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Configurable Quasi-Optimal Sphere Decoding for Scalable

MIMO Communications

Yun Wu, Member, IEEE, and John McAllister, Senior Member, IEEE,

Sphere Decoding (SD) enables real-time quasi-
optimal symbol detection for Multiple-Input Multiple-
Output (MIMO) communication systems via custom
circuit accelerators. Configurable SDs allow accelera-
tor cost to be balanced with detection accuracy for
the most constrained MIMO environments, such as
power-constrained Internet-of-Things (IoT) scenarios.
However this high detection accuracy comes at high
accelerator cost. This paper proposes a novel con-
figurable SD which addresses this issue. A Robust
Bounded Spanning with Fast Enumeration (R-BSFE)
approach employs novel strategies for channel matrix
pre-processing and symbol enumeration to maintain
quasi-ML accuracy whilst reducing complexity by up
to 74%. This enables accelerators for 802.11n on Xil-
inx FPGA with significantly lower cost and higher
throughput. To the best of the authors’ knowledge,
the accelerators produced are the highest performance,
lowest cost quasi-ML SD accelerators on record.

Index Terms—Field Programmable Gate Array
(FPGA), Multiple-Input Multiple-Output (MIMO),
Sphere Decoder, 802.11n

I. Introduction

Multiple-Input Multiple-Output (MIMO) communica-
tions systems, as shown in Fig. 1, use multiple anten-
nas at both transmitter and receiver to exploit spa-
tial diversity and support unprecedented capacity and
throughput [1]. MIMO is a foundation technology for mod-
ern wireless standards, such as LTE/LTE-Advanced [2],
802.11n/ac/ax [3] [4] [5], and 5G [6].
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Fig. 1: MIMO Detection System Model

In the context of Internet-of-Things (IoT) systems,
MIMO schemes can vary dramatically in their number
of antennas, bit-to-symbol modulation density, operating
environment and channel quality, energy budget and data
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rates [7]. For instance, 802.11ax permits MIMO configu-
rations from 2 × 2 - 8 × 8 and modulation densities from
QPSK - 1024-QAM.

Symbol detection is a key enabling MIMO technol-
ogy [8]. Sphere Decoding (SD) [9] detectors make pos-
sible near-optimal real-time detection - well beyond lin-
ear equalization schemes such as Zero-Forcing (ZF) or
Minimum Mean Square Error (MMSE) [10] - using cus-
tom circuit accelerators [11] [12]. These come in many
forms including depth-first search (DFS) SD [13], List SD
(LSD) [14], and Metric-First Search (MFS) [15]. Particu-
larly notable are Breadth-First Search (BFS) approaches
with fixed complexity, such as Fixed Complexity SD
(FSD) [16] or K-Best [17], which offer deterministic par-
allel processing [18].

Bounded Selective Spanning with Extended Fast Enu-
meration (BSS-EFE) is the state-of-the-art BFS SD, allow-
ing configuration for different IoT MIMO scales, detection
accuracy and accelerator cost whilst avoiding the use of
symbol list memory and sorting operators [19]. However,
BSS-EFE suffers drawbacks which limit its efficiency:

• All SDs must tune the ordering of the MIMO channel
matrix to their configuration; despite supporting any
configuration, BSS-EFE does not account for this
variation, reducing accuracy.

• The heuristics employed in BSS-EFE cannot identify
the most likely symbols, further reducing accuracy
and accelerator efficiency.

• To achieve highest accuracy, BSS-EFE accelerators
incur very high cost relative to linear equalizers.

This paper addresses these issues. It proposes Robust
Bounded Spanning with Fast Enumeration (R-BSFE) , an
SD whose detection accuracy and cost can be configured
at design-time. It makes the following contributions:

• A novel configuration approach is presented which
improves detection accuracy by an average of 2 dB
whilst reducing complexity by up to 42%.

• A channel matrix ordering approach is presented
which adapts with the SD configuration to order the
channel matrix for maximum detection accuracy. This
is shown to increase accuracy by up to 5 dB or reduce
complexity by up to 46.7%.

• FPGA accelerators for R-BSFE are shown to exhibit
the same quasi-ML accuracy as BSS-EFE, but with
increased throughput and cost reduced by up to 46%.

Sections IV - VI describe the proposed enumeration
and pre-processing approaches and analyses their effect
on detector accuracy and complexity. Section VII derives
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R-BSFE accelerators on Xilinx FPGA and compares their
performance and cost to BSS-EFE.

II. Background

An Nt × Nr MIMO system assuming Nt ≤ Nr [20],
shown in Fig. 1, modulates and multiplexes a bit stream
b onto Nt transmit antennas to form a transmitted symbol
vector s ∈ C

Nt×1. This is distorted by noise and multipath
fading to form y ∈ C

Nr×1, retrieved by an Nr-antenna
receiver. The relation between s and y is defined by (1)

y =

√
ρ

Nr

· H · s + w (1)

where w ∈ C
Nr×1 is mutually independent and identi-

cally distributed complex Additive White Gaussian Noise
(AWGN) with power σ2

w. The Signal-to-Noise Ratio (SNR)

ρ is given by
σ2

s

σ2
w

, where σ2
s the signal power of s. The

Rayleigh-distributed multipath channel is represented by
H ∈ C

Nr×Nt where hi,j , represents the fading path
between the ith receive and jth transmit antennas [21].

