if the task would otherwise be on a path
between i and o. This is in fact the same removal behavior as what is implied
by the configuration constraint we introduced for configurable workflow nets in
Section 8.1. The configuration constraint requires that if a transition (which
has AND-join and AND-split semantics in workflow nets) remains in the net,

5Soundness is only defined for workflow nets (Definition 2.18, p. 24). Even if we would
generalize it to any Petri net with a designated source and sink place, any node that is either
not on a path from pI or not on a path to pO would cause the violation of at least one of
the three soundness requirements. Thus, even in such a generalized soundness notation, PCC
would still be a necessary requirement.

8.4. Constraints from Resource- and Data-flows 215

i.e. is assigned the value true, then all the subsequent places (and thus also the
paths to them) must remain in the net as well, i.e. true must be assigned to
them as well. The other way around, this means, if we want to set the value of
one of these places to false because it is not on a path between pI and pO, then
we have to set the transition itself to false, i.e. we have to remove the transition
— exactly as the cleanup algorithm does in YAWL.

Next, the cleanup algorithm checks again if all nodes that remain are still on
a path between i and o and repeats the whole removal procedure until all nodes
are on such a path after the removal of elements with AND-join or AND-split
semantics. Thus, it stops when both criteria are fulfilled. This is exactly what
we required for the correctness of a configured workflow net: both the configu-
ration constraint and the process correctness constraint must be fulfilled at the
same time. The cleanup algorithm therefore guarantees syntactic correctness
for YAWL models.

Furthermore, Theorems 8.1 and 8.2 show that we can also apply process
correctness constraints and configuration constraints as process constraints in
the context of the configuration framework from Chapter 5. In Section 4.3.5
(pp. 91ff), we suggested to use the cleanup algorithm to automatically enforce
correctness of configured YAWL models. That means, even if a process config-
uration that results from answering a questionnaire allows the use of tasks, the
cleanup algorithm removes them if they harm the correctness of the configured
process. Thus, the cleanup algorithm works independently of the constraints
imposed on a configurable YAWL model.

By adding (YAWL versions of) process correctness constraints and config-
uration constraints to the process constraint of a C-YAWL model, we could
however establish a feedback link from the process configuration on the domain
configuration through the mapping of the configuration framework (see Fig-
ure 5.4, p. 111). If setting a domain fact, i.e. answering a question, implies the
blocking of a task, the process correctness constraint is then able to identify
which other tasks must be removed as well and sets the corresponding process
facts to false. Thus, through the framework no domain fact (or combination
thereof) can set this process fact to true anymore, and the questionnaire will
inhibit any corresponding answer(s). In this way, it becomes impossible that the
domain expert selects options in the questionnaire, which will never be available
because they are automatically removed by the cleanup algorithm.

8.4 Constraints from Resource- and Data-flows

So far, we only looked on the correctness of a configured process model from a
control-flow perspective. Thus, it was possible to assume that the only depen-
dency of tasks is that they have to be potentially used according to the process
flow. As long as this criteria is fulfilled, a task could be included in the process
model, i.e. it was possible to set the corresponding variable to true. Most tasks,
however, are not only dependent on the execution of previous tasks, but also on
the availability of some resources and some data. For example, the approval of

216 Chapter 8. Executability of Configurations

a travel request, requires the presence of a person with the necessary authoriza-
tion to approve the request which also needs to have the corresponding, filled-in
form available. Therefore, we have to analyze in the following in which ways
process configuration might prevent the availability of necessary resources and
data and, as a result, a successful process execution.

Note, that we do not look into the configurability of data or resources them-
selves here, i.e. we do not analyze if we could change the resources involved
in the execution of a task, or the data that is necessary for a task execution.
Readers interested in ideas on the configurability of these perspectives should
have a look at the work of La Rosa et al. [112].

8.4.1 Data-flow Correctness

Trčka et al. [179] identified and formalized a set of nine data-flow anti-patterns,
i.e. patterns in the modeling of the data-flow which potentially result in problems
or errors in the execution of business processes. In [179] these are formalized in
temporal logic (Linear Temporal Logic (LTL), Computation Tree Logic (CTL),
and CTL*). To identify potential issues that can arise in the data-flow after a
process model has been configured, let us thus in the following analyze these
patterns from a configuration perspective.

For simplicity, we assume here three different ways how a task of a process
model can handle data: it can create (write), read, or delete data.

Definition 8.3 (Anti-pattern 1: Missing data [179])
Data is missing if some data needs to be read which has either never been created
or which has been deleted without having been re-created.

The missing data anti-pattern describes a situation that must be avoided in any
process model as the need to access data which does not exist leads almost for
sure to issues like undefined data values or the deadlock of the process. There is
a true dependency that data can only be read if it has been created beforehand.
As configuration does not add any new tasks to a process which could create
data, any data that is read according to a task of the basic process model must
also be created by a task which is according to the basic process model executed
beforehand. If there is no task creating the necessary data, there is no scenario
in which the task could be executed, meaning it should not be added to the
process in the first place. Hence, the missing data anti-pattern should not occur
in the basic process model.

Furthermore, it should of course not occur in any configured model. Hence,
during the process configuration it is not permitted to remove any task from
the basic process model which creates data that is subsequently read by other
tasks, unless either alternatives to the removed task guarantee that the required
data is created before the data is read, or the ‘reading’ task is removed as well.

If a task is configured as blocked during the process configuration, any pro-
cess execution needs to follow an alternative to the path via this task. These
alternative paths already exist and can be followed in the basic process model
because — as mentioned before — no additional process branches are added

8.4. Constraints from Resource- and Data-flows 217

Data A

Data A

Data A

Figure 8.8: Blocking a task does not lead to missing data.

when configuring the model. Hence, if an alternative path leads to a task which
reads data that is created by the blocked task, then this data is also created
along the alternative path (e.g., task t2 is an alternative to task t1 in Figure 8.8).
Thus, the blocking of a task’s execution cannot lead to missing data during the
execution of the corresponding process.6

If a task is configured as hidden, the task’s execution and thus any creation,
reading, or deleting of data by this task is skipped. The process execution con-
tinues after the task, simply omitting the task (without executing alternatives)
and continuing with the subsequent tasks. However, due to the lack of executing
alternative tasks, the availability of data usually created by the now hidden task
is no longer guaranteed. This leads to missing data if a subsequent task needs
to read exactly this data. For example, the hiding of task t1 in Figure 8.9a can
result in missing data at t4 in case an execution path via t2 is chosen. Thus, if
a task which creates data should be configured as hidden, we need to check if
any subsequent task accesses this data. If this is the case (like for t4) and there
is no alternative task which produces the data and which is guaranteed to be
executed (in the example, t3 is not guaranteed to be executed), then there are
two options to ensure the absence of missing data: either the ‘reading’ task’s ex-
ecution is prevented as well, i.e. it is configured as hidden (like in Figure 8.9b) or
blocked, or any execution sequence that leads to the ‘reading’ task is prevented
through blocking one or more tasks along this sequence (like in Figure 8.9c).

Definition 8.4 (Anti-pattern 2: Strongly redundant data [179])
Data which is created during the process execution is strongly redundant if in all
possible continuations of the process it is never read again.

It is not necessary to create strongly redundant data as it is never used later
on. As we do not add any tasks which could read redundant data during the
process configuration, there is no reason that the basic process model of the
configurable process model should contain tasks that create strongly redundant
data.

6Note, that this does not hold the other way, i.e. it might be necessary to block particular
tasks to deal with missing data.

218 Chapter 8. Executability of Configurations

p1

pO

p2

t3 writes Data A

a)

t5t4readsData A

pI

t1writesData A

t2

p1

pO

p2

t3 writes Data A

b)

t5t4readsData A

pI

t1writesData A

t2

p1

pO

p2

t3 writes Data A

c)

t5t4readsData A

pI

t1writesData A

t2

Figure 8.9: Hiding a task might lead to missing data (a) which can be resolved by eliminating
the reading task(s) (b) or blocking all paths that do not create the necessary data in time (c).

As process configuration eliminates the execution of tasks, all the tasks that
read a certain data element can be eliminated while the task that creates it
remains in the net. Then, the created data becomes strongly redundant. Al-
though the creation of such data is unnecessary, and a hiding of the tasks which
creates the data might be recommended, strictly speaking, such a configuration
does not prevent a successful execution of the process. Also, a configuration of
the data perspective as suggested by La Rosa et al. [112] could be recommended
here. However, as the execution of the process itself is not endangered, we do
not need to enforce these suggestions through configuration constraints.

Definition 8.5 (Anti-pattern 3: Weakly redundant data[179])
Data which is created during the process execution is weakly redundant if in
some continuations of the process it is never read again.

8.4. Constraints from Resource- and Data-flows 219

The creation of weakly redundant data can be a design decision to standardize a
process with various outcomes. Thus, we will not ask for avoiding weakly redun-
dant data in the basic process model or in one of its configurations. Through
configuration, weakly redundant data of the basic process model can become
strongly redundant if all tasks accessing the data are eliminated from the pro-
cess. Then, what we discussed above for data that becomes strongly redundant
through configuration holds.

Definition 8.6 (Anti-pattern 4: Strongly lost data [179])
Data is strongly lost if data is created, but never read before it is overwritten by
another task in all possible continuations of the process.

Although data that is overwritten without being read does not need to be cre-
ated during a process execution this anti-pattern might well be desired in the
basic process model to avoid missing data in configured nets. If a configuration
eliminates one of the tasks which create the data, the other data-creating task
can still guarantee the absence of missing data.

If strongly lost data can still be found in the configured net, the first data
creation is obviously superfluous. Hence, like for strongly redundant data, a
hiding of the first data-creating task or a configuration of the data-flow of this
task might be recommended. But, again, strongly lost data does not hinder
the process execution itself and thus its absence does not need to be enforced
through configuration constraints.

Definition 8.7 (Anti-pattern 5: Weakly lost data [179])
Data is weakly lost if data is created, but never read before it is overwritten by
another task in some continuations of the process.

Like strongly lost data, weakly lost data might be introduced into a basic pro-
cess model to guarantee the existence of certain data in some configurations of
the process. Moreover, like for weakly redundant data, it might be a design
decision to standardize or guarantee the presence of data by first loading it,
but updating it later on if certain conditions apply. Thus, weakly lost data is
usually not a problem in the basic process model or in one of its configurations.
Of course, weakly lost data might become strongly lost data if all tasks reading
the data in between the data creation tasks are eliminated from the net through
configuration. Then, obviously the remarks for strongly lost data from above
apply.

Definition 8.8 (Anti-pattern 6: Inconsistent data [179])
Data is inconsistent if a task is reading data while some other task instance is
writing to this data in parallel.

Inconsistent data is problematic because it remains open if the reading of the
data happens before or after the writing, i.e. there is ‘race condition’ making
it unclear whether the new or the old values are read [80, 85]. For example,
have a look at Figure 8.10a. Here it is completely random, if t3 reads the data
value that was created by t1 or the data value that was created by t2. Hence,
a process model should always synchronize the parallel process branches and

220 Chapter 8. Executability of Configurations

pI

pO

p2p1

t1

t4

p4p3

t2 t3writesData A reads

writesData A

Data A

pI

pO

p2p1

t1

t4

p4p3

t2 t4writesData A reads

writesData A

Data A

pI

pO

p2p1

t1

t4

p4p3

t2 t3writesData A reads

writesData A

Data A

a)

b) c)

Figure 8.10: Inconsistent data in the basic process model (a) can be eliminated by process
configuration (b or c)

thus determine a clear order. If a basic process model contains inconsistent
data, this inconsistency can be eliminated by process configuration. For this,
either the task reading the data must be configured as blocked or hidden as,
e.g., in Figure 8.10b, or the task writing the data must be configured as blocked
or hidden as, e.g., in Figure 8.10c. In the first case, the reading of data is
eliminated in the configured process model while in the latter case the writing
is eliminated. Hence, if we allow inconsistent data in a basic process model, a
configuration constraint must guarantee one of these configurations. If we do
not allow inconsistent data in the basic process model, the configured process
model is guaranteed to have no data inconsistency as we cannot add any process
behavior during the configuration, and thus also no parallel behavior.

Definition 8.9 (Anti-pattern 7: Never deleted data [179])
Data is never deleted if there is a process execution where data is created but
not deleted before the process completes.

8.4. Constraints from Resource- and Data-flows 221

While never deleted data might be considered as garbage that is left behind
after the completion of a process, it does not influence if a process can com-
plete and thus its executability. Hence, we do not consider this anti-pattern for
configuration.

Definition 8.10 (Anti-pattern 8: twice deleted data [179])
Data is deleted twice if data that was already deleted should be deleted without
having been re-created in the meantime.

This pattern is similar to the missing data pattern as accessing data that was
already deleted is not possible, and hence it cannot be deleted again. However,
considering that the outcome of any deletion should be the non-existence of the
data afterwards, one could consider a deletion of data as ‘delete the data if it
exists’. Then, multiple deletion of data is unnecessary, but not problematic.
Also, similar as strongly lost data which is created twice, twice deleted data
could be part of a basic process model to make sure that the data is deleted
even if one of the deletion tasks is eliminated from the process model by process
configuration.

Definition 8.11 (Anti-pattern 9: Not deleted on time [179])
If data is read for the last time and there is no potential further reading of this
data, the data should be deleted immediately. Otherwise, it is not deleted on
time.

While an on-time deletion of data aims at storing the minimal necessary amount
of data, a late deletion does not hinder a successful process execution as long as
sufficient storage space is available. A late deletion of data might be the result of
process configuration: if a task reading the data is eliminated from the process
by configuration, the data could be deleted after the previous reading already.
This could only be avoided by giving the potential of deleting the data to all
tasks that might become the last ones to access the data, and configuring the
data perspective such that the data is deleted as soon as it will for sure not be
accessed in the future (see [112] for the configuration of the data perspective).

All in all, configuration constraints only need to be introduced to enforce the
absence of the missing data anti-pattern and the inconsistent data anti-pattern
during the process configuration.

To verify if an anti-pattern occurs in a process model temporal logic (LTL,
CTL, CTL*) can be used [179]. Temporal logic extends propositional logic with
temporal operators to address the changing of variable values over time, i.e. in
our case over the progress of a process execution. For example, it can be checked
in this way, if a property will hold after the next step of the process execution,
if it will always hold during a process execution, or if it will eventually hold at
some point in time during the process execution.

In this way, Trčka et al. [179] show for example that a missing data element
d conforms to an execution path along which d is either not written before
being read, or along which it is deleted and not written again before being read

222 Chapter 8. Executability of Configurations

(Definition 8.3). This can be formally expressed in CTL* as

E[(write(d) U read(d)) ∨ F[write(d) ∧ (write(d) U read(d))]].7

A model checker [41] can use this formula for testing if a model contains
missing data. For this, it requires not only the temporal logic formula, but
also the model on which it should be tested. As the goal is that missing data
is avoided in the configured process model, this process model must be the
configured process model. For that reason, checking for violations of data-flow
constraints can only happen after the model has been adapted according to
the process configuration and corresponding tests should only be performed if
the process correctness constraint has guaranteed control-flow correctness of the
derived model.

8.4.2 Resource Availability

A task of a process can only be executed if all required resources like employees
or machines are available. Hence, to successfully execute a process, it must
be guaranteed that a sufficient amount of the required resources is available.
Both, van Hee et al. [88] and Prisecaru [131] developed notions of soundness
for such resource-constrained workflow nets. If these soundness notions are
fulfilled, the workflow net is guaranteed to be executable under the imposed
resource constraints. Like we required that any basic process model should fulfil
the control-flow soundness criteria, we thus also require that if a basic process
model is resource-constrained, it should fulfill the soundness requirements of
resource-constrained process models.

As we aim at guaranteeing the executability of configurations of the ba-
sic process model, let us have a look how process configuration influences the
availability of resources. That means, we are not looking at adjusting the re-
sources involved in executing tasks, but rather look at the influence of process
configuration on resource assignments.

For this, we assume that any tasks of the basic process model specifies and
claims the necessary resources when it starts being executed, and it releases
them after its completion (like we showed in figures 2.3 to 2.6 (pp. 26f), also see
Figure 8.11a). This is reasonable as any resource is only busy with executing
tasks as long as these tasks are executed. If resources are supposed to perform
several tasks in a row, one can simply specify that all these tasks should be
executed by the same person in the resource requirements.

If we now block the execution of a task, the task will not be executed.
Hence, it will not claim any resources, i.e. the resources remain available. Thus,
the claiming of these resources by any other task that requires them before or
after the now blocked task according to the basic process model is still able

7‘E x’ means that there exists at least one path from the current state where x holds,
‘F x’ means that x has to hold eventually, i.e. somewhere on the subsequent path (finally),
and ‘x U y’ means that x has to hold in the subsequent path until at some point y holds.
Further details on temporal logic, CTL*, and model checking can, e.g., be found in the work
of Emerson and Halpern [63] and Clarke et al. [41].

8.5. Related Work 223

Resource A

p1

pO

p2

b)

t5t4

releases

pI

t2

requires

$$

Resource D

Resource B

releases

requires

t1

p1

pO

p2

a)

t5t4

releases

pI

t2

Resource A

t1
requires

$$

Resource D

Resource B

releases

requires

releases

requires

requires

releases

releases

requires

requires

releases

Figure 8.11: As long as sufficient resources are available for executing the basic process
model (a), process configuration can not lead to a lack of resources in the configured model
(b). Instead, it might lead to superfluous resources (resources A, C in (b)).

to do so (see Task t4 in Figure 8.11b). The same holds if we configure a task
as hidden: the process continues without claiming and releasing the required
resources which remain available (see Task t1 in Figure 8.11b).

For that reason, process configuration may lead to additional availability
of resources (e.g., Resource A in Figure 8.11b does not have to do any work
anymore). This might result in efficiency issues, but it is no problem from a
process executability point of view. Therefore, we do not have to set up any
additional configuration constraints for guaranteeing the availability of resources
here. To deal with adjusting the resource requirements of tasks that remain
in the net and the dependencies between them (and therefore to deal with the
efficiency issues caused by process configuration), a configuration of the resource
perspective itself would be required. For this, the interested reader should again
look into the work of La Rosa et al. [112]. Initial ideas in this context can also
be found in [72].

8.5 Related Work

In this chapter we addressed the feasibility of process model configuration, i.e.
the executability of configured process models. The discussed topics are mainly
related to research performed on the correctness of process models known as
soundness from both the control-flow perspective as well as from a data-flow
perspective. As noted earlier, there is surprisingly little related work on sound
process models from a resource perspective [88, 131].

8.5.1 Soundness from a Control-flow Perspective

Soundness of process models as we have already introduced in Definition 2.18
(p. 24) was originally defined by van der Aalst [3]. Verbeek et al. [182] suggest
a range of efficient techniques that can be used to test a process model on the

224 Chapter 8. Executability of Configurations

soundness property. They have been implemented in the process model veri-
fication tool Woflan. While the approach which we suggested in the first two
sections of this chapter specifically aims at testing the soundness of the nets
resulting from configuration decisions without deriving the particular net, the
approach of Verbeek et al. was developed to test a specific net on its soundness.
Thus, using Woflan the validity of a configuration decision can only be deter-
mined after deriving the configured net. Still, the usage of Woflan to test the
correctness of configured nets has the advantage that it can guarantee seman-
tic correctness for non-free-choice nets, while our approach only constitutes a
necessary, but not a sufficient condition for the soundness of such nets.

The technique suggested here derives propositional logic constraints from
process models. Similar techniques have been used for analyzing the coverabil-
ity of Petri nets by Abdulla et al. [19], while Sadiq et al. [154] ensure that a
specific process model can only be adapted within a certain freedom which is
defined by the process developer through such constraints. Different from this
specific, individual definition of constraints for a particular purpose, the con-
straints derived here aim at checking that any configuration step preserves the
structural properties of any workflow net.

Pesic et al. [126] even go yet another step further and suggest defining the
whole workflow purely based on constraints formulated in LTL. In this approach
no process model in the classical sense is defined, i.e. only constraints are given
in a graphical way. As long as none of the defined constraint restricts the
execution of a task, its execution is allowed.

8.5.2 Soundness from a Data-flow Perspective

We based the analysis of issues that can occur from a data-flow perspective
during process configuration on the data-flow anti-patterns of Trčka et al. [178,
179]. Some initial ideas to detect data dependencies in workflow nets have also
been suggested by Huang et al. [93]. The ADEPTflex approach of Reichert
and Dadam [136], which aims at ensuring data consistency when workflow are
dynamically changed during the process’s execution, is based on two rules that
preserve the executability of workflows: (1) any data must be written before it
can be read, and (2) tasks from different process branches which are executed in
parallel should not write to the same data element. These rules therefore relate
to the missing data and inconsistent data anti-patterns of Trčka et al.

Moreover, all these patterns and rules strongly relate to the problems of the
read-after-write, write-after-read, and write-after-write data hazards which oc-
cur in instruction pipelines of modern computer processors that execute multiple
instructions at the same time and thus also have to deal with data dependencies
(further details on data hazards can, e.g., be found in the book of Hennessy and
Patterson [89]). This is therefore a very relevant subject in the design of com-
pilers for computer programs which should efficiently run on modern processors
with multiple cores, aiming at the parallel processing of instructions. Detailed
insights into how modern compilers deal with these data dependencies can, e.g.,
be found in the book of Kennedy and Allen [104]. The issues found here are also

8.6. Conclusions 225

similar to the ‘lost update’ problem in database theory and therefore relate to
the ACID (atomicity, consistency, isolation, durability) principle for database
transactions addressed by Gray [80] and Haerder and Reuter [85].

8.6 Conclusions

While the configuration of process models enables a well-defined way of restrict-
ing process behavior, not every configuration decision leads to a meaningful and
still executable process. Thus, we discussed in this chapter how process con-
figuration can be constrained such that it is forced to lead to ‘good’ process
models. We checked whether the derived process model preserves a correct
syntax, whether it still depicts executable behavior (i.e. is sound), whether all
necessary data can still be processed, and whether the execution of the process
model behaves in an intended way content-wise.

The correct syntax of a process model can be guaranteed through evaluating
a propositional logic expression that is derived from the paths of the basic pro-
cess model. In a staged configuration process, each configuration decision then
corresponds to assigning a truth value to a propositional letter which reduces
the overall formula. It automatically results in further configuration decisions
if the syntactic correctness of the resulting process model can otherwise not be
guaranteed any longer.

For C-YAWL, the transformation algorithm that forms new YAWL models
according to configuration decisions already includes an implementation of the
depicted constraints. Thus, for YAWL models derived from C-YAWL models
syntactic correctness is guaranteed.

Furthermore, it was shown that for free-choice workflow nets (and any other
process modeling language that can be mapped on such nets), this syntactic
correctness also guarantees semantic correctness, i.e. the preservation of sound-
ness of the process model. For non-free-choice models, it is a necessary but
not a sufficient requirement. Hence, an additional verification with tools like
Woflan [182] which are capable of testing the soundness of such models, is re-
quired for these types of models.

The configuration of a process model can also lead to missing data in case
a task is eliminated from the process model which creates data, later required
by other tasks. To detect missing data in a process model, temporal logic can
be used. Thus, any configuration in which the corresponding check evaluates to
true must be forbidden. Furthermore, a basic process model can purposefully
contain inconsistent data, i.e. it allows for a reading and writing of the same
data in independent, parallel process branches. Also, this can be detected by
evaluating corresponding temporal logic formulas. In such cases, process con-
figuration must resolve this conflict by eliminating either the reading tasks or
the writing tasks.

226 Chapter 8. Executability of Configurations

In politicall affaires, as well as mechanicall,
it is farre easier to pull downe, then build up.

James Howell (1644)

Chapter 9

Conclusions

The aim of the research presented in this thesis was to improve the support
for process model reuse through developing a better understanding of process
model configuration. In this final chapter an overview of the results obtained is
provided first (Section 9.1). Afterwards, Section 9.2 discusses both limitations of
the used approach and suggestions for future work. For this, the section reflects
on practical implications of process model configuration for the reuse of process
models. The chapter ends by summarizing the most important conclusions for
the use of configurable process models (Section 9.3).

9.1 Contributions

This thesis contributed to the goal of providing better support for process model
reuse by providing a sound definition of process model configuration which led
to the definition of configurable workflow modeling languages as a technique to
provide dedicated process adaptation support. A framework that maps natural-
language questionnaires to process configuration decisions was suggested in or-
der to simplify process model configuration for domain experts. As the con-
struction of such configurable models is far from trivial, a number of techniques
supporting the construction of such models were discussed. This also resulted
in the development of a new algorithm to merge multiple process models into a
single model. Process configuration restricts the behavior allowed according to a
process model. Hence, when configuring a process model, it is easy to implicitly
inhibit more behavior than desired. To counter this, a boolean expression over
process model nodes which guarantees sound process models was suggested.

Figure 9.1 provides an overview of how these techniques contribute to the
construction and use of configurable process models. The key contributions are
summarized in the following sections.

228 Chapter 9. Conclusions

HD

XOR

A

L T15

Y

O

V

V

AW

XOR

T12

T15

R

V

T8

V

XOR

XOR

XOR

XOR

T9

T21AW

T7

T18

V

T5

V

T78 T96

T2T14

F

T15

T8

T9

T21

T7

T18

T78 T96

H

XOR

A

T15

Y

O

V

V

AW

XOR

T12

R

V

T8

V

XOR

T96

T2T14

F

Process Model
Construction
(Decisions)

Process Model
Configuration

(Decisions)

Process
Execution

(Decisions)

Execution
Log

HD

XOR

A

L T15

Y

O

V

V

AW

XOR

T12

T15

R

V

T8

V

XOR

XOR

XOR

XOR

T9

T21AW

T7

T18

V

T5

V

T78 T96

T2T14

F

A

O

AW

T12

T96

Tasks

Process Model
Configuration

(Chapter 3)

Configurable Proces
Modeling Languages

(Chapter 4)Model Merging
(Chapter 7)

Guiding Process
Configuration

(Chapter 6)

Soundness of
Process Configuration

(Chapter 8)

D

L

XOR

XOR

T9

T21AW

T7

T15

Y

O

V

V

XOR

T2T14

F

A

O

AW

T12

T96

Figure 9.1: Contributions of this thesis for the construction and use of configurable process
models.

9.1.1 Process Model Configuration

When configuring a process model, the behavior that is allowed according to
the model is restricted, i.e. non-desired behavior is eliminated. While other
approaches derive process configuration options based on observed needs for re-
stricting the process behavior, we showed in Chapter 3 that eliminating behavior
can be seen as the inverse of adding behavior. For that reason, process config-
uration can use techniques that have been defined for identifying inheritance
relations among dynamic behavior. These techniques compare the behavior of
two models and identify exactly that behavior that is added to a process model
in comparison to the other process model. The two techniques to detect added
behavior, called blocking and hiding, can thus also be used to remove added
behavior. Therefore, they can be used for configuring process models. While
blocking encapsulates behavior, i.e. inhibits it completely, hiding abstracts from
behavior, i.e. it ignores that certain behavior has to be executed, quasi skipping
it. When configuring process models, it is thus needed to analyze how these two
operations can be applied in the corresponding process modeling language.

9.1.2 Configurable Process Modeling Languages

As blocking and hiding can be used to restrict any process behavior in any
process model, any process model can serve as the basis for a configurable
process model. However, as the configuration operations can inhibit all behavior
in such a model, they can even inhibit more behavior than desired. Hence, we
suggested in Chapter 3 that a configurable process modeling language must be
able to limit the possible configuration space through configuration constraints.
These constraints restrict the allowed application of blocking and hiding to
desired configuration opportunities only.

