
This may be the author’s version of a work that was submitted/accepted

for publication in the following source:

Gottschalk, Florian, van der Aalst, Wil, Jansen-Vullers, Monique, & La

Rosa, Marcello

(2008)

Configurable workflow models.

International Journal of Cooperative Information Systems, 17 (2), pp. 177-

221.

This file was downloaded from: https://eprints.qut.edu.au/224609/

c© Consult author(s) regarding copyright matters

This work is covered by copyright. Unless the document is being made available under a

Creative Commons Licence, you must assume that re-use is limited to personal use and

that permission from the copyright owner must be obtained for all other uses. If the docu-

ment is available under a Creative Commons License (or other specified license) then refer

to the Licence for details of permitted re-use. It is a condition of access that users recog-

nise and abide by the legal requirements associated with these rights. If you believe that

this work infringes copyright please provide details by email to qut.copyright@qut.edu.au

Notice: Please note that this document may not be the Version of Record

(i.e. published version) of the work. Author manuscript versions (as Sub-

mitted for peer review or as Accepted for publication after peer review) can

be identified by an absence of publisher branding and/or typeset appear-

ance. If there is any doubt, please refer to the published source.

https://doi.org/10.1142/s0218843008001798

https://eprints.qut.edu.au/view/person/van_der_Aalst,_Wil.html
https://eprints.qut.edu.au/view/person/La_Rosa,_Marcello.html
https://eprints.qut.edu.au/view/person/La_Rosa,_Marcello.html
https://eprints.qut.edu.au/224609/
https://doi.org/10.1142/s0218843008001798

QUT Digital Repository:
http;;//eprints.qut.edu.au

Gottschalk, Florian and van der Aalst, Wil M.P. and Jansen-Vullers, Monque H.

and La Rosa, Marcello (2008) Configurable Workflow Models. International

Journal of Cooperative Information Systems (IJCIS).

 © Copyright 2008 World Scientific Publishing

Electronic version of an article published as International Journal of Cooperative

Information Systems © [Copyright World Scientific Publishing Company]

[http://www.worldscinet.com/ijcis/ijcis.shtml]

March 10, 2008 18:5 WSPC/INSTRUCTION FILE C-workflow-ws-ijcis2

International Journal of Cooperative Information Systems

c© World Scientific Publishing Company

CONFIGURABLE WORKFLOW MODELS

FLORIAN GOTTSCHALK

Department of Technology Management, Eindhoven University of Technology, P.O. Box 513,

5600MB Eindhoven, The Netherlands.

f.gottschalk@tue.nl

WIL M.P. VAN DER AALST

Department of Mathematics and Computer Science, Eindhoven University of Technology, P.O. Box 513,

5600MB Eindhoven, The Netherlands.

w.m.p.v.d.aalst@tue.nl

MONIQUE H. JANSEN-VULLERS

Department of Technology Management, Eindhoven University of Technology, P.O. Box 513,

5600MB Eindhoven, The Netherlands.

m.h.jansen-vullers@tue.nl

MARCELLO LA ROSA

Faculty of Information Technology, Queensland University of Technology, 126 Margaret St,

Brisbane, QLD 4000, Australia.

m.larosa@qut.edu.au

Workflow modelling languages allow for the specification of executable business processes. They,

however, do typically not provide any guidance for the adaptation of workflow models, i.e. they do not

offer any methods or tools explaining and highlighting which adaptations of the models are feasible

and which are not. Therefore, an approach to identify so-called configurable elements of a workflow

modelling language and to add configuration opportunities to workflow models is presented in this

paper. Configurable elements are the elements of a workflow model that can be modified such that

the behavior represented by the model is restricted. More precisely, a configurable element can be

either set to enabled, to blocked, or to hidden. To ensure that such configurations lead only to desirable

models, our approach allows for imposing so-called requirements on the model’s configuration. They

have to be fulfilled by any configuration, and limit therefore the freedom of configuration choices.

The identification of configurable elements within the workflow modelling language of YAWL and

the derivation of the new “configurable YAWL” language provide a concrete example for a rather

generic approach. A transformation of configured models into lawful YAWL models demonstrates its

applicability.

Keywords: Business Process, Workflow, Configuration, Reference Modelling, C-YAWL.

1. Introduction

Legal obligations, the computer or enterprize systems in use, and best-practice force many

companies to organize their secondary or supporting business processes in very similar

ways. Typical examples for such business processes are purchasing, reporting, recruitment,

March 10, 2008 18:5 WSPC/INSTRUCTION FILE C-workflow-ws-ijcis2

2 F. Gottschalk, W.M.P. van der Aalst, M.H. Jansen-Vullers, and M. La Rosa

CRM, payroll, or call-center processes.1 Enterprize and workflow systems are used to sup-

port the execution of such business processes by guiding and monitoring the process in-

stances throughout the company. The specification of a business process that enables its

automated execution in such a system is called a workflow model. If such a model exists,

the particular business process is also called a workflow.2

Vendors of enterprize or workflow systems as well as consultants typically offer generic

reference process models together with their solutions. These are typically defined on a con-

ceptual level and help understanding how business processes are supported by the particular

systems.3,4,5,6

Still, secondary business processes will rarely be organized in exactly the same way

among companies. Instead, minor, or sometimes even major, adaptations are required to

tailor the process to the local environments like local law or company cultures. To support

these different environments, larger enterprize systems often offer more than one way to

execute a business process. The selection of the used variant must be made only during the

implementation of the process/system.