MIMO detectors derive an estimate s̃ of the most likely
value of s by seeking a solution amongst all possible
transmitted symbol vectors such that1 [22]:

s̃ = arg min
xi

‖y − H · xi‖2
, xi ∈ DNt

Mc
, i ∈ [1, MNt

c ] (2)

where Mc denotes the scale of modulation type, DNt

Mc
={

x1, x2, . . . xMc
Nt

}
denotes the set of all MNt

c possible
transmit symbol vectors over Nt transmit antennas.

The Maximum Likelihood (ML) detector establishes the
upper bound on detection performance in terms of Bit
Error Rate (BER) for uncoded MIMO detectors [23] by
exhaustively considering all possible transmitted symbol
vectors to determine the closest, in the Euclidean sense,
to y. However, the complexity of ML is O(MNt

c ). In
modern wireless standards, both the number of antennas
Nt and the size of the modulation dictionary Mc are
increasing rapidly, and the associated exponential increase
in complexity of ML detection is too large to allow it to
be generally feasible in real-time.

A SD traverses a partial hypersphere in DC
Nt

around the
received symbol, evaluating each point according to:

min
x

‖y − H · x‖2
(3)

Via QR decomposition (3) can be expressed as [24]:

min
x

‖R · (ỹ − x)‖2
(4)

where ỹ is a received symbol which has undergone ZF
equalization, R is a upper-triangular matrix decomposed
from H = Q · R. Since R is upper-triangular, the final
row of the product in (4) has a single non-zero entry, con-
sidered interference-free [25] and Euclidean distance can
be calculated recursively row-by-row, in reverse order. At
each row n are calculated the Partial Euclidean Distance
(PED) and the Accumulated PED (APED), given by:

1Normalized QAM modulation is used throughout

PEDnt =

Nt∑

j=nt

r2
j,j ‖ỹj − xj‖2

, nt ∈ [1, Nt] (5)

APEDnt =

Nt∑

j=nt

PEDj (6)

Intuitively, SD is a tree-search problem. As Fig. 2 shows,
d is a radius around ỹ, the root, which limits the search by
acting as an upper bound on the APED of leaf nodes [26].
The detected symbol is that amongst all the leaves with
the lowest APED. Via careful choice of d and the search
strategy [27], SD can provide quasi-ML accuracy, at much
lower complexity than ML [28].

d

Fig. 2: Generic Tree-Search Structure of Sphere Decoder

Accelerators for SD use heuristics to achieve real-time
processing. Despite work on DFS SD, such as radius
reduction [29], and implementation with customized cir-
cuits [30], BFS is generally more effective in this regard.
For instance, FSD uses a fixed tree shape which is a
function of the number of transmit antennas. It enables
quasi-ML accuracy and real-time detection [31] but is
not configurable. K-best does permit configuration [32],
allowing any number of symbols to be enumerated at each
search tree level, but incurs costly sort operations in order
to do so [33]. A K-best variant in [34] also mimics FSD
in adopting a fixed tree structure for a given number
of antennas and modulation scheme. Selective Spanning
with Fast Enumeration (SSFE) avoids sort operations by
employing a symbol enumeration heuristic, again enabling
real-time detection [35] but has limited configurability.
The promise of SSFE, though, led to the emergence of
Boundary Selective Spanning with Extended Fast Enu-
meration (BSS-EFE) [19]. So far as the authors are aware,
BSS-EFE is the state-of-the-art in configurable SD.

III. BSS-EFE

BSS-EFE allows any number of symbols to be enumer-
ated at each layer of the search tree via a configuration
vector m ∈ (Z+)

Nt , where each mi ∈ m defines the
number of symbols enumerated at layer i of the tree. Fig.
3 shows an example BSS-EFE configuration.

A two-step detection process is followed. Pre-processing

uses the Vertical Bell-laboratory Layer Space-Time
(VBLAST) algorithm to determine ỹ, an equalized version
of y. It also orders the MIMO channel matrix H such that
the ith detected layer is determined by:

ki = arg max
nt=[1,Nt]

normn (7)
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y, H
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Fig. 3: m = [1, 2, 2, 4] BSS-EFE Structure

where normn is the norm of nth column of H. This always
orders the decoded signals from highest to lowest power.

The second symbol enumeration step - the tree search
- is performed according to the order k. From each QAM
symbol at the current layer i of the tree, mi+1 candidates
are enumerated. The candidates selected are a subset X =
{x̂i}Mc

i=2 identified using a fast enumeration heuristic:

x̂0 = Q
(

̂̃yn,i

)
, i ∈ [1, MNt

c ], n ∈ [1, Nt]

x̂k+1 = x̂k + z1 · (−1)
w+1

x̂l+1 = x̂l + z2 · (−1)
w+1

(8)

where w, k, l and z1 and z2 are given by:

w ∈
[
1,

⌈√
mi + 0.25 − 0.5

⌉]

k ∈ [(w − 1) · w + 1, w · w]
l ∈ [w · w + 1, (w + 1) · w]

(9)

z1 = sgn (ℜ (d)) · φ + sqrt(−1) · sgn (ℑ (d)) · (!φ)
z2 = sgn (ℜ (d)) · (!φ) + sqrt(−1) · sgn (ℑ (d)) · φ

(10)
where Q (•) denotes the QAM quantization, d = ŷn −
Q (ŷn), and φ = ℜ (d) > ℑ (d).

