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Abstract 
 
Programming efficiency of heterogeneous concurrent 
systems is limited by the use of lock-based synchronization 
mechanisms. Transactional memories can greatly improve 
the programming efficiency of such systems. In field-
programmable computing machines, a conventional fixed 
transactional memory becomes inefficient use of the 
silicon. We propose configurable transactional memory 
(CTM) as a mechanism to implement application specific 
synchronization that utilizes the field-programmability of 
such devices to match with the requirements of an 
application. The proposed configurable transactional 
memory is targeted at embedded applications and is area 
efficient compared to conventional schemes that are 
implemented with cache-coherent protocols.  In particular, 
the CTM is designed to be incorporated in to compilation 
and synthesis paths of either high-level languages or 
during system creation process using tools such as Xilinx 
EDK. We study the impact of deploying a CTM in a 
packet metering and statistics application and two micro-
benchmarks as compared to a lock-based synchronization 
scheme. We have implemented this application in a Xilinx 
Virtex4 device and found that the CTM was 0-73% better 
than a fine-grained lock-based scheme.  
 

Introduction 
 
Programmable platforms are becoming increasingly 
critical to addressing the ever decreasing time-to-market, 
pushing designers away from risk time-consuming ASIC 
design process. An example of platform FPGA is the 
Xilinx Virtex-4 family of programmable logic devices that 
include hard IP cores such as the PowerPC 
microprocessor, RocketIO serial transceivers, digital signal 
processing blocks, and true dual-ported on-chip embedded 
block RAM (BRAM) memories. Current state-of-the-art 
design flow for platform FPGAs in the networking domain 
involves starting with HDLs, which are not suited for 
describing systems. Thus a productivity gap is widening 

with every new process generation. To close this gap, we 
need methods and tools that can transform higher-level 
concurrent semantics in to HDL (at register-transfer level) 
implementations. A primary goal of this work is to enable 
a higher abstraction for mapping applications in 
networking domain to platform FPGAs. 

Programming concurrent heterogeneous platforms 
remains an art due to many challenges. One such challenge 
is the synchronization among concurrent threads or 
processes. In this paper we focus on shared memory 
abstraction for implementing synchronizations. In 
particular, we investigate efficient mapping of 
synchronization mechanisms on platform FPGAs for 
networking applications. Current shared memory 
abstractions based on locks and mutual exclusions are 
difficult to use, scale, and generally result in a tedious and 
error-prone design process.  

Typical FPGA based system implementations comprise 
one or more soft processors and custom state machines in 
logic. In such a system, the soft processor(s) perform 
control and supervisory functions and the state machines 
implement custom functions. The use of multiple soft 
processors combined with dedicated logic to implement a 
concurrent system has created the need for simpler 
synchronization mechanisms. In the multi-processor 
context, the synchronization of the processors is based on 
locks that have significant performance limitations and 
increased programming complexity. One of the problems 
of using lock-based synchronization is to find the right 
granularity for each application. Fine-grained locks have 
better performance but increased programming complexity 
and are error prone. On the other hand, the programming 
complexity can be reduced using coarse-grained locks (one 
lock for each data structure) but with a major impact on the 
performance of the system. A much simpler abstraction for 
synchronization of multi-processors is the use of 
transactions. Transactions are programming operations that 
are executed atomically as seen by the processors; hence 
they provide the consistency of the shared memory. Using 
transactions, the programming of a parallel platform is 
much simpler. There is no need to lock the variables before 
modifying them or to unlock after the update. Furthermore, 
the order of the locks is very important to avoid deadlocks 



and livelocks. Hence transactional schemes can be used to 
develop more robust code.   