9.1. Contributions 229

In practice, the basic process model of a configurable process model is a
model that contains the behavior of several process variants. Usually, it is
not desired to execute all these variations in a single organization. Thus, by
providing the opportunity to define a default configuration, a process model
that is similar to a best-practice reference model can be provided along with
any configurable process model. Configuring the process model then solely
means changing configuration decisions where individual requirements deviate
from the standard solution.

To extend an existing process modeling language with configuration options,
one must identify how the operators of blocking and hiding behavior can be
applied to the particular language. In Chapter 4, this was outlined for the
workflow languages of SAP WebFlow, BPEL, and YAWL. A formalization of
the concepts for C-YAWL allowed its implementation in the YAWL system
environment, and thus an evaluation of the ideas in practice.

For this, a case study was performed and presented in Chapter 6. During the
case study, the process variations among four Dutch municipalities of executing
registration processes were identified, and a single process model that supports
all these variations plus the suggestions of a best-practice reference model of
these processes was built. Through process configuration it is possible to derive
any of the individual process model variants from these models. For example,
the configuration that results in a process model equivalent to the reference
model may in this way be selected as the default configuration. By choosing
YAWL for the implementation of the processes, i.e. a workflow notation rather
than a less formal business process modeling language, the configured workflow
models can directly steer the execution of the particular processes using YAWL’s
workflow engine.

9.1.3 Guiding Process Configuration

Chapter 5 introduced a framework that allows steering the configuration of
process models through a natural-language questionnaire. This allows domain
experts to adapt a reference process to individual needs without having to verify
the correctness of the models resulting from process configuration decisions. In
fact, they do not even need to understand the underlying process modeling
notation.

In the questionnaire, the domain variability can be captured independently
of any process complexity through questions and pre-defined answering options.
The various answers are then mapped onto process configuration decisions. Each
configuration decision can depend on one or more answers. Similarly, each
answer can influence one or more configuration decisions. Through the mapping,
constraints among answering the domain-related questions are added to the
constraints that preserve the correctness of the configured process model. In
this way, the questionnaire is able to identify remaining configuration options
and thus offers only those questions and answering opportunities that lead to a
correct process configuration.

230 Chapter 9. Conclusions

The framework has been implemented for steering the configuration of C-
YAWL models. This enabled the development of questionnaires for the con-
figurable process models created in the case study presented in Chapter 6. In
subsequent expert interviews, stakeholders in configurable process models were
enthusiastic about using both configurable models and the configuration frame-
work. In their opinion, the techniques visualize the variation options in such a
way that they are easily understandable by domain experts. Their main con-
cerns related to the effort required to build models integrating different process
variants as well as to the models’ completeness.

9.1.4 Model Merging

A range of tools that could help in reducing the effort required for constructing
basic process models was discussed in Chapter 7. The tools aim at automatically
integrating various process variants into a single process model. The use of
process mining techniques on a set of log files from various existing systems
executing the process in question was sketched, as well as an algorithm to merge
existing process models was developed. The suggested algorithm preserves all
behaviors of all individual models in the generated model. For this, it makes
use of the capabilities of OR-splits and OR-joins when the individual models
do not agree on a clear AND or XOR behavior. These constructs basically
allow the execution of any combination of subsequent behavior or synchronize
such behavior. In addition to the behavior of the individual models, the models
constructed by the merge algorithm also allow for combining the behaviors from
different individual models in a single process executions. Hence, the merged
model allows for more behavior than the sum of the individual models, i.e.
the resulting model generalizes behavior where appropriate. As this additional
behavior can be restricted again by process configuration, these properties are
desired when constructing configurable process models.

Both the mining of basic process models from log files as well as the merge
algorithm for individual models have been tested on the same process models
that served as input to the case study presented in Chapter 6. In both cases the
automatically generated models were identical to the models that were generated
manually during the case study. This shows that the depicted algorithm can
indeed be beneficial for the construction of practically relevant configurable
process models.

9.1.5 Soundness of Process Configuration

When restricting process behavior through process configuration, one can eas-
ily inhibit the execution of essential tasks. Then, process executions might get
stuck in deadlocks or livelocks. The notion of sound process models ensures the
absence of such control-flow issues, i.e. every case that is executed according to
the process model has the chance to complete. In Chapter 8, we therefore dis-
cussed how a configuration constraint can guarantee that soundness is preserved
while configuring a process model. The boolean constraint suggested proved to

9.2. Limitations and Future Work 231

preserve soundness for a sub-class of workflow nets called free-choice nets. The
most frequently used constructs of languages like EPCs, BPMN, or BPEL can
be mapped to this type of nets. Thus, the constraint can be applied to guarantee
soundness of configured process models in any such process modeling language.
For any other process model, the constraint is still a necessary requirement but
in itself not sufficient. Then, advanced verification tools are required.

Besides control-flow soundness, the preservation of a correct data-flow as
well as efficient and effective process executions are similarly important. Hence,
Chapter 8 also pointed out that process configuration can lead to missing data,
which can be detected through LTL expressions.

9.2 Limitations and Future Work

By focusing on process configuration techniques and tools, the research pre-
sented in this thesis is limited to technology that restricts process behavior. Still,
providing process models with the aim that these models should be reused re-
quires much more than just process configuration techniques. Hence, we need to
put process configuration in the context of practical process model reuse in gen-
eral. Let us therefore discuss in this section both the limitations of this thesis’s
approach as well as ideas for future research opportunities that connect process
configuration to related challenges of process model reuse. In this context, four
aspects are especially important:

• Besides process configuration, a number of further techniques for process
model adaptation exist, all aiming at improving some aspects of process
model reuse. In order to improve process model reuse further in the future,
the interplay of process configuration with these existing techniques must
be enhanced.

• Configurable process models provide plenty of variation opportunities how
a process can be configured. To make a sensible decision on the optimal
configuration for a particular context, the user therefore needs further
support on the distinct characteristics and the impact of the various con-
figuration options.

• Throughout the thesis we examined the use of configurable process mod-
els from the model construction to the execution of individual instances.
However, a business process — and thus also a process model — has to
be adjusted to changing business environments. That means, neither a
configuration nor a configurable process model remains unchanged over
time. For that reason, the role of process configuration within the process
model life cycle has to be investigated.

• Last but not least, while the focus of this thesis was on technologies, no
process model will be reused if it does not provide content that is worth
being reused. Hence, this section concludes with pointing out the need for
good-quality content in configurable process models.

232 Chapter 9. Conclusions

9.2.1 Adapting Configured Models

Process configuration allows for reusing what is defined in the basic process
model. Thus, different model variants can only be achieved from a configurable
process model if all the variation options have been integrated within the model
beforehand. A process model that depicts behavior which is not defined in
the basic process model cannot be created purely through process configuration
as defined in this thesis. For this, process configuration has to be enhanced
with well-defined interfaces to generic adaptation mechanisms which then allow
for adding new behavior to the process model. This can be a simple manual
adaptation or it could be another technique specifically aiming at the improved
reuse of process models, like the aggregation or the instantiation of process
models (as outlined in the process model adaptation framework of Becker et al.
[33, 34]).

As the case study from Chapter 6 has shown, it is hard to achieve a complete
basic process model which really covers all potential variation options. Thus,
further adaptations are probably needed more often than not. Hence, future
research efforts should be put on investigating how process model reuse could
be better supported by improving the interplay between process model config-
uration and more generic process model adaptation mechanisms. For example,
one could possibly record all manual modifications made to a configured process
model. Then, these log files of how the process model was manually changed
could be used to improve the basic process model. For this, any added behavior
could be added to the basic process model as well. Removed behavior could be
captured in terms of process configuration. Then, an investigation why behavior
was restricted can lead to an improvement of configuration recommendations
and constraints.

9.2.2 Configuration Performance

When configuring a business process, the goal is to get a process model that
performs according to the individual business requirements. When looking at
the executability of configurations in Chapter 8, we only ensured that the process
can be executed at all. In future work, it is therefore necessary to find those
configurations that optimally meet the business requirements.

Thus, it is necessary to identify which configuration decisions influence the
performance of the process in which way. For example, some configuration
decisions might lead to less executed work, some to less required storage space,
and some to a higher customer satisfaction, etc. As we can configure individual
tasks, not all the decisions leading to these outcomes necessarily exclude each
other.

To find the coherence between configuration decisions and the performance
of the resulting process, it might, e.g., be possible to use a two-phased approach.
In the first phase, the performance characteristics of differently configured pro-
cess variants are identified. This can either be done by deriving performance
indicators for the configurations of existing systems (which can be identified

9.2. Limitations and Future Work 233

as suggested in Chapter 7), or by simulating new configurations of the basic
process model as, e.g., outlined in [75, 146]. Having generated or identified a
sufficient amount of such data sets, relations between configuration decisions and
the performance of the process could be identified using corresponding machine
learning techniques. For example, association rules between configuration deci-
sions and performance values could be generated using the Apriori method of
Agrawal et al. [21]. These could then be used for deriving process configuration
decisions based on the aspired process performance.

9.2.3 Configuration in the Process Life Cycle

The assumption in this thesis was that configurable process models are built
only once, the resulting models are configured hundreds of times, and any model
resulting from a configuration is executed millions of times. However, in practice
neither the configured models nor the basic process model will remain unchanged
over time. That means, changes to the process environment also lead to changes
in the process configuration or even to changes in the configurable process model.
Such changes can, e.g., be driven by new law, evolving technology, etc. The
change of a business process over time is usually depicted in the process model
life cycle which is divided into four phases: (a) design of the process model,
(b) system configuration to implement the process, (c) process enactment, i.e.
executing the process according to the process model, and (d) a process diagnosis
phase which gives insights into the quality of the process execution and leads to
process adaptations, i.e. to the design of new process models.

When using a configurable process model, the diagnosis phase does not nec-
essarily need to lead to the design of a new process model. Instead, the process
can also be adapted by just changing the process configuration, skipping the
process model design phase (see Figure 9.2). Especially in the context of ref-
erence models, the process design is usually done externally by the reference
model provider while the model user configures and executes the procured pro-
cess design. To improve the process model over time, the model provider relies
on practical experiences of model users, i.e. both the model user as well as
the model provider need to analyze the process executions in order to enhance
models and configurations.

Hence, future research needs to investigate if the use of process configuration
could also lead to simplifications in transferring process instances between dif-
ferent configurations compared to existing approaches like the ones of Rinderle
et al. [140], Han et al. [87], or Kammer et al. [99]. For example, this would be
helpful whenever a process configuration is changed. Furthermore, it must be
analyzed, how existing configurations for an ‘old’ version of a configurable pro-
cess model, can be applied to a new version of the configurable process model.
Currently, the only options are to either adapt each configured model individu-
ally, or to start configuring the new configurable model from scratch. However,
if it would be possible to carry configuration decisions forward, maintenance
changes over time could be simplified. This would allow making changes on
the configurable process model and propagating them to the individual models

234 Chapter 9. Conclusions

Diagnosis

Process
Design

Process / System
Configuration

Process
Enactment

Model User

Model Provider

Figure 9.2: The lifecycle of a configurable process model.

afterwards. In this way, each ‘old’ configuration decision could be applied au-
tomatically to the new configurable process model, and only new configuration
choices would still need to be addressed before the updated model can be put
in place.

9.2.4 Process Model Content

Obviously, a process model will only be (re-)used if it provides information
that is worthwhile to use. Hence, all techniques and tools suggested in this
thesis are useless without resulting in good-quality content, which also requires
high-quality information being available when developing configurable process
models. In Chapter 7 we suggested a range of tools that help in constructing
the basic process model of a configurable process model, aiming at helping the
model designer with constructing good-quality models. However, if logs are
missing or the quality of log files is not good, process mining cannot assist in
obtaining satisfactory process models. In the same way, the depicted merge
algorithm is not able to deliver a useful basic process model, if the quality of
the input models is low. In fact, constructing a configurable process model is not
about promoting techniques. Constructing a configurable process model means
editing and combining existing process behavior such that the model reuse is
facilitated.

Errors even in presumably good-quality reference process models like SAP’s
reference model [58, 119] show that having high-quality input available is far
from trivial to achieve. And, if the input contains errors already, these errors
are usually propagated to the configurable model. Also, the case study in Chap-
ter 6 has shown how cumbersome it is to collect information from various sources
and aligning them to construct configurable models, even though desired results
were achieved in the end. Moreover, as municipalities have to account for their
activities publicly, the municipalities had no issues in sharing and explaining

9.3. Summary 235

their processes in detail for the case study. Obtaining such data from organiza-
tions that have to compete with other organizations is much more difficult. As
they fear to loose competitive advantages, they are reluctant in sharing process
information [172].

Organizations that have access to process information from various com-
panies are consultancy firms. Furthermore, they often already use an existing
‘best-practice’ reference model as basis for process implementations which they
adapt manually in each implementation project. Thus, they are likely can-
didates both for constructing configurable process model and improving their
reference processes, as well as for using them. However, as they hardly sell the
reference model as a product itself, the high costs of creating and updating a
configurable reference model are a major barrier. Hence, the focus of future re-
search must be in further reducing the efforts required in creating such models.
For this, solutions that automatically record the variations when adapting the
process model and which use these adaptation as further variation options of
the configurable process model afterwards (as sketched in Section 9.2.1) could
again be helpful. In this context, it will also be interesting to see how initia-
tives like Software AG’s AlignSpace1 for the shared creation of public process
repositories via the internet, similar to social communities and wikis [61], will
be able to provide quality process models in the coming years. For example,
the process configuration mechanisms of blocking and hiding could be used here
to depict an integrated model that highlights various changes made to process
models over time.

9.3 Summary

Configurable process models can facilitate the reuse of process models. They
simplify the adaptation of process models by allowing model users to block or
hide already modeled process behavior instead of requiring users to make cum-
bersome manual changes and additions to a standard template. That means
that, although the easier process model adaptation is on the expense of an in-
crease in the complexity of building the configurable process models compared
to a simple template, developing configurable process models is useful whenever
a process model is needed for a large amount of widely standardized process
implementations with small variations. In this way, the savings in not having to
do many manual adaptations exceed the efforts needed to construct the config-
urable model. Furthermore, tools supporting the construction of configurable
process models like the automatic merge of existing models or the construc-
tion of process models from log files of existing systems through process mining
contribute to reducing construction efforts.

Process configuration is a powerful tool for restricting any behavior allowed
according to process models. Constraints among configuration decisions can
be used to limit this configuration space, i.e. constraints can guarantee that
only desired process variants can be achieved through process configuration.

1see http://www.alignspace.com

http://www.alignspace.com

236 Chapter 9. Conclusions

For process models that are to be adapted by domain experts without the help
of process modeling experts, process configuration decisions can be mapped
to predefined answers to questions posed in natural language and organized in
questionnaires. Answering the questions then leads to the definition of a process
configuration and thus to an individually adapted process model without the
need to work on the process model itself.

For a configurable process model to be successful, it is essential that its
content provides benefits to the organizations using it, and that it provides
the support necessary to get to the corresponding process configuration. More-
over, the configured model must be easily adaptable in case it does not already
completely fulfill all individual requirements. In addition, both the configurable
model itself as well as its configured variants have to be adjustable to a changing
environment over time. Hence, future research should aim at providing further
support for these challenges.

Appendix A

Case Study Process Models

This appendix contains the process models for the four processes from the case
study described in Chapter 6 as summarized in Figure A.1.

The four selected processes are four out of the five most executed registration
processes in the civil affairs departments of municipalities. The process excluded
is the registration of a couple’s divorce as the steps taken by the municipalities
are rather trivial in this process (its main steps are a matter of judicature).

A
ck

n
ow

le
d
gi

n
g

an
u
n
b
or

n
ch

il
d

R
eg

is
te

ri
n
g

a
n
ew

b
or

n

M
ar

ri
ag

e

Is
su

in
g

d
ea

th
sc

er
ti

fi
ca

te

NVVB reference model A.2 A.9 A.16 A.23

Municipality 1 (26.000 inhabitants, no
hospital, Software A)

A.3 A.10 A.17 A.24

Municipality 2 (42.000 inhabitants, no
hospital, Software A)

A.4 A.11 A.18 A.25

Municipality 3 (117.000 inhabitants,
has hospital, Software A)

A.5 A.12 A.19 A.26

Municipality 4 (200.000 inhabitants,
has hospital, Software B)

A.6 A.13 A.20 A.27

Configurable Protos model A.7 A.14 A.21 A.28

Configurable YAWL model A.8 A.15 A.22 A.29

Figure A.1: Overview of the models contained in the appendix

238 Appendix A. Case Study Process Models

The depicted reference models of these processes can be obtained from the
NVVB. They document in detail recommendations of how municipalities should
execute these processes. The depicted models are part of a package of more
than 100 of such reference process models for common processes executed in
municipalities.

The individual municipalities were chosen such that a variation in the re-
sulting models was expected. For this, the municipalities primarily vary in the
number of citizens. Furthermore, they use two different software applications to
support the execution of the depicted processes. If a municipality has a hospital
or not has a significant influence on the number of cases executed for both the
process of registering a newborn as well as the issuing of death certificates.

The configurable Protos models are the results of manually merging the
four individual process models and the model of the NVVB for each of the four
processes. These models were then manually converted into the depicted YAWL
models. Not visible in the figures of the YAWL models is that the underlying
required and produced data is also specified for the various tasks. In this way,
configurations of these models can be loaded and executed using the YAWL
workflow system.

A.1. Acknowledging an Unborn Child 239

A.1 Acknowledging an Unborn Child

not ok

ok

not ok

ok

Decide choice
of name (Dutch

Citizen

Archive
documents

Draw up ackn.
certificate

Check for
permission

Request
Acknowledgement

Confirm identify

Determine if
authorisation

Determine
nationality

Hand over copy

Decide choice
of name

No
acknowledgement

Archive

Figure A.2: Reference model of the NVVB for the process of acknowledging an unborn child:
After the identity of the applicant has been checked, it is determined if he is authorized to
acknowledge the child. Furthermore, the permission of the pregnant wife is checked. Based on
the nationality, the choice of the last name for the baby is either performed based on Dutch
or foreign law. The issued acknowledgement certificate is handed over to the applicant before
the documents are archived.

240 Appendix A. Case Study Process Models

Yes

No

Yes

No

No

Yes

Yes

No

No

Yes

Unmarried

Not OK

OK

Not OK

Citizen

Decide choice
of name (for

Unmarried

Request
Acknowledgement

Both live in the
munic ipality

Last name
mother

Confirm identify

Draw up ackn.
document

Inform of
authority over

Process ackn.
at birth

Hand over copy

Both parents
present

Firs t child of the
relation

Decide choice
of name (under

Determine
nationality

No
acknowledgement

Contact liv ing
munic ipality

Check for
permiss ion

Determine if
authorisation

Declaration
unmarried

Archive

min. 1 person
present

Figure A.3: Process model for acknowledging an unborn child according to Municipality 1
(small): In addition to the suggestions by the reference model, Municipality 1 checks if both
parents live in the municipality and are unmarried before determining the authorization. Also,
later on Municipality 1 checks if the child is the first out of the relationship because if not, the
choice of the last name is identical to the previous child and does not have to be determined
again.

A.1. Acknowledging an Unborn Child 241

Yes

No

Yes

No

No

Yes

Yes

No

Yes

No

Unmarried

Not OK

OK

Not OK

Last name
mother

Citizen

Firs t child of the
relation

Dec ide choice
of name (under

Request
Acknowledgement

Both live in the
munic ipality

Identify

Unmarried

Both parents
present

min. 1 person
present

Contact liv ing
munic ipality

No
acknowledgement

Archive

Determine if
authorisation

Draw up ackn.
document

Hand over copy

Process ackn.
at birth

Dec laration
unmarried

Check for
permiss ion

Figure A.4: Process model for acknowledging an unborn child in Municipality 2 (medium-
size): Municipality 2 checks first if the child is the first of the relationship. Only afterwards it
is checked if the parents live in the municipality, i.e. the order of these process parts is inverse
compared to Municipality 1.

242 Appendix A. Case Study Process Models

not ok

ok

not ok

ok

Decide choice
of name (Dutch

Citizen

Draw up ackn.
certificate

Check for
permission

Request
Acknowledgement

Confirm identify

Determine if
authorisation

Determine
nationality

Hand over copy

Archive
documents

Decide choice
of name

No
acknowledgement

Archive

Figure A.5: Process model for acknowledging an unborn child in Municipality 3 (large): The
process is executed in the same way as suggested by the NVVB.

A.1. Acknowledging an Unborn Child 243

OK

Not OK

Not OK

Citizen

Confirm identi fy

Determine i f
authorisation

Check for
permiss ion

Draw up ackn.
document

Hand over copy

Archive
documents

Dec ide choice
of name

Reques t
Acknowledgement

Archive

No
acknowledgement

Figure A.6: Process model for acknowledging an unborn child in Municipality 4 (very large):
The process model depicts even less steps than the process suggested by the NVVB as it does
not handle acknowledgement requests from foreigners different from the ones of Dutch citizens.

244 Appendix A. Case Study Process Models

Yes

No

Yes

No

Yes

No

No

Yes

Yes

No

Unmarried

Not OK

OK

Not OK

OK

Not OK

Last name
mother

Citizen

Confirm identify

Request
Acknowledgement

First child of the
relation

Both live in the
municipality

Decide choice
of name (under

Unmarried

Both parents
present

Determine
nationality

Decide choice
of name (for

No
acknowledgement

Contact living
municipality

Archive

min. 1 person
present

Process ackn.
at birth

Draw up ackn.
document

Hand over copy

Inform of
authority over

Check
permission

Declaration
unmarried

Determine if
authorisation

Figure A.7: Integration of the five process variants for acknowledging an unborn child: The
increase in the number of arcs is obvious and mainly due to the variations in the order in
which the different municipalities execute the various tasks.

A.1. Acknowledging an Unborn Child 245

Figure A.8: Translation of the integrated process model for acknowledging an unborn child
into YAWL: As it seems from looking at the individual process variants that the order between
checking if a child is the first of a relationship and if both parents live in the municipality does
not matter, the option to execute them in parallel was added by using an OR-split at task
Confirm identity. The branches are synchronized again through the OR-join before executing
the task Draw up acknowledgement document. If no acknowledgement can be performed, all
tasks that can still be executed in parallel are canceled through the cancelation region of this
task.

246 Appendix A. Case Study Process Models

A.2 Registering a newborn

not ok

ok

not ok

ok

not ok

ok

passport

no passport

not registered

own municipality another municipality

not ok

ok

not ok

ok

data correct

Tb01

Citizen

Notification art.
63 GBA

Check validity

Send
notifications

Create birth
certif icate

Sign birth
certif icate

Confirm identify
with passport

Confirm identity

Return
documents

Update GBA

Send PL

Receive
notification birth

Fill in birth
registration form

Check GBA
data

Archive
documents

Finalize
message

Updated

Identity confirmed

Completed

Archive

Correct error

Send data

Return
documents

Search GBA
data

Refuse
continuation

Confirm identify
without

Determine next
action

Figure A.9: Reference model of the NVVB for the process of registering a newborn: After
the identity of the person registering the child has been confirmed, a birth registration form
should be filled in. The details of the family members entered in this form are checked with
the help of the municipality database (GBA) before the birth certificate is issued. In case the
parents are registered in the municipality where the newborn is registered, the municipality
database is updated with the information about the newborn. Otherwise the data is send to
the municipality where the parents are registered. If the parents are not registered at all, the
process is escalated.

A.2. Registering a newborn 247

Not ok

N o

Y es

Ok

N ot ok
B oth parents
not in GB A

N o

Y es

N o

Y es

Y es

No

Y es

N o

Y es

N o

N ot ok

Data correct

P rocess ackn.
certificate

D etermine next
action

N otification art.
63 GB A

Tb01

C itizen

C reate birth
certificate

U pdate GB A

Informer checks
the certificate

C onfirm choice
of name

B orn in
municipality

R eceive notific.
of birth

C ertificte based
on info mother

C heck GB A

C onfirm identity

R egistered at
municipality

A rchive
documents

P arents married

First child of the
relationship

C hild already
acknow ledged

S ign certificate

D etermine GB A
municipality

Fill in birth
certificate

R eturn
documents

C heck validity

S end P L

Finalize
message exch.

S end
notifications

Updated

S end data

A djust

A rchive

Correct error

S earch GB A
data

Collect docs
munici. of

Redirect to
munici. of birth

Figure A.10: Process model for registering a newborn in Municipality 1 (small): In com-
parison to the suggestions of the NVVB, Municipality 1 does not require filling in a form first
but personally asks for information on the birth and if the parents live in the municipality.
After the database check, it is checked if the parents are married. If not, the last name must
be determined before the birth certificate can be created. Also, Municipality 1 requires that
the person registering the child checks the certificate before it is signed and handed out. Like
in the reference model, finally the database of the municipality is updated or the documents
are forwarded to the responsible municipality.

248 Appendix A. Case Study Process Models

Yes

No

Yes

No

Not ok

Ok

Not ok
Both parents
not in GBA

Not ok

No

Yes

Data correct

No

Yes

Citizen

Notification art.
63 GBA

Tb01

Determine next
action

Process ackn.
certificate

Child already
acknowledged

Born in
municipality

Receive notific.
of birth

Confirm identity

Return
documents

Check accuracy

Send PL

Finalize
message exch.

Send
notifications

Update GBA

Archive
documents

Check GBA
data

Informer checks
the certificate

Create birth
certificate

Sign certificate

Determine GBA
municipality

Fill in birth
registration form

Confirm choice
of name

First child of the
relationship

Updated

Archive

Correct error

Search GBA
data

Adjust

Send data

Redirect to
municipality of

Figure A.11: Process model for registering a newborn in Municipality 2 (medium-size): The
process of Municipality 2 is very similar to the process of Municipality 1. The main difference
is that Municipality 2 determines the choice of name before checking the details of the parents
in the municipality database while Municipality 1 did this only afterwards.

A.2. Registering a newborn 249

not ok

cancel

own municpality

other munic ipality

not ok

ok

not ok

ok

not ok

data corrected

Tb01

Citizen

Update GBA

Determine GBA
municipality

Receive
notification birth

Check GBA
data

Determine
descent

Create birth reg.
certificate

Scan

Finalize
message

Check accuracy

Send PL

Archive
documents

Sign certificate

Return
documents

Check identity

Confirm choice
of name

Finalized

updated

Send
notifications

Correct error

Archive

Search GBA
data

Return
documents

Cancel birth
notification

Determine next
action

Send Tb01

Figure A.12: Process model for registering a newborn in Municipality 3 (large): The process
of Municipality 3 is similar to the reference model suggested by the NVVB, but not identical.
Main differences are that the informer does not need to fill in a form before the database is
checked, and that separate steps are performed to determine the descent and the name of the
newborn. Furthermore, the model contains the option to send notifications to court in case
the parents have no authority over the newborn.

250 Appendix A. Case Study Process Models

term v iolated

no passport

passport

Not ok

Ok

Not ok

Authorized

Not ok

Ok

Not ok

 refuse
continuation

Agreed

Single
mother

Single
mother

Married/ Divorced
 mother

Trigger

Check term of
notification

Confirm identity

Confirm identity
with passport

Receive notific .
of birth

Check GBA
data

Run through
data

Determine
nationality child

Confirm choice
of name

Create birth
certificate

Sign certificate

Apply descent
right

Return to
migrant shelter

Return and
archive docs

Finalize
certificate

Identity confirmed

Data approved

Regis ter Birth

Send
notifications

Return
documents

Inform court

Confirm identity
without

Refuse
continuation

Inves tigate GBA
data

Apply descent
right

Start procedure

Figure A.13: Process model for registering a newborn of Municipality 4 (very large): Munic-
ipality 4 starts the process of registering a newborn with checking if the registration happens
within the timeframe prescribed by law and informs a court if not. Identity check, and check
of the parents details are performed in line with the suggestions of the NVVB. Afterwards the
model describes in detail the applied descent rights before the name can be chosen and the
birth certificate can be created. Notably, the process of Municipality 4 does not include the
update of the municipality database contained in the other models of this process.

