
Configurable Transactional Memory

Christoforos Kachris1,2, Chidamber Kulkarni2

Computer Engineering Lab1
Delft University of Technology
The Netherlands

Xilinx Research Labs2
Xilinx Inc.
San Jose, CA

Abstract

Programming efficiency of heterogeneous concurrent
systems is limited by the use of lock-based synchronization
mechanisms. Transactional memories can greatly improve
the programming efficiency of such systems. In field-
programmable computing machines, a conventional fixed
transactional memory becomes inefficient use of the
silicon. We propose configurable transactional memory
(CTM) as a mechanism to implement application specific
synchronization that utilizes the field-programmability of
such devices to match with the requirements of an
application. The proposed configurable transactional
memory is targeted at embedded applications and is area
efficient compared to conventional schemes that are
implemented with cache-coherent protocols. In particular,
the CTM is designed to be incorporated in to compilation
and synthesis paths of either high-level languages or
during system creation process using tools such as Xilinx
EDK. We study the impact of deploying a CTM in a
packet metering and statistics application and two micro-
benchmarks as compared to a lock-based synchronization
scheme. We have implemented this application in a Xilinx
Virtex4 device and found that the CTM was 0-73% better
than a fine-grained lock-based scheme.

Introduction

Programmable platforms are becoming increasingly
critical to addressing the ever decreasing time-to-market,
pushing designers away from risk time-consuming ASIC
design process. An example of platform FPGA is the
Xilinx Virtex-4 family of programmable logic devices that
include hard IP cores such as the PowerPC
microprocessor, RocketIO serial transceivers, digital signal
processing blocks, and true dual-ported on-chip embedded
block RAM (BRAM) memories. Current state-of-the-art
design flow for platform FPGAs in the networking domain
involves starting with HDLs, which are not suited for
describing systems. Thus a productivity gap is widening

with every new process generation. To close this gap, we
need methods and tools that can transform higher-level
concurrent semantics in to HDL (at register-transfer level)
implementations. A primary goal of this work is to enable
a higher abstraction for mapping applications in
networking domain to platform FPGAs.

Programming concurrent heterogeneous platforms
remains an art due to many challenges. One such challenge
is the synchronization among concurrent threads or
processes. In this paper we focus on shared memory
abstraction for implementing synchronizations. In
particular, we investigate efficient mapping of
synchronization mechanisms on platform FPGAs for
networking applications. Current shared memory
abstractions based on locks and mutual exclusions are
difficult to use, scale, and generally result in a tedious and
error-prone design process.

Typical FPGA based system implementations comprise
one or more soft processors and custom state machines in
logic. In such a system, the soft processor(s) perform
control and supervisory functions and the state machines
implement custom functions. The use of multiple soft
processors combined with dedicated logic to implement a
concurrent system has created the need for simpler
synchronization mechanisms. In the multi-processor
context, the synchronization of the processors is based on
locks that have significant performance limitations and
increased programming complexity. One of the problems
of using lock-based synchronization is to find the right
granularity for each application. Fine-grained locks have
better performance but increased programming complexity
and are error prone. On the other hand, the programming
complexity can be reduced using coarse-grained locks (one
lock for each data structure) but with a major impact on the
performance of the system. A much simpler abstraction for
synchronization of multi-processors is the use of
transactions. Transactions are programming operations that
are executed atomically as seen by the processors; hence
they provide the consistency of the shared memory. Using
transactions, the programming of a parallel platform is
much simpler. There is no need to lock the variables before
modifying them or to unlock after the update. Furthermore,
the order of the locks is very important to avoid deadlocks

and livelocks. Hence transactional schemes can be used to
develop more robust code.

Many transactional memory schemes with hardware
support have been proposed but most of them target high
performance systems with cache coherence protocols. In
many embedded applications, such as network processing,
the target platforms incorporate devices with multiple
simple RISC processor or micro-engines (e.g. network
processors and FPGAs [10]). In this case the programming
of the platform using locks is error prone and the adoption
of complex transactional schemes with cache coherency
adds significant area overhead. Hence, a simple
transactional memory scheme is required. In this paper, we
present a configurable transactional memory that is light
weight and integrates in to existing tool chains and soft
processors easily. Furthermore, in applications such as
network processing, where the number of data conflicts
and lock contention is low, the proposed scheme can also
be used to improve significantly the performance of the
system.
The main contributions of the proposed scheme are:

• A configurable transactional memory for FPGAs
that fits to the application

• Small area overhead, thus ideal for embedded
applications targeting FPGAs

• No need for cache coherence protocol
• No need for changes in the ISA, or the compiler
• Major speedup over locks in applications with

low presence of data conflicts (e.g. network
processing)

Section 2 presents a discussion of the related work in

the area of transactional memories with hardware support.
Section 3 presents the overall system architecture that we
have used in this work and section 4 shows the
performance evaluation of the proposed scheme for a
network processing application. Finally, in section 4 we
discuss our conclusions and present scope for future work.