To ensure that all enumerated symbols are in the valid
QAM constellation set Ω - a key differentiating factor be-
tween BSS-EFE and SSFE - a bounded spanning heuristic
is employed. By introducing an enumerating bound,

τu =
√

Mc − 1 (11)

any xi ∈ {{|ℜ(x̂i)| > τu} ∨ {|ℑ(x̂i)| > τu}} are offset:

xi = xi + δi for i = 1, · · · , Mc (12)

where δi is defined as

δi = −2 · qi · {(ℜ (xi) > τu) · sgn (ℜ (x0))
+j · (ℑ (xi) > τu) · sgn (ℑ (x0))} (13)

and

qi =
⌊√

mi − 0.1
⌋

+ 1 (14)

The final detected symbol vector x is chosen from all
candidates according to:

x = arg min
xj

(APEDj), j ∈ [1,

Nt∏

i=1

mi] (15)

This enumeration heuristic selects symbols around ỹ as
illustrated in Fig. 4 for mi = 15 and 16-QAM. Valid QAM
symbols are coloured blue and the sequence of symbols
{ŝ0, ..., ˆs14} labelled. A number of symbols, ŝ′

4 − ŝ′

9, are
known to be outside the valid constellation and are pro-
jected via (12) onto valid alternatives.
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ŝ0
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ŝ′

8

ŝ′
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Fig. 4: BSS-EFE Enumeration Process

This heuristic enables fast enumeration but potentially
limits detection accuracy. Fig. 4 shows that the symbols
enumerated are not necessarily the most likely. For in-
stance, in Fig. 4, ŝ′

6 is enumerated before ŝ′

7 and ŝ′

8, despite
the latter two being more likely by virtue of being closer
to ỹ in the Euclidean sense. If only six symbols had been
enumerated in this example, ŝ′

6 would be included in place
of these more likely alternatives. The bounded spanning
heuristic can also lead to the same issue - ŝ6 is less likely
than the point 1 + 3j, but is nevertheless preferred.

A second issue is pre-processing. VBLAST orders anten-
nas for detection in reverse order of distortion [21], [36].
FSD, however, has shown that if full enumeration is used
for the early layers, reversed VBLAST order is provably
optimal. Since BSS-EFE can enumerate any number of
symbols at each layer, either V-BLAST or FSD ordering
is most appropriate, depending on the value of m.

Sphere Decoders offer much higher detection accuracy
than simple linear equalizers, at the cost of much more
expensive accelerators. Some cost increase is unavoidable
since equalization is a sub-operation of SD, alongside
channel matrix ordering and tree search. It is desirable to
minimise the overhead of the latter two operations to offer
MIMO systems the highest possible detection accuracy at
the lowest possible cost. The inefficiencies in the BSS-
EFE heuristics outlined above lead to lower efficiency
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accelerators, negatively impacting their performance or
their cost. To produce higher efficiency configurable SD
accelerators, there are three key requirements:

• Enumeration: enumerating the most likely subset of
possible symbols.

• Bounding: mapping known-impossible symbols to
the most likely, valid alternatives.

• Pre-processing: defining a channel matrix ordering
approach accounting for m.

This paper addresses these requirements. Only ’hard’
detection is considered, on the basis these are the founda-
tion for ’soft’ alternatives. Various MIMO scales 2 × 2 -
8 × 8 and QPSK - 64QAM are considered to represent the
diversity of modern wireless IoT systems.

IV. Robust Fast Enumeration

BSS-EFE enables low-cost custom accelerators by lim-
iting the number of symbols enumerated whilst avoiding
sort, square root or comparison operations. It does not,
however, always enumerate the most likely set of symbols.
An ideal alternative would resolve the latter shortcoming,
whilst maintaining the former benefit.

Theoretically, the real and imaginary parts of each
complex-valued received symbol are orthogonal, and can
be considered separately during detection [37]. This is
realised using a system model based on Real-Value De-
composition (RVD) [38], given by (16).

ỹ =

[
ℜ(y)
ℑ(y)

]

=

[
ℜ(H) −ℑ(H)
ℑ(H) ℜ(H)

]
·
[

ℜ(s)
ℑ(s)

]
+

[
ℜ(w)
ℑ(w)

]

= H̃ · s̃ + w̃

(16)

Fig. 5 illustrates the effect of considering a complex
symbol as two real-valued components on the structure
of an SD tree. In Fig. 5a, four complex symbols are
enumerated. This equates to the two-layer structure in Fig.
5b, where each layer enumerates the real and imaginary
components of ỹ in turn. The number of APEDs in Fig.
5b is larger but since each operates on real-valued data
only, by separating the two components, the second gives
more fine-grained control of the SD tree structure.