A.2. Registering a newborn 251

No

YesNo

Yes

Yes

No

No

Ok

Ok

Not ok

Not ok

Ok

Not ok

Ok

Ok

Not ok
Ok

Not ok

Ok

Own municipality
Other municipality

Not ok

Ok

Yes
No

Not ok

Ok

Determine
descent

First child of the
relationship

Send
notifications

Parents married

Confirm choice
of name

Return to
migrant shelter

Finalize
certificate

Return and
archive

Archive

Child already
acknowledged

Determine next
action

Correct error

Process ackn.
certificate

Citizen

Fill in birth
registration form

Create birth
certificate

Check term of
notification

Check birth
municipality

Create cert. with
data mother

Check GBA
data

Informer checks
the certificate

Sign certificate

Determine GBA
municipality

Update GBA

Check validity

Registered at
municipality

Send PL

Return
documents

Finalize
message

Archive
documents

Scan

Receive
notification birth

Confirm identity

Collect data
from resident

Return
documents

Send data

Adjust

Search GBA
data

Inform court

Redirect to
munic. of birth

Start procedure

Tb01

Notification art.
63 GBA

Figure A.14: Integration of the five process variants for registering a newborn: Again, the
number of arcs increases significantly, but in this model also the number of tasks increases
significantly compared to the individual models. That mens, the tasks executed vary more
than in the process of acknowledging an unborn child. Also quite a number of arcs are
introduced to skip other tasks, i.e. in a configurable process models these arcs might also be
replaceable by simply hiding the skipped tasks.

252 Appendix A. Case Study Process Models

Figure A.15: YAWL model of the process for registering a newborn from Figure A.14:
Note that all choices in the YAWL model are XOR-splits which are synchronized again either
through conditions or through XOR-splits.

A.3. Marriage 253

A.3 Marriage

other munic ipality

own munic ipality

other munic ipality

own munic ipality

not c omplete

c omplete

c omplaint

no c omplaint

not c orrec t

c orrec t

c orrec t foreign doc ument

not c orrec t

not c orrec t

c orrec t

not complete

c omplete

c orrec t

correc t

C itiz en

Notif. foreign
marr iage

Notif. marr iage
other munic .

x numer of day s
before wedding

pre-marriage
file

C itiz en

Chec k for
anomalies

Send
notific ation

Complete
mes s age

Identify

Chec k update

Arc hiv e
doc uments

File in s torage

Chec k
notific ation

Chec k required
doc s

Create
doc uments

Complete notic e

Create file

Chec k
completenes s

perform
marr iage

Determine
marr iage

Produc e c ertif.
and wedding

Determine GBA
munic ipality

Update GBA

Rec eiv e notic e

Updated

D is c uss
anomalies

Temporary
arc hiv e

Arc hiv e c iv il
affairs

Return
documents

Pre-marr iage
c anc elled

Send file

Temporary
s torage

Correc t update

Send reminder

Determine
v alidly

Send Tb02

Determine
res pons e

Figure A.16: Reference model of the NVVB for processing a marriage: The marriage is the
process involving executing the most steps out of the four processes considered during the case
study and can be divided in three phases: the creation and checking of documents before the
marriage, the wedding itself, and the registration of the marriage in the municipality database
(GBA).

254 Appendix A. Case Study Process Models

Ye s

No

 A l l re q u i re d
d o c s p re s e n t

m i s s i n g
 d o c s

No t c o rre c t

Co rre c t

o th e r m u n i c i p a l i ty

M a rri a g e i n m u n i c i p a l i ty

o th e r re s i d e n t m u n i c .

No t c o rre c t

fo re i g n d o c u m e n t

No t c o rre c t

n o t c o m p l e te

Co m p l a i n t

c o rre c t

M a rri a g e f i l e

1 4 d a y s b e fo re
m a rri a g e

On l y m a rri a g e

Re s e rv e
m a rri a g e d a te

Re c e i v e
m a rri a g e f i l e

Pa y d u e s

Pre -m a rri a g e
c a n c e l l e d

Ap p l i c a n t
c o l l e c ts f i l e s

Re q u i re d d o c s

Ci t i z e n

M a x 1 y e a r
M i n 1 4 d a y s

Ci t i z e n

Du e s p a i d

No t i f i c a t i o n
m a rr. o th e r

No t i f i c a t i o n
fo re i g n

M i s s i n g d o c s

d a y b e fo re
m a rri a g e

T b 0 2

T e l e p h o n e

Ch e c k
n o t i f i c a t i o n

Up d a te GBA

Ch e c k u p d a te

Co m p l e te
m e s s a g e e x c h .

F i l e i n s to ra g e

S i g n m a rri a g e
c e rt i f i c a te

Ch e c k
c o m p l e te n e s s

a s k fo r a d d re s s

Se n d
i n fo rm a t i o n

Ch e c k fo r
a n o m a l i e s

M a k e a p p o i n tm .
fo r p re -m a rri a g e

Pro d u c e
c e rt i f i c a te a n d

Id e n t i fy

A rc h i v e

Co m p l e te n o t i c e

Cre a te f i l e

In v i te fo r
m e e t i n g

Gi v e n o t i c e o f
i n te n t i o n to

M i n i m a l 1 i s
re s i d e n t o f

Re c e i v e n o t i c e

Ch e c k re q u i re d
d o c s

Cre a te
d o c u m e n ts

De te rm i n e
m a rri a g e m u n i c .

Se n d
n o t i f i c a t i o n

A rra n g e
c e re m o n y

p e rfo rm
m a rri a g e

De te rm i n e GBA
m u n i c i p a l i ty

Co rre c t

Co rre c t

Up d a te d

Se n d th e m to
o th e r m u n i c i p .

De te rm i n e
v a l i d l y

De te rm i n e
re s p o n s e

Se n d T b 0 2 /
n o t i f i c a t i o n

Co rre c t u p d a te

Re g i s te r a t c i v i l
a f fa i rs

T e m p o ra l y
a rc h i v e

Se n d re m i n d e r

Se n d f i l e

Re tu rn
d o c u m e n ts

Di s c u s s
a n o m a l i e s

Figure A.17: Process model for the execution of a marriage in Municipality 1 (small): The
process of Municipality 1 deviates from the process suggested by the NVVB mainly in service
parts. For example, Municipality 1 requires the couple to make an appointment for processing
the pre-marriage part of the process. Moreover, Municipality 1 sends the couple information
material about getting married. The process model also contains a second starting point
for the process in case the pre-marriage part of the process was performed in a different
municipality than Municipality 1.

A.3. Marriage 255

o th e r m u n ic i p a l i ty

No t c o m p l e te

o th e r re s i d e n t
m u n i c i p a l i ty

No t c o rre c t

fo re i g n d o c u m e n t

No t c o rre c t

Ob j e c ti o n

No
Ye s

a l l n e c e s s a ry
d o c s p re s e n t

Do c u m e n ts m is s i n g

In c o rre c t

Co rre c t

c o rrre c t

p re -m a rri a g e f i l e

Re c e iv e
m a rri a g e fi l e

Pre -m a rria g e
c a n c e l l e d

On ly m a rria g e

Re s e rv e
m a rri a g e d a te

No ti fi c a tio n
o th e r

No ti fi c a tio n
fo re ig n m a rria g e

Ci t i z e n

o n e d a y b e fo re
m a rri a g e

Tb 0 2

Wri tte n
a p p l i c a tio n

Te le p h o n e

Re q u i re d d o c s

Ci t i z e n

Ci t i z e n

M a x 1 y e a r
M i n 6 we e k s

Arra n g e
c e re m o n y

Arc h iv e
d o c u m e n ts

Co m p le te n o ti c e

Cre a te fi l e

Ch e c k fo r
a n o m a l i e s

Gi v e n o ti c e o f
i n te n tio n to

M in i m a l 1 i s
re s id e n t o f

M a k e a p p o i n tm .
fo r p re -m a rri a g e

Ch e c k i f
n e c e s s . d o c s

Id e n ti fy

Re c e i v e n o ti c e

Ch e c k re q u i re d
d o c s

Cre a te
d o c u m e n ts

De te rm in e m a rr.
m u n ic i p a l i ty

Fi le i n s to ra g e

Ch e c k
c o m p le te n e s s

Pro d u c e
c e rti fi c a te a n d

p e rfo rm
m a rria g e

De te rm in e GBA
m u n ic i p a l i ty

Ch e c k
n o ti f i c a tio n

Up d a te GBA

Ch e c k u p d a te

Co m p le te
m e s s a g e e x c h .

Si g n m a rria g e
c e rti fi c a te

Se n d
n o ti f i c a tio n

Co rre c t

u p d a te d

Co rre c t

Se n d re m i n d e r

Dis c u s s
a n o m a l ie s

De te rm i n e
v a l i d l y

De te rm i n e
re s p o n s e

Se n d Tb 0 2

M i s s in g d o c s

Re g is te r c i v i l
a ffa i rs

Te m p o ra ry
a rc h i v e

Co rre c t u p d a te

Re tu rn
d o c u m e n ts

Se n d f i l e

Se n d th e m to
a n o th e r

Ap p l i c a n t c o l l e c t
re q u i re d d o c s

Figure A.18: Process model for the execution of a marriage in Municipality 2 (medium-size):
Also Municipality 2 requires citizens to make an appointment for executing the pre-marriage
part of the process, but it does not send out information material like Municipality 1. Instead,
it provides the opportunity to the couple to check if the couple has all necessary documents
before executing the pre-marriage process. In this way, the applicants can still collect the
documents. Besides this, the process of Municipality 2 is almost identical to the process of
Municipality 1, including the option to start the process directly with the wedding in case the
pre-marriage part of the process was executed in a different municipality.

256 Appendix A. Case Study Process Models

other m unic ipa l i ty

Not c om plete

other m unic ipa l i ty

Not c orrec t

fore ign doc um ent

Not c orrec t

Com pla in t

Yes

No

Not c orrec t

Correc t

Correc t

Only m arriage Both Only m arriage

Tele fonis c h

Ci tiz en

Burgers

M ax 1 y ear
M in 6 week s

Tb02

Noti fic ationm ariage
other m unic .

Noti fic ation
fore ign

Ci tiz en

1 week before
m arriage

Update GBA

Chec k update

Com plete
m es s age

Arc h iv e
doc um ents

Send
noti fic a tion

Chec k for
anom al ies

Giv e notic e o f
in tention to

M in im al 1 is a
res ident o f the

Rec eiv e notic e

Identi fy

Prin t c erti fic a tes

Chec k requi red
doc s

M ak e appoin tm
pre-m arriage

Create
doc um ents

Com plete notic e

Create fi le

Determ ine
m arriage

Fi le in s torage

Chec k
c om pletenes s

Produc e c erti f.
and wedd. doc .

Dis trubute
in form ation

perform
m arriage

Determ ine GBA
m unic ipal i ty

Chec k
noti fic a tion

Correc t

Updated

Correc t

Continue proc es s

Send them to
another

Determ ine
res pons e

Send Tb02/
noti fic a tion

Determ ine
v al id ly

Return
doc um ents

Regis ter c iv i l
a ffa i rs

Tem pora ly
arc h iv e

Dis c us s
anom al ies

pre-m arriage &
m arriage

Send fi le

Send rem inder

Correc t update

Pre-m arriage
fi le

Rec eiv e
m arriage fi le

Res erv e
m arriage date

Figure A.19: Process model for the execution of a marriage in Municipality 3 (large):
While the wedding and the database registration parts of the process are very similar to
Municipality 1 and Municipality 2, Municipality 3 organized the pre-marriage part again
differently from the two other municipalities. Here, the process can in any case only be
executed if at least one person of the couple lives in the municipality. If this is the case, the
couple gets first some information material before there is the chance for making appointments
either for the pre-marriage, for the pre-marriage and the wedding, or for the wedding only —
dependent on which activities should happen in Municipality 3. If only the wedding happens in
Municipality 3, the pre-marriage part of the process is skipped and instead the municipality
waits to receive the corresponding file from another municipality. If only the pre-marriage
happens in the municipality, the documents are sent to the municipality responsible for the
wedding after the pre-marriage part of the process is completed.

A.3. Marriage 257

Marraige
schedule

Pre-marriage
file

10 days before
wedding

Citizen

Return wedding
documents

Determine GBA
municipality

Send questionn.
and congrat.

Archive
documents

Temporarily
store

inform special
civil servant

Produce certif.
and wedd. doc.

Check
completeness

Check content

Determine
marriage

Check required
docs

Create
documents

Complete notice

Collect files

Receive notice

Identify

Check for
anomalies

Create file

perform
marriage

Collect wedding
documents

Finalize
certificate

Assign an
servant

Send
documents

Return
documents

Consult
responsible civil

Temporarily
storage

Temporarily
archive

Marriage
archive

Figure A.20: Process model for the execution of a marriage in Municipality 4 (very large):
Municipality 4 organizes the marriage process in a very sequential way. The only variations
of the process are that after the pre-marriage the documents can be sent to a different munic-
ipality, or that if any documents contain anomalies they are either returned or the responsible
organizations or departments are contacted.

258 Appendix A. Case Study Process Models

ot her municipalit y

Not cor rect

Foreign document

No
Yes

complet e

 Not
complet e

Not complet e

Not cor rect

Cor rect

ot her municipalit y

Not cor rect

Complaint

cor rect

O nly wedding

Huwelijksagenda
lijst

Not if i. f oreign
mar r iage

dag voor het
huwelijk

10 dagen voor
volt r ekking

Cit izen

Tb02

Not if . mar r iage
ot her munic. .

O nder t rouw-
dossier

Tijdelijk opslag
omslagen

O nly mar r iage

Assign an
servant

inf orm special
civil ser vant

Reserve
marr iage dat e

Temporar ily
st ore

Check cont ent

Pay dues

Receive
marr iage f ile

Collect wedding
document s

Sched.
pre-mar r . &

Pre-mar r iage
cancelled

Applicant
collect s f iles

Dist rubut e
inf ormat ion

Finalize
cer t if icat e

Requir ed docs

Cit izen

Cit izen

Max 1 year
Min 6 weeks

Telephone

Wr it t en not ice

Send quest ionn.
& congrat .

I dent if y

Check requir ed
docs

per f orm
mar r iage

Creat e
document s

Det ermine
mar r iage

Check updat e

Check f or
anomalies

Complet e
message

Updat e G BA

Sign marr iage
cer t if icat e

Send
not if icat ion

Archive
document s

Det ermine G BA
municipalit y

Check
not if icat ion

G ive not ice of
int ent ion t o

Make
appoint ment f or

Check if all
necessary docs

Min. 1 is r esident
of municipalit y

Receive not ice

Produce cer t if .
and wedd. doc.

Ar range
ceremony

File in st orage

Complet e not ice

Creat e f ile

Check
complet eness

Cor rect

Cor rect

Updat ed

Pr int cer t if icat es

Minimal 1 is a
resident of t he

Det ermine
validly

Det ermine
response

Ret urn
document s

Applicant collect
requir ed docs

Send Tb02

Cor rect updat e

Ret urn wedding
document s

Send f ile

Send reminder

Consult
responsible civil

O nt brekende
docs

Discuss
anomalies

Regist er civil
af f air s

Temporary
ar chive

Ar range
Ceremony1

File in st orage1

ask f or address

I nvit e f or
meet ing

Send
inf ormat ion

Collect f iles

Figure A.21: Integration of the five process variants for executing a marriage: Like the
individual models, also the integrated model seems to be organized very linear with some
variation possibilities in the pre-marriage phase as well as in the direct preparation of the
wedding itself. This shows that different from the previous processes the order in which the
different tasks can be performed does not vary that much. Clearly, the marriage process is the
process that requires the most steps from start to completion of all four processes considered
in this case study.

A.3. Marriage 259

Figure A.22: The integrated marriage process transformed to YAWL: The YAWL model
can easily be split into the three parts of the wedding process: the pre-marriage at the top,
the wedding itself in the middle, and the GBA database update at the bottom. Also note
the various distinct points at which the process can complete, indicated through direct arcs
to the output condition of the net.

260 Appendix A. Case Study Process Models

A.4 Issuing Death Certificate

not correct

correct

not correct

correct

own municipalityOther municipality

not correct

correct

not correct

data correct

Determine
correctness

Foreign death
certificate

Notif. art 63 law
GBA

Citizen

Notification
court

Assistant
prosecutor

Validate data

Send
notification art

Identify

Deliver
documents

Update PL

Check update
PL

Produce death
certificate

Receive
notification of

Sign documents

Check GBA
data

Finalize
message exch.

Archive
documents

Send
notifications

Create related
documents

Check
notification

Updated

Archive

Search GBA
data

Return
documents

Correct update

Figure A.23: Reference model of the NVVB for issuing a death certificate: The NVVB model
suggests that municipalities first check the identity of the person that informs them over the
death of another person. Then, the details of the information are checked for completeness
before the details are compared with the details in the GBA database. If all data is correct,
the death certificate and related documents are produced. Depending on if the deceased was
living in the municipality where the process is executed, the municipality either updates its
registration data or it sends the documents to the responsible municipality. Among the four
suggestions of the NVVB, the process seems to be shorter and simpler than the registration
of a child or a marriage, but slightly more complex than acknowledging an unborn child.

A.4. Issuing Death Certificate 261

Correc t

Ok

Not c orrec t

No

Yes

No

With in 36 hours

After 5
day s

Nee

y es

Yes

No

Yes

No

No

Yes

Correc t

Not c orrec t

Not ok

Yes

No

As s is tant
pros ec utor

Determ ine
c orrec tnes s

Noti f. art 63 law
GBA

Foreign death
c erti fi c ate

Noti fic ation
c ourt

As s is tant
pros ec utor

Inform er

Publ ic
pros ec utor

Dec laration
natural c aus e

B-env eloppe

Noti fi c ation k g.
art 63 Law GBA

Chec k
m andatory

No perm is s ion
to bury

No perm is s ion
to bury

Bury wi thin 36
hours

Giv e perm is s ion
to bury

Val idate data

Identi fy

Chec k i f death
was in m unic .

Sign doc um ents

Bury after 5
day s

Final iz e
doc um ents

Produc e death
c erti fi c ate

Update PL

Chec k update
PL

Final iz e
m es s age ex c h.

Send
noti fic ations

Arc hiv e
doc um ents

Citiz en of the
m unic ipal i ty

Giv e perm is s ion
to bury

Chec k
doc um ents by

Div ergent
s c hedule for

Us e for s c ienc e

Res ident of the
m unic ipal i ty

Natural c aus e

Create related
doc um ents

Rec eiv e noti f. o f
death

Updated

Perm is s ion to bury

Doc tors
dec laration

M ay or

Arc hiv e

Col lec t data

Redi rec t to
m unic .of death

after a l l
perm is s ion

Correc t update

determ ine
fol lowing up

Publ ic
pros ec utor

Figure A.24: Process model for issuing a death certificate in Municipality 1 (small): The
model of Municipality 1 contains quite a number of additional steps compared to the recom-
mendations by the NVVB. For example, it checks if the death happened in Municipality 1
and if the deceased was a resident of Municipality 1 (otherwise it first collects data from his
residential municipality), if the death had a natural cause (otherwise the permission to bury
the deceased will be suspended until the investigation releases the body), if the body should
be used for science, or if the body should be buried unusually quickly (in less than 36 hours)
or late (after more than 5 days). The update of the deceased’s registration happens in line
with the suggestions of the NVVB.

262 Appendix A. Case Study Process Models

Ok

Correct

Not correct

No

Yes

No

Yes

Correct

No

Within
36 hours

After 5
days

Yes

No

Not correct

No

Yes

Assistant public
prosecutor

Determine
correctness

Foreign death
certificate

Notifi.. art 63
law GBA

Notification
court

Officier van
justitie

Assistant public
prosecutor

B-enveloppe

Declaration
natural cause

Informer

Bury within 36
hours

No permission
to bury

No permission
to bury

Give permission
to bury

Check
mandatory

Validate data

Natural cause

Create related
documents

Update PL

Check update
PL

Finalize
message

Send
notifications

Archive
documents

Citizen of the
municipality

Receive notif. of
death

Use for science

Check if death
was in municip.

Sign documents

Bury after 5
days

Finalize
documents

Produce death
certificate

Check
documents by

Divergent
schedule burial

Identify

Updated

Mayor

Doctor
statement

Archive

Redirect to
municip. of

Correct update

Versturen kg.
art 63 Wet GBA

Figure A.25: Process model for issuing a death certificate in Municipality 2 (medium-size):
The process model of Municipality 2 is almost identical to the one of Municipality 1. The
only main difference is that Municipality does not check in the beginning of the process if the
deceased was residing in Municipality 2 — this check only happens when the registration data
needs to be updated.

A.4. Issuing Death Certificate 263

not correct

not correct

correct

other municipality

own municipality

Not correct

Correct

not correct

data correct

Validate data

Determine
correctness

Notif. art 63 law
GBA

Foreign death
certificate

Tb02

Assistant
prosecutor

Notification
court

Citizen

Sign documents

Finalize
message

Check update
PL

Archive
documents

Produce death
certificate

Check GBA
data

Receive notifi.
of death

Create related
documents

Check
notification

Update PL

Check if death
was in

Deliver
documents

Citizen of the
municipality

Updated

Return
documents

Search GBA
data

Archive

Correct update

Request for
completion of

Archive certifi. +
appendices

Send
notifications

Send
notification art

Figure A.26: Process model for issuing a death certificate in Municipality 3 (large): The
process model of Municipality 3 is mostly line with the suggestions of the NVVB. The only
differences are that Municipality 3 checks in the beginning of the process if the death happened
in Municipality 3 and that the NVVB suggests checking the completeness of the documents
before checking the data in the GBA database while Municipality 3 does it the other way
around.

264 Appendix A. Case Study Process Models

Not correct

Not correct

Correct

Assistant
prosecutor

Identify

Check GBA
data

Check
notification

Produce death
certificate

Sign documents

Finalize
message exch.

Send
notifications

Archive
documents

Receive
notification of

Notification
court

Correct data

Identified

Archive

Informer

Return
documents

Search GBA
data

Figure A.27: Process model for issuing a death certificate in Municipality 4 (very large):
Municipality 4’s process matches in the beginning the suggestions of the NVVB. However, it
lacks those parts that deal with updating the deceased’s registration in the second part of the
process.

A.4. Issuing Death Certificate 265

Correc t

Ok

Not c orrec t

No

Yes

No

Within
36 hours

After 5
 day s

No

Yes

Yes

No

No

Yes

No

Yes

No

Correc t

Not c orrec t

n iet ak k oord

Not ok

Gegev ens c orrec t

Yes

No

Doc tors
dec laration

M ay or

Offic ier v an
jus ti tie

Inform er

Dec laration
natural c aus e

B-env eloppe

Noti fic ation
c ourt

Pros ec utor

Pros ec utor

Determ ine
c orrec tnes s

Foreign death
c erti fic ate

Noti f. art 63 law
GBA

Send
noti fic ation art

No perm is s ion
to bury

Bury wi th in 36
hours

Giv e perm is s ion
to bury

Chec k
m andatory doc s

No perm is s ion
to bury

Val idate data

Create re lated
doc um ents

Chec k i f death
was in m unic i .

Identi fy

Natural c aus e

Bury after 5
day s

Update PL

Final iz e
m es s age

Send
noti fic ations

Chec k update
PL

Final iz e
doc um ents

Arc hiv e
doc um ents

Citiz en of the
m unic ipal i ty

Giv e perm is s ion
to bury

Produc e death
c erti fi c ate

Sign doc um ents

Chec k doc s by
inform er

Div ergent
s c hed. for burial

Us e for s c ienc e

Res ident of the
m unic ipal i ty

Rec eiv e noti fi .
o f death

Updated

Perm is s ion to bury

Chec k GBA
data

Chec k
noti fi c ation

Arc hiv e

Rederic t to
m unic i .of death

Col lec t data

after a l l
perm is s ion

Correc t update

determ ine
fol lowing up

Pros ec utor

Del iv er
doc um ents

Return
doc um ents

Reques t for
c om pletion of

Searc h GBA
data

Arc hiv e c erti f.
wi th appendix

Send
noti fi c ation art

Figure A.28: Integration of the five process variants for issuing a death certificate: The
integrated model clearly shows that the process can be split in two parts, the phase before the
documents are signed and the phase after that. In both parts a number of variations exists.
Also, quite a number of arcs depict that steps are skipped in some of the models. Hence, the
same behavior as indicated by these arcs could also be achieved by configuring the skipped
tasks as hidden.

266 Appendix A. Case Study Process Models

Figure A.29: The integrated process for issuing a death certificate transformed to YAWL:
Also in the YAWL model the two phases can clearly be identified. Note the OR-split/OR-
join. As is, its behavior can cause unsound behavior. To eliminate this issue, the OR-split
and subsequent ports need to be restricted by configuration such that only the sound behavior
remains possible.