Many transactional memory schemes with hardware 
support have been proposed but most of them target high 
performance systems with cache coherence protocols. In 
many embedded applications, such as network processing, 
the target platforms incorporate devices with multiple 
simple RISC processor or micro-engines (e.g. network 
processors and FPGAs [10]). In this case the programming 
of the platform using locks is error prone and the adoption 
of complex transactional schemes with cache coherency 
adds significant area overhead. Hence, a simple 
transactional memory scheme is required. In this paper, we 
present a configurable transactional memory that is light 
weight and integrates in to existing tool chains and soft 
processors easily. Furthermore, in applications such as 
network processing, where the number of data conflicts 
and lock contention is low, the proposed scheme can also 
be used to improve significantly the performance of the 
system. 
The main contributions of the proposed scheme are: 

• A configurable transactional memory for FPGAs 
that fits to the application 

• Small area overhead, thus ideal for embedded 
applications targeting FPGAs 

• No need for cache coherence protocol 
• No need for changes in the ISA, or the compiler 
• Major speedup over locks in applications with 

low presence of data conflicts (e.g. network 
processing) 

 
Section 2 presents a discussion of the related work in 

the area of transactional memories with hardware support. 
Section 3 presents the overall system architecture that we 
have used in this work and section 4 shows the 
performance evaluation of the proposed scheme for a 
network processing application. Finally, in section 4 we 
discuss our conclusions and present scope for future work.  
 

Related work 
 
Although lock-based synchronization schemes are most 
widely used method of synchronization of multi-threaded 
and multi-processors systems, the performance limitations 
and the increased programming complexity has created the 
need for research on hardware assisted transactional 
memories. The majority of the proposed schemes are 
implemented by modifying or upgrading standard multi-
processor cache coherence protocols. One of the first 
implementations of transactional memories is presented in 
[1]. In this paper a transactional memory is implemented 
by modifying the cache coherence protocol. The main idea 
of the proposed architecture is that the same protocol that 
is used for cache coherency can be used for transactional 

conflict management with no extra cost. The proposed 
architecture introduces new instructions such as load-
transactional, store-transactional, commit and abort and 
can be implemented for both bus-based (snoopy cache) and 
network-based (directory) architectures. In the proposed 
implementation, each processor maintains two caches: a 
regular cache for regular operations and a transactional 
cache for transactional operations. In the second cache 
each line contains information about the transaction such 
as invalid, valid, dirty or reserved. 

A transactional memory with the same semantics has 
been proposed in [2],[3]. In these papers a unified model is 
proposed in which the conventional coherence and 
consistency technique has been completely replaced 
instead of being duplicated for regular and transactional 
accesses. In these works, only one cache per processor is 
used to store the data and the transaction information. 
Furthermore, a write-buffer is used to store the data that 
have been modified. In case that a commit is requested, all 
of the data of the write-buffer are transferred to the main 
memory without being interrupted and the addresses are 
also broadcasted to the other processor to preserve the 
consistency. The main drawback of the proposed scheme is 
that it increases the communication bandwidth of the 
multi-processor platform. 

In [4][5][6], a new scheme is introduced called 
Transactional Lock Removal (TLR). The proposed scheme 
uses the lock semantics to identify and create the 
boundaries of the transactions. The main feature of the 
proposed scheme is that it tries to serialize the code only 
on conflicts while using speculative lock elision for the 
remaining part of the critical code. When there is a conflict 
it uses timestamps to eliminate livelocks and to serialize 
the transactions. The main advantage of the proposed 
scheme is that it does not require either instruction set 
changes or compiler changes; only the transactional 
hardware unit must be incorporated to the current 
processors to support transactional memories. The main 
bottleneck of the transactional memories is that they are 
often bounded by system constraints such as cache size. In 
[7], a new scheme is introduced to support unbounded 
transactional memories. The proposed scheme explains 
how to use the main memory to store the data of the 
transactional cache, hence to eliminate the bounding of the 
transactional memories by sacrificing the performance of 
the system.   