The configuration vector m̃ ∈ R
2×Nt where each m̃j ∈

m̃ represents the number of real symbols enumerated at
layer j in the detection tree. During breadth-first search,
the kth candidate x̃j,k enumerated at the jth tree search
layer is identified via a heuristic which derives a sequence
of candidate real symbols, X̃ = {x̃j,k}m̃j

j=1 using (17)

x̃j,k = x̃j,1 + (step · dir · sdist) , k ∈
[
2,

√
Mc

]
(17)

where

step = d ⌊k/2⌋ , (18)

sdist = 2 · sign(ỹj − x̃j,1), (19)

−1 − j 1 − j 1 + j −1 + j

(a) Complex

−1 1

11 −1−1

(b) Real

Fig. 5: Complex and Real Tree Structures

and

dir =

{
−1 k is odd

1 k is even
(20)

Fig. 6 illustrates the behavior of the enumeration scheme
on a normalized scale for QAM. Note that, since the
values considered are real, the sequence traverses a one-
dimensional line, rather than a two-dimensional plane in
Fig. 4 for BSS-EFE. Each component of the QAM symbol
takes values Ω̃ = {−3, −1, 1, 3}. The equalized symbol ỹ
is quantized to the closest value - respectively −3 and −5
for the values of ỹ in Fig. 6a and Fig. 6b. The sequence of
enumerated symbols is as illustrated.

-7 -5 -3 -1

ỹ
x̃1x̃2 x̃3x̃4

(a)

-7 -5 -3 -1

ỹ
x̃1 x̃2x̃3 x̃4

(b)

Fig. 6: Example of 4 Real Symbols Fast Enumerations

This Real-valued Fast Enumeration (RFE) heuristic
leads to detection accuracy as compared to the EFE
heuristic in BSS-EFE in Fig. 7. There are a number of
significant observations. Values for SNR of less than 12 dB
are not reported, since in this range performance variation
is imperceptible. At higher SNR values, the accuracy of
the RFE detector is superior. The peak gain is 2dB SNR,
using RFE-[1, 1, 1, 1, 1, 1, 1, 2] for QPSK; the average gain
is 0.8 dB.

When realised using, for example, full custom hardware,
programmable logic, or even software, there is no consis-
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Fig. 7: RFE v.s. EFE Detection Accuracy

tent unit of complexity via which to compare different
algorithms. Hence, different SD algorithms are compared
here by comparing the numbers of operations of the same
type (additions, multiplications) each incurs. For each of
the configurations in Fig. 7, Fig. 8 compares the number of
arithmetic operations required. Two trends are evident: in
three of the comparisons, the marginally superior accuracy
of RFE comes at the cost of complexity increases of up
to 2.3%. However, two of the configurations illustrate the
real potential of RFE, combining increased accuracy with
complexity reductions by 39.8% and 39.9%. Except for
the specific configurations where EFE enumerates more
than one symbol at a single layer, RFE enables increased
accuracy at much-reduced complexity.

V. Robust Bounded Spanning

The benefits of RFE can be further amplified by ensur-
ing invalid symbols are not enumerated. For instance, the
enumeration paths in Fig. 6 include −5 and −7, which are
known not to occur. If symbols within the valid set were
enumerated instead of these symbols, such as 1 in both
examples, detection accuracy may be increased.

The proportion of invalid symbols enumerated by RFE,
given the enumeration bound in (11), is illustrated by

[1, 1, 2, 8]

[1, .., 1, 2, 2, 4]

[1, 1, 1, 8]

[1, .., 1, 2, 4]

[1, 1, 2, 4]

[1, .., 1, 2, 2, 2]

[1, 1, 1, 4]

[1, .., 1, 2, 2]

[1, 1, 1, 2]

[1, .., 1, 2]175

349

665

699

1,331

173

343

1,107

683

2,211

RFE
EFE

Fig. 8: RFE v.s. EFE Complexity Comparison

Fig. 9. This describes the results of a Monte-Carlo simula-
tion applying RFE to 105 symbols for each value of SNR
0 − 40 dB. The proportion of invalid symbols decreases
with SNR until about 20 dB is reached. The minimum
proportion of invalid symbols for all other QAM constel-
lation sizes and number of enumerated symbols is around
20%. This is a significant proportion of all symbols.
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1024QAM - m̃j = 32

Fig. 9: Redundant Symbol Enumeration in RFE Heuristic

A Robust Bounded Spanning (RBS) approach is pro-
posed to identify a valid alternative for every invalid
symbol. There are three challenges in doing so:

1) The alternatives should not enumerate symbols which
would otherwise be enumerated by the RFE heuristic.

2) The most likely symbols should be enumerated.
3) Primitive arithmetic/logical operations are preferred.

RBS compares every enumerated symbol with a bound-
ary τu defined by the size of the modulation dictionary, as
in (11). This defines an offset offsetj,k for k ∈

[
2,

√
Mc

]

enumerated symbols at jth antenna using (21):

offsetj,k =

{
−dist · sgn, |x̃j,k| > τu

0 otherwise
(21)
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where dist = 2·m̃j is a scaling factor and sgn the sign of
the first quantized symbol sign(x̃j,1). This offset is adding
to symbols outside the known valid region Ω̃.