Bibliography

[1] W.M.P. van der Aalst. Formalization and Verification of Event-driven
Process Chains. Information and Software Technology, 41(10):639–650,
1999. (cited on p. 31)

[2] W.M.P. van der Aalst. Parallel Computation of Reachable Dead States
in a Free-choice Petri Net. In A. Tentner, editor, High Performance Com-
puting 1998, pages 425–432. Society of Computer Simulation, June 1998.
(cited on p. 213)

[3] W.M.P. van der Aalst. Verification of Workflow Nets. In P. Azéma and
G. Balbo, editors, Application and Theory of Petri Nets 1997, volume
1248 of Lecture Notes in Computer Science, pages 407–426. Springer, 1997.
(cited on pp. 23, 24, 25, and 223)

[4] W.M.P. van der Aalst. Workflow Verification: Finding Control-Flow Er-
rors using Petri-net-based Techniques. In W.M.P. van der Aalst, J. Desel,
and A. Oberweis, editors, Business Process Management: Models, Tech-
niques, and Empirical Studies, volume 1806 of Lecture Notes in Computer
Science, pages 161–183. Springer, 2000. (cited on p. 1)

[5] W.M.P. van der Aalst and T. Basten. Identifying Commonalities and
Differences in Object Life Cycles using Behavioral Inheritance. In J.M.
Colom and M. Koutny, editors, Application and Theory of Petri Nets
2001, volume 2075 of Lecture Notes in Computer Science, pages 32–52.
Springer, 2001. (cited on pp. 48, 59, 60, and 61)

[6] W.M.P. van der Aalst and C.W. Günther. Finding Structure in Unstruc-
tured Processes: The Case for Process Mining. In T. Basten, G. Juhas,
and S. Shukla, editors, Applications of Concurrency to System Design
(ACSD 2007), pages 3–12, Bratislava, Slovak Republic, 2007. IEEE Com-
puter Society. (cited on pp. 150, 151, and 156)

[7] W.M.P. van der Aalst and K.M. van Hee. Workflow Management: Models,
Methods, and Systems. MIT Press, 2002. (cited on p. 1)

[8] W.M.P. van der Aalst and A.H.M. ter Hofstede. YAWL: Yet Another
Workflow Language. Information Systems, 30(4):245–275, 2005. (cited on
pp. 37, 39, and 40)

[9] W.M.P. van der Aalst, J. Desel, and A. Oberweis, editors. Business Pro-
cess Management: Models, Techniques, and Empirical Studies, volume

268 Bibliography

1806 of Lecture Notes in Computer Science, 2000. Springer. (cited on
p. 1)

[10] W.M.P. van der Aalst, B.F. van Dongen, J. Herbst, L. Maruster,
G. Schimm, and A.J.M.M. Weijters. Workflow Mining: A Survey of Issues
and Approaches. Data and Knowledge Engineering, 47(2):237–267, 2003.
(cited on p. 194)

[11] W.M.P. van der Aalst, A.H.M. ter Hofstede, B. Kiepuszewski, and A.P.
Barros. Workflow Patterns. Distributed and Parallel Databases, 14(1):
5–51, 2003. (cited on pp. 26, 27, 28, 35, 63, 81, 103, 104, and 194)

[12] W.M.P. van der Aalst, A.H.M. ter Hofstede, and M. Weske. Business
Process Management: A Survey. In W.M.P. van der Aalst, A.H.M. ter
Hofstede, and M. Weske, editors, International Conference on Business
Process Management (BPM 2003), volume 2678 of Lecture Notes in Com-
puter Science, pages 1–12. Springer, 2003. (cited on p. 1)

[13] W.M.P. van der Aalst, L. Aldred, M. Dumas, and A.H.M. ter Hofstede.
Design and Implementation of the YAWL System. In A. Persson and
J. Stirna, editors, International Conference on Advanced Information Sys-
tems Engineering (CAiSE’04), volume 3084 of Lecture Notes in Computer
Science, pages 142–159. Springer, 2004. (cited on p. 98)

[14] W.M.P. van der Aalst, A.J.M.M. Weijters, and L. Maruster. Workflow
Mining: Discovering Process Models from Event Logs. IEEE Transactions
on Knowledge and Data Engineering, 16(9):1128–1142, 2004. (cited on
p. 195)

[15] W.M.P. van der Aalst, B.F. van Dongen, C.W. Günther, R.S. Mans, A.K.
Alves de Medeiros, A. Rozinat, V. Rubin, M. Song, H.M.W. Verbeek, and
A.J.M.M. Weijters. ProM 4.0: Comprehensive Support for Real Process
Analysis. In J. Kleijn and A. Yakovlev, editors, International Conference
on Applications and Theory of Petri Nets and Other Models of Concur-
rency (ICATPN 2007), volume 4546 of Lecture Notes in Computer Sci-
ence, pages 484–494. Springer, 2007. (cited on pp. 151, 153, 156, 194,
and 197)

[16] W.M.P. van der Aalst, M. Dumas, F. Gottschalk, A.H.M. ter Hofstede,
M. La Rosa, and J. Mendling. Correctness-Preserving Configuration of
Business Process Models. In J. Fiadeiro and P. Inverardi, editors, Funda-
mental Approaches to Software Engineering (FASE 2008), volume 4961 of
Lecture Notes in Computer Science, pages 46–61. Springer, 2008. (cited
on p. 12)

[17] W.M.P. van der Aalst, M. Dumas, F. Gottschalk, A.H.M. ter Hofstede,
M. La Rosa, and J. Mendling. Correctness-Preserving Configuration of
Business Process Models. Formal Aspects of Computing, 2009. doi: 10.
1007/s00165-009-0112-0. (forthcoming). (cited on p. 12)

[18] W.M.P. van der Aalst, V. Rubin, H.M.W. Verbeek, B.F. van Dongen,
E. Kindler, and C.W. Günther. Process Mining: A Two-step Approach
to Balance between Underfitting and Overfitting. Software and Systems

Bibliography 269

Modeling, 2009. doi: 10.1007/s10270-008-0106-z. (forthcoming). (cited
on p. 195)

[19] P.A. Abdulla, S.P. Iyer, and A. Nyln. SAT-Solving the Coverability Prob-
lem for Petri Nets. Formal Methods in System Design, 24(1):25–43, 2004.
(cited on p. 224)

[20] M. Adams, A.H.M. ter Hofstede, D. Edmond, and W.M.P. van der Aalst.
Implementing Dynamic Flexibility in Workflows using Worklets. BPM
Center Report BPM-06-06, BPMcenter.org, 2006. (cited on p. 39)

[21] R. Agrawal, T. Imielinski, and A. Swami. Mining Association Rules be-
tween Sets of Items in Large Databases. In P. Bunemann and S. Jajo-
dia, editors, ACM SIGMOD International Conference on Management of
Data, pages 207–216. ACM, 1993. (cited on p. 233)

[22] R. Agrawal, D. Gunopulos, and F. Leymann. Mining Process Mod-
els from Workflow Logs. In H.-J. Schek, F. Saltor, I. Ramos, and
G. Alonso, editors, International Conference on Extending Database Tech-
nology (EDBT’98), volume 1377 of Lecture Notes in Computer Science,
pages 469–483. Springer, 1998. (cited on p. 195)

[23] L. Algermissen, P. Delfmann, and B. Niehaves. Experiences in Process-
oriented Reorganisation through Reference Modelling in Public Adminis-
trations — The Case Study Regio@KomM. In Bartmann D., Rajola F.,
Kallinikos J., Avison D., Winter R., Ein-Dor P., Becker J., Bodendorf F.,
and Weinhardt C., editors, European Conference on Information Systems
(ECIS), pages 1434–1445, 2005. (cited on p. 139)

[24] A. Alves, A. Arkin, S. Askary, C. Barreto, B. Bloch, F. Curbera, M. Ford,
Y. Goland, A. Gúızar, N. Kartha, C.K. Liu, R Khalaf, D. König,
M. Marin, V. Mehta, S. Thatte, D. van der Rijn, P. Yendluri, and A. Yiu.
Web Services Business Process Execution Language Version 2.0. OASIS
Standard, April 2007. URL http://docs.oasis-open.org/wsbpel/2.

0/wsbpel-v2.0.pdf. (cited on p. 44)

[25] A.K. Alves de Medeiros. Genetic Process Mining. PhD thesis, Eindhoven
University of Technology, 2006. (cited on pp. 156, 194, and 195)

[26] A.K. Alves de Medeiros, C. Pedrinaci, W.M.P. van der Aalst, J. Domingue,
M. Song, A. Rozinat, B. Norton, and L. Cabral. An Outlook on Semantic
Business Process Mining and Monitoring. In Z. Tari R. Meersman and
P. Herrero, editors, On the Move to Meaningful Internet Systems (OTM
Workshops, Part II, International Workshop on Semantic Web and Web
Semantics, SWWS 2007), volume 4806 of Lecture Notes in Computer Sci-
ence, 2007. (cited on p. 149)

[27] A.K. Alves de Medeiros, A.J.M.M. Weijters, and W.M.P. van der Aalst.
Genetic Process Mining: An Experimental Evaluation. Data Mining
and Knowledge Discovery, 14(2):245–304, 2007. (cited on pp. 150, 151,
and 156)

[28] S. Arbaoui and F. Oquendo. Reuse Sensitive Process Models: Are Process
Elements Software Assets Too? In D.E. Perry, editor, 10th International

http://bpmcenter.org
http://docs.oasis-open.org/wsbpel/2.0/wsbpel-v2.0.pdf
http://docs.oasis-open.org/wsbpel/2.0/wsbpel-v2.0.pdf

270 Bibliography

Software Process Workshop (ISPW ’96), pages 21–24. IEEE Computer
Society, 1996. (cited on p. 4)

[29] D.J. Armstrong. The quarks of object-oriented development. Communi-
cations of the ACM, 49(2):123–128, 2006. (cited on p. 4)

[30] D. Avrilionis and P.-Y. Cunin. Process Model Reuse Support — The OP-
SIS Approach. In D.E. Perry, editor, 10th International Software Process
Workshop (ISPW ’96), pages 25–28. IEEE Computer Society, 1996. (cited
on p. 4)

[31] F. Bachmann and L. Bass. Managing Variability in Software Architec-
tures. ACM SIGSOFT Software Engineering Notes, 26(3):126–132, 2001.
(cited on p. 62)

[32] T. Basten and W.M.P. van der Aalst. Inheritance of Behavior. Journal
of Logic and Algebraic Programming, 47(2):47–145, 2001. (cited on pp. 46
and 49)

[33] J. Becker, P. Delfmann, A. Dreiling, R. Knackstedt, and D. Kuropka.
Configurative Process Modeling – Outlining an Approach to increased
Business Process Model Usability. In M. Khosrow-Pour, editor, Inno-
vations Through Information Technology: Information Resources Man-
agement Association International Conference (IRMA). IGI Publishing,
2004. (cited on pp. 6, 61, 62, 120, and 232)

[34] J. Becker, P. Delfmann, and R. Knackstedt. Adaptive Reference Mod-
elling: Integrating Configurative and Generic Adaptation Techniques for
Information Models. In J. Becker and P. Delfmann, editors, Reference
Modeling. Efficient Information Systems Design Through Reuse of Infor-
mation Models, pages 27–58. Springer, 2007. (cited on pp. 6, 10, 61, 62,
101, 102, 120, and 232)

[35] T.J. Biggerstaff and A.J. Perlis, editors. Software Reusability: Vol. 2,
Applications and Experience. ACM, 1989. (cited on p. 4)

[36] T.J. Biggerstaff and A.J. Perlis, editors. Software Reusability: Vol. 1,
Concepts and Models. ACM, 1989. (cited on p. 4)

[37] M.-J. Blin, J. Wainer, and C. Bauzer Medeiros. A Reuse-Oriented Work-
flow Definition Language. International Journal of Cooperative Informa-
tion Systems, 12(1):1–36, 2003. (cited on p. 6)

[38] J. vom; Brocke. Referenzmodellierung: Gestaltung und Verteilung von
Konstruktionsprozessen. PhD thesis, Westfälische Wilhelms-Universitt
Münster, 2003. (cited on p. 6)

[39] G. Brunet, M. Chechik, S. Easterbrook, S. Nejati, N. Niu, and M. Sabet-
zadeh. A Manifesto for Model Merging. In J. Bézivin, J.-M. Favre, and
B. Rumpe, editors, International Workshop on Global Integrated Model
Management (GaMMa ’06), pages 5–12. ACM, 2006. (cited on pp. 196
and 197)

[40] P. Cabena, P.Hasjinian, R. Stadler, J. Verhees, and A. Zanasi. Discover-
ing Data Mining: From Concept to Implementation. Prentice-Hall, 1998.
(cited on p. 149)

Bibliography 271

[41] E.M. Clarke, O. Grumberg, and D.A. Peled. Model Checking. MIT Press,
1999. (cited on p. 222)

[42] I. Classen, H. Weber, and Y. Han. Towards Evolutionary and Adaptive
Workflow Systems-infrastructure Support Based on Higher-Order Object
Nets and CORBA. In Z. Milosevic, editor, International Enterprise Dis-
tributed Object Computing Conference (EDOC ’97), pages 300–308. IEEE
Computer Society, 1997. ISBN 0-8186-8031-8. (cited on p. 10)

[43] P. Clements and L. Northrop. Software Product Lines: Practices and
Patterns. Addison-Wesley, 2001. (cited on p. 62)

[44] J.E. Cook and A.L. Wolf. Software Process Validation: Quantitatively
Measuring the Correspondence of a Process to a Model. ACM Trans-
actions on Software Engineering and Methodology, 8(2):147–176, 1999.
(cited on pp. 156 and 197)

[45] J.E. Cook, Z. Du, C. Liu, and A.L. Wolf. Discovering Models of Behavior
for Concurrent Workflows. Computers in Industry, 53(3):297–319, 2004.
(cited on p. 195)

[46] J. Cortadella, M. Kishinevsky, L. Lavagno, and A. Yakovlev. Synthesizing
Petri Nets from State-Based Models. In R. Rudell and R.A. Rutenbar,
editors, IEEE/ACM International Conference on Computer-aided Design
(ICCAD ’95), pages 164–171. IEEE Computer Society, 1995. (cited on
p. 197)

[47] J. Cortadella, M. Kishinevsky, A. Kondratyev, L. Lavagno, and
A. Yakovlev. Petrify: A Tool for Manipulating Concurrent Specifica-
tions and Synthesis of Asynchronous Controllers. IEICE Transactions on
Information and Systems, E80-D(3):315–325, 1997. (cited on p. 197)

[48] T. Curran and G. Keller. SAP R/3 Business Blueprint: Understanding
the Business Process Reference Model. Upper Saddle River, 1997. (cited
on pp. 2, 4, 139, and 150)

[49] K. Czarnecki and M. Antkiewicz. Mapping Features to Models: A Tem-
plate Approach Based on Superimposed Variants. In Robert Glück and
Michael Lowry, editors, International Conference on Generative Program-
ming and Component Engineering (GPCE 2005), volume 3676/2005 of
Lecture Notes in Computer Science, pages 422–437. Springer, 2005. (cited
on pp. 10 and 102)

[50] K. Czarnecki and U. Eisenecker. Generative Programming: Methods,
Tools, and Applications. Addison-Wesley, 2000. (cited on p. 120)

[51] M. Daneva. ERP Requirements Engineering Practice: Lessons Learned.
IEEE Software, 21(2):26–33, 2004. (cited on pp. 2 and 4)

[52] T.H. Davenport. Putting the Enterprise into the Enterprise System. Har-
vard Business Review, 76(4):121–131, 1998. (cited on p. 2)

[53] J. Desel and T. Erwin. Modeling, Simulation and Analysis of Business
Processes. In W.M.P. van der Aalst, J. Desel, and A. Oberweis, editors,

272 Bibliography

Business Process Management, Models, Techniques, and Empirical Stud-
ies, volume 1806 of Lecture Notes In Computer Science, pages 129–141.
Springer, 2000. ISBN 3-540-67454-3. (cited on p. 1)

[54] J. Desel and J. Esparza. Free Choice Petri Nets, volume 40 of Cambridge
Tracts in Theoretical Computer Science. Cambridge University Press,
1995. (cited on pp. 25 and 211)

[55] B.F. van Dongen. Process Mining and Verification. PhD thesis, Eindhoven
University of Technology, 2007. (cited on p. 194)

[56] B.F. van Dongen and W.M.P. van der Aalst. Multi-Phase Process Mining:
Building Instance Graphs. In P. Atzeni, W. Chu, H. Lu, S. Zhou, and
T.W. Ling, editors, International Conference on Conceptual Modeling (ER
2004), volume 3288 of Lecture Notes in Computer Science, pages 362–
376. Springer, 2004. (cited on pp. 153, 155, 156, 158, 185, 186, 188, 194,
and 198)

[57] B.F. van Dongen and W.M.P. van der Aalst. Multi-Phase Mining: Ag-
gregating Instance Graphs into EPCs and Petri Nets. In D. Marinescu,
editor, International Workshop on Applications of Petri Nets to Coor-
dination, Workflow and Business Process Management (PNCWB 2005),
pages 35–58, Miami, FL, 2005. Florida International University. (cited on
pp. 32, 151, 153, 155, 156, 158, 171, 185, 186, 188, 194, 195, and 198)

[58] B.F. van Dongen, M.H. Jansen-Vullers, H.M.W. Verbeek, and W.M.P.
van der Aalst. Verification of the SAP Reference Models Using EPC
Reduction, State-space Analysis, and Invariants. Computers in Industry,
58(6):578–601, 2007. (cited on pp. 6 and 234)

[59] A. Dreiling, M. Rosemann, W.M.P. van der Aalst, W. Sadiq, and S. Khan.
Model-Driven Process Configuration of Enterprise Systems. In O.K. Fer-
stl, E.J. Sinz, S. Eckert, and T. Isselhorst, editors, Wirtschaftsinformatik
2005. eEconomy, eGovernment, eSociety, pages 687–706. Physica-Verlag,
2005. (cited on pp. 61, 62, and 63)

[60] A. Dreiling, M. Rosemann, W.M.P. van der Aalst, and W. Sadiq. From
Conceptual Process Models to Running Workflows: A Holistic Approach
for the Configuration of Enterprise Systems. Decision Support Systems,
45(2):189–207, 2008. (cited on p. 10)

[61] A. Ebersbach, M. Glaser, R. Heigl, and A. Warta. Wiki: Web Collabora-
tion. Springer, 2008. (cited on p. 235)

[62] E. Ellmer, D. Merkl, G. Quirchmayr, and A M. Tjoa. Process Model Reuse
to Promote Organizational Learning in Software Development. In Con-
ference on Computer Software and Applications (COMPSAC ’96), pages
21–26. IEEE Computer Society, 1996. (cited on p. 4)

[63] E.A. Emerson and J.Y. Halpern. “Sometimes” and “Not Never” Revisited:
On Branching versus Linear Time Temporal Logic. Journal of the ACM,
33(1):151–178, 1986. (cited on p. 222)

Bibliography 273

[64] G. Faustmann. Configuration for Adaptation – A Human-centered Ap-
proach to Flexible Workflow Enactment. Computer Supported Cooperative
Work (CSCW), 9(3–4):413–434, 2000. (cited on p. 10)

[65] John Favaro. What Price Reusability?: A Case Study. Ada Letters, XI
(3):115–124, 1991. (cited on p. 4)

[66] P. Fettke and P. Loos. Classification of Reference Models — a Method-
ology and its Application. Information Systems and e-Business Manage-
ment, 1(1):35–53, 2003. (cited on p. 4)

[67] P. Fettke, P. Loos, and J. Zwicker. Business Process Reference Models:
Survey and Classification. In C. Bussler and A. Haller, editors, Business
Process Management Workshops, Workshop on Business Process Refer-
ence Models (BPRM 2005), volume 3812 of Lecture Notes in Computer
Science, pages 469–483. Springer, 2006. (cited on pp. 4 and 139)

[68] E. Freeman, E. Freeman, B. Bates, and K. Sierra. Head First Design
Patterns. O’ Reilly, 2004. (cited on p. 4)

[69] P. Freeman, editor. Tutorial, Software Reusability. IEEE Computer Soci-
ety, 1987. (cited on p. 4)

[70] D. Georgakopoulos, M. Hornick, and A. Sheth. An Overview of Workflow
Management: From Process Modeling to Workflow Automation Infras-
tructure. Distributed and Parallel Databases, 3:119–153, 1995. (cited on
p. 1)

[71] R.J. van Glabbeek and W.P. Weijland. Branching Time and Abstraction
in Bisimulation Semantics. Journal of the ACM, 43(3):555–600, 1996.
(cited on pp. 21 and 46)

[72] F. Gottschalk, M. Rosemann, and W.M.P. van der Aalst. My Own Pro-
cess: Providing Dedicated Views on EPCs. In M. Nüttgens and F. Rump,
editors, Geschäftsprozessmanagement mit Ereignisgesteuerten Prozessket-
ten (EPK 2005), volume 167 of CEUR Workshop Proceedings, pages 156–
175, 2005. (cited on p. 223)

[73] F. Gottschalk, W.M.P. van der Aalst, and M.H. Jansen-Vullers. Con-
figurable Process Models – A Foundational Approach. In J. Becker and
P. Delfmann, editors, Reference Modeling. Efficient Information Systems
Design Through Reuse of Information Models, pages 59–78. Springer,
2007. (cited on p. 12)

[74] F. Gottschalk, W.M.P. van der Aalst, and M.H. Jansen-Vullers. SAP
WebFlow Made Configurable: Unifying Workflow Templates into a Con-
figurable Model. In G. Alonso, P. Dadam, and M. Rosemann, edi-
tors, International Conference on Business Process Management (BPM
2007), volume 4714 of Lecture Notes in Computer Science, pages 262–
270. Springer, 2007. (cited on p. 12)

[75] F. Gottschalk, W.M.P. van der Aalst, M.H. Jansen-Vullers, and H.M.W.
Verbeek. Protos2CPN: Using Colored Petri Nets for Configuring and Test-
ing Business Processes. International Journal on Software Tools for Tech-

274 Bibliography

nology Transfer (STTT), 10(1):95–110, 2007. (cited on pp. 12, 33, 185,
and 233)

[76] F. Gottschalk, W.M.P. van der Aalst, and M.H. Jansen-Vullers. Min-
ing Reference Process Models and their Configurations. In R. Meersman,
Z. Tari, and P. Herrero, editors, On the Move to Meaningful Internet
Systems (OTM Workshops, Workshop on Enterprise Integration, Inter-
operability and Networking, EI2N 2008), volume 5333 of Lecture Notes in
Computer Science, pages 263–272. Springer, 2008. (cited on p. 12)

[77] F. Gottschalk, W.M.P. van der Aalst, and M.H. Jansen-Vullers. Merging
Event-driven Process Chains. In R. Meersman and Z. Tari, editors, On
the Move to Meaningful Internet Systems (OTM, Part I, International
Conference on Cooperative Information Systems, CoopIS 2008), volume
5331 of Lecture Notes in Computer Science, pages 418–426. Springer, 2008.
(cited on p. 12)

[78] F. Gottschalk, W.M.P. van der Aalst, M.H. Jansen-Vullers, and M. La
Rosa. Configurable Workflow Models. International Journal of Coopera-
tive Information Systems (IJCIS), 17(2):177–221, 2008. (cited on pp. 12
and 98)

[79] F. Gottschalk, T.A.C. Wagemakers, M.H. Jansen-Vullers, W.M.P. van der
Aalst, and M. La Rosa. Configurable Process Models: Experiences from a
Municipality Case Study. In P. van Eck and J.Gordijn, editors, Interna-
tional Conference on Advanced Information Systems Engineering (CAiSE
09), volume 5565 of Lecture Notes in Computer Science, pages 486–500.
Springer, 2009. (cited on p. 12)

[80] J. Gray. The transaction concept: virtues and limitations (invited paper).
In VLDB ’1981: Proceedings of the seventh international conference on
Very Large Data Bases, pages 144–154. VLDB Endowment, 1981. (cited
on pp. 219 and 225)

[81] G. Greco, A. Guzzo, L. Pontieri, and D. Saccà. Mining Expressive Pro-
cess Models by Clustering Workflow Traces. In H. Dai, R. Srikant, and
C. Zhang, editors, Pacific-Asia Conference on Advances in Knowledge
Discovery and Data Mining (PAKDD 2004), volume 3056 of Lecture Notes
in Computer Science, pages 52–62. Springer, 2004. (cited on p. 195)

[82] C.W. Günther. Process Mining in Unstructured Environments. PhD the-
sis, Eindhoven University of Technology, 2009. (cited on p. 194)

[83] C.W. Günther and W.M.P. van der Aalst. A Generic Import Framework
for Process Event Logs. In J. Eder and S. Dustdar, editors, Business Pro-
cess Management Workshops, Workshop on Business Process Intelligence
(BPI 2006), volume 4103, pages 81–92. Springer, 2006. (cited on pp. 146
and 185)

[84] C.W. Günther and W.M.P. van der Aalst. Fuzzy Mining: Adaptive Pro-
cess Simplification Based on Multi-perspective Metrics. In G. Alonso,
P. Dadam, and M. Rosemann, editors, International Conference on Busi-
ness Process Management (BPM 2007), volume 4714 of Lecture Notes in

Bibliography 275

Computer Science, pages 328–343. Springer, 2007. (cited on pp. 150, 151,
156, and 195)

[85] Theo Haerder and Andreas Reuter. Principles of transaction-oriented
database recovery. ACM Computer Surveys (CSUR), 15(4):287–317, 1983.
(cited on pp. 219 and 225)

[86] T. D. Han, S. Purao, and V.C. Storey. A Methodology for Building a
Repository of Object-Oriented Design Fragments. In International Con-
ference on Conceptual Modeling (ER ’99), pages 203–217. Springer, 1999.
(cited on pp. 6 and 10)

[87] Y. Han, A. Sheth, and C. Bussler. A Taxonomy of Adaptive Workflow
Management. In Workshop of the 1998 ACM Conference on Computer
Supported Cooperative Work, Seattle, WA, 1998. (cited on pp. 10 and 233)

[88] K.M. van Hee, A. Serebrenik, N. Sidorova, and M. Voorhoeve. Soundness
of Resource-Constrained Workflow Nets. In G. Ciardo and P. Darondeau,
editors, International Conference on Applications and Theory of Petri
Nets (ICATPN 2005), volume 3536 of Lecture Notes in Computer Science,
pages 250–267, 2005. (cited on pp. 222 and 223)

[89] J.L. Hennessy and D.A. Patterson. Computer Architecture: A Quantita-
tive Approach. Morgan Kaufmann, 4th edition, 2006. (cited on p. 224)

[90] J. Herbst and D. Karagiannis. Workflow Mining with InWoLvE. Com-
puters in Industry, 53(3):245–264, 2004. (cited on p. 195)

[91] A. R. Hevner, S. T. March, J. Park, and S. Ram. Design Science in
Information Systems Research. MIS Quarterly, 28(1):75–105, 2004. (cited
on p. 11)

[92] S. Hinz, K. Schmidt, and C. Stahl. Transforming BPEL to Petri Nets.
In W.M.P. van der Aalst, B. Benatallah, F. Casati, and F. Curbera, ed-
itors, International Conference on Business Process Management (BPM
2005), volume 3649 of Lecture Notes in Computer Science, pages 220–235.
Springer, 2005. (cited on p. 44)

[93] Y. Huang, H. Wang, W. Zhao, and J. Zhu. Analyzing Data Dependence
Based on Workflow Net. In Y. Shi, G.D. van Albada, J. Dongarra, and
P.M.A. Sloot, editors, International Conference on Computational Science
(ICCS ’07, Part III), volume 4489 of Lecture Notes In Computer Science,
pages 257–264. Springer, 2007. (cited on p. 224)

[94] IDS Scheer AG. ARIS Platform - Product Brochure, 2008. URL http://

www.ids-scheer.com/set/6473/Product%20Brochure%202008-07.pdf.
[accessed 07-07-2009]. (cited on p. 32)

[95] M.L. Jaccheri, G.P. Picco, and P. Lago. Eliciting Software Process Models
with the E3 Language. ACM Transactions on Software Engineering and
Methodology (TOSEM), 7(4):368–410, 1998. (cited on p. 4)

[96] I. Jacobson, M. Griss, and P. Jonsson. Software Reuse: Architecture,
Process and Organization for Business Success. Addison-Wesley, 1997.
(cited on p. 62)

http://www.ids-scheer.com/set/6473/Product%20Brochure%202008-07.pdf
http://www.ids-scheer.com/set/6473/Product%20Brochure%202008-07.pdf

276 Bibliography

[97] M.H. Jansen-Vullers, W.M.P. van der Aalst, and M. Rosemann. Min-
ing Configurable Enterprise Information Systems. Data and Knowledge
Engineering, 56(3):195 – 244, 2006. (cited on pp. 197 and 198)

[98] K. Jensen, L. M. Kristensen, and L. Wells. Coloured Petri Nets and CPN
Tools for Modelling and Validation of Concurrent Systems. International
Journal on Software Tools for Technology Transfer (STTT), 9(3–4):213–
254, 2007. (cited on pp. 28 and 33)

[99] P. J. Kammer, G. A. Bolcer, R. N. Taylor, A. S. Hitomi, and M. Bergman.
Techniques for Supporting Dynamic and Adaptive Workflow. Computer
Supported Cooperative Work (CSCW), 9(3):269–292, 2000. (cited on
pp. 10 and 233)

[100] K. Kang, S. Cohen, J. Hess, W. Novak, and A. Peterson. Feature-Oriented
Domain Analysis (FODA) Feasibility Study. Technical Report CMU/SEI-
90-TR-21, Software Engineering Institute, Carnegie Mellon University,
Pittsburgh PA, USA, 1990. (cited on p. 121)