Until now the FPGAs have been used only for 
prototyping of the proposed transactional schemes ([8], 
[9]). But as the FPGAs have evolved from simple logic 
devices to complete SoC platforms incorporating multiple 
processors (either hard or soft core) there is the need for 
efficient and robust concurrent programming abstraction 
without significant area overhead. Our scheme is mainly 
targeted at embedded applications in FPGAs and can be 
used on multi- processors with or without cache. Hence, 
the proposed scheme does not depend on cache coherence 



protocols. Furthermore, the proposed scheme is targeting 
reconfigurable platforms hence it can be reconfigured to 
meet the application demands. The size of the cache and 
the buffers that are used for the memory consistency can 
be extracted by profiling or static analysis of the 
application code. The main feature of the proposed 
architecture is that it is centralized. It uses only one cache 
to store the shared data for all of the processors. This 
feature keeps the communication bandwidth of the 
platform low since the data of each processor does not 
have to be broadcasted to the other processors. The main 
limitation of this feature is that it is not scalable to a large 
number of processors. We believe that the proposed 
scheme can be used for platforms incorporating up to 8 
processors.  
 

System Architecture 
 
The top level architecture of the proposed scheme is shown 
in Figure 1. This figure depicts an example with 4 
processors that have access to a shared memory. The 
processors can access the shared memory either 
conventionally, using the shared bus, or transactional, 
using a direct interface with the transaction controller. The 
access to the shared memory using the bus can be used 
when the processor accesses the private sections of the 
memory. In case that the processors want to access shared 
portion of the memory, the transaction controller can be 
used. The transactional controller uses a small memory 
cache to store the shared data and small FIFOs (one for 
each processor) in which the addresses, of each shared 
variable that each processor has accessed, are stored. Note 
that we have multiple ports on the memory controller as 
opposed to a bus-based single port memory controller 
found in conventional processor based systems. 

The organization of the cache is shown in Figure 2. For 
each entry there are 8 bits that are used to store what kind 
of access each processor had (one Read and one Write flag 
for each processor). When a processor issues a load, if the 
data is not stored in cache then the transaction controller 
accesses the main memory, stores the data to the cache, 
returns the value to the processor and asserts the 
corresponding Read flag in the cache. When the processor 
issues a store, the transaction controller checks if there are 
any collisions. A collision occurs if any of the other 
processors R or W flags is already asserted. If there is no 
collision the data are stored to the cache and the 
corresponding W flag is asserted. When a processor issue a 
commit then the transaction controller retrieves all the 
accessed addresses from the corresponding FIFO and copy 
the entries from the cache to the main memory. In case that 
an entry has been accessed only by this processor then the 
whole entry is cleared. In case that the entry has been also 
accessed by other processors then only the R and W flags 
of this processor are cleared and the entry remains valid.  

In case there is a collision the same procedure is used 
but in this case the data are not stored back to the memory. 
All the entries of the processor that created the collision 
are removed from the cache and a collision signal is sent to 
the processor when it tries to commit. Thus, the processor 
does not have to poll or to be interrupted in case that there 
is a collision. The drawback of this scheme is that in case 
there is a collision the processor will keep executing the 
instructions and it will be notified only when it tries to 
commit. But if the number of instructions of the 
transaction is small (which is typical in network processing 
applications) the performance of this scheme is better than 
using polling or interrupts.  

The current scheme uses the Cuckoo hashing to 
implement the hash collisions. The Cuckoo hashing [12] 
uses two hash functions instead of only one. When a new 
entry is inserted then it is stored in the location of the first 
hash key. If the entry is occupied the old entry is moved to 

 
Figure 1. Top level architecture 



its second hash address and the procedure is repeated until 
an empty slot is found. This algorithm provides constant 
lookup time O(1) (lookup requires just inspection of two 
locations in the hash table) while the insert time depend on 
the cache size (O(n)). In case that the procedure enters an 
infinite loop the hash table is rebuild. But even in this case 
it can be shown that the performance of the system in the 
insertion is efficient as long as the number of keys is kept 
below half of the capacity of the hash table. 
 