The effect of this bounding process is illustrated in
Fig. 10 for the RFE-enumerated sequence in Fig. 6a. For
16 QAM, by (11), τu = 3. Hence, of the sequence of
enumerated symbols {−3, −5, −1, −7} both x̃j,2 = −5
and x̃j,4 = −7 are known to be invalid, since they fall
outside the bound. According to (21), the offsets for each
of these is 8, with the respective updated symbols taking
the values x̃j,2 = 3 and x̃j,4 = 1. Hence, x̃j,2 and x̃j,4 are
mapped to valid symbols in Ω̃, which would not otherwise
have been enumerated. Note that, whilst the symbols
are not enumerated in monotonically decreasing order of
likelihood, the reliance of (21) on m̃j ensures that the
closest set is enumerated; for instance, were m̃j = 2, the
enumerated sequence would be {−3, −1}.

-7 -5 -1 1 3

τu = −3

x̃j,1x̃j,2 x̃j,3x̃j,4 x̃j,2x̃j,4

Fig. 10: Bounded Offset Enumeration

The PED and APED metrics for candidate selection,
˜PED and ˜APED, are calculated using (22) and (23).

˜PEDl,k =

Nt×2∑

j=l

r̃2
j,j

∥∥ỹj − x̃j,k

∥∥2
, l ∈ [1, Nt × 2] (22)

˜APEDl,k =

Nt×2∑

j=l

˜PEDj,k (23)

where ỹj is the jth element of ỹ; x̃j,k is the kth symbol
enumerated at the jth layer; l is the index of current layer.
The resulting symbol vector x̃ is given by:

x̃ = arg min
x̃j

( ˜APEDj), j ∈ [1,

Nt×2∏

nt=1

m̃nt] (24)

The resulting x̃ is reordered and multiplexed into single
data stream and demodulated into detected bits.

The effect of RBS on detection accuracy is shown in
Fig. 11, which compare R-BSFE (i.e. the combined RFE
and RBS heuristics) with BSS-EFE for QPSK and 16-
QAM, 4×4 MIMO schemes. In all cases, detection perfor-
mance is similar. However, this is in the context of poten-
tially very different complexity requirements. Fig. 12 com-
pares the complexity of the configurations from Fig. 11.

In all cases BSS-EFE is at least as complex as R-BSFE
and in several cases R-BSFE enables the same accuracy
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Fig. 11: RBS v.s. BSS Performance Comparison
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Fig. 12: RBS v.s. BSS Complexity Comparison

with much lower complexity. Fig. 11b shows that R-BSFE-
[1, 1, 1, 1, 1, 2, 2, 4] has almost identical accuracy to BSS-
EFE-[1, 1, 2, 8], but 42.1% lower complexity. Similarly,
R-BSFE-[1, 1, 1, 1, 1, 2, 2, 2] is as accurate as BSS-EFE-
[1, 1, 2, 4], but is 42.1% simpler. The proposed bounded
spanning and fast enumeration schemes can significantly
reduce complexity whilst maintaining detection accuracy.

Table I briefly summarises the enumeration differences
between SSFE, BSS-EFE and R-BSFE.
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TABLE I: Enumeration Method Comparison

Pros & Cons

SSFE
redundant complex symbol enumeration,

limited performance with least complexity

BSS-EFE
non-redundant complex symbol enumeration,

better performance with most complexity

R-BSFE
non-redundant real symbol enumeration,

improved performance with reduced complexity

VI. Pre-Processing

Depending on the topology of the search tree, different
orderings of the channel matrix lead to highest detec-
tion accuracy. V-BLAST orders antennas for decoding
in decreasing order of the level of distortion experienced
by each transmit antenna. FSD uses reversed-VBLAST
order and full enumeration of all possible symbols initially,
before reverting to V-BLAST order after a number of
antennas - NFS = ⌈

√
Nt − 1⌉ for complex FSD PP [16]

or NFS = ⌈
√

2 · Nt − 1⌉ for real-valued FSD [39].
Since R-BSFE can achieve any configuration it needs

to adapt its ordering, based on m̃ to use FSD in some
configurations and V-BLAST in others. A real-valued pre-
processing technique is proposed to distinguish these. The
received symbol vector y is divided into real and imaginary
parts and QR decomposition of H̃ is performed to obtain
the upper triangular matrix R̃, as shown in (25).

H̃ = Q̃ · R̃, (25)

According to the norm of each column of H̃, iterative
permutation is applied during QR decomposition. The
objective is to determine the number of antennas for which
VBLAST permutation is applied, before reverse-VBLAST
ordering is applied for the remainder. This approach gen-
eralises FSD ordering. It does not pre-define the number
of layers of each depending on the number of antennas, as
in FSD, but instead applies V-BLAST only in cases where
full enumeration occurs. Specifically, the R-BSFE channel
ordering follows (26):

k̃i =

{
arg maxnt=[1,2×Nt] ˜normnt, m̃j <

√
Mc

arg minnt=[1,2×Nt] ˜normnt, m̃j ≥
√

Mc
(26)

where ˜normnt =
∥∥H̃

∥∥, m̃ is the configuration vector
in real domain and m̃j the number of candidates to
enumerate at jth layer.

This approach has two ’phases’ - first, antennas are
detected in increasing order of received signal quality, and
then the order is reversed. This is the same approach
employed in FSD. However (26) does not define the bound-
ary between these two phases in terms of the number of
antennas, rather the size of the modulation dictionary.
When the number enumerated reaches the real constel-
lation size,

√
Mc, the ordering chooses the transmitter

with the lowest norm. According to m̃j it maintains the
optimal VBLAST order, with decreasing transmit power,
when fewer than

√
Mc symbols are enumerated. Note that

√
Mc can be calculated off-line. The difference between

these approaches is summarised in Table II.