The different process variants should also be reflected and selectable in the reference

process models. However, the languages used today for the specification of reference

process models and workflows, such as EPCs7, BPML8, Protos9, Staffware10,11, SAP

WebFlow12, YAWL13,14 etc., do not provide any dedicated support for this. In this paper

we will therefore present an approach to extend common workflow modelling languages

with a notion of configuration, allowing for the enabling or disabling of actions in such

models. In this way, we enable the integration of several variants of a business process into

a single configurable workflow model. Before the workflow can be executed, the proper

variant must be selected by configuring the model. We thus distinguish the three phases:

(1) build time of the model, i.e. the time while the configurable model incorporating all

variants of the process was build, (2) configuration time, i.e. the time when a particular

workflow variant is selected, and (3) run time, i.e. the time when process instances are

���������	
��
�������������	 �������	

Fig. 1. The model’s build time is followed by the configuration time before the process is enacted during run time

March 10, 2008 18:5 WSPC/INSTRUCTION FILE C-workflow-ws-ijcis2

Configurable Workflow Models 3

executed using the configured model (Figure 1).

Of course, configuration choices can be integrated into workflow models as normal run-

time choices. But this solution has two drawbacks. On the one hand the additional choices

integrated into the model look like run-time choices although the decision is already made

before process instances are started, i.e. there is no decision to be made during run-time.

On the other hand, they typically increase the model’s size dramatically. Therefore, config-

urable workflow models transfer these configuration choices to an additional configuration

layer, allowing not only for a clear distinction between configuration and run-time choices,

but also for the creation of run-time models without the model elements which are already

“dead” before any instance of the process has been initiated. Compared to the original

workflow modelling language, the complexity of such a configurable modelling language

increases of course. But, as the additional configurable elements are only relevant at config-

uration time, the target group of process designers that is confronted with these additional

elements is limited compared to the overall number of users of the model.

The remainder of this paper is structured as follows. In Section 2 will first provide

an overview on related work. In Section 3 we will then depict an universal approach to

add configuration layers to any workflow modelling language, using a concept of ports as

configuration points which can be enabled, blocked, or hidden. In Section 4 we will use

YAWL as an example workflow modelling language to depict in detail how the approach

can be applied to a concrete language. Although our approach is quite generic and applies

to most process modelling languages, we need to select a concrete notation to explain our

ideas. YAWL was selected because it supports most of the workflow patterns.15 Hence,

many languages can be seen as a subset of YAWL, thus making the results applicable

to a wide variety of languages. We will start Section 4 with an introduction into YAWL

models as hierarchical workflow specifications composed of extended workflow (EWF)

nets. In the second part of Section 4 we will define configurable EWF (C-EWF) nets by

identifying their configurable elements and formally specifying their configurations. In the

section’s third part we will briefly sketch how the same approach can be applied to develop

configurable workflow specifications but without going into the technical details as for

C-EWF nets. To demonstrate the applicability of these concepts, Section 5 explains how

the configuration of a configurable YAWL model can be transformed into a lawful YAWL

model and introduces the corresponding software tool. To show the general applicability

of the approach for workflow languages Section 6 briefly highlights how it can be applied

to the language used by SAP’s workflow engine (SAP WebFlow) and to the workflow

standard BPEL. Section 7 will conclude the paper with a short summary and an outlook on

open issues.

2. Related Work

Configurable workflow models add a configuration layer to the control flow of workflow

models. This layer enables the alteration of the pre-defined case routings through a work-

flow system during a configuration phase. Besides relating to the broad research areas of

workflows, business process enactment, and business process automatization which range

March 10, 2008 18:5 WSPC/INSTRUCTION FILE C-workflow-ws-ijcis2

4 F. Gottschalk, W.M.P. van der Aalst, M.H. Jansen-Vullers, and M. La Rosa

form environmental and social influences of automated business processes to the transac-

tion management within workflow systems, this topic can in particular be related to (1) the

business process management research area of adapting reference models, (2) to ideas of

managing software configurations, and (3) to approaches that support the process flexibil-

ity.

Adapting Reference Process Models

Reference process models depict in a general manner how processes can or should be per-

formed. They are often considered as best practice, and usually modelled on a conceptual

level.4,5 To avoid developing business process models from scratch, it is also suggested to

regard reference process models as masters or templates which can be tailored to individual

requirements.16 Thus, although rarely cited in the literature on reference process models,

also repositories of workflow templates that are delivered with or for workflow engines can

be considered as reference process models.17

To adapt a reference model to individual requirements, either additional elements, rout-

ings and information can be added to the model, or the existing elements can be (re-)

configured which includes the elimination of existing elements.18,19 A workflow defini-

tion language that focusses on the re-usability of pre-defined workflow blocks when creat-

ing new workflow variants, i.e. when adding new content to the model, is suggested by Blin

et al.20 When developing configurable workflow models, we however focus on arranging

the components of the existing model without adding any additional content. That means

that in configurable workflow models different model variants can only be achieved if all

the process variants have been integrated within the model beforehand.21

Extensions to conceptual process modelling languages that allow for defining such an

integration and configuring it are suggested by several authors.

• Becker et al.18 suggest the creation of different views on process models for de-

riving different process variants.

• Rosemann and van der Aalst22 intuitively extend certain elements in the business

process modelling language of Event-driven process chains23 with configuration

options.

• Soffer et al.24 relate different application scenarios via attributes in so-called

Object-Process Diagrams to different modules of Enterprize Systems.

• Puhlmann et al.25 use attributes from feature diagrams (a technique to represent

system properties26,27,28) to enable/disable sub-processes in UML hierarchies

or to parameterize decision nodes in BPMN by adding a condition which can be

evaluated.

• Czarnecki and Antkiewicz29 explain the usage of feature diagrams to identify

elements of UML activity diagrams which should be present or removed from the

model.

Efficiency benefits of using configurable process models during the implementation of

enterprise systems are highlighted by many of these authors. But none of the approaches

March 10, 2008 18:5 WSPC/INSTRUCTION FILE C-workflow-ws-ijcis2

Configurable Workflow Models 5

uses a modelling language designed for workflow models and thus produces directly exe-

cutable models.

An approach to enhance the re-usability of classic workflow models is suggested by

Karastoyanova et al.30 who parameterize BPEL processes to select a desired web-service

at runtime from a range of such services. However, this selection is only performed locally

and thus neglects the influences among the selections of web-service at different stages

during the process execution as well as any form of routing related to splits, joins, cancel-

lations etc.