[101] A. Kaplan. The Conduct of Inquiry: Methodology for Behavioral Science.
Chandler Publications in Anthropology and Sociology. Chandler Pub. Co.,
1964. (cited on p. 11)

[102] M. Karow, D. Pfeiffer, and M. Räckers. Empirical-Based Construc-
tion of Reference Models in Public Administrations. In M. Bichler,
T. Hess, H. Krcmar, U. Lechner, F. Matthes, A. Picot, B. Speitkamp,
and P. Wolf, editors, Multikonferenz Wirtschaftsinformatik 2008. Ref-
erenzmodellierung, pages 1613–1624. GITO-Verlag, 2008. (cited on p. 139)

[103] G. Keller, M. Nüttgens, and A.W. Scheer. Semantische Prozeßmod-
ellierung auf der Grundlage Ereignisgesteuerter Prozeßketten (EPK).
Veröffentlichungen des Instituts für Wirtschaftsinformatik 89, University
of Saarland, Saarbrücken, Germany, 1992. (in German). (cited on p. 28)

[104] K. Kennedy and J.R. Allen. Optimizing Compilers for Modern Architec-
tures: A Dependence-based Approach. Morgan Kaufmann, 2002. (cited on
p. 224)

[105] B. Kiepuszewski, A. H. M. Ter Hofstede, and W.M.P. van der Aalst.
Fundamentals of Control Flow in Workflows. Acta Informatica, 39:143–
209, 2002. (cited on p. 213)

[106] H. Kilov. Generic Information Modeling Concepts: A Reusable Compo-
nent Library. In J. Bézivin and B. Meyer, editors, International Confer-
ence on Technology of Object-oriented Languages and Systems (TOOLS
4), pages 187–201. Prentice-Hall, 1991. (cited on p. 6)

[107] E. Kindler. On the Semantics of EPCs: Resolving the Vicious Circle.
Data and Knowledge Engineering, 56(1):23–40, 2006. (cited on p. 31)

[108] A. Koschmider and E. Blanchard. User Assistance for Business Process
Model Decomposition. In IEEE International Conference on Research
Challenges in Information Science, pages 445–454, 2007. (cited on p. 6)

Bibliography 277

[109] C.W. Krueger. Software Reuse. ACM Computing Surveys (CSUR), 24
(2):131–183, 1992. (cited on p. 4)

[110] M. La Rosa. Managing Variability in Process-Aware Information Systems.
PhD thesis, Queensland University of Technology, Brisbane, 2009. (cited
on p. 119)

[111] M. La Rosa, W.M.P. van der Aalst, M. Dumas, and A.H.M. ter Hofstede.
Questionnaire-based Variability Modeling for System Configuration. Soft-
ware and Systems Modeling, 8(2):251–274, 2008. (cited on pp. 105, 106,
109, and 120)

[112] M. La Rosa, M. Dumas, A.H.M. ter Hofstede, J. Mendling, and
F. Gottschalk. Beyond Control-Flow: Extending Business Process Con-
figuration to Roles and Objects. In Q. Li, S. Spaccapietra, E. Yu, and
A. Olivé, editors, International Conference on Conceptual Modeling (ER
’08), volume 5231 of Lecture Notes in Computer Science, pages 199–215.
Springer, 2008. (cited on pp. 216, 218, 221, and 223)

[113] M. La Rosa, F. Gottschalk, M. Dumas, and W.M.P. van der Aalst. Linking
Domain Models and Process Models for Reference Model Configuration. In
A. ter Hofstede, B. Benatallah, and H.-Y. Paik, editors, Business Process
Management Workshops, Reference Model Workshop (RefMod 2007), vol-
ume 4928 of Lecture Notes in Computer Science, pages 417–430. Springer,
2008. (cited on pp. 12, 105, and 106)

[114] M. La Rosa, A.H.M. ter Hofstede, M. Rosemann, and K. Shortland. Bring-
ing Process to Post Production. In International Conference on “Creating
Value: Between Commerce and Commons”, Brisbane, Australia, 2008.
Queensland University of Technology. (cited on p. 139)

[115] N. Lohmann. A Feature-Complete Petri Net Semantics for WS-BPEL
2.0. In M. Dumas and R. Heckel, editors, International Workshop on
Web Services and Formal Methods (WS-FM 2007), volume 4937 of Lecture
Notes in Computer Science, pages 77–91. Springer, 2008. (cited on p. 44)

[116] R.J. Malak, Jr. and C.J.J. Paredis. Foundations of Validating Reusable
Behavioral Models in Engineering Design Problems. In R.G. Ingalls, M.D.
Rossetti, J.S. Smith, and B.A. Peters, editors, Winter Simulation Confer-
ence (WSC ’04), pages 420–428. IEEE Computer Society, 2004. (cited on
p. 4)

[117] Salvatore T. March and Gerald F. Smith. Design and Natural Science
Research on Information Technology. Decision Support Systems, 15(4):
251–266, 1995. (cited on p. 11)

[118] J. Mendling and C. Simon. Business Process Design by View Integration.
In J. Eder and S. Dustdar, editors, Business Process Management Work-
shops, Workshop on Business Process Design (BPD 2006), volume 4103
of Lecture Notes in Computer Science, pages 55–64. Springer, 2006. (cited
on p. 196)

[119] J. Mendling, H.M.W. Verbeek, B.F. van Dongen, W.M.P. van der Aalst,
and G. Neumann. Detection and Prediction of Errors in EPCs of the SAP

278 Bibliography

Reference Model. Data and Knowledge Engineering, 64(1):312–329, 2008.
(cited on pp. 150 and 234)

[120] R. Milner. A Calculus of Communicating Systems, volume 92 of Lecture
Notes in Computer Science. Springer, 1980. (cited on p. 21)

[121] S. Minato, N. Ishiura, and S. Yajima. Shared Binary Decision Diagram
with Attributed Edges for Efficient Boolean function Manipulation. In
R.C. Smith, editor, ACM/IEEE Design Automation Conference, pages
52–57. ACM, 1990. (cited on pp. 59, 71, 114, 115, and 206)

[122] T. Murata. Petri Nets: Properties, Analysis and Applications. Proceedings
of the IEEE, 77(4):541–580, 1989. (cited on p. 25)

[123] A. Oberweis. Person-to-Application Processes: Wokflow Management.
In M.Dumas, W.M.P. van der Aalst, and A.H.M. ter Hofstede, editors,
Process-Aware Information Systems, pages 21–36. Wiley & Sons, 2005.
(cited on p. 1)

[124] C. Ouyang, E. Verbeek, W.M.P. van der Aalst, S. Breutel, M. Dumas, and
A.H.M. ter Hofstede. Formal Semantics and Analysis of Control Flow in
WS-BPEL. Science of Computer Programming, 67(2–3):162–198, 2007.
(cited on p. 44)

[125] Pallas Athena BV. Protos User Manual. Plasmolen, The Netherlands,
2004. (cited on p. 34)

[126] M.H. Pesic, M. Schonenberg, N. Sidorova, and W.M.P. van der Aalst.
Constraint-Based Workflow Models: Change Made Easy. In R. Meersman
and Z. Tari, editors, On the Move to Meaningful Internet Systems (OTM,
International Conference on Cooperative Information Systems, CoopIS
2007), volume 4803 of Lecture Notes in Computer Science, pages 77–94,
2007. (cited on p. 224)

[127] J.L. Peterson. Petri net theory and the modeling of systems. Prentice-Hall,
1981. (cited on p. 25)

[128] S.S. Pinter and M. Golani. Discovering workflow models from activities’
lifespans. Computers in Industry, 53(3):283–296, 2004. (cited on p. 195)

[129] K. Pohl, G. Böckle, and F. van der Linden. Software Product Line Engi-
neering — Foundations, Principles and Techniques. Springer, 2005. (cited
on p. 120)

[130] R. S. Pressman. Software Engineering: A Practitioner’s Approach. Higher
Education. Mc Graw Hill, 6th edition, 2005. (cited on p. 121)

[131] O.O. Prisecaru. Resource workflow nets: an approach to workflow mod-
elling and analysis. Enterprise Information Systems, 2(2):101–120, 2008.
(cited on pp. 222 and 223)

[132] F. Puhlmann, A. Schnieders, J. Weiland, and M. Weske. Variability Mech-
anisms for Process Models. PESOA-Report TR 17/2005, Process Family
Engineering in Service-Oriented Applications (PESOA), June, 2005. (cited
on pp. 10, 61, 62, and 102)

Bibliography 279

[133] D. Pyle. Data Preparation for Data Mining. Morgan Kaufmann, 1999.
(cited on p. 149)

[134] I. Raedts, M. Petković, Y.S. Usenko, J.M. van der Werf, J.F. Groote,
and L. Somers. Transformation of BPMN Models for Behaviour Analysis.
In J.C. Augusto, J. Barjis, and U. Ultes-Nitsche, editors, International
Workshop on Modelling, Simulation, Verification and Validation of En-
terprise Information Systems (MSVVEIS ’07), pages 126–137. INSTICC
Press, 2007. (cited on p. 35)

[135] E. S. Raymond. The CML2 Language. In International Python conference,
2001. (cited on p. 120)

[136] M. Reichert and P. Dadam. ADEPTflex: Supporting Dynamic Changes
of Workflow without Loosing Control. Journal of Intelligent Information
Systems, 10(2):93–129, 1998. (cited on p. 224)

[137] H.A. Reijers, R.S. Mans, and R.A. van der Toorn. Improved model man-
agement with aggregated business process models. Data and Knowledge
Engineering, 68(2):221–243, 2009. (cited on pp. 101 and 102)

[138] W. Reisig and G. Rozenberg, editors. Lectures on Petri Nets I: Basic Mod-
els, volume 1491 of Lecture Notes in Computer Science, 1998. Springer.
(cited on p. 25)

[139] A. Rickayzen, J. Dart, C. Brennecke, and M. Schneider. Practical Work-
flow for SAP – Effective Business Processes using SAP’s WebFlow Engine.
Galileo Press, 2002. (cited on pp. 2, 4, and 42)

[140] S. Rinderle, M. Reichert, and P. Dadam. Disjoint and Overlapping Pro-
cess Changes: Challenges, Solutions, Applications. In R. Meersman and
Z. Tari, editors, On the Move to Meaningful Internet Systems (OTM,
International Conference on Cooperative Information Systems, CoopIS
2004), volume 3290, pages 101–120, 2004. (cited on pp. 10 and 233)

[141] R. Roberts. The Rise and Fall of the Public Law Litigation Model: Impli-
cations for Public Management. Public Administration and Management,
13(1):51–106, 2008. (cited on p. 123)

[142] M. Rosemann. Preparation of Process Modeling. In J. Becker, M. Kugeler,
and M. Rosemann, editors, Process Management: A Guide for the Design
of Business Processes, pages 41–78. Springer, 2003. (cited on p. 1)

[143] M. Rosemann and W.M.P. van der Aalst. A Configurable Reference Mod-
elling Language. Information Systems, 32(1):1–23, 2007. (cited on pp. 10,
30, 98, 99, 100, and 119)

[144] A. Rozinat and W.M.P. van der Aalst. Conformance Checking of Processes
based on Monitoring Real Behavior. Information Systems, 33(1):64–95,
2008. (cited on pp. 8, 10, 134, 178, 191, and 197)

[145] A. Rozinat and W.M.P. van der Aalst. Conformance Testing: Measuring
the Fit and Appropriateness of Event Logs and Process Models. In C. Bus-
sler et al., editor, Business Process Management Workshops, Workshop on
Business Process Intelligence (BPI 2005), volume 3812 of Lecture Notes

280 Bibliography

in Computer Science, pages 163–176. Springer, 2005. (cited on pp. 8, 10,
and 197)

[146] A. Rozinat, R.S. Mans, M.S. Song, and W.M.P. van der Aalst. Discovering
colored Petri nets from event logs. International Journal on Software Tools
for Technology Transfer (STTT), 10(1):57–74, 2008. (cited on pp. 185
and 233)

[147] A. Rozinat, A.K. Alves de Medeiros, C.W. Günther, A. J. M. M. Weijters,
and W.M.P. van der Aalst. The Need for a Process Mining Evaluation
Framework in Research and Practice. In A. ter Hofstede, B. Benatal-
lah, and H.-Y. Paik, editors, Business Process Management Workshops,
Workshop on Business Process Intelligence (BPI 2007), volume 4928 of
Lecture Notes in Computer Science, pages 84–89. Springer, 2008. (cited
on p. 156)

[148] N. Russell. Foundations of Process-Aware Information Systems. PhD
thesis, Queensland University of Technology, 2007. (cited on p. 28)

[149] N. Russell, A.H.M. ter Hofstede, D. Edmond, and W.M.P. van der Aalst.
Workflow Resource Patterns. BETA Working Paper Series WP 127, Eind-
hoven University of Technology, 2004. (cited on p. 28)

[150] N. Russell, W.M.P. van der Aalst, A.H.M. ter Hofstede, and D. Edmond.
Workflow Resource Patterns: Identification, Representation and Tool Sup-
port. In O. Pastor and J. Falcao e Cunha, editors, International Confer-
ence on Advanced Information Systems Engineering (CAiSE’05), volume
3520 of Lecture Notes in Computer Science, pages 216–232. Springer, 2005.
(cited on p. 28)

[151] N. Russell, A.H.M. ter Hofstede, W.M.P. van der Aalst, and N. Mulyar.
Workflow Control-Flow Patterns: A Revised View. BPM Center Report
BPM-06-22, BPMcenter.org, 2006. (cited on p. 28)

[152] M. Sabetzadeh and S. Easterbrook. View Merging in the Presence of
Incompleteness and Inconsistency. Requirements Engineering, 11(3):174–
193, 2006. (cited on pp. 195 and 196)

[153] M. Sabetzadeh, S. Nejati, S. Easterbrook, and M. Chechik. A
Relationship-Driven Framework for Model Merging. In International
Workshop on Modeling in Software Engineering (MISE ’07), pages 2–8.
IEEE Computer Society, 2007. (cited on p. 196)

[154] S.W. Sadiq, M.E. Orlowska, and W. Sadiq. Specification and validation
of process constraints for flexible workflows. Information Systems, 30(5):
349–378, 2005. (cited on p. 224)

[155] SAP AG. SAP History: From Start-Up Software Vendor to Global Market
Leader, 2008. URL http://www.sap.com/company/history.epx. [ac-
cessed 27-10-2008]. (cited on pp. 4 and 35)

[156] SAP AG. Graphic: Approve Travel Request, 2006. URL
http://help.sap.com/saphelp_erp2005vp/helpdata/en/04/

928b1846f311d189470000e829fbbd/frameset.htm. [accessed 07-
07-2009]. (cited on p. 5)

http://bpmcenter.org
http://www.sap.com/company/history.epx
http://help.sap.com/saphelp_erp2005vp/helpdata/en/04/928b1846f311d189470000e829fbbd/frameset.htm
http://help.sap.com/saphelp_erp2005vp/helpdata/en/04/928b1846f311d189470000e829fbbd/frameset.htm

Bibliography 281

[157] SAP AG. Automatically Approve Travel Requests, 2006. URL
http://help.sap.com/saphelp_erp2005vp/helpdata/en/f5/

4fe23cab43ba5be10000000a114084/frameset.htm. [accessed 07-
07-2009]. (cited on p. 5)

[158] K. Sarshar and P. Loos. Comparing the Control-Flow of EPC and Petri
Net from the End-User Perspective. In W.M.P. van der Aalst, B. Be-
natallah, F. Casati, and F. Curbera, editors, International Conference on
Business Process Management (BPM 2005), volume 3649 of Lecture Notes
in Computer Science, pages 434–439. Springer, 2005. (cited on p. 32)

[159] A.-W. Scheer. Architecture of Integrated Information Systems : Founda-
tions of Enterprise Modelling. Springer, 1992. (cited on p. 1)

[160] A.-W. Scheer. ARIS Toolset: A Software Product is Born. Information
Systems, 19(8):607–624, 1994. (cited on p. 32)

[161] A.-W. Scheer. Business Process Engineering, Reference Models for Indus-
trial Enterprises. Springer, 1994. (cited on pp. 4 and 139)

[162] A.-W. Scheer and F. Habermann. Enterprise resource planning: making
ERP a success. Communications of the ACM, 43(4):57–61, 2000. (cited
on p. 2)

[163] A.-W. Scheer, O. Thomas, and O. Adam. Process Modeling Using Event-
Driven Process Chains. In M.Dumas, W.M.P. van der Aalst, and A.H.M.
ter Hofstede, editors, Process-Aware Information Systems, chapter 6,
pages 119–145. Wiley & Sons, 2005. (cited on pp. 1 and 32)

[164] A.W. Scheer. ARIS - Business Process Frameworks. Springer, 3rd edition,
1999. (cited on p. 32)

[165] G. Schimm. Mining Exact Models of Concurrent Workflows. Computers
in Industry, 53(3):265–281, 2004. (cited on p. 195)

[166] P.-Y. Schobbens, P. Heymans, and J.-C. Trigaux. Feature Diagrams: A
Survey and a Formal Semantics. In M. Glinz and R. Lutz, editors, IEEE
International Conference on Requirements Engineering (RE ’06), pages
139 – 148. IEEE Computer Society, 2006. (cited on p. 121)

[167] E. Schwartz. Who’s in Charge, Anyway? Software Should Work for Us,
Not the Other Way Around, March 2004. URL http://www.infoworld.

com/d/developer-world/whos-in-charge-anyway-989?page=0,0. [ac-
cessed 07-07-2009]. (cited on p. 2)

[168] S. Seidel, M. Rosemann, A.H.M. ter Hofstede, and L. Bradford. Develop-
ing a Business Process Reference Model for the Screen Business - A Design
Science Research Case Study. In S. Spencer and A. Jenkins, editors, Aus-
tralasian Conference on Information Systems (ACIS 2006). Australasian
Association for Information Systems, 2006. (cited on p. 139)

[169] D. Seo and P. Loucopoulos. Formalisation of Data and Process Model
Reuse Using Hierarchic Data Types. In International Conference on Ad-
vanced Information Systems Engineering (CAiSE ’94), pages 256–268.
Springer, 1995. (cited on p. 4)

http://help.sap.com/saphelp_erp2005vp/helpdata/en/f5/4fe23cab43ba5be10000000a114084/frameset.htm
http://help.sap.com/saphelp_erp2005vp/helpdata/en/f5/4fe23cab43ba5be10000000a114084/frameset.htm
http://www.infoworld.com/d/developer-world/whos-in-charge-anyway-989?page=0,0
http://www.infoworld.com/d/developer-world/whos-in-charge-anyway-989?page=0,0

282 Bibliography

[170] P. Soffer, B. Golany, and D. Dori. ERP Modeling: A Comprehensive
Approach. Information Systems, 28(6):673–690, 2003. (cited on p. 120)

[171] S. Stephens. The Supply Chain Council and the Supply Chain Operations
Reference Model. Supply Chain Management — An International Journal,
1(1):9–13, 2001. (cited on p. 139)

[172] T. Stoesser. Don’t Share If You Don’t Want To, April 2009.
URL http://communities.softwareag.com/ecosystem/communities/

alignspace/2009/dont_share_if_you_dont_want_to.html. [accessed
06-05-2009]. (cited on p. 235)

[173] M. Svahnberg and J. Bosch. Issues Concerning Variability in Software
Product Lines. In F. van der Linden, editor, International Workshop on
Software Architectures for Product Families (IW-SAPF-3), volume 1951 of
Lecture Notes in Computer Science, pages 146–157. Springer, 2000. (cited
on p. 62)

[174] M. Svahnberg, J. van Gurp, and J. Bosch. A Taxonomy of Variability
Realization Techniques. Software: Practice and Experience, 35(8):705–
754, 2005. (cited on p. 62)

[175] S. Tam, W.B. Lee, W.W.C. Chung, and E.L.Y. Nam. Design of a Re-
configurable Workflow System for Rapid Product Development. Business
Process Management Journal, 9(1):33–45, 2003. (cited on p. 10)

[176] O. Thomas, B. Hermes, and P. Loos. Towards a Reference Process Model
for Event Management. In A. ter Hofstede, B. Benatallah, and H.-Y.
Paik, editors, Business Process Management Workshops, Reference Model
Workshop (RefMod 2007), volume 4928 of Lecture Notes in Computer
Science, pages 443–454. Springer, 2008. (cited on p. 139)

[177] W. Tracz. Software Reuse: Emerging Technology. IEEE Computer Soci-
ety, 1988. (cited on p. 4)

[178] N. Trčka, W.M.P. van der Aalst, and N. Sidorova. Analyzing Control-
Flow and Data-Flow in Workflow Processes in a Unified Way. Computer
Science Report 08-31, Eindhoven University of Technology, 2008. (cited
on p. 224)

[179] N. Trčka, W.M.P. van der Aalst, and N. Sidorova. Data-Flow Anti-
Patterns: Discovering Dataflow Errors in Workflows. In P. van Eck
and J.Gordijn, editors, International Conference on Advanced Informa-
tion Systems (CAiSE ’09), volume 5565 of Lecture Notes in Computer
Science, pages 425–439. Springer, 2009. (cited on pp. 216, 217, 218, 219,
220, 221, and 224)

[180] S. Uchitel and M. Chechik. Merging Partial Behavioural Models. SIG-
SOFT Software Engineering Notes, 29(6):43–52, 2004. (cited on p. 197)

[181] H.M.W. Verbeek and W.M.P. van der Aalst. Analyzing BPEL Processes
using Petri Nets. In D. Marinescu, editor, International Workshop on
Applications of Petri Nets to Coordination, Workflow and Business Pro-
cess Management (PNCWB 2005), pages 59–78, Miami, FL, 2005. Florida
International University. (cited on p. 44)

http://communities.softwareag.com/ecosystem/communities/alignspace/2009/dont_share_if_you_dont_want_to.html
http://communities.softwareag.com/ecosystem/communities/alignspace/2009/dont_share_if_you_dont_want_to.html

Bibliography 283

[182] H.M.W. Verbeek, T. Basten, and W.M.P. van der Aalst. Diagnosing Work-
flow Processes using Woflan. The Computer Journal, 44(4):246–279, 2001.
(cited on pp. 25, 34, 214, 223, 224, and 225)

[183] H.M.W. Verbeek, M. van Hattem, H.A. Reijers, and W. de Munk. Pro-
tos 7.0: Simulation Made Accessible. In G. Ciardo and P. Darondeau,
editors, International Conference on Applications and Theory of Petri
Nets (ICATPN 2005), volume 3536 of Lecture Notes in Computer Sci-
ence, pages 465–474, Miami, USA, 2005. Springer. (cited on p. 32)

[184] A. Vinter Ratzer, L. Wells, H. M. Lassen, M. Laursen, J. F. Qvortrup,
M. S. Stissing, M. Westergaard, S. Christensen, and K. Jensen. CPN
Tools for Editing, Simulating, and Analysing Coloured Petri Nets. In
W.M.P. van der Aalst and E. Best, editors, International Conference on
Applications and Theory of Petri Nets (ICATPN 2003), volume 2679 of
Lecture Notes in Computer Science, pages 450–462. Springer, 2003. (cited
on pp. 28 and 33)

[185] T.A.C. Wagemakers. Configurable workflow models: A case study. Mas-
ter’s thesis, Eindhoven University of Technology, 2009. (cited on p. 140)

[186] A.J.M.M. Weijters and W.M.P. van der Aalst. Rediscovering workflow
models from event-based data using little thumb. Integral Computer-Aided
Engineering, 10(2):151–162, 2003. (cited on pp. 150, 151, 156, and 195)

[187] L. Wells. Monitoring a CP-net, March 2006. URL http://wiki.daimi.

au.dk/cpntools-help/monitoring_a_cp-net.wiki. [accessed 07-07-
2009]. (cited on p. 33)

[188] L. Wen, J. Wang, and J. Sun. Detecting Implicit Dependencies Between
Tasks from Event Logs. In X. Zhou, J. Li, H.T. Shen, M. Kitsuregawa, and
Y. Zhang, editors, Asia-Pacific Web Conference on Frontiers of WWW
Research and Development (APWeb 2006), volume 3841 of Lecture Notes
in Computer Science, pages 591–603. Springer, 2006. (cited on p. 195)

[189] J.M.E.M. van der Werf, B.F. van Dongen, C.A.J. Hurkens, and A. Sere-
brenik. Process Discovery Using Integer Linear Programming. In K.M.
van Hee and R. Valk, editors, International Conference on Applications
and Theory of Petri Nets (PETRI NETS ’08), volume 5062 of Lecture
Notes in Computer Science, pages 368–387. Springer, 2008. (cited on
p. 195)

[190] M. Weske. Business Process Management: Concepts, Languages, Archi-
tectures. Springer, 2007. (cited on p. 1)

[191] S.A. White and D. Miers. BPMN Modeling and Reference Guide. Future
Strategies, 2008. (cited on p. 34)

[192] S.A. White et al. Business Process Modeling Notation (BPMN), Version
1.2. OMG specification, 2008. URL http://www.omg.org/spec/BPMN/1.