TABLE II: PP Ordering Summery

Order of Channel Matrix

VBLAST Highest to lowest transmitting antenna power

FSD
Reversed VBLAST ordering for first NF S antennas,

VBALST ordering for Nt − NF S antennas

R-BSFE
Reversed VBLAST ordering whenever m̃j ≥

√
Mc,

VBLAST ordering whenever m̃j <
√

Mc

Fig. 13 shows the performance of R-BSFE (m̃ =
[1, 1, 1, 1, 1, 4, 2, 4]) when FSD, VBLAST or the proposed
ordering approach is used. Performance is poorest with
FSD due to the reverse-VBLAST ordering of the non-
full search layers. The proposed ordering is superior to
VBLAST due to the adaptive reverse-VBLAST ordering.
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Fig. 13: R-BSFE 16-QAM 4x4 with Different PP

The accuracy of R-BSFE using the proposed ordering
approach is compared to BSS-EFE in Fig. 14. A maximum
SNR gain of 5 dB is achieved for QPSK under 4×4 MIMO
in Fig. 14b, and 2 dB SNR for 16-QAM. There is a clear
accuracy benefit to employing the proposed scheme over
solely FSD or V-BLAST.

VII. R-BSFE: Performance and Cost

A. Detection Accuracy

The accuracy of R-BSFE in various configurations for
2 × 2, 4 × 4 and 8 × 8 MIMO, employing QPSK, 16-
QAM and 64-QAM, is described, alongside comparable
BSS-EFE configurations, K-Best and FSD in Fig. 15 - 17.

A number of trends are apparent when BSS-EFE (solid
lines) and R-BSFE (dashed lines) are compared in pairs.
When QPSK is employed, in each of Fig. 15a, 16a and
17a, the accuracy of R-BSFE is generally superior to BSS-
EFE. This is despite R-BSFE enumerating no more QAM
symbols, ultimately, than the BSS-EFE equivalent. For
instance R-BSFE-[1, 1, 1, 1, 2] offers 1 dB accuracy gain
relative to BSS-EFE-[1, 2] for 2 × 2 QPSK MIMO, with
the other pairs in Fig. 15a offering near-identical accuracy.
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Fig. 14: R-BSFE Pre-Processing Accuracy Comparison

This benefit is repeated for 4 × 4 and 8 × 8 MIMO,
with R-BSFE accuracy gains increasing with number of
antennas. For instance, in 8 × 8, QPSK MIMO, R-BSFE-
[1, ...1, 2, 2, 2] offers 3 dB gain over BSS-EFE-[1, ..., 1, 2, 4].
R-BSFE generally offers superior accuracy.

For the same MIMO topologies, as modulation density
increases (between adjacent figures), BER performance
converges. However, R-BSFE is generally increasingly su-
perior to BSS-EFE as the number of antennas increase. In
only two cases is R-BSFE accuracy inferior to BSS-EFE.

A series of K-BEST configurations (K = {2, 4} for
QPSK, K = {4, 8} for 16-QAM and K = {8, 16} for 64-
QAM) are compared to R-BSFE. For larger K, perfor-
mance is comparable to R-BSFE with the most complex
configurations; there is no significant difference for small
numbers of antennas but the performance of complex
K-BEST configurations grows with number of antennas
when SNR is low in Fig. 17a-17c. The same trend exists
for increasing the QAM density. The lowest SNR values
reported for QPSK, 16-QAM and 64-QAM are 6 dB, 14
dB and 22 dB. For 16-QAM and 64-QAM, below these
values (the majority of practical scenarios) accuracy is
largely indistinguishable. Since BSS-EFE offers quasi-ML
accuracy, this is a benefit of R-BSFE - the motivation for

R-BSFE is to maintain this accuracy at reduced cost.

B. Complexity

The complexity of the detectors compared in Figs. 15 -
17 are illustrated in Fig. 18 - 20. The figures pair together
the R-BSFE and BSS-EFE schemes whose number of
enumerated symbols are closest. A series of trends are
evident. For 2×2 and 4×4 MIMO topologies, the R-BSFE
variant incurs slightly reduced computational complexity,
whilst generally also enabling superior detection accuracy.
However, in all 8×8 configurations, these are accompanied
by increases in complexity; when the most accurate R-
BSFE and BSS-EFE options are compared for the former
incurs complexity increases of 4.1%, 4.0% and 4.2% for
QPSK, 16-QAM and 64-QAM respectively.

However, comparison of complexity for the same or
improved cost is more appropriate since R-BSFE makes
possible configurations with cost/accuracy balances which
BSS-EFE could not. The benefit of this control is demon-
strated by comparing a variety of R-BSFE and BSS-
EFE configurations. In the 8 × 8 64-QAM case, R-BSFE-
[1, ...1, 2, 8] is the most accurate algorithm and incurs
greatest complexity. But when compared with BSS-EFE-
[1, ..., 1, 2, 16] - the most accurate BSS-EFE configuration
- even R-BSFE-[1, .., 1, 8] offers superior accuracy, yet
incurs only 26.3% of the complexity. Hence, the increased
configurability of R-BSFE can offer either very significant
reductions in complexity, increases in accuracy, or both.