Dreiling et al.31 indicate a potential applicability of the approach of Rosemann and van

der Aalst to executable workflow models such that the configuration can be enacted using

a workflow engine. We follow up on this here not only by presenting a general approach

to make workflow modelling languages configurable, but also by applying these ideas to a

concrete workflow modelling languages and implementing a tool that demonstrates that it is

possible to derive a configured workflow specifications which is executable in the classical

workflow engine.

Managing Software Configurations

To reduce the time, the effort, the costs and the complexity of software creation and main-

tenance, also software families are often created from shared sets of software assets like pa-

rameterized libraries. Similar to configurable workflow models, software families thus rely

on the reuse of existing solutions (models/assets) instead of building new models/pieces

of software from scratch. Software Configuration Management (SCM) is a methodology

to control and manage software development projects. It consists of a set of activities to

identify the assets that need to be changed and their relationships, to control the products

versions and the changes imposed, and to audit and report the changes made.32

Tools as the Adele Configuration Manager33 or CoSMIC34 support the definition of

dependencies or constraints among artifacts composing a software family. Using attributes

defined on the software artifacts, they express dependencies and constraints in first-order

logic languages. To be valid, every configuration must satisfy all the constraints. Thus,

although such SCM tools are usually used for software mass customization whereas con-

figurable workflow models are configured manually, configurable workflow models can use

the same methods to ensure the validity of configurations.

Process Flexibility

Research on process and workflow flexibility focusses on the effects of a change in a work-

flow specification on process instances already running in the system. This becomes im-

portant if the execution of single workflow instances takes very long and thus a trans-

formation into the new specification is unavoidable, or if individual instances frequently

require ad-hoc treatment. Systems tackling these problems of switching from one config-

uration to another are also often called configurable, re-configurable or adaptive workflow

systems35,36,37,38,39,40,41, but they typically neglect the preceding problem of how the

March 10, 2008 18:5 WSPC/INSTRUCTION FILE C-workflow-ws-ijcis2

6 F. Gottschalk, W.M.P. van der Aalst, M.H. Jansen-Vullers, and M. La Rosa

workflow model itself can be easily and safely changed which is the focus of this research.

3. Making workflow models configurable

As depicted in the introduction, configurable workflow modelling languages are useful

whenever an individual workflow variant should be derived from a more general model.

For this, configurable workflow modelling languages enable the restriction of the behavior

of workflow models in a controlled manner. This sections outlines a general approach for

the development of such configurable workflow modelling languages.

By using the term “workflow models”, we explicitly focus on executable business pro-

cess models, although the approach might be applicable to non-executable modelling lan-

guages as well. We assume that every workflow modelling language that explicitly depicts

the flow of cases, i.e. executed workflow instances, through a system with tasks, steps,

activities, functions or similar concepts of performed actions can be made configurable.

Before defining such a configurable workflow modelling language, it is however required

to identify what a configuration of a model in a particular language is.

In our previous research on configurable process models21,42, we identified two gen-

eral applicable methodologies to configure, i.e. restrict, a workflow model, namely blocking

and hiding. The insight that these are the two basic configuration operations was obtained

by a systematic study of inheritance notions in the context of business processes43,44. If

an action in a workflow is blocked, it cannot be executed. The process will never continue

after the action and thus never reach a subsequent state or any subsequent action. If an

action is hidden, its performance is not observable, i.e. it is skipped and consumes neither

time nor resources. But the process flow continues afterwards and subsequent actions will

be performed. For that reason we also talk about a silent actiona or simply about skipping

the action. If an action in a workflow model is neither blocked nor hidden, then we say it is

enabled, which refers to its normal execution. The enabled action is performed as it would

be in a classic, un-configurable workflow.

As a rule of thumb this means that if the performance of an action is not desired and

the action is not mandatory for subsequent steps, than hiding is the preferred configuration

method. If a whole sequence or line of actions is not desired or if the non-desired action is

mandatory for subsequent actions, blocking is typically the preferred configuration method.

To develop configurations for a particular language, it is required to identify those el-

ement types of the language which represent actions that can be performed. These are

usually elements like activities, functions, steps, etc. For an action to be executed, it must

be triggered. Triggers are typically represented by arcs pointing into an action. However,

the meaning of these arcs leading into the action varies not only among different work-

flow modelling languages but also within a single workflow modelling language because

of different joining patterns for preceding paths leading into the action. For example, some

actions require that all preceding paths are completed for the action to be triggered (AND-

aThe term silent action comes from concurrency theory where silent actions are denoted as τ and form the basis

for equivalence notions such as branching bisimulation.

March 10, 2008 18:5 WSPC/INSTRUCTION FILE C-workflow-ws-ijcis2

Configurable Workflow Models 7

���������	
�

��
�������	
�

��� ���

������

Fig. 2. The number of ports of an action depends

on its joining and splitting behavior

������

���	
��

��� ���

������

�������

�������

Fig. 3. Ports can be enabled or blocked, and in

case of an inflow also be hidden

join), whereas other actions can be triggered via each arc pointing into the action (XOR-

join). We call each combination of incoming paths through which an action can be triggered

an inflow port of the action (see the left side of Figure 2). Thus, an action with an AND-

joining behavior for the incoming paths has just a single inflow port whereas a task with an

XOR-joining behavior has an inflow port for each incoming path.

After an action has completed, it releases the particular case via the arcs leaving the

action. Also here the number of triggered paths depends on the semantics specified for the

particular action. An action with an AND-splitting behavior triggers all outgoing paths,

whereas an action with an XOR-splitting behavior only triggers one subsequent path. Of

course there can also be semantics allowing the triggering of a specific number of paths

(OR-split). Aligned with the specification of inflow ports, we say that each case can leave

the action only through one distinct outflow port, but then triggers all paths connected to

this outflow port (see the right side of Figure 2).

Ports are the elements which can be enabled, blocked, or hidden, i.e. they are in fact the

configurable elements. Every port can be enabled or blocked while inflow ports can also be

hidden.