 
Figure 2. Cache organization 

 
The main advantage of the proposed scheme is that the 

organization can be configured to meet the application 
requirements. Table 1 shows the parameters of the design 
that can be easily changed to meet the target application. 
The number of FIFOs depends on the number of the 
processors that are used to access the shared memory. The 
depth of the FIFOs depends on the application e.g. the 
maximum number of shared variables in the transactions. 
The size of the cache depends not only on the number of 
processor and the number of shared variables but also on 
the application requirements (e.g. collision probability). In 
summary, CTM is based on two basic hypothesis; first, for 
applications that require small number of operations per 
transaction (less than 10 instructions), CTM will have a 
small area overhead but will have higher performance and 
significantly lower design effort; second, for applications 
that perform lot of operations in each transaction (greater 
than 20-25 instructions), the lock based scheme might have 
marginally better performance and lower area overhead but 
the design effort required will be significantly larger than 
that based on CTM. 
 
Table 1. Parameters 

Parameter Dependency 
Number of FIFOs Depends on the # of processors 
Depth of FIFOs Depends on the application 

(shared variables) 
Cache Size Depend on the # of processors, 

the application and the 
constraints 

 
Furthermore, the proposed scheme can also be used to 

provide ordering between the transactions to maintain a 

specific program execution similar to the scheme used in 
[2]. The programmer can assign an identification number 
(common to a group of transactions) and a sequence 
number to each transaction.  These two numbers can be 
forwarded to the transactional control with the commit 
command request (32-bit wide). The transactional 
controller checks the identification and the sequence 
number of the transaction to ensure consistent execution. If 
the sequence number for a specific transaction group is 
higher than the current sequence number then the 
transaction has to rollback. Otherwise, the transaction is 
committed.  Figure 3 shows an example in which three 
transactions with common identification number have to 
be synchronized. The transaction with ID X, and Y do not 
have to be synchronized while the transaction with ID Z 
has to be synchronized.  

 
Figure 3. Transaction ordering 

 
A small table is used in the configurable transactional 

controller to check if the sequence number of the current 
transaction is smaller than the last one stored in the table. 
In that case the transaction is rolled back and is executed 
again as it is shown for the transaction that is executed in 
processor 2. 

We will now discuss the experimental set up used in 
our experiments with CTM on a packet metering 
application and two micro-benchmarks from related work 
and discuss the results of our experiments. 

 

Implementation and System 
Evaluation 
 
The system has been implemented in a Xilinx Virtex4 LX 
FPGA platform. We use the soft-core 32-bit Microblaze 
processors [11]. Each Microblaze can be configured with 
up to 8 32-bit dedicated interfaces called Fast Simplex 
Link (FSL). This interface has been used for the 
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communication of the processor with the transaction 
controller. Each time a processor issues a transactional 
load, it sends the address to the FSL link and waits until it 
receives the value of the data. When the processor issues a 
store, the address and the data are sent to the FSL link. 
Furthermore, the FSL interface uses a dedicated signal for 
control information. When a processor tries to commit a 
transaction this control bit is asserted. The transaction 
controller uses the control signals to convey either 
acceptance or rejection of a particular transaction.  

The key advantage of the above scheme is that at 
design time, based on profiling the code and static analysis 
the user can configure a particular transactional memory 
configuration. In our experiments this process was done 
manually. However this can be easily automated and is 
part of our ongoing research. In this study, we used a 64 
entries cache, and the FIFOs are 32-bit wide with 16 
entries deep. The main memory is 32x16K internal RAM 
(BRAM). Note that for larger memory size requirements 
we can use an external memory by connecting the 
transaction controller to a DRAM memory controller. In 
such a scenario, a multi-port memory controller becomes 
even more critical to provide efficient data path from the 
memory controller to the processor sub-system.  