Besides BSS-EFE, FSD and K-BEST are compared over
all BSS-EFE and R-BSFE cases. As shown in Fig. 15-
17, FSD has the best detection performance. Compared
to the most accurate R-BSFE, complexity at low antenna
number such as 2 × 2 and 4 × 4 is even lower. However,
it exceeds R-BSFE exponentially as the antenna number
and QAM density increase. K-BEST with large K config-
uration is of similar complexity to the most accurate R-
BSFE for QPSK which is slightly lower as antenna number
grows. However, as the QAM density grows, it exceeds R-
BSFE significantly as antenna numbers increase. The 1 dB
performance gain over R-BSFE is at the cost of at least
twice the complexity for 16-QAM and over an order of
magnitude greater complexity for 64 QAM, as shown in
Fig. 20b and Fig. 20b.

VIII. Accelerator Architecture

This section evaluates the effect of the complexity re-
ductions enabled by R-BSFE on the performance and cost
of FPGA accelerators. The results are compared with the
state-of-the-art electronic system level implementations of
BSS-EFE, K-BEST with similar detection performance,
and FSD with similar tree-search breadth.

All accelerators are created using the FPGA Processing
Element (FPE) employing 16-bit (10 fractional bits) fixed-
point arithmetic. Built around the on-chip DSP slices on
Xilinx FPGA, these realise additions and multiplications
using hardened components with the same latency. They
are all automatically derived to realise a single R-BSFE
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Fig. 15: Performance Comparison: R-BSFE v.s. BSS-EFE, K-BEST and FSD, 2 × 2 MIMO
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Fig. 16: Performance Comparison: R-BSFE v.s. BSS-EFE, K-BEST and FSD, 4 × 4 MIMO
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Fig. 17: Performance Comparison: R-BSFE v.s. BSS-EFE, K-BEST and FSD, 8 × 8 MIMO

configuration using the process described in [40] to meet
the throughput constraints of 802.11n, for controlled com-
parison with [41]. An example accelerator for 16-QAM,
2 × 2, m̃ = [1, 1, 2, 4] R-BSFE is shown in Fig. 21.

The R-BSFE tree structure for the configuration is
shown in Fig. 21a; T1 − T4 are enumeration and APED
calculations, while T5 identifies the solution with mini-
mum APED. The work in [41] demonstrates that high-
performance, efficient accelerators for SD can be enabled
by using networks of fine-grained SIMD processors; this

was extended in [40] to demonstrate how such accelerators
can be automatically synthesised from a task graph such
as that in Fig.21a. In the case of Fig.21b, this results in
five SIMD processors: a single 10-lane SIMD, three 15-
lane SIMDs and a single 5-lane SIMD, where 30 symbols
(OFDM sub-carriers) are processed concurrently.

Section VII-A showed that in general, R-BSFE has
the same or superior accuracy to BSS-EFE, with gains
increasing with the number of antennas. Tables III and
IV describe the accuracy and cost of the detectors quoted
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Fig. 18: Complexity Comparison: R-BSFE v.s. BSS-EFE, K-BEST and FSD, 2 × 2 MIMO
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Fig. 19: Complexity Comparison: R-BSFE v.s. BSS-EFE, K-BEST and FSD, 4 × 4 MIMO
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Fig. 20: Complexity Comparison: R-BSFE v.s. BSS-EFE, K-BEST and FSD, 8 × 8 MIMO

in Fig. 15a and 15b for 802.11n MIMO.

TABLE III: Resource Comparison: R-BSFE v.s. BSS-EFE
and BFSD, 2 × 2, QPSK

BFSD [34] BSS-EFE [41] R-BSFE

Configuration N/A [1,2] [1,4] [2,4] [1,1,1,2] [1,1,2,2] [1,2,2,2]

DSP48E1 22 24 24 56 18 28 49

LUT (×103) 1.3 3.6 3.8 7.9 2.8 4.7 7.8

Clock (MHz) 125 362 361 351 377 369 370

T (Mbps) 125.6 122.0 123.0 133.9 138.6 125.6 126.3

In Table III, R-BSFE-[1, 1, 1, 2] offers superior accuracy
and throughput to BSS-EFE-[1, 2], at increased cost. In
this configuration, BSS-EFE enumerates relatively few
symbols and is quite efficient. However as BSS-EFE be-
comes more complex, R-BSFE becomes more effective. R-
BSFE-[1, 1, 2, 2] sees a mild increase in LUT cost relative

TABLE IV: Resource Comparison: R-BSFE v.s. BSS-EFE
and BFSD, 2 × 2, 16-QAM

BFSD [34] BSS-EFE [41] R-BSFE

Configuration N/A [1,4] [1,8] [2,8] [1,1,1,4] [1,1,2,4] [1,2,2,4]