An enabled inflow port allows the triggering of the action through this port. However, if

an inflow port is blocked, no cases can flow into the action through this port. The triggering

of the action via the inflow port is inhibited. If an action is triggered via a hidden inflow

port, the action itself is skipped and the case is directly forwarded to one of the outflow

ports (usually but not necessarily a default output port; see Figure 3).

If an outflow port is enabled, the action can select this port as the port through which

the case is released. If an outflow port is however blocked, the port cannot be selected

as the used outflow port. Instead another enabled outflow port must be selected. Thus,

the blocking of an outflow port inhibits the performance of actions subsequent to the port.

However, as cases should always be able to leave a triggered action, at least one outflow port

must always be enabled. The hiding of an outflow port is impossible because outflow ports

trigger paths instead of actions. A path just forwards the case to the next action without

March 10, 2008 18:5 WSPC/INSTRUCTION FILE C-workflow-ws-ijcis2

8 F. Gottschalk, W.M.P. van der Aalst, M.H. Jansen-Vullers, and M. La Rosa

containing any action itself. Thus, a path contains nothing that can be skipped (and any

subsequent action should be hidden via its own input ports).

By deriving ports from the definition of a workflow modelling language instead of

defining them as elements which have to be added to the workflow models of the language,

each model can serve as the basis for a configurable model without any change. Such a

model represents the “Least Common Multiple” (LCM) of all possible model variants.45

It contains the maximal possible behavior which can be achieved by enabling all variants,

i.e. configuring all ports as enabled. We call this initial model therefore the basic model

whose behavior can be restricted by hiding or blocking of selected ports.

To transform these configuration decisions into a model executable in the traditional

workflow engine, blocked elements and all their dead successors must be removed from

the model and hidden elements must be replaced by shortcuts.

Obviously, not all models resulting from such a transformation conform to the defini-

tion of the used modelling language or represent desirable behavior. For example, blocking

too many ports or a “wrong” port might result in an unconnected net which for many work-

flow modelling languages means that the model would become syntactically invalid. In a

similar way hiding of essential actions can prevent the practicability of the depicted process

and lead to a semantically incorrect model. To avoid the occurrence of such situations, a

configurable model must not only consist of the basic model, but also of a set of require-

ments restricting the set of permitted configurations and therefore ensuring both syntacti-

cal and semantical validity of models. An example for a syntactical motivated requirement

would be “Each action must have at least one enabled port which allows the outflow of

cases”; an example for a semantically motivated requirement would be “If it is possible

to pay in installments, it must be possible to pay by credit card” (because the installments

are deducted from the credit card account), or better “If a port is enabled that allows cases

to flow into the action Pay in installments, then the port allowing for cases flowing into

the action Pay by credit card must be enabled as well”. That means, although the require-

ment is semantically motivated, it still should be formulated in terms of the model’s port

configuration.

For a better understanding, we have presented these example requirements in a rather

informal natural language. However, the configurable modelling language must be able to

test if a configuration of a model satisfies all requirements as otherwise the transformation

of the model should not be performed. Therefore, a formal specification of requirements

is indispensable. We suggest either the use of a subset of a programming language, or to

formulate logical expressions composed of atomic expressions that test individual elements

of the net or its configuration.

As mentioned above, the basic model uses the traditional, i.e. non-configurable version

of the particular modelling language. Thus, assuming that all ports are enabled, it satisfies

all of the language’s syntactical requirements. It might however contain semantically con-

flicting elements if two distinct process variants exclude each other. For that reason, the

assumption that all ports can be enabled at the same time is not always valid. Instead, it

is required to explicitly specify a configuration for each port. Only if this complete config-

uration of all ports satisfies all requirements, it can be used to transform the configurable

March 10, 2008 18:5 WSPC/INSTRUCTION FILE C-workflow-ws-ijcis2

Configurable Workflow Models 9

workflow model into a configured net.

By requiring that every valid configurable workflow model contains at least one such

valid and complete configuration as a default configuration, we ensure the existence of such

a configuration. The default configuration also serves as a “starting point” for any individ-

ual configuration. In this way, configuring a configurable workflow model to individual

requirements just means to modify those port configurations that need to deviate from the

default configuration – usually a limited effort even if there are many configurable ports.

When developing the configurable workflow modelling language, it is important to note

that workflow modelling languages often abstract from the most basic actions by grouping

several actions into a single task, step, function etc. In these cases, it is reasonable to deviate

from the pure concept of blocking and hiding single ports and instead subsume several

configurable elements into language-specific configuration constructs.

To show how this approach can be applied to a concrete workflow language, we will

develop a configurable YAWL (C-YAWL) in the following. C-YAWL will contain both

configuration types: configurations of individual ports, as well as the subsuming of several

ports into a YAWL-specific configuration construct.

4. Configurable YAWL

C-YAWL is based on the workflow modelling language of YAWL14, extended with a

worklet service architecture46. YAWL is chosen on the one hand due to its extensive sup-

port of workflow patterns15,47, and on the other hand because the open-source licence

of its editor and workflow engine enable the implementation of C-YAWL tools and work-

flows. In addition, the hierarchy created by the worklet service architecture creates to a

certain extend a second modelling language which can serve as a further example.

For readers unfamiliar with YAWL, we first give a brief introduction into YAWL. This

introduction is based on the work of van der Aalst and ter Hofstede14 and summarizes

the main definitions while focusing on the prerequisites needed for the development of

C-YAWL. For more elaborated explanations the reader is referred directly to the original

article14. Afterwards, we will develop and formally define configurable extended workflow

(C-EWF) nets as the central configurable model in C-YAWL. We will conclude this section

with outlining how the hierarchy in YAWL models can be extended into a configurable

workflow specification.