Related work

Although lock-based synchronization schemes are most
widely used method of synchronization of multi-threaded
and multi-processors systems, the performance limitations
and the increased programming complexity has created the
need for research on hardware assisted transactional
memories. The majority of the proposed schemes are
implemented by modifying or upgrading standard multi-
processor cache coherence protocols. One of the first
implementations of transactional memories is presented in
[1]. In this paper a transactional memory is implemented
by modifying the cache coherence protocol. The main idea
of the proposed architecture is that the same protocol that
is used for cache coherency can be used for transactional

conflict management with no extra cost. The proposed
architecture introduces new instructions such as load-
transactional, store-transactional, commit and abort and
can be implemented for both bus-based (snoopy cache) and
network-based (directory) architectures. In the proposed
implementation, each processor maintains two caches: a
regular cache for regular operations and a transactional
cache for transactional operations. In the second cache
each line contains information about the transaction such
as invalid, valid, dirty or reserved.

A transactional memory with the same semantics has
been proposed in [2],[3]. In these papers a unified model is
proposed in which the conventional coherence and
consistency technique has been completely replaced
instead of being duplicated for regular and transactional
accesses. In these works, only one cache per processor is
used to store the data and the transaction information.
Furthermore, a write-buffer is used to store the data that
have been modified. In case that a commit is requested, all
of the data of the write-buffer are transferred to the main
memory without being interrupted and the addresses are
also broadcasted to the other processor to preserve the
consistency. The main drawback of the proposed scheme is
that it increases the communication bandwidth of the
multi-processor platform.

In [4][5][6], a new scheme is introduced called
Transactional Lock Removal (TLR). The proposed scheme
uses the lock semantics to identify and create the
boundaries of the transactions. The main feature of the
proposed scheme is that it tries to serialize the code only
on conflicts while using speculative lock elision for the
remaining part of the critical code. When there is a conflict
it uses timestamps to eliminate livelocks and to serialize
the transactions. The main advantage of the proposed
scheme is that it does not require either instruction set
changes or compiler changes; only the transactional
hardware unit must be incorporated to the current
processors to support transactional memories. The main
bottleneck of the transactional memories is that they are
often bounded by system constraints such as cache size. In
[7], a new scheme is introduced to support unbounded
transactional memories. The proposed scheme explains
how to use the main memory to store the data of the
transactional cache, hence to eliminate the bounding of the
transactional memories by sacrificing the performance of
the system.

Until now the FPGAs have been used only for
prototyping of the proposed transactional schemes ([8],
[9]). But as the FPGAs have evolved from simple logic
devices to complete SoC platforms incorporating multiple
processors (either hard or soft core) there is the need for
efficient and robust concurrent programming abstraction
without significant area overhead. Our scheme is mainly
targeted at embedded applications in FPGAs and can be
used on multi- processors with or without cache. Hence,
the proposed scheme does not depend on cache coherence

protocols. Furthermore, the proposed scheme is targeting
reconfigurable platforms hence it can be reconfigured to
meet the application demands. The size of the cache and
the buffers that are used for the memory consistency can
be extracted by profiling or static analysis of the
application code. The main feature of the proposed
architecture is that it is centralized. It uses only one cache
to store the shared data for all of the processors. This
feature keeps the communication bandwidth of the
platform low since the data of each processor does not
have to be broadcasted to the other processors. The main
limitation of this feature is that it is not scalable to a large
number of processors. We believe that the proposed
scheme can be used for platforms incorporating up to 8
processors.

System Architecture

The top level architecture of the proposed scheme is shown
in Figure 1. This figure depicts an example with 4
processors that have access to a shared memory. The
processors can access the shared memory either
conventionally, using the shared bus, or transactional,
using a direct interface with the transaction controller. The
access to the shared memory using the bus can be used
when the processor accesses the private sections of the
memory. In case that the processors want to access shared
portion of the memory, the transaction controller can be
used. The transactional controller uses a small memory
cache to store the shared data and small FIFOs (one for
each processor) in which the addresses, of each shared
variable that each processor has accessed, are stored. Note
that we have multiple ports on the memory controller as
opposed to a bus-based single port memory controller
found in conventional processor based systems.