2/. [accessed 07-07-2009]. (cited on p. 34)

[193] S. Zhang, C. Zhang, and Q. Yang. Data Preparation for Data Mining.
Applied Artificial Intelligence, 17(5):375–381, 2003. (cited on p. 149)

http://wiki.daimi.au.dk/cpntools-help/monitoring_a_cp-net.wiki
http://wiki.daimi.au.dk/cpntools-help/monitoring_a_cp-net.wiki
http://www.omg.org/spec/BPMN/1.2/
http://www.omg.org/spec/BPMN/1.2/

284 Bibliography

Index

absence of livelocks, 24
abstract class, 6
abstract from behavior, 228
abstract view, 195
abstraction, 47, 49
academia, 15
accept travel request, 29, 175
access data, 216, 219, 221
accommodation, 156
accommodation quote, 22, 55
ACID, 225
acknowledging an unborn child, 125,

127–129, 185, 188, 191
activate event

SAP WebFlow, 71, 72
activate link

BPEL, 43
SAP WebFlow, 68, 69

active behavior, 159
activity

BPEL, 42, 72, 74, 75
BPMN, 34
Protos, 32
SAP WebFlow, 40, 66

activity diagram, 62, 102
acyclic path, 204, 205
adapt model, 45, 61
adapt template manually, 5
adaptation mechanism, 61, 62
adaptation option, 61
adaptation practices, 61
adaptation technique, 6, 62
adaptive workflow system, 10
add behavior, 10, 45, 46, 48, 61, 63,

151, 220, 228, 232
add content, 6, 45
add functionality, 46

add information, 45
add property, 46
add task, 216, 217
add transition, 60
adding a delay, 26
additional behavior, 46, 178, 197, 199
additional choices, 156
additional functionality, 46
address verification, 90
ADEPTflex, 224
administration, 19, 22, 34, 55, 56, 123,

137
administration process, 123
administrator, 22
advanced notation, 21
advanced pattern, 27
advanced process modeling language,

15, 28, 52, 103
age verification, 90
aggregated EPC, 101
aggregating log events, 148
aggregation, 6, 232
align system description, 195
align variants, 198
aligning log files, 198
AlignSpace, 235
allow all variants, 59
allow behavior, 45, 65
allow outflow, 58
allow port, 54, 55, 59, 63, 68

BPEL, 72, 74
YAWL, 78–80, 84–86, 88–90, 92–

95, 129
allow state changes, 54
allow step, 68

SAP WebFlow, 71
allow task, 105

286 Index

allow transition
workflow net, 55, 58, 180, 181, 183

alternative execution, 1
alternative implementation, 62
alternative path, 216, 217
alternative task, 217
alternative to transition, 180
amend configuration, 178
analysis plug-in

ProM, 194
analysis technique, 25
analyzing complex systems, 28
∧ connector

EPC, 29, 32, 162, 169, 171, 196
∧ join type

function graph, 161, 164, 167, 169
∧ split type

function graph, 160, 161, 163, 166,
168, 169, 171

AND-join, 27, 29, 32, 34, 36, 43, 53,
55, 74, 76, 77, 81, 94, 96, 158,
198, 214, 215

AND-split, 27, 29, 32, 34, 36, 53, 55,
77, 78, 92, 93, 96, 101, 102,
158, 198, 214, 215

anonymous data, 148
anti-pattern, 216, 224
appropriate, 10
appropriateness, 197
approval notification, 34
approve requisition, 22
approve travel request, 19, 66, 70, 71,

172
arbitrary transitions, 48
arc

EPC, 30, 100, 101
function graph, 159, 162–164
Petri net, 21, 21, 191
Protos, 32
UML, 102
YAWL, 36, 76–78

ARIS, 28, 32
ask for update, 56
ask question, 108
assign resource

SAP WebFlow, 72

assign type to arc, 159, 161–163, 165–
168, 171

assistant, 22
association rule, 233
atomic expression, 58
atomic formula, 16, 17
atomic requirement

YAWL, 84, 85, 85, 86, 87, 90, 90
atomic statement, 71
atomic task, 36, 194

BPMN, 34
atomicity, 225
audit trail entry, 146
authorization, 216
automated mining, 149
automated process execution, 10
automatic approval, 68, 69, 71
automatic configuration, 208
automatic travel request approval, 5
automatic trip approval, 5
automotive industry, 138
avoid configuration, 51
avoid transition, 199

back office, 26, 27
balanced level of detail, 148
bank, 138
base case, 213
basic process model, 52, 59–61, 63, 68,

79, 87, 98, 105, 124, 128, 129,
143–145, 156–158, 172, 178–
180, 183, 188, 189, 191, 197,
199, 201, 212, 216, 217, 219–
222, 225, 229, 230, 232–234

behavior, 46, 178
EPC, 170, 171, 174
function graph, 163, 169, 171
YAWL, 93

behavior of subclass, 47
behavioral block, 27
behavioral equivalent, 46
behavioral impact, 46
behavioral pattern, 148
behavioral point of view, 174
behavioral requirements, 165
behavioral science, 11

Index 287

benefit, 124
best-practice, 125, 136, 139, 143, 229,

235
birth certificate, 125
block

BPEL, 72, 75
SAP WebFlow, 66–71, 76

block behavior, 65, 98, 101, 102
block implementation, 62
block inflow port, 54
block outflow port, 54
block path

EPC, 100
block port, 54, 58, 59, 63, 68, 103

BPEL, 72, 74, 75
Protos, 191
SAP WebFlow, 72
YAWL, 78–81, 84, 86, 88, 90, 92–

95, 97, 129, 132, 214
block process branch, 63
block process part, 63
block step

SAP WebFlow, 68, 69, 71
block structure, 40, 42

BPEL, 72, 74, 103
SAP WebFlow, 65, 66

block task, 216, 217, 220, 222
YAWL, 215

block transition
LTS, 47, 49–51
workflow net, 55, 56, 58, 60, 180,

181, 183, 203, 206, 208
blocking, 47, 49, 52, 63
book travel, 84
book trip, 19, 51, 106
booking engine, 42
booking workflow, 36
boolean condition, 40
boolean constraint, 230
boolean expression, 74, 204, 227
boolean variable, 106, 109, 204
BPEL, 12, 13, 16, 35, 42–44, 55, 64, 65,

72, 74–76, 84, 88, 102, 103,
211, 229, 231

configurable, 72
BPEL standard, 44

BPM, 1, 3, 4, 12, 32, 135, 137
BPM|one, 32, 137
BPMN, 12, 16, 28, 34, 35, 62, 102, 161,

231
BPMN specification, 34
branch control-flow, 30, 66
branching behavior, 194
branching bisimulation, 46
branching control-flow, 194
branching patterns, 198
building a process model, 152
building block, 6, 25
building configurable process models,

143, 144
business application, 41
business process, 1, 3–5, 15, 19, 20, 22,

23, 27, 28, 51, 62, 158, 198
business process modeling language,

15, 16, 25, 28
business requirement, 232
business transaction event, 41
business trip, 19
busy place, 26
bypass, 153, 180, 181, 183

C-, 66–68, 74–76, 84, 87–92, 96–104,
106, 111, 117–119, 121, 203,
214, 215, 225, 229, 230

cancel booking, 36, 79
cancel branch

SAP WebFlow, 71
cancelation

BPMN, 34
cancelation of behavior

SAP WebFlow, 42
YAWL, 94

cancelation pattern, 36, 103
cancelation port

YAWL, 80, 80, 86
cancelation region, 36

YAWL, 38, 80, 82, 85, 92
capabilities of process mining algo-

rithms, 156
cartesian product of sets, 17
case, 22

SAP WebFlow, 68–71

288 Index

YAWL, 77
case identifier, 22, 27
case study, 123, 125, 128, 133, 134,

139, 140, 183, 185, 188, 189,
191, 230, 234

case token, 26
cash, 105
cash payment, 36, 78
change

request for, 22
change of document

SAP WebFlow, 41
change of properties, 19, 21
change of state, 20
change process model, 10, 233
change travel request, 56
characteristics of mining algorithm,

194
checking conformance, 197
choice, 20, 29, 150, 153, 156

BPEL, 42
Protos, 33

choice between behavior, 196
circle, 21, 32
civil affairs department, 124
claim resource, 222
class, 46
class of events, 151
clause, 17
cleaning log file, 198
cleanup algorithm

YAWL, 91, 92, 96, 97, 214, 215
clear model, 158
clearing center, 29, 172
coinciding post-sets, 25
colored Petri net, 26–28, 33, 185
combination of properties, 21
combinations of process parts, 156
combine configurations

YAWL, 87, 92
combine process definitions, 3
combine requirements

YAWL, 90
combine variants, 198
combined configuration

YAWL, 83, 83

combined log file, 198
combined model, 129, 153
combined set of traces, 156
comlete configuration

YAWL, 87
commercial tool, 16
common subclass, 59
compact model, 158
compact representation, 21
company size, 178
compare behavior, 46, 47, 197
compare configuration approaches, 45
compare event streams, 197
compare models, 61
comparing events, 150
comparison of process mining algo-

rithms, 156
compensation

BPMN, 34
compensation management, 4
competitive advantage, 235
competitor, 148
compiler, 224
complete configuration, 199

YAWL, 83, 83, 87, 90–92
complete firing sequence, 179, 180
complete task, 26, 55, 63, 194
complete task execution, 53
complete workflow, 70
completeness, 10, 137
completion condition

SAP WebFlow, 41
completion of case, 24
completion of process, 23, 24
complex system, 195
complexity, 206
composite task, 39

BPMN, 34
YAWL, 36, 38, 39, 88, 90

compromise, 25, 211
concatenate constraints, 71, 206
concatenate log files, 151
concatenate sequences, 18
concurrency, 150
condition

BPEL, 43, 73

Index 289

colored Petri nets, 27
implicit (YAWL), 38
SAP WebFlow, 40, 66
YAWL, 36, 37, 76–78, 80, 84–87,

92–96
confidential, 148
configurable block

SAP WebFlow, 71
configurable connector

EPC, 99, 100
configurable EWF-net, 87
configurable function

EPC, 99
configurable LTS, 52
configurable port, 55, 58, 61, 65, 76
configurable process model, 3, 11, 45,

52, 52, 59, 61, 63, 101, 143,
145, 150, 153, 157, 158, 171,
172, 178, 198, 199, 206, 227,
228, 233

configurable process models, 148
configurable workflow net, 59, 65, 214
configurable workflow specification

YAWL, 88, 90, 91, 91, 97
configurable workflow system, 10
configuration, 6, 178, 180, 181, 183,

197, 199
LTS, 49, 49, 50
workflow net, 55, 56
YAWL, 81

configuration choice, 156
EPC, 100

configuration constraint, 58, 58, 59,
63, 72, 76, 138, 204, 206, 208,
214, 215, 218–221, 223, 224,
228, 230, 232

BPEL, 74
YAWL, 84, 90, 91

configuration correctness, 140
configuration decision, 49, 50, 52, 58,

70, 74, 76, 81, 84, 87, 88, 91,
98, 99, 105, 124, 132, 134,
138, 193, 204, 214, 224, 225,
229, 233

configuration dependency
YAWL, 84

configuration extension, 64, 66, 103
configuration framework, 139, 215
configuration freedom, 136
configuration function

YAWL, 81, 83
configuration mechanism, 6, 62
configuration of log, 181
configuration opportunity, 45, 62, 63
configuration option, 10, 11, 63, 72,

197
configuration pattern, 10, 63
configuration recommendation, 232
configuration requirement

BPEL, 74
EPC, 101
YAWL, 86, 87

configuration restriction
YAWL, 84

configuration space, 63, 107
configuration step, 208
configuration value, 56, 71
configuration variant, 198
configure port, 55, 59
configure process model, 61
configure transition

LTS, 51
workflow net, 55

configured
LTS, 49, 50, 50, 51
workflow net, 56, 57, 59, 203, 205,

215
conform to behavior, 153
conformance checker, 191, 197
conjunction, 16, 205, 206
conjunction of clauses, 17
conjunction of literals, 17
conjunctive normal form, 17, 17, 206
connection

Protos, 32
connector

EPC, 28, 31, 99–101, 162
connector type

EPC, 29, 169
consistency, 157, 225
constraint, 63, 201, 206, 208, 229

SAP WebFlow, 66, 71

290 Index

constraint violation, 222
construct basic process model, 230
consultancy firm, 2, 135, 138, 139, 235
consultant, 123, 136, 138
consulting firm, 2
consume token, 26

function graph, 161, 164
context menu, 76
contribute to process, 23, 24
control configuration space, 62
control link

BPEL, 42, 72–74
control-flow, 28, 36, 66, 72, 88, 102–

104, 127, 129, 134, 140, 149,
163, 164, 175, 194, 215, 223,
230, 231

control-flow correctness, 222
control-flow pattern, 61, 63
conversion of process models, 158
conversion plug-in

ProM, 194
conversion tools, 175
copies of form, 23
core process, 2
corporate success, 2
correct process model, 59
correctness, 201

workflow net, 59
couple of places, 25
cover behavior, 178, 197
coverability

Petri net, 224
CPN Tools, 33
create data, 216–221, 225
create instance, 37

YAWL, 80, 81
create process model, 151
creation of bypass, 153
creation of document

SAP WebFlow, 41
creative addition, 62
creative domain, 140
creative freedom, 6
credit card, 78, 79, 84, 105, 106, 108
credit card payment, 36
critical path, 208

CTL, 216, 221, 222
customer interaction, 136
customer satisfaction, 232
customer support, 2
cycle, 27, 109, 204

firing in, 24

daily practice, 125
dashed arrow, 108, 172
data, 149

colored Petri nets, 26
Protos, 33
SAP WebFlow, 40, 41

data availability, 215–217
data collection, 148
data configurability, 216
data configuration, 218
data consistency, 224
data dependency, 224
data evaluation

BPMN, 34
data existence, 219
data hazard, 224
data mining, 143, 172
data perspective, 221
data processing, 1, 225
data requirements, 28
data source, 148
data value, 26
data-flow, 129, 134, 141, 216, 219, 222–

224, 231
database, 148
database access, 4
database theory, 225
database transaction, 225
de-select configuration parameter, 62
de-selected behavior, 62
de-syncronize behavior, 196
deactivate link

SAP WebFlow, 68, 69
dead transitions, 25
deadlock, 20, 24, 51, 70, 71, 75, 84,

201, 203, 211, 213, 216, 230
debug a software, 148
decision making, 8, 99, 153
decision node, 10

Index 291

UML, 102
decrease number of instances

YAWL, 80, 83, 85, 92
default configuration, 59, 61, 63, 106,

229
SAP WebFlow, 71, 72
YAWL, 87, 88, 91

default decision, 134
default value, 106
define execution order, 8
defining inheritance relations, 46
delete arc

UML, 102
delete data, 216, 217, 220, 221
dependency, 63, 108, 153, 194, 215, 216
dependent fact, 108
depth-first search, 96
derive individual process, 178
derive subclass, 48
derive superclass, 49
deselect parameters, 62
deselect undesired options, 2
deselecting element types, 101
deselecting elements, 101
deselecting functions

EPC, 101
design decision, 219
design pattern, 4, 6
design phase, 233
design science, 11
desirable property

Petri net, 25
desired behavior, 10, 45, 58
desired configuration, 228
desired information, 194
desired property, 172
detecting configuration, 197
detecting inheritance relations, 46
deviate from solution, 199
deviating event trace, 150
deviating execution, 194
deviating processes, 196
diagnosis phase, 233
difference between multi-sets, 18
different views, 196
directed arc, 159

directed edge, 18
directed path, 23, 204
disable feature, 106
disallow behavior, 197
discard event trace, 178
disconnect path, 203
discover a model, 145
discriminating question, 108
disjunction, 16, 206
disjunction of clauses, 17
disjunction of literals, 17
disjunctive normal form, 17, 17
distinguish behavior, 47, 48
distinguish multiple cases, 27
distribution channel, 107
do not enter sign, 78, 80
document process, 124, 150, 157
documents

Protos, 33
SAP WebFlow, 42

domain configuration, 108, 215
domain configuration model, 109
domain constraint, 52, 105, 107, 108,

135
domain context, 106
domain expert, 135, 215, 227, 229, 230
domain fact, 106–109, 121, 132, 134,

135, 137, 138, 215
domain feature, 106
domain knowledge, 105, 140
domain of function, 17
domain variability, 105, 106, 109, 229
domain-related question, 229
domestic travel, 22, 55
drop travel request, 19, 22, 56, 58
dummy invoke activity

BPEL, 74, 75
dummy net

YAWL, 89, 97
durability, 225
dynamic behavior, 63, 204
dynamic instance creation

YAWL, 37, 80, 92

edge of graph, 18, 20
eEPC, 32

292 Index

effective process execution, 2
effects of transitions, 48
efficiency, 223
element, 17
element of multi-set, 18
element of sequence, 18, 18
element selection, 62
eliminate activity, 102
eliminate behavior, 178, 228
eliminate element, 7, 18, 62
eliminate inconsistent data, 220
eliminate modeling efforts, 6
eliminate task, 218, 219, 221, 225
eliminate undesired behavior, 45
employee, 22, 34, 55, 56, 222
empty sequence, 18
empty set, 17
enable feature, 106
enable task

YAWL, 76–78, 80
enabled link

BPEL, 43
enabled task, 26

YAWL, 36, 76
enabled transition, 24, 179

Petri net, 23
enabling rule

Petri net, 23
enact process variant, 59
enactment of business process, 15
encapsulation, 47, 49, 228
end event, 31, 174

BPMN, 34
end user, 140
enforce behavior, 11
enforce usage, 62
enhance models, 233
enterprise system, 4, 10, 35, 40, 72, 139
EPC, 12, 16, 28–32, 34, 40, 52, 98–

102, 104, 111, 117–119, 121,
139, 158, 159, 161–165, 169–
176, 185, 188, 189, 196, 197,
211, 231

extended, 32
well-formed, 30, 31

EPC from function graph, 170

equivalence, 17, 46
equivalennce, 46
equivalent models, 188
equivalent state, 46
ERP, 2, 3
error, 148, 234

reference model, 150
error handling

BPMN, 34
essential task, 51, 58, 201, 230
evaluate requirement

YAWL, 86, 90
event

EPC, 28, 52, 100
SAP WebFlow, 40, 41, 67–69, 71,

72
event creator

SAP WebFlow, 41, 69
event identifier, 178
event management, 139
event name, 149, 151

EPC, 174, 175
event port

SAP WebFlow, 67–69
event stream, 197
event trace, 149, 150, 156, 178–180,

194, 196
event type

BPMN, 34
log file, 146

Event-driven Process Chain (EPC),
28, 30

EWF-net, 36–39, 76–78, 80, 81, 83–85,
87–94, 96, 97, 111

exception
SAP WebFlow, 41

exclude arc
UML, 102

exclude node
UML, 102

exclusive choice, 27, 63, 103, 107
exclusive disjunction, 16
executability, 201, 214, 222, 223
executable process model, 129, 135,

150
execute function

Index 293

EPC, 52
execute task, 26, 50, 53–55, 63

YAWL, 94
execute transition, 20, 47–50

Petri net, 52
execute workflow

YAWL, 98
executed behavior, 150
execution errors, 216
execution log, 8
execution outcome, 20
execution path, 217, 221
execution semantics, 15
execution time, 26, 34, 149
execution traces, 150
expanded workflow net, 183
expert interview, 140, 230
export plug-in

ProM, 194
expressiveness, 25, 211
extended EPC, 32
Extended Workflow net (EWF-net),

37
external effect, 50
extracting information, 194
extreme case, 172

facilitate reuse, 234
fade out element, 62
failed execution, 194
failed replay, 180
false, 16
feasibility, 124, 135, 139, 223
feasible configuration, 199
feature diagrams, 120
feedback link, 215
filter a sequence, 18, 18
filter plug-in

ProM, 194
filtering irrelevant content, 143
final condition

YAWL, 86
final element, 151
final function, 169

function graph, 165
final marking, 179

workflow net, 24, 24, 25
final place, 213

workflow net, 24
final state

LTS, 20, 51
financial system, 41
find errors, 148
find superclass, 48
fire transition, 179

Petri net, 23–25, 27
workflow net, 55, 60

firing rule
Petri net, 23

firing sequence, 179
first-class model, 109
first-order logic, 71
fitness, 8, 156, 194, 197
flow

BPEL, 42, 72
flow of case, 54
flow relation

Petri net, 21
workflow net, 56
YAWL, 37, 92, 93, 95, 96

Flower, 137
focus group interview, 123, 135
fork

SAP WebFlow, 40, 66, 68, 71
formal definition, 14

log file, 149
formal foundation of patterns, 28
formal language, 15, 16
formal process definition, 15, 19
formal semantics

BPMN, 35
workflow nets, 19

formal specification, 1, 58
formal verification, 25
forward case, 55
free-choice, 225

Petri net, 25, 25, 225
workflow net, 211–214, 224

free-choice nets, 231
frequency profile, 197
function, 17, 17

EPC, 28, 99–101, 161, 163, 164

294 Index

function graph, 159, 161, 162
function graph, 158, 159, 159, 161–

172, 174, 175
future research, 231
future work, 227

garbage, 221
gateway

BPMN, 34
general requirement

YAWL, 85, 86
general status message

SAP WebFlow, 41
generalization, 156, 158, 172, 198
generalized soundness, 214
generate process model, 148, 151, 153,

157, 194, 197, 198
generating frequency profile, 197
generating integrated model, 196
generic adaptation, 6, 62, 232
generic task, 39
get married, 125
global policy, 138
goal of configuration, 45
good configuration, 144
good process model, 225
good-quality content, 234
graph, 18, 18, 21
graph notation, 19, 158
graph structure, 102
graph-based constructs, 42
graphical manner, 194
guarantee correctness, 3
guarantee soundness, 231
guard, 27
guideline, 139

EPC, 101
guiding principle, 45

harmonize naming, 127
headquarter policy, 136
hidden, 48, 78, 180, 181, 183, 194, 203
hide behavior, 65, 98, 101, 102
hide inflow port, 54
hide outflow port, 55
hide port, 54, 59, 63, 68, 103

BPEL, 72, 74, 75
YAWL, 78–80, 85, 86, 88–90, 94,

95, 97, 129, 132
hide process part, 63
hide step, 68

SAP WebFlow, 69, 71
hide task, 55, 58, 62, 100, 217–220, 223

EPC, 101
hide transition

LTS, 49–51
workflow net, 55, 56, 60, 208

hiding, 49, 50, 52, 63
hierarchy, 36

YAWL, 76
hierarchy configuration

YAWL, 90
hierarchy port

YAWL, 88, 88, 89–91
high-quality information, 234
high-quality process model, 1
hotel, 36, 73, 78, 106, 107
HR process, 2, 136
human resources, 137

IBM, 2, 139
identical behavior, 46–48, 127, 172
identifier, 46, 106, 179
identify behavior, 47
identify configuration, 197
identify used tasks, 178
IDS Scheer, 28
implementation project, 4, 235
implication, 16
implicit condition, 38

YAWL, 38
implicit place, 33
implicit status, 33
import plug-in

ProM, 194
improve process, 150
In place, 26, 27
in-house business process, 32
include arc

UML, 102
include function

EPC, 99

Index 295

include node
UML, 102

incoming arc, 26, 55, 102, 161, 163,
165, 171, 203

EPC, 99
incoming control link

BPEL, 43, 72, 74
incoming path, 53, 175
incoming process branch, 27, 53
incoming process path, 53
incomplete configuration

YAWL, 83, 87
incomplete log, 150
inconsistency, 5
inconsistent data, 219, 219, 220, 221,

224, 225
inconsistent level of detail, 148
incorrect process model, 58, 199
increase number of instances

YAWL, 80, 83, 85, 92
individual application, 10
individual model, 133
individual need, 4
individual needs, 45
individual requirement, 2, 4
individual variant, 127
induction hypothesis, 213
industrial enterprise, 139
industrial standard, 2
inflow, 86

YAWL, 94
inflow port, 53–55, 58, 63, 68, 88
informal language, 58
informal process model, 2
information society, 1
information system, 1, 12, 15, 145, 194
inhabitant, 125
inherit behavior, 46
inheritance concept, 4, 45, 46, 50, 63
inheritance of dynamic behavior, 45
inheritance perspective, 60
inheritance relation, 46, 47, 49, 63, 228
inhibit behavior, 63, 227, 228
inhibit configuration, 51
inhibit functionality, 47
inhibit process flow, 54

inhibit task, 51
inhouse process, 125
initial element, 151
initial function, 169, 174

function graph, 165
initial marking, 179

workflow net, 24, 24, 25
initial state

LTS, 20, 51
initial transition, 181
innovation, 2
innovative process, 143
input arc

SAP WebFlow, 66
input condition

YAWL, 36, 37, 77, 86, 88, 92, 96,
214

input data, 156
input log file, 145, 156
input model, 171, 172
input node, 19, 31
input of activity, 15
input path, 52
input place, 151

CPN, 33
workflow net, 214

input port
BPEL, 72, 74, 75
Protos, 191
SAP WebFlow, 67, 68, 70
YAWL, 77, 77, 78–82, 84–86, 94,

95
input process, 60
input screen, 124, 129, 133, 137
instance

YAWL, 37, 80, 81, 86
instance creation

YAWL, 83
instantiation, 6, 232
instruction pipeline, 224
integer programming problem, 198
integrate behavior, 59, 198
integrate process variants, 143, 144,

152, 198
integrated process model, 2, 129, 132–

134, 151, 175, 178, 188, 198

296 Index

integrating behavior, 199
integrating process variations, 140
interactive approach, 157
interface, 6
interface separation, 62
interleaved parallel routing, 63
intermediate event

BPMN, 34
intermediate format, 158
intermediate state, 42
internal effect, 50
internal place, 204
international, 148
international journal, 12
international travel, 22, 208
internet shop, 79, 80, 96, 98
intersection of sets, 17
interview partner, 135, 137, 140
invalid configuration, 72
inverse direction, 63
invisible task, 150, 153, 178, 194
invocie verification, 2
invoke activity

BPEL, 42, 72–74
IP address, 145
irrelevant element type, 101
isolation, 22, 225
issues of configurable notations, 45
issuing death certificate, 125, 260–266
IT, 15, 35, 143, 145, 146
IT system, 35, 145, 146
iteration over arcs, 175
ITIL, 139

join behavior
YAWL, 38, 76, 94, 95

join condition
BPEL, 43
SAP WebFlow, 68, 71

join connector
EPC, 31, 164, 169, 171, 175

join control-flow
SAP WebFlow, 66

join node
UML, 102

join pattern, 52

join type
function graph, 159, 161, 162, 164,

165, 167, 169, 171, 175
joining fork

SAP WebFlow, 40

key conference, 12

label
LTS, 20
Petri net, 21

Labeled Transition System (LTS), 20
lack of consistency, 157
late data deletion, 221
law, 123, 148, 233
least common multiple, 48, 52, 59, 60
leave task, 53
legislation, 123
legislative body, 125
length of sequence, 18, 18
level of abstraction, 66, 67
level of decision making, 99
level of detail, 1

log file, 148
library, 173
life cycle, 233
limit configuration space, 58, 63
limit process behavior, 10
linear time complexity, 175
linear to the number of functions, 175
link

BPEL, 43
SAP WebFlow, 67–69

link port
BPEL, 73

linkage of data
SAP WebFlow, 42

linkage of events to workflows
SAP WebFlow, 42

linkage of steps to workflows
SAP WebFlow, 42

linked event
SAP WebFlow, 41

linked operation
BPEL, 42

linking configurations, 137

Index 297

literal, 17
literature study, 61
livelock, 24, 75, 230
local regulation, 136
local requirement, 138
log, 143
log entry, 148
log event, 150, 151, 153, 156, 178, 179,

188, 194, 198
log event identifier, 149
log file, 143–146, 148, 149, 149, 150–

153, 156, 157, 172, 175, 178–
181, 183, 185, 188, 189, 191,
194, 197–199, 230, 232, 234

log format, 183
log level, 197
log replay, 179, 181, 197

advanced, 197
logical expression, 84
logical operator, 16, 16, 17, 84, 85
logical term, 62
logistics, 4
loop, 27, 28

BPEL, 75
lost update problem, 225
LTL, 216, 221, 224, 231
LTS, 16, 19–21, 25, 31, 33, 35, 40, 42,

44, 46–52, 55, 57, 65, 73, 74,
78, 80, 100, 101, 103

LTS from BPEL, 44
LTS from SAP WebFlow, 42
LTS from workflow net, 25

machine learning, 233
maintainability, 137
maintenance change, 233
maintenance contract, 32
making reservation, 175
manager, 1
mandatory fact, 106
manual adaptation, 2, 51, 232
manual approval, 70
manual effort, 157
manual update, 156
map configuration options, 63
map connector

EPC, 99
map domain variation, 105
map event identifiers, 178
map event to task, 150
map log events, 149, 198
map workflow net to LTS, 25, 25
Mapper, 117
mapping, 114, 121, 129, 134, 215, 229

YAWL, 36
mapping functions

EPC, 172, 173
mapping names, 143
mapping task

YAWL, 89
mark condition

YAWL, 96
mark place

workflow net, 55
mark visited element

YAWL, 96
market leader, 32
marketing, 2
marking, 213

colored Petri net, 27
Petri net, 23, 23, 25, 27, 52
workflow net, 24, 55, 179, 180

marking arcs, 197
function graph, 159–161, 163,

165–169
marking nodes, 197
marking places

Petri net, 55, 176
marking properties, 53
marriage, 125
matching event names, 149
matching identifiers, 173
material management, 4
mathematical notation, 16
maximal number of instances

YAWL, 80, 92
maximal possible behavior, 59
meaningless process, 201
measure variations, 138
merge algorithm, 158, 161, 171, 172,

174, 188, 189, 198, 230, 234
merge function graphs, 165, 175

298 Index

merge of behavior, 197
merge of function graphs, 158
merge process models, 144, 157, 158,