4.1. YAWL

YAWL is a workflow modelling language inspired by Petri nets, but with several vital

extensions and its own semantics. A workflow specification in YAWL is a set of extended

workflow nets (EWF-nets) which form a hierarchy. Each EWF-net consists of conditions,

which in Petri net terms can be interpreted as places, and tasks. By mapping some tasks

of an EWF-net onto other EWF-nets within the workflow specification, the hierarchy is

created, i.e., there is a tree-like structure where tasks can be decomposed into EWF nets.

These “mapped” tasks are called composite tasks, “unmapped” tasks are called atomic

tasks.

March 10, 2008 18:5 WSPC/INSTRUCTION FILE C-workflow-ws-ijcis2

10 F. Gottschalk, W.M.P. van der Aalst, M.H. Jansen-Vullers, and M. La Rosa

�

Fig. 4. An example YAWL model for a travel booking process

���������

���	�
���������

�	��	�
���������

�����
����

��������
����

���������
����

���������
����

�	������
���������

��
��
������
����

�	������
���������

��
�
���������
����

��������
����

�������
����

��������
����

�������
����

������
������

Fig. 5. Symbols used in EWF nets.

Figure 4 shows an example for such a YAWL model while Figure 5 summarizes the

graphical symbols for all the element types for EWF nets. The example depicts a booking

and payment workflow for train travels. After an order has been received, multiple train

tickets, a reduction card for train tickets, and/or multiple hotels can be booked. Until a

March 10, 2008 18:5 WSPC/INSTRUCTION FILE C-workflow-ws-ijcis2

Configurable Workflow Models 11

payment method has been selected, the booking can also be cancelled. Afterwards the travel

has to be paid either in cash or by credit card before the documents can be either send to the

customer or collected by him. The tasks “Book hotel” and “Credit card payments” contain

further refinements in form of additional EWF nets.

Each EWF-net has exactly one unique input condition and one unique output condi-

tion. The control flow determines the flow of tokens through tasks and conditions. AND-,

OR-, and XOR-joins and -splits determine the joining and splitting behavior before and

after each task. AND-joins like the task Reserve in Figure 4 require tokens in all the condi-

tions preceding the AND-join to enable the execution of the subsequent task, AND-splits

like the task Start search in Figure 4 put tokens into all the post-conditions after the task has

completed. Tasks with an XOR-join behavior, as e.g. the Send documents task in Figure 4,

require a token in only one of the pre-conditions to be enabled, tasks with an XOR-split be-

havior, as the task Select payment method, put a single token into one of the post-conditions

after the completion of the task. OR-joins, as in task Select payment method, allow a syn-

chronizing merge of several process branches by enabling the subsequent task only if there

is no chance that any tokens will arrive in unoccupied pre-conditions of the OR-join at

any future point in time. OR-splits, as in task Receive order, enable a multi-choice, i.e. a

selection of several post-conditions.

The specification of a cancellation region, as for the task Cancel booking in Figure 4,

allows for the removal of all tokens from the conditions and running tasks within this

region during the execution of the task to which the cancellation region is attached to.

Independently of the total number of tokens in the conditions, it removes all tokens and

therefore supports various cancellation patterns. In addition, tasks can be specified in such

a way that they start in multiple instances. Examples are the Book train ticket and the book

hotel tasks from Figure 4 which allow for the booking of multiple tickets or hotels. It is

then possible to specify upper and lower bounds for the number of instances of the task

that can be started. It can also be specified if instances can only be created at once when

the task is started, i.e. statically, or if instances can be added dynamically while the task is

running and the number of started instances is lower than the maximum number. The task’s

threshold value determines the number of instances that have to be completed to complete

the task as a whole. As soon as the threshold value is reached, all remaining instances are

terminated.

Formally an EWF-net can be defined as follows:

Definition 1 (EWF-net) An extended workflow net (EWF-net) is a tuple (C, i,o, T, F,

split , join, rem,nofi) such that:

• C is a set of conditions,

• i ∈ C is the input condition,

• o ∈ C is the output condition,

• T is a set of tasks,

• F ⊆ (C \ {o} × T) ∪ (T × C \ {i}) ∪ (T × T) is the flow relation,

• every node in the graph (C ∪ T, F) is on a directed path from i to o,

March 10, 2008 18:5 WSPC/INSTRUCTION FILE C-workflow-ws-ijcis2

12 F. Gottschalk, W.M.P. van der Aalst, M.H. Jansen-Vullers, and M. La Rosa

• split : T → {AND ,XOR,OR} specifies the split behaviour of each task,

• join : T → {AND ,XOR,OR} specifies the join behaviour of each task,

• rem : T 6→ IP(T ∪ C \ {i,o}) specifies the cancellation region for a taskb, and

• nofi : T 6→ IN× INinf × INinf ×{dynamic, static} specifies the multiplicity of each

task (minimum, maximum, threshold for continuation, and dynamic/static creation

of instances).

The tuple (C, T, F) corresponds to a classical Petri net48 where C (the set of con-

ditions) corresponds to the set of places, T (the set of tasks) corresponds to the set of

transitions, and F is the flow relation. Different to Petri nets, there are the special condi-

tions i and o and tasks can be connected not only via places but also directly to each other

by the flow relation. We counteract this “unstructuredness” by defining the extended set

of conditions Cext and the extended flow relation F ext for EWF nets, adding the implicit

condition c(t1,t2) between two tasks t1, t2 if there is a direct connection from t1 to t2. To

navigate through an EWF net it is also useful to define the preset and postset of a node (i.e.,

of a condition or a task) as shown in the definition below.

Definition 2 (Implicit conditions, preset, postset)

Let N = (C, i,o, T, F, split , join, rem,nofi) be an EWF-net. Then Cext = C ∪

{c(t1,t2) | (t1, t2) ∈ F ∩ (T × T)} is the extended set of conditions and F ext = (F \ (T ×

T))∪{(t1, c(t1,t2)) | (t1, t2) ∈ F ∩(T ×T)}∪{(c(t1,t2), t2) | (t1, t2) ∈ F ∩(T ×T)} is the

extended flow relation. Moreover, auxiliary functions • , • : (Cext ∪ T) → IP(Cext ∪ T)

are defined that assign to each node its preset and postset, respectively. For any node

x ∈ Cext ∪ T , •x = {y | (y, x) ∈ F ext} and x• = {y | (x, y) ∈ F ext}.