To evaluate the proposed scheme an application was 
developed. Since there is a lack of widely accepted 
benchmarks for transactional memories, we chose a 
networking application that is widely used for per-flow 
metering and statistics in network processing equipments 
(e.g. edge routers). Similar applications are used in 
programs for network billing and accounting, performance 
analysis and security management such as the Argus open 
source framework [13]. In this application, each time a 
packet arrives in the system, the header is extracted and 
forwarded to the next available processor. Each processor 
extracts some information from the header (Source IP, 
TCP Port, etc.) and uses this information to update specific 
counters. These counters can be used for billing and 

Quality of Service purposes. To evaluate the efficiency of 
the proposed scheme, a similar scheme has been developed 
in which the transaction controller has been replaced by a 
fine-grain lock controller. The lock controller does not use 
the FIFOs hence it consumes much less area. Each 
processor must first lock the addresses of the variables that 
are going to be updated, then update the counters and then 
unlock the addresses. Furthermore, the cache has been 
modified and instead of using R and W bits, only one bit is 
used for each processor to indicate which processor has 
locked the address. Although the lock controller consumes 
less area, the programmability of this scheme is much 
harder and error prone than using the transactions. The 
programmer has to perform detailed analysis of their 
implementation to avoid deadlocks or livelocks.  

Figure 4 shows an example source code for MicroBlaze 
implementation of the transactional and the lock schemes. 
Here the transaction begins at the first transactional 
instruction (trans_load()) and ends at the last commit 
operation. This approach is similar to conventional 
transactional begin and end semantics. However in our 
approach these key words are not explicitly required. As 
shown, in the case of the transactional scheme, the 
programmer does not have to worry about issuing lock 
requests but instead issues transactional loads and stores. 
Note the difference compared to other efforts where in 
there is burden on the compiler to take code that are 
marked with transactional sections (using transaction begin 
and end constructs) and generate appropriate code. In our 
approach we used a library based scheme to work around 
the requirement of modifying the MicroBlaze compiler. 
Similarly, for the lock-based scheme, the user now has to 
issue lock requests and unlock requests to particular 
sections of the memory. Thus programming with 
transactional semantics entails less burden on the 
programmer, who is not required to worry about acquiring 
and releasing various sections of the memory, a function 
that is now performed by the hardware.   

Network Metering Application (Update of two counters) 
 

do { 
    x_counter = trans_load(x_addr); 
    y_counter = trans_load(y_addr); 
    x_counter++; 
    y_counter++; 
    trans_store(x_addr, x_counter); 
    trans_store(y_addr, y_counter); 
 
    temp = trans_commit(); 
} while (temp!=0); 

while (temp = lock_req(x_addr)); 
while (temp = lock_req(y_addr)); 
 
x_counter = lock_load(x_addr); 
y_counter = lock_load(y_addr); 
x_counter++; 
y_counter++; 
lock_store(x_addr, x_counter); 
lock_store(y_addr, y_counter); 
 
unlock_req(x_addr); 
unlock_req(y_addr); 
 

Figure 4a. Transactional  scheme                     Figure 4b. Lock scheme 
 



Figure 5 shows the performance evaluation of the 
transactional and lock scheme for 2 and for 4 processors 
depending on the number of modified shared variables for 
the packet metering application. We used EDK8.2i in our 
work. We constructed the configurable transactional 
memory with various parameters using VHDL and 
manually instantiated the different parameterized versions 
of the CTM in our experiments. We performed RTL 
simulation in EDK using ModelSim6.0 to obtain the cycle 
accurate data. We generated our timing information using 
Xilinx ISE 8.2i after place and route.  

Figures 5a and 5b show the execution time to process 
50 network packets (each processor). In the case of two 
processors the speedup of the transactional scheme is from 
marginal (2% using only 1 shared variable) to 30% using 5 
shared variables. In the case of four processors the speedup 
is from 0% using one shared counter, to 73% using five 
shared counters. When five shared counters are used, a lot 
of time is wasted in the instructions that are used to lock 
and unlock the variables. On the other hand, the 
transactional scheme uses only one instruction to commit 
all of the shared variables, hence the execution time is 
much lower. Thus, the proposed scheme not only 
introduces a much simpler programming model for 
multiprocessor platform but can also be used to improve 
the execution time of such applications. In the current 
application, the range of the counters that are updated is 
very wide (1024 different counters that represent 1024 
different network flows) hence the probability of collision 
between 2 processors is very small. In case that the shared 
variables refer to the same address the probability of 
collision will be higher thus the execution time will 
increase. 