161, 165, 174, 175, 194, 196,
198, 227, 230

merge system descriptions, 195
merging algorithm, 172
merging EPCs, 172
merging function graphs, 167, 167
message

BPMN, 34
meta level, 101
metrics, 197
Microsoft, 28
minimal common multiple, 61
minimal number of instances

YAWL, 80, 92
minimal regions, 197
minimal subclass, 48
mining a basic process model, 145
mining algorithm, 144, 146, 151, 151,

172
mining approach, 183
mining process model, 172, 198
missing data, 90, 203, 216, 216, 217,

219, 221, 222, 224, 225, 231
model behavior, 46, 101, 159
model checker, 222
model completeness, 230
model designer, 234
model level, 197
model merging, 172, 178, 198
model provider, 233
model quality, 144
model transformation, 58
model user, 45, 138, 178, 199, 233
model variant, 59, 232
modeling construct, 16, 28
modeling experience, 140
modeling guideline, 85
modeling language, 52, 58
modeling purpose, 16
multi-choice, 27, 36, 63, 103
multi-phase miner, 153, 155, 156, 158,

172, 185, 188, 189, 194, 198
multi-set, 18, 18

multiple condition
SAP WebFlow, 40

multiple data deletion, 221
multiple elements, 18
multiple inheritance, 48
multiple instance task, 37

YAWL, 81
multiple instances, 103

YAWL, 80, 81
multiple processor cores, 224
multiple variants, 197
multiplicity

YAWL, 38, 82, 85
municipality, 32, 123, 125, 127, 129,

132–137, 139, 140, 183, 191,
229, 234

municipality process, 124
mutually exclusive behavior, 63
MXML, 145–147, 149, 185

N-out-of-M-join, 81
name clash, 39
naming convention, 143
natural language, 58, 121
natural numbers, 18
natural science, 11
natural-language questionnaire, 227,

229
necessary condition, 224
necessary information, 105
necessary requirement, 225, 231

YAWL, 85
negation, 16, 17
Netherlands, 28
never deleted data, 220, 221
new requirements, 137
new state, 53
new version, 233
newborn child, 125
node, 18, 159

graph, 18, 20, 188
node type, 21, 52, 65
noise, 144, 150, 156, 183, 194
non-blocked transition, 204
non-core process, 2
non-desired behavior, 228

Index 299

non-initial function
function graph, 161

non-local choice, 156
non-local dependency, 153
non-observable effect, 50
non-required tasks, 179
not deleted on time, 221
not invented here syndrome, 4
NP, 58, 206
NP-complete, 58, 206
null classes, 62
number of elements, 17
number of instances

YAWL, 92
number of visits, 197
NVVB, 125, 127, 139, 144, 188, 191,

193

object-oriented programming, 4, 6, 46
observable behavior, 54
observable effect, 50
observe adaptations, 10
omit component, 62
omit components, 62
omit task, 102, 217
on-time deletion, 221
ontological concept, 149
ontology, 148
ontology class, 149, 150, 172
open standard, 16
open-source, 66
operations on sequences, 18
optimal basic process model, 59
optimal solution, 61
optimal superclass, 48
option to complete, 25, 213
optional behavior, 62
optional function

EPC, 99
optional routing, 197
optional task, 197
optionality pattern, 63
∨ connection

Protos, 33
∨ connector

EPC, 29, 32, 163, 164, 169, 171,
175, 196

∨ join type
function graph, 164, 165, 167, 169

∨ relation
BPEL, 43

∨ split type
function graph, 160, 161, 163, 165,

167–169, 171
OR-join, 27, 31, 32, 34, 36, 77, 80,

81, 94, 96, 158, 161, 171, 172,
175, 198, 230

OR-split, 27, 32, 34, 36, 53, 73, 74, 77,
78, 80, 92, 93, 96, 134, 158,
171, 172, 175, 198, 230

Oracle, 2
orchestrating web-services, 36
orchestration of tasks, 1
order dependency, 108, 109
order of executing functions, 174
ordering constraint, 15
organization, 143, 150
originator, 149
out place, 26
outcome of choice, 33
outcome of task execution, 19, 26
outflow, 86

YAWL, 95
outflow port, 53–55, 63, 68, 69, 78, 88
outgoing arc, 55, 102, 171, 203

EPC, 99
outgoing control link

BPEL, 42, 72, 73
outgoing link port, 74

BPEL, 74, 75
outgoing path, 53, 175
output arc

SAP WebFlow, 67
output block

SAP WebFlow, 68
output condition

YAWL, 36, 37, 88, 92, 96, 214
output node, 19, 31
output of activity, 15
output place, 151

CPN, 33

300 Index

workflow net, 214
output port

BPEL, 72
Protos, 191
SAP WebFlow, 67, 68
YAWL, 78, 78, 79–82, 85, 86, 92,

93, 132
outsourcing company, 2
over-approximate behavior, 153, 171,

172, 197–199
over-approximating algorithm, 198
over-generalized model, 172
overall process, 21, 196
overall state, 15
overview of process mining algorithms,

156
overwrite data, 219

Pallas Athena, 32, 135, 137
parallel execution, 1, 27
parallel process branch, 219
parallel processing, 224

SAP WebFlow, 40
parallel split, 27, 63, 103
parameterize decision node, 102
parametrization, 62, 102
partial configuration

YAWL, 91
partial dependency, 107
partial function, 18
partial matches, 197
participant, 34
path, 101, 102, 203, 204, 208, 214

EPC, 162
Petri net, 24
YAWL, 91, 96, 97, 214

path , 204
path in graph, 19, 19
pay travel, 84
pay trip, 19
payment, 51
payment authorization, 2
payment method, 36, 80, 84, 105
payment workflow, 36
perceived result, 50
performance characteristics, 232

performance indicator, 232
personal data, 148
personal information, 148
personal time management, 4
Petri net, 19, 21, 21, 22, 23, 25–27, 32,

36, 38, 52, 56, 65, 103, 151,
158, 161, 171, 172, 175, 176,
191, 197, 201, 211, 214

from BPEL, 43
from BPMN, 35
from Protos, 33

PinkRoccade Local Government, 135,
137

place
implicit, 33
Petri net, 21, 21, 23, 24, 191
Protos, 32
workflow net, 24, 56

placeholder, 6, 62
pool

BPMN, 34
pool of resources, 26
population, 125
port

BPEL, 74, 75
Protos, 191
SAP WebFlow, 66, 67
YAWL, 76–81, 83–86, 88, 92, 93,

135
port concept, 73
port configuration, 58, 61, 132

YAWL, 79
possible future, 46
post production, 139
post-condition

YAWL, 36, 77, 78
post-set, 19, 19, 25, 204, 208, 212
powerset, 17
practical model, 62
practical need, 10, 135
practical usefulness, 135
practical-oriented process modeling

language, 55
practitioners, 15
pre-adjustment of process models, 157
pre-condition

Index 301

YAWL, 36, 76, 78
pre-processing, 145, 148, 149, 151, 156,

157, 178, 198
pre-processing effort, 183
pre-set, 18, 19, 204, 208, 212, 213
preceding event

EPC, 28
preceding function

EPC, 174, 175
preceding place

Petri net, 23
workflow net, 55

predicate
YAWL, 93

pregnant partner, 125
preliminaries, 16
prepare log file, 143
prepare travel form, 55
preserve behavior, 7, 51, 161, 168, 171,

172, 198, 230
preserve correctness, 201, 203, 211, 229
preserve executability, 224
preserve situation, 51
preserve soundness, 211, 213, 230
prevent task execution, 51, 217
primary process, 1
primitive activity

BPEL, 42
privacy right, 148
process adaptation, 137, 227
process analysis technique, 194
process analysts, 150
process aware information system, 146
process behavior, 8, 19, 27, 50, 143,

150, 159, 162, 178, 194, 195
process branch, 27, 216, 225
process completion, 23, 51, 221
process configuration practice, 14
Process Configurator, 117, 132
process constraint, 87, 101, 106, 114,

215
process correctness constraint, 205,

205, 208, 211, 214, 215, 222
process data, 93
process definition tool

BPEL, 76

process design, 233
process designer, 4–6, 101, 135, 188
process documentation, 4
process domain, 51, 105
process enactment, 233
process environment, 51, 233
process execution, 8, 19, 20, 23, 52, 68,

74, 105, 153, 159, 165, 219–
221, 233

process fact, 109, 121, 135, 215
process flow, 6, 15, 54, 62, 134, 150,

165, 215
EPC, 100
YAWL, 36, 76

process implementation, 143, 157, 178
Process Individualizer, 118, 132
process instance, 10, 23, 146, 150, 151,

153, 188, 189, 233
process landscape, 1
process mining, 143–145, 148, 150, 156,

157, 172, 175, 178, 183, 188,
194, 198, 230, 234

process mining algorithm, 145, 150,
151, 151, 152, 153, 156, 194,
198

process mining framework, 153, 194
process mining plug-in

ProM, 194
process model, 1, 2, 4, 8, 15, 19, 25, 28,

45, 48–52, 54, 56, 59–63, 144,
153, 156–159, 161, 172, 194,
195, 197–199

process model construction, 8
process model design, 233
process model library, 6
process model life cycle, 231, 233
process model reuse, 6, 10, 11, 124,

227, 231
process model variability, 105
process modeling costs, 4
process modeling experience, 2
process modeling language, 11, 15, 55,

59, 66
process modeling notation, 25, 59, 63,

64, 158
process modeling skills, 11

302 Index

process owner, 125
process part, 63, 153, 178
process participant, 34, 35
process performance, 232, 233
process property

Protos, 32
process repository, 235
process start, 23
process state, 19
process template, 2, 4
process travel request, 51
process variability, 109
process variant, 3, 59, 60, 63, 133, 134,

143, 156, 157, 172, 178, 198,
199, 230

processing time, 33
<ProcessInstance>, 149
processor, 224
produce data, 217
production process, 2, 136
programmer, 148
programming-like constructs, 42
prohibit execution, 59
ProM, 153, 156, 158, 172, 173, 175,

185, 188, 191, 194, 197
ProM import framework, 146, 185
ProM plug-in, 172, 175, 194
proper completion, 25, 213
proper subset, 17
property dialogue

Protos, 32
proposition, 16, 17
propositional formula, 16, 17, 87
propositional letter, 16, 225
propositional logic, 16, 58, 87, 107,

205, 221, 224, 225
propositional statement, 16
propositional variable, 205
Protos, 16, 28, 32, 125, 127, 129, 133–

135, 137, 146, 158, 175, 183,
185, 188, 189, 191, 193

Protos2CPN, 33, 185
providing variations, 198
proving assumptions, 15
pruning of dependencies, 194
public administration, 139

Quaestio, 115, 132
quality of log file, 149
quality of model, 156
quantifier, 84, 85, 87
question, 105, 106, 108, 109
question order, 108
questionnaire, 105, 106, 113–115, 121,

123, 124, 129, 132–138, 140,
215, 229, 230

Questionnaire Designer, 115
questionnaire model, 129

race condition, 219
range of function, 17
Rational Process Library, 139
raw log file, 149
re-configurable workflow system, 10
re-connect arc, 62
re-create data, 216, 221
re-direct process flow, 6
re-evaluate constraint, 208
re-file travel request, 19
re-name events

EPC, 174
log file, 150

re-playing EPC, 31
re-use of models, 148
re-use of token, 26
reach state, 50, 51
reachable node

workflow net, 23
read data, 216–221, 225
read-after-write, 224
real-life environment, 135
real-world log file, 145
realistic model, 156
receive activity

BPEL, 42
recommendation

EPC, 101
record executed behavior, 145
record executed work, 198
record modifications, 232
record variation, 235
reduce formula, 206
reduced form, 208

Index 303

reduction card, 36, 73, 74, 78, 79, 90,
106–108

redundant data, 217
reference guide, 14
reference model, 2–4, 6, 123, 125, 127,

135, 136, 138–140, 151, 191,
229, 233–235

classification, 139
reference model provider, 233
reference modeling practice, 6
region-based approach, 197
registering a newborn, 125
registration process, 123, 229
reinvent the wheel, 3
remove activity

UML, 102
remove behavior, 45, 228, 232
remove condition

YAWL, 96
remove flow

YAWL, 92, 93, 96
remove log events, 178
remove node

YAWL, 96
remove place

workflow net, 57
remove task, 216

YAWL, 96, 97
remove token, 211

Petri net, 23
YAWL, 36

remove transition, 50, 51, 56, 203
workflow net, 57

replace transition, 50, 51
replay, 179–181, 183, 191, 193, 197, 199
reply activity

BPEL, 42
request change, 22, 29, 175
request quote, 175
required data, 216
requirement, 61

municipality, 123
YAWL, 86, 87, 97

requirements engineering, 4
research approach, 11
research contribution, 11

research goal, 11
research question, 11
reservation, 172, 175
resource, 15, 26–28, 203, 222

Protos, 33
SAP WebFlow, 42, 71

resource assignment, 222
resource availability, 215, 216, 222
resource configurability, 216
resource constraint, 222
resource involvement, 138
resource pattern, 28
resource perspective, 223
resource requirement, 222, 223
resource-constrained process model,

222
resource-constrained workflow net, 222
restrict behavior, 7, 8, 45, 49, 59, 62,

63, 102, 230, 231
YAWL, 98

restrict choices, 62
restrict configuration opportunities,

52, 63
restrict dynamic instance creation, 81
restrict routing, 102
restrict state changes, 54
restrict using port, 54
reuse potential, 10
reuse process definition, 3
reusing established artifacts, 4
reusing process models, 3
reusing software code, 4
risk for error, 1
roll-back

BPMN, 34
root node, 39
routing construct

SAP WebFlow, 40
run-time, 78, 93, 98, 101, 102, 150, 153
run-time decision, 8, 39, 127, 134
running task, 36

salary payment, 2
sales and distribution, 4
SAP, 2, 4, 28, 35, 40, 71, 72, 139, 234
SAP installation, 40

304 Index

SAP reference model, 150
SAP WebFlow, 16, 35, 40, 44, 55, 64–

72, 74, 76, 84, 88, 103, 229
configurable, 66

SAT, 58, 59, 71, 114, 115, 117, 206
SAT solver, 59
satisfiable formula, 206
SBDD, 59, 115, 206
schema

BPEL, 76
SCOR, 139
screen business, 139
screenshot, 115
secretary, 22, 55, 156
select desired options, 2
selection criteria for resources, 28
semantic constraint, 58
semantic correctness, 87, 88, 211, 224,

225
semantic validity, 58
semantically conflicting behavior, 88
semantically equivalent, 198
semantics, 15, 53

BPEL, 75
EPC, 31, 101
function graph, 161, 165
OR-join, 31
Petri net, 65
UML, 102
workflow net, 55, 203
YAWL, 66, 77, 92, 96

sequence, 17, 18, 18
BPEL, 42, 72, 75
EPC, 99, 100

service-oriented architecture, 36
set, 17, 17
set fact, 108
set parameters, 62
silent function, 165
silent step, 50
silent task, 46, 153

YAWL, 94, 95
silent transition, 20, 46, 50, 51, 57, 153,

156, 175, 179–181, 183, 191,
193, 203

Petri net, 21

workflow net, 56
simple dependency, 108
simple merge, 27, 63, 103
simplified adaptation, 140
simulation

Protos, 33
workflow net, 24

simulation engine, 33, 183
sink place, 203, 204, 214

Petri net, 23, 23
workflow net, 24

size of multi-set, 18
skip activity

BPEL, 75
skip behavior, 89, 94

YAWL, 94
skip block

SAP WebFlow, 68
skip component, 62
skip function

EPC, 99
skip task, 50, 54, 62, 153, 194

EPC, 101
YAWL, 80

skip transition, 153, 199
social community, 235
Software AG, 235
software configuration management,

120
software development, 4, 46
software engineering, 4, 6
software library, 4, 6
Software Product Line Engineering,

120
software provider, 123, 136, 137
software reuse, 4
software vendor, 2
solver, 206
sound process model, 227, 230
soundness, 19, 213, 214, 222–225

process model, 156, 225
Protos, 34
workflow net, 24, 24, 211, 213
YAWL, 84, 85

soundness analysis, 214
soundness criteria, 70

Index 305

soundness preservation, 225
source place, 55, 203, 204, 214

Petri net, 23, 23
workflow net, 24

specific requirement
YAWL, 85

split behavior
YAWL, 38, 77, 93, 94

split connector, 163, 169, 171, 174
split control-flow, 31
split type, 175

function graph, 159, 160, 162, 164,
165, 167, 170, 171

splitting fork
SAP WebFlow, 40

staff member, 26
staged configuration, 206, 214, 225
stakeholder, 15, 124, 125, 129, 132,

135–138, 140
standard notation, 28, 34, 36
standard solution, 2, 4, 137, 229
start event, 31, 174

BPMN, 34
start from scratch, 4
start task, 27, 194
start transition, 26, 27
state, 21

BPEL, 73
change of, 32
LTS, 20, 25
Petri net, 23

state based model, 194
state change, 20, 21, 26, 52–54, 102,

153
YAWL, 78

state machine, 62
state of process, 15, 19
state of system, 196
state properties, 20
state space, 21, 31, 42
state-based model, 197
state-transition system, 196
statement, 16
static instance creation

YAWL, 37, 83, 85, 92
status

Protos, 32
steer execution, 229
steer process configuration, 137, 230
step

SAP WebFlow, 40, 66, 68, 71, 72
storage space, 221, 232
strict dependency, 108
strongly lost data, 219, 219, 221
strongly redundant data, 217, 217,

218, 219
structurally correct, 211
structurally incorrect, 201
structured activity

BPEL, 42
student status verification, 90
sub-block

BPEL, 42, 74, 75
SAP WebFlow, 66, 68–71

sub-sequence, 18
subclass, 46–49, 52, 59–61, 211
subsequent path, 27, 53, 54
subsequent place, 55
subsequent state, 50, 54
subsequent task, 55, 217
subsequent transition, 50
subset, 17
subset of process branches, 27
subset of traces, 156
succeeding event, 29
succeeding function

EPC, 174, 175
succeeding place, 23
successful termination, 20
sufficient condition, 224
sufficient requirement, 211, 214, 225
sum of multi-sets, 18
superclass, 46–49, 59
superfluous elements, 172
support process, 1
swimlane

BPMN, 34
switch

BPEL, 42
synchronization, 27, 63, 103
synchronization behavior, 162, 194
synchronization patterns, 198

306 Index

synchronize behavior, 77, 196, 230
synchronize process branches, 53
synchronizing merge, 27, 36, 63, 103
Synergia, 115, 121
syntactic correctness, 87, 211, 215, 225
syntactic validity, 58
syntactically correct, 59, 63, 87, 205,

206, 208, 211
syntactically incorrect, 214
syntactically invalid, 58
syntactically motivated, 58
syntactically valid, 63, 85
syntactically wrong, 208
syntax

workflow net, 201, 203
synthesis, 197
synthesis of state-based models, 197
synthesizing models, 194
system architecture, 62
system behavior, 4
system configuration, 233
system design, 62
system state, 52
system vendor, 4
systems of constraints, 58

tailor behavior, 10
target function, 161, 167
target market, 178
task, 28

BPEL, 42
Protos, 32, 33
SAP WebFlow, 40, 66
workflow net, 55
YAWL, 36, 37, 76–80, 83–86, 88–

90, 92–96
task completion

SAP WebFlow, 40
YAWL, 81, 88

task description, 134
task execution, 21, 146, 218, 222

YAWL, 76, 78, 80
task implementation

YAWL, 90
task mapping

YAWL, 88, 90, 91

task properties
YAWL, 38

τ task
YAWL, 89

τ transition, 20, 21, 56, 57, 62
LTS, 100

technical constraint, 51
template

SAP WebFlow, 68, 69, 71, 72
template repository, 4
template variant, 5
temporal logic, 216, 221, 222, 225
temporal operator, 221
terminating event, 41
threshold

YAWL, 37, 38, 81, 83, 85, 92
time, 26

colored Petri nets, 26
time complexity

merge algorithm, 175
time-stamp, 26
timer

BPMN, 34
token, 36, 211

colored Petri net, 26, 27
function graph, 160, 161, 163, 165
Petri net, 23, 103
workflow net, 55
YAWL, 76–78, 80, 85, 86

tool support, 139, 140
trace, 179, 180, 198
train ticket, 36, 74, 78, 79, 106, 107
transaction management, 148
transform EPC to function graph, 175
transform function graph to EPC, 174,

175
transformation algorithm, 66, 158, 171

SAP WebFlow, 72
YAWL, 76, 83, 91, 92, 98

transformation rule
BPEL, 75, 76

transition
LTS, 20, 100
Petri net, 21, 21, 27, 65, 191
workflow net, 55

transition configuration, 56

Index 307

transition firing, 180, 181, 211
transition label

LTS, 20, 50
Petri net, 21, 21

transition system, 47, 197
transition valuation, 206
translate EPC to Petri net, 158, 171
translate EPC to Protos, 158
translate Petri net to EPC, 158, 172
translate Protos to EPC, 158
travel agency, 78, 97, 105
travel approval, 2, 68, 71, 72, 215
travel approval process, 55, 172, 181

BPMN, 34
EPC, 29
LTS, 19, 20
Petri net, 22
SAP WebFlow, 40, 41

travel booking, 98, 105, 106
travel booking process

BPEL, 42, 43
YAWL, 37

travel form, 34, 55, 146, 148, 156, 172,
175

travel plan approval, 5
travel request, 2, 5, 19, 22, 51, 58, 67–

69, 72, 216
tree, 175
tree-like hierarchy

YAWL, 38
tree-like structure

YAWL, 36
trigegr task

YAWL, 80
trigger path, 53–55
trigger task, 52–55, 63

YAWL, 78
trip approval, 5
true, 16
truth value, 16, 208, 225
twice deleted data, 221
two-out-of-three join

SAP WebFlow, 41

UML, 62, 102, 161
uncompleted execution, 194

unconnected net, 58
undefined data, 216
undesired behavior, 10, 45, 48, 75
union of sets, 17
unique event, 174
unique final function, 174
University of Saarland, 28
unset variable, 206, 208
user decision

SAP WebFlow, 40
user interface, 4, 72
user-decision

SAP WebFlow, 66

valid configuration, 52, 58, 58, 59, 62
EPC, 101
YAWL, 87, 87, 91, 92

valid process model, 63
validate model, 124
valuating place, 204
valuating transition, 204
valuation, 205, 206, 208
variability mechanism, 61
variable, 204, 206
varying behavior, 196
verification, 25, 108, 225
verification complexity, 25, 211
verification tool, 34, 231
viable configuration, 204
visible tasks, 178
visible transition, 179–181, 183
Visio, 28

wait for event
BPMN, 34
SAP WebFlow, 41, 69

waiting time, 34
weakly lost data, 219, 219
weakly redundant data, 218, 219
web service, 42
well-formed EPC, 30, 31, 171
well-formed EPC from function graph,

171
well-formed net

YAWL, 85
while

308 Index

BPEL, 75
wiki, 235
Woflan, 34, 214, 224, 225
workaround, 136, 138
workflow behavior, 27
workflow block

SAP WebFlow, 67, 68
workflow builder, 5
workflow definition, 4, 89

YAWL, 98
workflow engine, 2, 3, 11, 66, 91, 104,

129, 132, 137, 229
BPEL, 76
SAP WebFlow, 40, 72
YAWL, 98

workflow environment, 128
workflow language, 15, 16, 25, 35, 64,

65
workflow log, 146
workflow management system, 1, 28,

35
workflow net, 16, 19, 23, 23, 24, 25,

55, 58, 65, 151, 179–181, 183,
201, 203, 208, 211, 213, 214,
231

from EPC, 32
workflow net configuration, 55, 55
workflow pattern, 15, 16, 26–28, 35, 52,

63, 65, 66, 76, 103, 134, 194
workflow specification, 36, 38, 39, 144

YAWL, 88–91, 97
workflow specification constraint

YAWL, 91, 91
workflow support, 2
workflow system, 1, 4, 10, 66
workflow template, 5, 68, 139
<WorkflowModelElement>, 146, 149
worklet service architecture, 39
write data, 216, 219–221, 225
write-after-read, 224
write-after-write, 224
WS-BPEL, 42

XML, 42, 98, 115, 117, 118
XML schema

YAWL, 98

XOR connection
Protos, 33

XOR connector
EPC, 29, 32, 162, 169, 171, 174,

175, 196
XOR gateway

BPMN, 34
XOR join type

function graph, 161, 164, 165, 167,
169

XOR split type
function graph, 160, 161, 163, 165,

167–169, 171
XOR-join, 27, 29, 32, 34, 36, 53, 76,

77, 94, 158, 191, 198
XOR-split, 27, 29, 32, 34, 36, 53, 77,

78, 92, 93, 158, 191, 198

YAWL, 12, 13, 16, 35, 36, 39, 40, 42,
44, 55, 64–66, 76, 80, 84, 88,
91, 98, 101–103, 106, 112,
114, 117–119, 121–124, 128,
129, 132–134, 158, 161, 175,
203, 214, 215, 225, 229, 230

YAWL editor, 98
YAWL system, 76, 98

Acronyms

ACID Atomicity, Consistency, Isolation, Durability.

BPEL Business Process Execution Language.

BPM Business Process Management.

BPMN Business Process Modeling Notation.

C- a configurable variant of the subsequent process modeling language.

CPN Colored Petri Nets.

CTL Computation Tree Logic.

EPC Event-driven Process Chain.

ERP Enterprise Resource Planning.

EWF-net Extended Workflow net.

IP Internet Protocol.

IT Information Technology.

ITIL IT Infrastructure Library.

log log file.

LTL Linear Temporal Logic.

LTS Labeled Transition System.

MXML Mining XML.

NP Nondeterministic Polynomial Time.

NVVB Nederlandse Vereniging Voor Burgerzaken.

310 Acronyms

SAT Boolean Satisfiability Problem.

SBDD Shared Binary Decision Diagram.

SCOR Supply Chain Operations Reference.

UML Unified Modeling Language.

WS-BPEL Web Services Business Process Execution Language.

XML Extensible Markup Language.

YAWL Yet Another Workflow Language.