The four functions of the EWF net split , join , rem, and nofi specify the properties

of each task. As the names imply, the first two functions specify the splitting- and joining

behavior for the tasks. rem specifies from which parts of the net the tokens should be

removed. Note that the range of rem includes tasks and conditions, but tokens cannot be

removed from input and output conditions. Removing tokens from a task corresponds to

aborting the execution of that task. If a task is a composite task, its removal implies the

removal of all tokens it contains. nofi specifies the attributes related to multiple instances.

Whenever we introduce an EWF-net N we assume C, i, o, T , F , split , join , rem ,

and nofi defined as N = (C, i,o, T, F, split , join, rem,nofi). For simplification we also

assume that C = Cext and F = F ext , i.e. we only consider the extended net with im-

plicit conditions. We use π1(nofi(t)) to refer to the minimal number of instances initiated,

π2(nofi(t)) to refer to the maximal number of instances initiated, π3(nofi(t)) is the thresh-

old value, and π4(nofi(t)) indicates whether it is possible to add instances while handling

the other ones.

For convenience, we extend the functions rem and nofi in the following way. If t ∈ T \

dom(rem)c, then rem(t) = ∅. If t ∈ T \dom(nofi), then π1(nofi(t)) = 1, π2(nofi(t)) =

bA 6→ B denotes a partial function. IP(X) is the powerset of X , i.e., Y ∈ IP(X) if and only if Y ⊆ X .
c
dom (rem) denotes the domain of rem .

March 10, 2008 18:5 WSPC/INSTRUCTION FILE C-workflow-ws-ijcis2

Configurable Workflow Models 13

1, π3(nofi(t)) = ∞, π4(nofi(t)) = static. This allows us to treat these partial functions

as total functions in the remainder.

The mapping of tasks to lower-level EWF nets which are refining the task (as, e.g., for

the tasks “Book hotel” and “Credit card payments” in Figure 4) is not part of the higher-

level EWF net, but rather of the workflow specification which organizes the EWF-nets

in a tree-like hierarchy. As mentioned above, we deviate here from the original YAWL

specification by assigning sets of EWF nets to composite tasks. The selection which EWF

nets from such a set is executed when the composite task is triggered is then performed

at run-time, similar as the worklet service architecture extension to YAWL suggests.46

Thus, although several EWF nets are assigned to a composite task, only one of the EWF

nets is executed when the task is triggered. In this way, different implementations of a

task can be assigned to the same generic task (e.g., the task “Book hotel” can have an

implementing EWF net for bookings directly with the hotel by phone and another totally

different implementation for bookings via a booking portal in the internet).

Definition 3 (Workflow specification) A workflow specification S is a tuple (Q⋄, Q,

top, T ⋄,map) such that:

• Q⋄ is a set of EWF-nets,

• top ∈ Q⋄ is the top level workflow,

• Q ⊆ IP(Q⋄ \ {top}), (
⋃

NS∈Q NS) = Q⋄ \ {top},∀NS1,NS2∈Q(NS 1 ∩ NS 2 6=

∅) ⇒ NS 1 = NS 2, partitions Q⋄ into sets of EWF nets,

• T ⋄ = ∪N∈Q⋄TN is the set of all tasks,

• ∀N1,N2∈Q⋄N1 6= N2 ⇒ (CN1
∪ TN1

) ∩ (CN2
∪ TN2

) = ∅, i.e., no name clashes,

• map : T ⋄ 6→ Q is an injective, surjective function which maps each composite

task onto a set of EWF nets, and

• the relation {(N1, N2) ∈ Q⋄ × Q⋄ | ∃t∈dom(map)(t ∈ TN1
∧ N2 ∈ map(t))} is

a tree.

Q⋄ is a non-empty set of EWF-nets with a special EWF-net top. The tasks in the do-

main of map are the composite tasks which are mapped onto sets of EWF nets. This is

done in such a way that each EWF net in Q⋄ can only be assigned onto one task, but each

composite task is mapped onto a set of several EWF nets that is specified in Q, i.e. a tree-

like structure with top as root node is formed. As top is always the root net, it will be

part of any workflow execution. This holds not for the other EWF nets in Q⋄ (i.e. the child

elements of top) if the EWF net or any of its parents has an alternative listed in Q.

Concluding this small introduction into YAWL please note that we assume throughout

this paper that there are no name clashes, i.e., names of conditions differ from names of

tasks and there is no overlap in names of conditions and tasks originating from different

EWF-nets. If there are name clashes, tasks/conditions are simply renamed.

March 10, 2008 18:5 WSPC/INSTRUCTION FILE C-workflow-ws-ijcis2

14 F. Gottschalk, W.M.P. van der Aalst, M.H. Jansen-Vullers, and M. La Rosa

4.2. Configurable EWF nets

The general approach for making workflow modelling languages configurable from Sec-

tion 3 can be divided into three main steps. Thus, we organize this section on the develop-

ment of configurable EWF (C-EWF) nets in line with these steps. First, the configurable

elements of EWF nets are identified and we provide a formal definition of configurations

of EWF nets. Second, we develop a language for the specification of requirements on the

models and their configurations as well as provide an approach to test if the configuration of

a model satisfies the requirements. Finally, we will combine an EWF net with requirements

and a default configuration to C-EWF nets.

Configurable elements of EWF nets and their configurations

To determine the configurable elements of EWF nets, all elements of EWF nets that repre-

sent some sort of action and the flow of cases through these elements need to be identified.

Obviously, in EWF nets actions are represented by tasks and the surrounding arcs depict

how tokens can flow into and out of tasks. However, the execution of the task is only en-

abled if the tokens in the pre-conditions of the task match its joining behavior. A task with

an AND-join behavior as the task Reserve in Figure 4 can only be enabled and executed if

tokens are waiting at all conditions preceding the task. That means, although the task has

more than one incoming arc, it contains only a single port through which it can be enabled.