The organization of the cache is shown in Figure 2. For
each entry there are 8 bits that are used to store what kind
of access each processor had (one Read and one Write flag
for each processor). When a processor issues a load, if the
data is not stored in cache then the transaction controller
accesses the main memory, stores the data to the cache,
returns the value to the processor and asserts the
corresponding Read flag in the cache. When the processor
issues a store, the transaction controller checks if there are
any collisions. A collision occurs if any of the other
processors R or W flags is already asserted. If there is no
collision the data are stored to the cache and the
corresponding W flag is asserted. When a processor issue a
commit then the transaction controller retrieves all the
accessed addresses from the corresponding FIFO and copy
the entries from the cache to the main memory. In case that
an entry has been accessed only by this processor then the
whole entry is cleared. In case that the entry has been also
accessed by other processors then only the R and W flags
of this processor are cleared and the entry remains valid.

In case there is a collision the same procedure is used
but in this case the data are not stored back to the memory.
All the entries of the processor that created the collision
are removed from the cache and a collision signal is sent to
the processor when it tries to commit. Thus, the processor
does not have to poll or to be interrupted in case that there
is a collision. The drawback of this scheme is that in case
there is a collision the processor will keep executing the
instructions and it will be notified only when it tries to
commit. But if the number of instructions of the
transaction is small (which is typical in network processing
applications) the performance of this scheme is better than
using polling or interrupts.

The current scheme uses the Cuckoo hashing to
implement the hash collisions. The Cuckoo hashing [12]
uses two hash functions instead of only one. When a new
entry is inserted then it is stored in the location of the first
hash key. If the entry is occupied the old entry is moved to

Figure 1. Top level architecture

its second hash address and the procedure is repeated until
an empty slot is found. This algorithm provides constant
lookup time O(1) (lookup requires just inspection of two
locations in the hash table) while the insert time depend on
the cache size (O(n)). In case that the procedure enters an
infinite loop the hash table is rebuild. But even in this case
it can be shown that the performance of the system in the
insertion is efficient as long as the number of keys is kept
below half of the capacity of the hash table.

Figure 2. Cache organization

The main advantage of the proposed scheme is that the

organization can be configured to meet the application
requirements. Table 1 shows the parameters of the design
that can be easily changed to meet the target application.
The number of FIFOs depends on the number of the
processors that are used to access the shared memory. The
depth of the FIFOs depends on the application e.g. the
maximum number of shared variables in the transactions.
The size of the cache depends not only on the number of
processor and the number of shared variables but also on
the application requirements (e.g. collision probability). In
summary, CTM is based on two basic hypothesis; first, for
applications that require small number of operations per
transaction (less than 10 instructions), CTM will have a
small area overhead but will have higher performance and
significantly lower design effort; second, for applications
that perform lot of operations in each transaction (greater
than 20-25 instructions), the lock based scheme might have
marginally better performance and lower area overhead but
the design effort required will be significantly larger than
that based on CTM.

Table 1. Parameters

Parameter Dependency
Number of FIFOs Depends on the # of processors
Depth of FIFOs Depends on the application

(shared variables)
Cache Size Depend on the # of processors,

the application and the
constraints

Furthermore, the proposed scheme can also be used to

provide ordering between the transactions to maintain a

specific program execution similar to the scheme used in
[2]. The programmer can assign an identification number
(common to a group of transactions) and a sequence
number to each transaction. These two numbers can be
forwarded to the transactional control with the commit
command request (32-bit wide). The transactional
controller checks the identification and the sequence
number of the transaction to ensure consistent execution. If
the sequence number for a specific transaction group is
higher than the current sequence number then the
transaction has to rollback. Otherwise, the transaction is
committed. Figure 3 shows an example in which three
transactions with common identification number have to
be synchronized. The transaction with ID X, and Y do not
have to be synchronized while the transaction with ID Z
has to be synchronized.

Figure 3. Transaction ordering

A small table is used in the configurable transactional

controller to check if the sequence number of the current
transaction is smaller than the last one stored in the table.
In that case the transaction is rolled back and is executed
again as it is shown for the transaction that is executed in
processor 2.