Symbols

Configuration C (Def. 3.1/3.4), also configured elements
49, 50, 52, 55–59, 71, 81–84, 86–88, 90,
92–96, 178, 181, 204–206, 212–214, 312

allow allowed element
55, 57, 58, 71, 82, 84–86, 90, 94–96, 109,
111–113, 178, 181

block blocked element
49, 50, 52, 55, 56, 58, 71, 82, 85, 86, 90,
92–94, 109, 111–113, 178, 181, 212

∁WF all configurations of WF
55, 56, 58, 59, 82, 83, 87, 88, 90, 91

def default configuration
59, 87, 88, 91, 92

hide hidden element
49, 50, 52, 55, 57, 71, 82, 85, 86, 90, 94–96,
109, 111, 112, 178, 181

MC mapping between domain facts and process
facts
111, 113, 114

PC process constraint
58, 59, 87, 88, 91, 92, 110, 111, 113, 114

PCC process correctness constraint
205, 206, 208, 212, 214

valid valid configuration(s)
58, 59

312 Symbols

CTL*

E x there exists at least one path from the cur-
rent state where x holds
222

F x x has to hold eventually, i.e. somewhere on
the subsequent path (finally)
222

x U y x has to hold in the subsequent path until
at some point y holds
222

C-YAWL

CEWF configurable EWF-net
92

⊕ combines two configurations
83, 90

⊕

X∈Q⋄ C
X combination of all configurations CX such

that X is an EWF-net contained in the set
of EWF-nets Q⋄

90, 91

cs subset of conditions
78, 86, 93–95

dyn dynamic creation
82, 86, 92

in input
77, 81–86, 90, 92, 94–96, 109, 111–113

max maximum
82, 86

min minimum
82, 86

out output
78, 81–86, 90, 92–96, 112, 113

ports ports of an EWF net
77, 78, 80–83, 85, 86, 88–90, 93–95

Symbols 313

req requirement(s)
85, 87, 90, 111

thres threshold
82, 86

EPC EPC (Def. 2.21)
30, 162, 170, 171

A set of arcs
30, 31, 162, 163, 170, 171

E set of events
30, 31, 162, 163, 170, 171

F set of functions
30, 31, 162, 170, 171

m mapping of connectors to connector types
30, 31, 162, 163, 170, 171

X set of connectors
30, 31, 162, 163, 170, 171

Function
graph

FG (Def. 7.3)
159, 162, 163, 165, 167, 170

A set of arcs
159, 160, 162, 163, 167, 170

F set of functions
159, 160, 167, 170

l mapping of arcs to join/split types
159, 160, 162, 163, 167, 170

Graph G (Def. 2.10)
18, 19

E set of edges
18, 19

E∗ all paths over E
19, 23, 162, 163

N set of nodes
18, 19, 171

314 Symbols

n
G
• output nodes of node n in G (post-set)

19, 23–25, 30, 31, 78, 159, 167, 170, 171,
204, 207, 212, 213

G
•n input nodes of node n in G (pre-set)

19, 23, 24, 30, 31, 77, 159, 167, 170, 171,
204, 207, 212–214

General

∧ AND-split / AND-join type
29, 30, 32, 38, 77, 78, 94, 99, 100, 159–164,
166–171, 196, 286

join join behavior
30, 31, 37, 38, 77, 78, 80, 81, 83, 85, 87, 92,
95, 96, 159, 160, 162, 163, 167, 170

N natural numbers
18, 23, 38, 82, 85, 213

∨ OR-split / OR-join type
29, 30, 32, 33, 38, 43, 77, 78, 99, 159–165,
167–172, 175, 177, 196, 299

split split behavior
30, 31, 37, 38, 77, 78, 80, 81, 83, 85, 87, 92,
94–96, 159, 160, 162, 163, 167, 170

XOR XOR-split / XOR-join type
29, 30, 32–34, 38, 42, 77, 78, 85, 94, 99, 100,
159–165, 167–171, 174, 175, 196, 308

Log file LOG (Def. 7.1)
149–151, 181

α mining algorithm
151

I set of log event identifiers
149

events(σ) events in the trace σ
149, 181

Γ set of all log files
149–151

Symbols 315

prep preprocessing/preprocessed
149–151

raw raw log file
149, 150

θ event trace
149, 179–181

LTS LTS (Def. 2.13)
20, 25, 49, 50, 52

CPM configurable process model
52

CS set of possible configurations
52

L set of transition labels
20, 21, 25, 49, 50, 52

S set of states
20, 21, 25, 49, 50, 52

SF set of final states
20, 21, 25, 49, 50, 52

SI set of initial states
20, 21, 25, 49, 50, 52

T set of transitions
20, 21, 25, 49, 50, 52

τ label for silent transitions
20, 21, 46, 50, 51, 306

Petri net PN (Def. 2.14)
21, 23–25, 204, 205

A set of arcs
21, 23–25, 55–59, 178, 180, 181, 204, 205,
212, 213

exp elements of a workflow net that is expanded
with silent transitions as alternatives to vis-
ible transitions
181

316 Symbols

hid set of hidden elements
180, 181

l function assigning labels to transitions
21, 23–25, 55–59, 178, 180, 181, 204, 205,
212, 213

L set of labels
21, 23–25, 55–59, 178, 180, 181, 204, 205,
212, 213

M marking of places
23–25, 212–214

M(PN) set of all markings of PN
23, 24

MI initial marking
24, 25, 179, 212, 213

M
σ

։
PN
M ′ firing the transition sequence σ from mark-

ing M in PN leads to marking M ′

24, 179, 212, 213

M
t→

PN
M ′ firing the transition t from marking M in

PN leads to marking M ′ (Def. 2.8)
24, 25

MO final marking
24, 25, 179, 212, 213

M [t〉 t is enabled at M
24, 25

PN [M〉 set of markings reachable from M in PN
24, 25

P set of places
21, 23–25, 55–59, 178, 180, 181, 204–207,
212, 213

Φ all firing sequences of the net
24, 181

ΦIO all firing sequences of a workflow net that
lead from MI to MO

179, 181

Symbols 317

pI input place
23, 24, 57, 201, 203–205, 208, 212–215

pO output place
23–25, 57, 201, 203–205, 208, 212–215

ψ acyclic path of the net
204–207

Ψ set of all acyclic paths of the net
204, 205

ψI acyclic input paths of the net
205–207

ψO acyclic output paths of the net
205–207

T set of transitions
21, 23–25, 55–59, 178, 180, 181, 204–207,
212, 213

τ label for silent transitions
21, 56, 57, 94–96, 100, 180, 181, 201, 203,
306

V transitions that are fired when replaying a
log file
181

WF workflow net
24, 25, 55, 56, 58–61, 151, 178–181, 205, 206,
212–214

∆ set of all workflow nets
23, 151

Set S (Def. 2.4)
17, 18

dom(f) domain of a (partial) function f
17, 18, 38, 39, 49, 50, 80, 82–84, 88, 90, 92

〈〉 empty sequence
18

∅ empty set
17, 19, 21, 23, 25, 31, 38, 39, 78, 90, 92, 167,
170

318 Symbols

f (partial) function
17, 18

πS(σ) filters σ for elements of S
18, 180, 181

IP powerset of S
17, 38, 39, 77, 78, 149

rng(f) range of a (partial) function f
17

σ sequence (Def. 2.8)
18, 24, 179–181, 212

S∗ all sequences over S
18, 149

IB(S) all multi-sets over S
18, 149

Z multi-set
18

YAWL

dynamic dynamic instance creation
38, 92

EWF EWF-net
37–39, 77, 78, 80–83, 85–88, 90–93, 95, 96,
111

EWFS set of EWF-nets
39, 90

ext elements extending the original net
38

F set of flows (arcs)
37, 38, 77, 78, 80, 81, 83, 85, 87, 92–96

∞ infinitive
38, 82, 85, 112

i input condition
37, 38, 77, 78, 80, 81, 83–87, 91, 92, 96, 97,
109, 112, 214, 215

Symbols 319

K set of conditions
37–39, 77, 78, 80, 81, 83, 85–87, 92–96

map maps composite tasks onto sets of EWF-
nets
39, 88–91, 112, 113

nofi number of a task’s instances that are started
37, 38, 77, 78, 80–87, 90, 92, 95, 96, 112

o output condition
37, 38, 77, 78, 80, 81, 83, 85–87, 91, 92, 96,
97, 112, 113, 214, 215

π selector for the number of instances param-
eter
38, 82, 83, 86, 92

Q⋄ set of EWF-nets
39, 88–91, 312

Q partitions Q⋄ into sets of EWF-nets
39, 88–91

rem cancelation region of task
37, 38, 77, 78, 80–85, 87, 90, 92, 95, 96, 112

SPEC workflow specification
89–91

static static instance creation
38, 92

T set of tasks
37–39, 77, 78, 80, 81, 83, 85–87, 92–96

T ⋄ set of all tasks
39, 88–91

top top level net of workflow specification
39, 88–91

320 Symbols

Summary

Configurable Process Models

Business process models and workflow systems aim at guaranteeing efficient and
reliable executions of business processes. For this, they require detailed specifi-
cations of the individual steps that need to be taken during the process execu-
tion. As defining such process definitions from scratch requires good knowledge
of both the domain of the process as well as the process modeling technique,
process modeling is often cumbersome and prone to errors that inhibit sound
process executions.

For that reason, many providers of process modeling software as well as
process consultants offer so-called reference process models or template repos-
itories. These repositories provide established process specifications for both
general as well as industry specific processes, from travel approvals to invoice
verifications. Still, even for such common processes, execution variations exist
among organizations. Hence, organizations have to adapt the templates manu-
ally to individual requirements. The process modeling skills required for these
adaptations are equal to the skills required for modeling from scratch.

This PhD thesis suggests reducing the need for manual process model adap-
tations by integrating variations among different process executions into a single
process model — a configurable process model. In the configurable model, pro-
cess configuration allows inhibiting executing any undesired tasks. In this way,
a process model providing exactly the behavior desired by an organization can
be derived without manual process modeling efforts.

For defining configurable process models, the thesis first provides a formal
specification of process model configuration by analyzing how behavior is added
to process models and defining process configuration as the inverse. In this way,
blocking and hiding of behavior, originally defined as concepts to discover inher-
itance relations among dynamic behavior, are identified as the two techniques
to restrict behavior of configurable process models.

The practical feasibility of the suggested approach is demonstrated through
depicting how process configuration can be added to the process modeling lan-
guages of existing workflow systems, namely SAP WebFlow, BPEL, and YAWL.
An actual implementation is provided for YAWL. It even allows configuring the
process model through natural language questions by mapping the various con-

322 Summary

figuration options to pre-defined answers in a questionnaire. The framework
has been tested in a case study where configurable process models were devel-
oped for registration processes executed in municipalities like the registration
of a newborn child or a marriage. The developed models thus allow deriving
a configured, individual process variant by simply answering a questionnaire
on desired and undesired options of the process. The resulting model variant
is directly executable in the YAWL system environment. The models and the
overall approach have afterwards also been evaluated through interviews with
various stakeholders in the process configuration lifecycle.

Two main challenges arise for defining and using configurable process models:
On the one hand, the creation of a process model integrating various process
variants obviously requires far more work than building a process model covering
only one of these variants. For that reason, the thesis suggests a set of process
mining techniques, which can help in the construction of a configurable process
model, e.g. by merging individual process models. On the other hand, process
configuration allows restricting the process behavior depicted in the configurable
process model further than desired, up to the point that the process is not
executable anymore. This is addressed through discussing a range of constraints
on the process model configuration that are able to guarantee sound processes.

Samenvatting

Configureerbare Proces Modellen

Procesmodellen en workflow systemen richten zich op het efficiënt en betrouw-
baar uitvoeren van bedrijfsprocessen. Om dit mogelijk te maken is het noodza-
kelijk dat er gedetailleerde specificaties zijn van de individuele stappen die wor-
den genomen tijdens de uitvoering van het proces. Aangezien het definiëren
van dergelijke procesdefinities vanaf nul een goede kennis vereist van zowel het
domein van het proces als van de procesmodelleringstechniek, is het procesmod-
elleren vaak omslachtig en gevoelig voor fouten, wat een correcte uitvoering van
het proces in de weg staat.

Om deze reden bieden leveranciers van procesmodelleringssoftware en pro-
cesconsultants referentiemodellen en voorbeeldsjablonen aan om snel tot con-
crete procesmodellen te komen. Hierbij gaat het vaak om erkende processpec-
ificaties voor zowel algemene als industrie-specifieke processen, variërend van
reisvergunningen tot factuurcontroles. Toch is het zo, zelfs voor veelvuldig
voorkomende processen, dat de uitvoering van deze processen verschilt van or-
ganisatie tot organisatie. Daarom is het nodig dat bedrijven dergelijke refer-
entiemodellen en voorbeeldsjablonen handmatig aanpassen op basis van hun
individuele behoeften. De vaardigheden met betrekking tot procesmodelleren
die nodig zijn om de processen aan te passen zijn hetzelfde als de vaardigheden
die nodig zijn om de modellen vanaf nul te ontwikkelen.

In dit proefschrift is beschreven dat de noodzaak voor handmatige aanpassin-
gen kan worden gereduceerd door het integreren van variaties van verschillende
uitvoeringen van een proces in één enkel procesmodel — een configureerbaar
procesmodel. In het configureerbare procesmodel zorgt het configureren van
processen ervoor dat ongewenste taken niet kunnen worden uitgevoerd. Op
deze manier is het mogelijk dat een procesmodel exact het gewenste gedrag
vertoont zonder dat dit handmatige modelleren van het proces vereist.

Om configureerbare procesmodellen te kunnen opstellen wordt in dit proef-
schrift eerst een formele specificatie van een procesmodelconfiguratie gegeven.
Dit wordt gedaan door te analyseren hoe gedrag wordt toegevoegd aan het
procesmodel; proces configuratie wordt gedefinieerd als de inverse hiervan. Op
deze manier zijn de technieken ‘blokkeren’ (blocking) en ‘verbergen’ (hiding)
gedefinieerd, oorspronkelijk gedefinieerd als concepten om overervingsrelaties te

324 Samenvatting

ontdekken, nu gëıdentificeerd als twee technieken om het gedrag van een config-
ureerbaar procesmodel te beperken.

De praktische haalbaarheid van de voorgestelde aanpak wordt gedemon-
streerd door het toepassen van procesconfiguratie op procesmodelleertalen van
bestaande workflow systemen, namelijk SAP WebFlow, BPEL, and YAWL. Voor
YAWL is bovendien een implementatie van de concepten gerealiseerd. Het is
zelfs mogelijk om het procesmodel te configureren door het beantwoorden van
vragen die zijn gesteld in natuurlijke taal. Dit is gerealiseerd door een vertaling
van de verschillende configuratie opties naar voorgedefinieerde antwoorden in
de vragenlijst. Het totale raamwerk is getest in een case study waarin config-
ureerbare procesmodellen zijn ontwikkeld voor administratieve processen binnen
gemeentes, zoals de aangifte van een geboorte of een huwelijk. De ontwikkelde
modellen maken het mogelijk om een geconfigureerde individuele procesvariant
af te leiden, die rechtstreeks uitvoerbaar is in de YAWL omgeving, enkel door het
beantwoorden van vragen in een vragenlijst over de wenselijkheid van bepaalde
mogelijke uitvoeringen van het proces. De modellen en de aanpak als geheel
zijn achteraf geëvalueerd met verschillende belanghebbenden in de levenscyclus
van procesconfiguratie.

Uit de case study zijn twee belangrijke aandachtspunten naar voren gekomen.
Ten eerste, het opstellen van procesmodellen waarin verschillende varianten zijn
gëıntegreerd vereist veel meer inspanning dan het opstellen van een proces-
model dat slechts één variant behelst. Om deze reden wordt in dit proefschrift
een aantal process mining technieken aangedragen, die kunnen helpen bij het
construeren van een configureerbaar procesmodel, bijvoorbeeld bij het samen-
voegen van verschillende individuele procesmodellen. Ten tweede, procescon-
figuratie maakt het mogelijk om het gedrag van het proces meer te beperken
dan wenselijk is, tot aan het punt dat het proces niet meer uitvoerbaar is. In
dit proefschrift wordt hiermee rekening gehouden door het bespreken van een
verzameling randvoorwaarden ten aanzien van procesmodel configuratie, die er
voor zorgen dat evidente fouten worden vermeden.

Acknowledgements

Yes, sometimes it seemed to be a bloody long way from completing my gradua-
tion project at Queensland University of Technology (QUT) in Brisbane, Aus-
tralia, to completing this PhD thesis at Eindhoven University of Technology
(TU/e) in the Netherlands. More often, however, it was a very enjoyable expe-
rience, especially because it came with the opportunity to meet and work with
many great people. Thus, all these people contributed in the one or the other
way to the thesis. I want to take this opportunity to thank everyone who helped
me completing this challenge! A few people to which I am especially grateful, I
would like to name explicitly in the following.

First and foremost, I am very thankful for the support I got from my su-
pervisor Wil van der Aalst. Wil had the incredible skill to always provide me
with the confidence that I am on the right track while at the same time never
stopping in thinking ahead and demanding more. His suggestions and skills of
formalizing ideas helped me a lot in achieving the solutions presented in this
thesis. Wil’s feedback not only contributed to raising the quality of the publi-
cations on which the thesis is based, but it also helped me in assessing research
quality myself. Thanks, Wil!

In the same way, I am very grateful to my co-supervisor Monique Jansen-
Vullers. Monique was a big support in putting Wil’s extensive feedback in the
right context as well as in learning to judge when I had done ‘enough’. Thus,
for me she was the well-needed complement to Wil. Also, she translated the
thesis’s summary for me into Dutch. Thanks, Monique!

In 2004, during my graduation project, Michael Rosemann and Alexander
Dreiling not only encouraged me to start a PhD project, but they also recom-
mended me that if I would like to do a PhD then I should apply for the position
in Eindhoven. Looking back at the opportunities and supervision I got during
the last four years, I am very glad they did so!

Thanks to invitations by Marlon Dumas and Arthur ter Hofstede, I was able
to return to QUT several times. Not only I very much appreciated the feedback
I received from Marlon and Arthur, but they also introduced me to Marcello
La Rosa with whom I started a very fruitful collaboration. Marcello developed
the basis of the Synergia toolset and the concepts for questionnaire models used
in the thesis. Furthermore, ‘endless’ discussions with Marcello influenced or
resulted in many of the presented ideas — often continuing after-hours in an
humorous way.

326 Acknowledgements

Chapter 6’s municipality case study is the result of a great collaboration
with Teun Wagemakers. Therefore, I would like to thank Teun for testing the
ideas developed in the earlier chapters as the case study’s process designer and
thus for giving me extensive feedback on the developed tools and techniques.
Furthermore, I am very grateful to the NVVB for providing their reference
models for the case study, as well as to Pallas Athena, PinkRoccade Local
Government, and the municipalities involved in the case study for their input
and opinions. Also, I appreciated the discussions I had with Paul Eertink, Leon
Gerrits, Kurt Jensen, Agnes Koschmider, Marteen Leurs, Klaas-Pieter Majoor,
Steffen Mazanek, Jan Mendling, Michael zur Mühlen, Marijn Nagelkerke, Mor
Peleg, Manfred Reichert, Barbara Weber, and Lisa Wells on various subjects of
the thesis a lot.

During the four years of my PhD studies, I enjoyed working in the IS group
of TU/e very much. Especially, I would like to thank Anke Hutzschenreuter
with whom I shared a very pleasant working atmosphere in our ‘German’ office,
characterized by the readiness to help each other and discuss research-related
and non-related issues in both a productive as well as in a not so serious manner.
Moreover, I am very grateful to Anne Rozinat who started her PhD project
almost at the same time as I. Besides having to deal with similar issues at
similar times, I always appreciated Anne’s well-thought-out opinions a lot.

I guess, never I would have managed to cope with all the administrative
regulations and issues if I would not have had the support of Ada Rijnberg, An-
nemarie van der Aa, Geertje Kramer, and Ineke Withagen for which I am very
thankful. Also, thanks to Alex Norta, Ana Karla Alves de Medeiros, Boudewijn
van Dongen, Christian Günther, Eric Verbeek, Hajo Reijers, Irene Vander-
feesten, Jana Samalikova, Jochem Vonk, Maja Pešić, Mariska Netjes, Minseok
Song, Nataliya Mulyar, Olivia Oanea, Nick Russell, Paul Grefen, Peter van den
Brand, Remco Dijkman, Ricardo Sequel Perez, Ronny Mans, Samuil Angelov,
Sven Till, Ting Wang, Ton Weijters, and all the other current and former mem-
bers of the IS group(s) in Eindhoven for the great time during meetings, lunch,
chatting, etc.

To focus on a single subject over four years — as it is needed when writing
a PhD thesis — would not have been possible for me if I would not have had
friends that made me focussing on other issues in my spare-time. Therefore,
I am very glad for the good times I had with Bill (also thanks for the editing
suggestions!), Bjorn, Caro, Carolina, Carsten, Daniel, Guy, Ilona, Ioana (also
thanks for the support in getting the thesis printed!), Jakob, Jana, Jeff, Marjan,
Monica, Oliver, Serge, Sonja, Steffi, Vero, Volker, and many, many others in
Eindhoven and elsewhere. Thank you all! Deeply grateful I am to Anneli,
Christian, and Christina. They endured me when I was in a bad mood as well
as they celebrated with me when I was in a good mood — all three in their
own special ways. Thus, although there were phases when we lived on four
different continents, we communicated almost daily and it thus always felt as
they would be just around the corner. Thanks a lot, Anneli! Thanks a lot,
Christian! Thanks a lot, Christina!

Last but for sure not least I am very thankful for the support and feedback I

Acknowledgements 327

received from my brother Christian and my parents. Christian, you are always
a good advisor whose critical feedback I appreciate a lot. Thanks for your help
in designing the cover of this thesis. Mutti, Papa, I know you are the two who
are the proudest of all of this PhD thesis — but without your endless support
and love I would have never been able to achieve this. Thank you so much!

328 Acknowledgements

Curriculum Vitae

Florian Gottschalk was born in Göttingen, Germany, on September 7, 1979. At
the age of five, he moved to the region of Hanover, Germany, where he lived until
completing secondary education. From 2000 to 2005 he studied at the Techni-
cal University of Clausthal, Germany, majoring in Information Systems. Before
his graduation Florian also joined ICA GmbH (IBM Global Services), Hanover,
Germany, for a part-time job as web programmer. Furthermore, he worked
as a student assistant at the Technical University of Clausthal and freelance
in several web-design projects. For his final graduation project on “Rethink-
ing Enterprise System Configuration: Towards an Integration of Structural and
Process Configuration” Florian visited Queensland University of Technology
(QUT), Brisbane, Australia, joining a research collaboration between QUT and
SAP Research. From 2005 to 2009 Florian was employed as a researcher at the
Technical University of Eindhoven (TU/e), The Netherlands. While working on
his dissertation in the information systems group of TU/e, the Business Process
Management group of QUT invited him for research visits to Brisbane in Jan-
uary/February and September 2007. Florian completed his doctoral studies on
“Configurable Process Models” in summer 2009. Today (2009), he is working
as a consultant for managing SAP implementation projects by Basycon Un-
ternehmensberatung GmbH, Munich, Germany.

con�gurable process models

Process model con�guration restricts the behavior that is depicted in

business process models. This allows that templates can contain all tasks

that are potentially relevant for the execution of a process in a single

process model. For example, a model for travel approvals can contain tasks

for both a complex and strict process variant as well as for a quick and easy

variant. By process con�guration, individuals can restrict these variation

options to particularly desired behavior.

This PhD thesis provides a formal foundation of process model con�gura-

tion. It analyzes how behavior is added to process models and de�nes

process con�guration as the inverse. The approach’s practical feasibility is

demonstrated based on process modeling languages of existing work�ow

systems, namely SAP WebFlow, BPEL, and YAWL. An implementation for

YAWL even allows con�guring process models through natural language

questions. A case study in which con�gurable process models were devel-

oped for registration processes executed in municipalities demonstrates

the above. The main challenges for using con�gurable process models are

that (1) the creation of such models requires far more work than building a

model covering only one process variant, and that (2) process con�guration

allows restricting the process behavior more than desired. These issues are

addressed by suggesting a set of process mining techniques, which help

constructing con�gurable process models, as well as by discussing con-

straints on process model con�guration that are able to guarantee sound

processes.

	1 Introduction
	1.1 Process Model Reuse
	1.2 Process Model Adaptation
	1.3 Research Goal, Methodology, and Contributions
	1.4 Road Map

	2 Background Process Modeling
	2.1 Preliminaries
	2.2 Languages for Formal Process Definition
	2.2.1 Labeled Transition Systems
	2.2.2 Workflow Nets

	2.3 Workflow Patterns
	2.4 Business Process Modeling Languages
	2.4.1 Event-driven Process Chains
	2.4.2 Protos
	2.4.3 BPMN

	2.5 Workflow Languages
	2.5.1 YAWL
	2.5.2 SAP WebFlow
	2.5.3 BPEL

	2.6 Summary

	3 Configuring Process Models
	3.1 Configuration versus Inheritance
	3.2 Adding Configuration to Process Modeling
	3.2.1 Configuring Ports of Tasks
	3.2.2 Restricting Configuration Opportunities
	3.2.3 Configurable Process Models

	3.3 Related Work
	3.3.1 Literature Study on Variability Mechanisms
	3.3.2 Studying of Adaptation Practices
	3.3.3 Restricting Choices in Workflow Patterns

	3.4 Conclusions

	4 Configurable Workflow Languages
	4.1 C-SAP WebFlow
	4.1.1 Identifying Ports
	4.1.2 Port Configuration
	4.1.3 Configuration Constraints
	4.1.4 Process Enactment

	4.2 C-BPEL
	4.2.1 Ports and their Configurations
	4.2.2 Executability of BPEL Configurations

	4.3 C-YAWL
	4.3.1 Configurable Elements of EWF-Nets
	4.3.2 Configuration Requirements and Validity
	4.3.3 Components of C-EWF-Nets
	4.3.4 Configurable Workflow Specifications
	4.3.5 From C-YAWL to YAWL
	4.3.6 C-YAWL Implementation

	4.4 Related Work
	4.4.1 C-EPCs
	4.4.2 Further Process Configuration Extensions

	4.5 Conclusions

	5 Guiding the Configuration Process
	5.1 Capturing Domain Variability
	5.2 Capturing Process Variability
	5.3 Linking Domain and Process Variability
	5.4 Tool Support
	5.5 Related Work
	5.6 Conclusions

	6 Configurable Process Models for Municipalities
	6.1 Creating Configurable Process Models
	6.1.1 Building the Models
	6.1.2 Observations

	6.2 Evaluation of the Approach
	6.2.1 Provider of BPM Solutions
	6.2.2 Provider of Municipality Software
	6.2.3 Consultancy Firm

	6.3 Related Work
	6.4 Conclusions

	7 Building the Configurable Process Model
	7.1 Generating Configurable Process Models from Log Files
	7.1.1 Pre-processing the Log Files
	7.1.2 Mining the Basic Process Model

	7.2 Merging Process Models
	7.2.1 Function Graphs
	7.2.2 From EPCs to Function Graphs
	7.2.3 Merging Function Graphs
	7.2.4 From Function Graphs to EPCs
	7.2.5 Tool Support

	7.3 Deriving Configurations
	7.4 Case Study Re-visited
	7.4.1 Mining Models from Log Files
	7.4.2 Merging Individual Models
	7.4.3 Identifying Individual Configurations

	7.5 Related Work
	7.5.1 Process Mining
	7.5.2 Model Merging
	7.5.3 Synthesis
	7.5.4 Identifying Configurations and Conformance

	7.6 Conclusions

	8 Executability of Configurations
	8.1 Preserving Syntactic Correctness
	8.2 Preserving Semantic Correctness
	8.3 Correctness in C-YAWL
	8.4 Constraints from Resource- and Data-flows
	8.4.1 Data-flow Correctness
	8.4.2 Resource Availability

	8.5 Related Work
	8.5.1 Soundness from a Control-flow Perspective
	8.5.2 Soundness from a Data-flow Perspective

	8.6 Conclusions

	9 Conclusions
	9.1 Contributions
	9.1.1 Process Model Configuration
	9.1.2 Configurable Process Modeling Languages
	9.1.3 Guiding Process Configuration
	9.1.4 Model Merging
	9.1.5 Soundness of Process Configuration

	9.2 Limitations and Future Work
	9.2.1 Adapting Configured Models
	9.2.2 Configuration Performance
	9.2.3 Configuration in the Process Life Cycle
	9.2.4 Process Model Content

	9.3 Summary

	A Case Study Process Models
	A.1 Acknowledging an Unborn Child
	A.2 Registering a newborn
	A.3 Marriage
	A.4 Issuing Death Certificate

	Bibliography
	Index
	Acronyms
	Symbols
	Summary
	Samenvatting
	Acknowledgements
	Curriculum Vitae