On the other hand, a task with an XOR-join behavior can be enabled via every arc pointing

at it, i.e. it has a dedicated port for each of these arcs. For example, the task Send documents

in Figure 4 can be triggered either by a token in condition a4 or by a token in condition b4.

Thus it can be enabled through two different ports. A task with an OR-join behavior (like

the task select payment method in Figure 4) is only enabled if there is at least one token

on one of its input conditions and it exists no chance that further tokens can arrive. Thus,

similar to the AND-join, it synchronizes all branches. We therefore assign only a single

port to the OR-join. All ports through which a task in an EWF net can be enabled are called

input ports in the following.

Definition 4 (Input ports) Let N = (C, i,o, T, F, split , join, rem,nofi) be an EWF net.

Then

• portsXOR
input(N) = {(t, {c})|t ∈ T ∧ join(t) = XOR ∧ c ∈ •t} are the input ports

for all tasks with an XOR-join behavior,

• portsAND
input(N) = {(t, •t)|t ∈ T ∧ join(t) = AND} are the input ports for all

tasks with an AND-join behavior,

• portsOR
input(N) = {(t, •t)|t ∈ T ∧ join(t) = OR} are the input ports for all tasks

with an OR-join behavior,

• ports input(N) = portsXOR
input(N) ∪ portsAND

input(N) ∪ portsOR
input(N) are all input

ports of N , and

• for t ∈ T , ports input(t) = ports input(N) ∩ ({t} × IP(C)) are all input ports of

the task t.

March 10, 2008 18:5 WSPC/INSTRUCTION FILE C-workflow-ws-ijcis2

Configurable Workflow Models 15

Looking at the splitting behavior of tasks, we find similar semantics. If a task with an

XOR-split behavior completes, it can choose between all outgoing arcs through which it

will release the case. The task “Select payment method” from Figure 4 can, e.g., release a

token either to condition a3 or to condition a4. That means, each of the outgoing arcs from

the task to the succeeding conditions has its own port. A task with an AND-split behavior

like the Start search task releases tokens always via all outgoing arcs, i.e. it is only using a

single port. Tasks with an OR-split behavior can release tokens to post conditions via any

combination of outgoing arcs. This means for the task Receive order from Figure 4 that

after completion it can put tokens either in a1, in b1, in c1, in a1 and b1, in a1 and c1, in

b1 and c1, or into all three of these conditions. Therefore a port exists for each of these

combinations. Ports through which tokens are released to post-conditions are called output

ports in the following.

Definition 5 (Output ports) Let N = (C, i,o, T, F, split , join, rem,nofi) be an EWF

net. Then

• portsXOR
output(N) = {(t, {c})|t ∈ T ∧ split(t) = XOR ∧ c ∈ t•} are the output

ports for all tasks with an XOR-split behavior,

• portsAND
output(N) = {(t, t•)|t ∈ T ∧ split(t) = AND} are the output ports for all

tasks with an AND-split behavior,

• portsOR
output(N) = {(t, cs)|t ∈ T ∧ split(t) = OR ∧ cs ⊆ t • ∧ cs 6= ∅} are the

output ports for all tasks with an OR-split behavior,

• portsoutput(N) = portsXOR
output(N) ∪ portsAND

output(N) ∪ portsOR
output(N) are all

output ports of N, and

• for t ∈ T , portsoutput(t) = portsoutput(N) ∩ ({t} × IP(C)) are all output ports

of the task t.

As shown in Section 3 an input port determines if a task can be executed when it is

enabled via this input port. It can be configured as either enabled, blocked, or hidden.

The configuration of an output port determines which subsequent (post-) conditions can be

marked with tokens after a task has been completed. It can be configured either as enabled

or as blocked only.

Figure 6 provides two example configurations of the input and output ports for the main

EWF net from Figure 4. The travel agency depicted in Figure 6a only sells reduction cards

to clients buying a train ticket at the same time. Train tickets and hotel reservations can also

be booked independently. For that reason the ports of the Receive order task which theo-

retically allow for booking the reduction card without booking a train ticket are blocked

(indicated by the “Do not enter”-signs labelled b and b, c at the bottom-right corner of the

task). The other five output ports, representing all possible booking combinations, are en-

abled (indicated by the arrows at the bottom-right corner of the task). Only if the customer

pays by credit card, the documents can be sent to him. If the customer pays in cash, the

documents cannot be sent. Then he has to collect them. This policy is enforced by block-

ing the input port b of the Send documents task (indicated by a “Do not enter”-sign at the

bottom-left corner of the task).

March 10, 2008 18:5 WSPC/INSTRUCTION FILE C-workflow-ws-ijcis2

16 F. Gottschalk, W.M.P. van der Aalst, M.H. Jansen-Vullers, and M. La Rosa

The internet shop in Figure 6b uses the same process model, but a different configu-

ration for its ports. It sells reduction cards also without train tickets, payments are only

possible by credit card, and documents cannot be collected. In addition, the internet shop

does not allow users to cancel their bookings. For that reason, all output ports of the Re-

ceive order task are enabled (whenever all ports are configured to the same value, we just

show a single symbol), the input port of the Cancel booking task is blocked, output port b

of the Select payment method task is blocked, and all input ports of the Collect documents

task are blocked. In addition, the Select payment method task’s input port is hidden because

the internet shop only offers a single payment method. A selection simply does not need to

be made (indicated by the “jumping” arrow at the bottom-left corner of the task).

In addition to the tokens consumed by a task via the the input ports, a task in YAWL can

also consume all tokens from a cancellation region. For this reason, we decided to define a

cancellation port per task in addition to the input ports.