DSP48E1 84 24 63 70 24 60 70

LUT (×103) 2.9 3.8 11.5 14.0 4.6 13.0 12.2

Clock (MHz) 271 361 337 343 370 351 346

T (Mbps) 541 245.9 240.7 244.7 250.1 244.8 247.1

to BSS-EFE-[1, 4], alongside mild throughput increases for
the same detection accuracy. R-BSFE-[1, 2, 2, 2] enables an
11% reduction in DSP48E1, alongside a 4% increase in
LUT over BSS-EFE-[2, 4], whilst also enabling a through-
put increase. The FSD and BFSD implementations in
Table III consume less LUT but more DSP than R-BSFE-
[1, 1, 1, 2], with slightly better throughput.
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Fig. 21: Architecture Synthesis of 2 × 2 R-BSFE 16-QAM, m̃ = [1, 1, 2, 4] based on [40]

This trend continues in Table IV. Comparing three con-
figurations of BSS-EFE to R-BSFE, R-BSFE never incurs
a greater DSP48E1 cost, offers the same performance and
always offers superior throughput. BFSD reduces LUT
cost, but requires more DSPs than R-BSFE-[1, 1, 1, 4].

Recall, though, that the R-BSFE configurations were
chosen to most closely match those of BSS-EFE config-
urations to which they were compared; this comparison
neglects to consider R-BSFE configurations which cannot
be approximated by BSS-EFE. For instance, compare
BSS-EFE-[1, 1, 4, 12] with three R-BSFE configurations,
illustrated in Fig. 22, with accelerator metrics as quoted
in Table V.
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Fig. 22: Performance Comparison: R-BSFE v.s. BSS-EFE
and FSD, 4 × 4 16-QAM

As shown in Fig. 22, R-BSFE-[1, ..1, 4, 3, 4] enables gen-
erally superior detection accuracy to BSS-EFE-[1, 1, 4, 12]
at SNR above 14 dB. R-BSFE-[1, ..1, 2, 3, 4] enables almost
identical accuracy and, for most practical purposes (i.e.

TABLE V: Resource Comparison: R-BSFE v.s. BSS-EFE
and FSD, 4 × 4, 16-QAM

Detector FSD [40] BSS-EFE [41] R-BSFE

Configuration N/A [1,1,4,12] [1, ..., 1, 4, 3, 4] [1, ..., 1, 2, 3, 4]

DSP48E1 216 495 573 360

LUT (×103) 31.1 112.6 77.4 60.1

BRAM 0 0 0 0

Clock (MHz) 298 252 247 305

T (Mbps) 483.2 484.8 481.65 519.14

SNR below 14 dB), the accuracy of each of these three
are indistinguishable. However, the accelerator cost of
the R-BSFE solutions is significantly lower. Relative to
BSS-EFE-[1, 1, 4, 12], R-BSFE-[1, 1, 1, 1, 2, 3, 4] consumes
27% fewer DSP48E1 slices and 46.7% fewer LUTs. It
also enables peak throughput 7% higher than BSS-EFE-
[1, 1, 4, 12]. The key benefit of R-BSFE is in allowing
more fine-grained control of SD complexity to balance
complexity and detection accuracy between quasi-optimal
and across the sub-optimal range, resulting in less complex
implementations for real-time SD.

The performance of R-BSFE-m̃ = [1, ..., 1, 2, 8] is as
shown in Fig. 23. When compared with K-BEST (K = 8),
chosen because of its similar detection performance for
64-QAM 4 × 4 MIMO [33], it offers almost identical
performance but the resulting accelerator for R-BSFE
requires 30% fewer LUT and 76% fewer DSP resources,
as quoted in Table VI.

IX. Conclusion

Modern MIMO systems vary dramatically in scale and
complexity, with standards commonly supporting antenna
topologies varying from 2 × 2 - 8 × 8 and modulation
densities of QPSK - 1024-QAM. Baseband signal pro-
cessing operations such as symbol detection need to be
able to adapt not only to these requirements, but also
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Fig. 23: Performance comparison: R-BSFE v.s. K-BEST
and FSD, 4 × 4,64-QAM

TABLE VI: Resource comparison: R-BSFE v.s. K-BEST
and FSD, 4 × 4, 64-QAM

Detector FSD [40] K-BEST [33] R-BSFE

Configuration N/A K=8 [1, ..., 1, 2, 8]

DSP48E1 304 565 188

LUT (×103) 154.42 81.45 50.00

Clock (MHz) 278 167 309

T (Mbps) 506.4 501 494

to supporting devices with differing levels of performance,
cost and power consumption.

This paper presented a novel configurable SD for this
purpose. R-BSFE supports varying levels of symbol de-
tection accuracy and cost. It employs a novel real-valued
symbol enumeration approach which selects, for any user-
defined number of enumerated symbols, the most likely
candidates from the QAM constellation. This is com-
bined with a novel pre-processing approach to ordering
the columns of the channel matrix for detection which
accounts for the structure of the SD tree to order the
antennas differently, based on the specific configuration.
Combined, these increase detection accuracy by up to 9
dB whilst maintaining quasi-ML accuracy with roughly
equal complexity. However, the real-valued enumeration
approach makes available configurations which would not
otherwise be possible, which enables similar or better
accuracy than the state of the art, with higher throughput
and considerable reduced cost. For instance when R-BSFE
accelerators on Xilinx FPGA are compared to those for
BSS-EFE, complexity reductions of up to 42% lead to
throughput increases of up to 7% and FPGA resource cost
reductions of up to 46.5% whilst increasing accuracy.
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