Figure 6 shows how the performance of the 
transactional memory depends on the number of rollbacks. 
The figure shows the time to process 200 network packets 
using four processors using the transactional and the lock 
scheme. The range of counters that had to be updated for 

each packet was artificially changed to create data 
dependencies. As it is shown the processing time is from 
20% to 30% smaller using the transactional memory than 
the lock-based scheme even when the percentage of 
rollbacks (percentage of data conflicts) is 50% (one 
rollback for every commit transaction request). Note that 
the function that was used to update the counters was 
consuming almost one third of the total time to process a 
packet. Hence, the probability of collision has a smaller 
impact on the total execution time.  

To further illustrate how the memory conflicts affect 
the performance of the system we implemented the micro-
benchmarks from [5]. These benchmarks represent two 
extreme cases for the update of the counters. In the first 
benchmarks all of the processors update the same counter 
(same address) creating a high number of conflicts. In the 
second benchmark all of the processors update a different 
counter which means that there are no conflicts at all. The 
performance of the system for these two cases is depicted 
in Figure 7 for a system with four processors. As shown in 
the case of the single counter (high conflicts) the 
processing time to update 400 counts (100 for each 
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Figure 6. Performance over Rollbacks 
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Figure 5a. Comparison for 2 processors  Figure 5b. Comparison for 4 processors  
 



processor) is almost 40% less than the processing time 
using the lock mechanism. The transactional scheme only 
rollbacks when there is a conflict, while in the case of the 
lock mechanism the processor is waiting for the other 
processors to unlock the specific memory. On the other 
hand, when there are no conflicts, then the performance of 
system is independent of the scheme. 

The area and the maximum clock frequency of the 
transactional controller and the lock controller for several 
processors are shown in Table 2 and Table 3 respectively. 
As it is shown the current implementation of the 
transactional controller can support up to 8 processors 
using the same clock frequency as the processors and the 
bus (100MHz). The area overhead is quite small (less than 
530 slices for 8 processors, which requires a total area of 
about 8000 slices). This is clearly an important benefit of 
the configurability of our scheme that tailors the 
transactional controller to the application needs. The 
number of occupied internal Block RAMs (BRAMs) that 
are used for the FIFOs and the cache depends on the 

number of processors and the application. The depth of the 
FIFOs and the cache is proportional to the number of 
shared variables among the processors. These are 
parameters that can be configured or customized for each 
application.  As it is shown the transactional controller is 
larger than the lock controller and the maximum clock 
frequency is less than the lock controller. But the reduced 
program execution and the easy of programming that the 
transactional memory offers compensates for the area 
overhead. 
 
Table 2. Area comparison 

Processors Area (slices) 
 Transact. Lock 

2 277 137 
4 370 247 
8 530 353 

 
Table 3. Clock frequency comparison 

Processors Clock Freq. (MHz) 
 Transact. Lock 

2 151 182 
4 137 156 
8 107 149 

 

Conclusions and future work 
 
The ability to configure a transactional memory to the 
needs of a particular application is an important aspect that 
is explored in this paper. The proposed configurable 
transactional memory helps in increasing the programming 
efficiency of a multi-processor system on FPGA. In 
addition, for some applications it can also help in 
increasing the system performance, where the 
synchronization among processes is the performance 
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bottleneck. Our experiments have shown that for the 
packet metering application we could increase the system 
performance compared to a lock-based implementation for 
a small increase in the total area of the implementation.  

Finally, the proposed scheme could be extended to 
support not only processors but also hardware accelerators 
modules. Hence, in this case the configurable transactional 
controller could be used to provide consistency between 
the processors and the hardware acceleration modules as it 
is shown in Figure 5. This figure shows a multi-processor 
platform in which the processing of the packet is 
performed in several stages that include both processors 
and hardware acceleration modules and consistency needs 
to be preserved. In addition, we have not explored 
leveraging compiler optimizations based on life-time 
analysis of data structures as well as investigation in to the 
impact of CTM on power consumption compared to a 
lock-based scheme. These are topics of our future research.  
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