We will now discuss the experimental set up used in
our experiments with CTM on a packet metering
application and two micro-benchmarks from related work
and discuss the results of our experiments.

Implementation and System
Evaluation

The system has been implemented in a Xilinx Virtex4 LX
FPGA platform. We use the soft-core 32-bit Microblaze
processors [11]. Each Microblaze can be configured with
up to 8 32-bit dedicated interfaces called Fast Simplex
Link (FSL). This interface has been used for the

Sequence

Rollback
replay

Z,1
Z,2

P1 P2

ID Sequence
X 0
Y 0

Trans. ID Table

Z 1

time

X,0 Y,0

Z,2

ID

communication of the processor with the transaction
controller. Each time a processor issues a transactional
load, it sends the address to the FSL link and waits until it
receives the value of the data. When the processor issues a
store, the address and the data are sent to the FSL link.
Furthermore, the FSL interface uses a dedicated signal for
control information. When a processor tries to commit a
transaction this control bit is asserted. The transaction
controller uses the control signals to convey either
acceptance or rejection of a particular transaction.

The key advantage of the above scheme is that at
design time, based on profiling the code and static analysis
the user can configure a particular transactional memory
configuration. In our experiments this process was done
manually. However this can be easily automated and is
part of our ongoing research. In this study, we used a 64
entries cache, and the FIFOs are 32-bit wide with 16
entries deep. The main memory is 32x16K internal RAM
(BRAM). Note that for larger memory size requirements
we can use an external memory by connecting the
transaction controller to a DRAM memory controller. In
such a scenario, a multi-port memory controller becomes
even more critical to provide efficient data path from the
memory controller to the processor sub-system.

To evaluate the proposed scheme an application was
developed. Since there is a lack of widely accepted
benchmarks for transactional memories, we chose a
networking application that is widely used for per-flow
metering and statistics in network processing equipments
(e.g. edge routers). Similar applications are used in
programs for network billing and accounting, performance
analysis and security management such as the Argus open
source framework [13]. In this application, each time a
packet arrives in the system, the header is extracted and
forwarded to the next available processor. Each processor
extracts some information from the header (Source IP,
TCP Port, etc.) and uses this information to update specific
counters. These counters can be used for billing and

Quality of Service purposes. To evaluate the efficiency of
the proposed scheme, a similar scheme has been developed
in which the transaction controller has been replaced by a
fine-grain lock controller. The lock controller does not use
the FIFOs hence it consumes much less area. Each
processor must first lock the addresses of the variables that
are going to be updated, then update the counters and then
unlock the addresses. Furthermore, the cache has been
modified and instead of using R and W bits, only one bit is
used for each processor to indicate which processor has
locked the address. Although the lock controller consumes
less area, the programmability of this scheme is much
harder and error prone than using the transactions. The
programmer has to perform detailed analysis of their
implementation to avoid deadlocks or livelocks.

Figure 4 shows an example source code for MicroBlaze
implementation of the transactional and the lock schemes.
Here the transaction begins at the first transactional
instruction (trans_load()) and ends at the last commit
operation. This approach is similar to conventional
transactional begin and end semantics. However in our
approach these key words are not explicitly required. As
shown, in the case of the transactional scheme, the
programmer does not have to worry about issuing lock
requests but instead issues transactional loads and stores.
Note the difference compared to other efforts where in
there is burden on the compiler to take code that are
marked with transactional sections (using transaction begin
and end constructs) and generate appropriate code. In our
approach we used a library based scheme to work around
the requirement of modifying the MicroBlaze compiler.
Similarly, for the lock-based scheme, the user now has to
issue lock requests and unlock requests to particular
sections of the memory. Thus programming with
transactional semantics entails less burden on the
programmer, who is not required to worry about acquiring
and releasing various sections of the memory, a function
that is now performed by the hardware.

Network Metering Application (Update of two counters)

do {
 x_counter = trans_load(x_addr);
 y_counter = trans_load(y_addr);
 x_counter++;
 y_counter++;
 trans_store(x_addr, x_counter);
 trans_store(y_addr, y_counter);

 temp = trans_commit();
} while (temp!=0);

while (temp = lock_req(x_addr));
while (temp = lock_req(y_addr));

x_counter = lock_load(x_addr);
y_counter = lock_load(y_addr);
x_counter++;
y_counter++;
lock_store(x_addr, x_counter);
lock_store(y_addr, y_counter);

unlock_req(x_addr);
unlock_req(y_addr);

Figure 4a. Transactional scheme Figure 4b. Lock scheme

Figure 5 shows the performance evaluation of the
transactional and lock scheme for 2 and for 4 processors
depending on the number of modified shared variables for
the packet metering application. We used EDK8.2i in our
work. We constructed the configurable transactional
memory with various parameters using VHDL and
manually instantiated the different parameterized versions
of the CTM in our experiments. We performed RTL
simulation in EDK using ModelSim6.0 to obtain the cycle
accurate data. We generated our timing information using
Xilinx ISE 8.2i after place and route.

Figures 5a and 5b show the execution time to process
50 network packets (each processor). In the case of two
processors the speedup of the transactional scheme is from
marginal (2% using only 1 shared variable) to 30% using 5
shared variables. In the case of four processors the speedup
is from 0% using one shared counter, to 73% using five
shared counters. When five shared counters are used, a lot
of time is wasted in the instructions that are used to lock
and unlock the variables. On the other hand, the
transactional scheme uses only one instruction to commit
all of the shared variables, hence the execution time is
much lower. Thus, the proposed scheme not only
introduces a much simpler programming model for
multiprocessor platform but can also be used to improve
the execution time of such applications. In the current
application, the range of the counters that are updated is
very wide (1024 different counters that represent 1024
different network flows) hence the probability of collision
between 2 processors is very small. In case that the shared
variables refer to the same address the probability of
collision will be higher thus the execution time will
increase.

Figure 6 shows how the performance of the
transactional memory depends on the number of rollbacks.
The figure shows the time to process 200 network packets
using four processors using the transactional and the lock
scheme. The range of counters that had to be updated for

each packet was artificially changed to create data
dependencies. As it is shown the processing time is from
20% to 30% smaller using the transactional memory than
the lock-based scheme even when the percentage of
rollbacks (percentage of data conflicts) is 50% (one
rollback for every commit transaction request). Note that
the function that was used to update the counters was
consuming almost one third of the total time to process a
packet. Hence, the probability of collision has a smaller
impact on the total execution time.

To further illustrate how the memory conflicts affect
the performance of the system we implemented the micro-
benchmarks from [5]. These benchmarks represent two
extreme cases for the update of the counters. In the first
benchmarks all of the processors update the same counter
(same address) creating a high number of conflicts. In the
second benchmark all of the processors update a different
counter which means that there are no conflicts at all. The
performance of the system for these two cases is depicted
in Figure 7 for a system with four processors. As shown in
the case of the single counter (high conflicts) the
processing time to update 400 counts (100 for each

Performance vs Rollbacks

0

50

100

150

200

250

5.2 6.5 18.0 29.3 48.7

% of Rollbacks

us
ec

Transactional Lock

Figure 6. Performance over Rollbacks

Transactional vs Lock Memory (2 processors)

0
20
40
60
80

100
120
140
160
180
200

1 2 3 5

Modified Variablies

Ex
ec

ut
io

n
tim

e
(u

se
c)

Transactional Lock

Transactional vs Lock Memory (4 processors)

0

50

100

150

200

250

300

350

1 2 3 5

Modified Variables

Ex
ec

ut
io

n
tim

e
(u

se
c)

Transactional Lock

Figure 5a. Comparison for 2 processors Figure 5b. Comparison for 4 processors

processor) is almost 40% less than the processing time
using the lock mechanism. The transactional scheme only
rollbacks when there is a conflict, while in the case of the
lock mechanism the processor is waiting for the other
processors to unlock the specific memory. On the other
hand, when there are no conflicts, then the performance of
system is independent of the scheme.

The area and the maximum clock frequency of the
transactional controller and the lock controller for several
processors are shown in Table 2 and Table 3 respectively.
As it is shown the current implementation of the
transactional controller can support up to 8 processors
using the same clock frequency as the processors and the
bus (100MHz). The area overhead is quite small (less than
530 slices for 8 processors, which requires a total area of
about 8000 slices). This is clearly an important benefit of
the configurability of our scheme that tailors the
transactional controller to the application needs. The
number of occupied internal Block RAMs (BRAMs) that
are used for the FIFOs and the cache depends on the

number of processors and the application. The depth of the
FIFOs and the cache is proportional to the number of
shared variables among the processors. These are
parameters that can be configured or customized for each
application. As it is shown the transactional controller is
larger than the lock controller and the maximum clock
frequency is less than the lock controller. But the reduced
program execution and the easy of programming that the
transactional memory offers compensates for the area
overhead.

Table 2. Area comparison

Processors Area (slices)
 Transact. Lock

2 277 137
4 370 247
8 530 353

Table 3. Clock frequency comparison

Processors Clock Freq. (MHz)
 Transact. Lock

2 151 182
4 137 156
8 107 149

Conclusions and future work

The ability to configure a transactional memory to the
needs of a particular application is an important aspect that
is explored in this paper. The proposed configurable
transactional memory helps in increasing the programming
efficiency of a multi-processor system on FPGA. In
addition, for some applications it can also help in
increasing the system performance, where the
synchronization among processes is the performance

Processor

Processor

Processor

FSM

FSM

FSM

Config.
Trans.
BRAM

Config.
Trans.
BRAM

Config.
Trans.
BRAM

Input
packets

Output
packets

Figure 5. Configurable Transactional Memory in multi-processing

Microbenchmark performance (4 processors)

0
20
40

60
80

100
120

140
160
180

Single Counter Multiple Counter

Benchmark

Ti
m

e
(u

se
c)

Trans.

Lock

Figure 7. Microbenchmark results for 4 processors

bottleneck. Our experiments have shown that for the
packet metering application we could increase the system
performance compared to a lock-based implementation for
a small increase in the total area of the implementation.

Finally, the proposed scheme could be extended to
support not only processors but also hardware accelerators
modules. Hence, in this case the configurable transactional
controller could be used to provide consistency between
the processors and the hardware acceleration modules as it
is shown in Figure 5. This figure shows a multi-processor
platform in which the processing of the packet is
performed in several stages that include both processors
and hardware acceleration modules and consistency needs
to be preserved. In addition, we have not explored
leveraging compiler optimizations based on life-time
analysis of data structures as well as investigation in to the
impact of CTM on power consumption compared to a
lock-based scheme. These are topics of our future research.

References

[1] M. Herlihy, J. E. B. Moss, “Transactional

Memory: Architectural Support for Lock-Free
Data Structures”, Proceedings of the 20th Annual
International Symposium on Computer
Architecture, San Diego, CA, USA, May 1993

[2] L. Hammond, et al., “Transactional Coherence
and Consistency: Simplifying Parallel Hardware
and Software”, IEEE Micro, November-
December 2004

[3] Austen McDonald, et al., “Characterization of
TCC on Chip-Multiprocessors”, Proceedings of
the 14th International Conference on Parallel
Architectures and Compilation Techniques, 2005

[4] R. Rajwar, J. R. Goodman, “Transactional
Execution: Towards Reliable, High-Performance
Multithreading”, IEEE Micro, November-
December, 2003

[5] R. Rajwar, J. R. Goodman, “Transactional Lock-
Free Execution of Lock-Based Programs”, Proc.
Symposium on Architectural Support for
Programming Languages and Operating Systems
(ASPLOS 02), ACM Press, 2002, pp. 5-17

[6] R. Rajwar, J. R. Goodman, “Speculative Lock
Elision: Enabling Highly Concurrent
Multithreaded Execution”, Proceedings of the 34th
International Symp. Microarchitecture (MICRO-
34), IEEE CS Press, 2001, pp. 294-305

[7] Sean Lie, “Hardware Support for Unbounded
Transactional Memory”, Masters thesis,
Massachusetts Institute of Technology, May 2004

[8] S. Grinberg, S. Weiss, “Investigation of
Transactional Memory using FPGAs”, Proc. 2nd
Workshop on Architecture Research using FPGA
Platforms, Austin, Texas, USA, February 2006

[9] N. Njoroge et al., “Building and Using the
ATLAS Transactional Memory System”, Proc.
2nd Workshop on Architecture Research using
FPGA Platforms, Austin, Texas, USA, February
2006

[10] B. Moyer, “Packet Subsystem on a Chip”, Xilinx
Embedded Magazine, March 2006

[11] “MicroBlaze Processor Reference Guide”,
Datasheet, Xilinx, June 2006

[12] R. Pagh, F. F. Rodler, “Cuckoo Hashing”,
Proceedings of ESA 2001, Lecture Notes in
Computer Science, vol. 2161, 2001

[13] Qosient Argus, Auditing Network Activity,
http://www.qosient.com/argus