Definition 6 (Cancellation ports) Let N = (C, i,o, T, F, split , join, rem,nofi) be an

�����

����	��
�

����
���

�����

��

�����
�

���	��
�

	�
���

��

�����

��
��

���

�����

�����

���

����

�����

��
��

������

����	��
�

����

������

���	��

�����

���	��

��

��

��

��

��

��

��

��

�������

����
��

�
����������� �������

�

�

�

���

���

���

�����

�

�

�����

����	��
�

����
���

�����

��

�����
�

���	��
�

	�
���

��

�����

��
��

���

�����

�����

���

����

�����

��
��

������

����	��
�

����

������

���	��

�����

���	��

��

��

��

��

��

��

��

��

�������

����
��

�

�

�����������	�
��

���
���
�������

Fig. 6. The booking process from Figure 4, configured to the requirements of a travel agency (a) and an internet

shop (b).

March 10, 2008 18:5 WSPC/INSTRUCTION FILE C-workflow-ws-ijcis2

Configurable Workflow Models 17

EWF net. Then portscancel(N) = dom(rem) are all the cancellation ports of N.

The consumption of tokens from a cancellation region is similar to the consumption of

tokens by an OR-join. During the task’s execution always all available tokens are consumed

from the cancellation region. However, tokens in the cancellation region cannot trigger a

task on their own. The triggering still happens via the input ports and the enablement of a

task does not even require the availability of tokens in the cancellation region. Thus, the

cancellation port is only a refinement of the input port. If it is enabled, tokens are removed

from the cancellation region; if it is blocked, they are not. The decision whether a task

is executed or skipped remains determined by the input port configuration. Together they

form the theoretic inflow port.

To depict the configuration of cancellation ports, we use the same pictures of an arrow

for enabled cancellation ports and a “Do not enter”-sign for blocked cancellation ports (see

the top of the task Cancel booking in Figure 6).

If a task allows for the start of multiple instances, it in fact combines several actions

of the process in a single task. To implement this behavior, we could, e.g., introduce an

internal OR-split (see Figure 7) that enables the instances of the task. Of course, the output

ports of the OR-split can be configured as enabled or blocked. If some ports of this OR-split

are blocked, this might decrease the total number of instances that can be started or increase

the minimal number of instances that have to be started. For example, the task depicted in

Figure 7 originally allowed a minimum of a single instance of the task and a maximum

of three instances of the task to be started. By blocking all ports connected to a single

subsequent condition, the minimal number of instances that can be started is increased

to two. By blocking the port allowing the start of all instances, the maximal number of

instances that can be started is also reduced to two. Therefore, we will talk about increasing

the minimum number of instances to be started and decreasing the maximum number of

instances to be started in the following, instead of referring to blocking of instances. If a

task allows the dynamic creation of instances, the task has an additional internal task which

creates new instances. By blocking its input port, we restrict a task with a dynamic creation

of task instances to a static creation of task instances.

YAWL also allows to reduce the threshold value of the number of instances that have

to be completed to consider the whole task as completed. This behavior – also known as

N-out-of-M-join pattern15 – can be implemented in a YAWL notation by forming several

AND-joins instead of one OR-join for joining the multiple instances, each connected to

the required minimal number of completed instances. On firing, such an AND-join could

cancel all remaining instances. Figure 8 provides an example. Originally, the task required

the start of three instances, but only two instances had to complete to consider the task as

completed. By blocking the input ports of the AND-joins that require only two instances to

be completed, we increase the threshold value of the task to three. Thus, also the increase

of the threshold value of a multiple instance task is possible by means of configuration.

To formalize these four types of configuration opportunities we use four configuration

functions, one for each type. The configuration functions assign the described configuration

decisions to the ports of the EWF net. To allow for the configuration of selected parts of an

March 10, 2008 18:5 WSPC/INSTRUCTION FILE C-workflow-ws-ijcis2

18 F. Gottschalk, W.M.P. van der Aalst, M.H. Jansen-Vullers, and M. La Rosa

�������

��	�����	
�
��	
��

��	������

�

��

��

��

��

��	������

�

��	������

�
�� ��

�

�

�

���

���

���

�����

�������������������	��������

Fig. 7. A multiple instance task withe one to three instances implemented: the configuration restricts the behavior

to the start of exactly two instances.

�������

��	�����	

�
��	
��
�

�

��	������

�

��

��

��

��

��	������

�

��	������

�
�� ��

�
��	
��
�

�

�
��	
��
�

�

�
��	
��
�

�

��������������	�������

�

�

�

���

���

���

�����

Fig. 8. Increasing the threshold value from two to three within a task with three instances to be started (example

implementation).

EWF net, we define the configuration functions as partial functions. Then a configuration

does not need to configure every port in the EWF net. However, to be able to transform the

EWF net into a lawful, configured EWF net, the configuration functions must be defined

on every port, i.e. they must be total functions. If all four configuration functions are total

March 10, 2008 18:5 WSPC/INSTRUCTION FILE C-workflow-ws-ijcis2

Configurable Workflow Models 19

functions, we call the configuration complete.

Definition 7 (Configuration) Let N = (C, i,o, T, F, split , join, rem,nofi) be an EWF

net, ports input(N) be the input ports of N , and portsoutput(N) be the output ports of N .

Then conf N = (conf input , conf output , conf rem , conf nofi) is a configuration of N with

• conf input defined as a partial function determining configurations for the input

ports of tasks:

conf input : ports input(N) 6→ {enabled , blocked , hidden}

• conf output defined as a partial function determining configurations for the output

ports of tasks:

conf output : portsoutput(N) 6→ {enabled , blocked}

• conf rem defined as a partial function determining configurations for the cancel-

lation regions of tasks:

conf rem : portscancel(N) 6→ {enabled , blocked}

• conf nofi defined as a partial function determining configurations for the multi-

plicity of tasks:

conf nofi : dom(nofi) 6→
(

IN0 × IN0 × IN0,inf × {restrict, keep}
)

such that

for all t ∈ dom(conf nofi) : (conf nofi(t) = (min,max , thres, dyn) and

π1(nofi(t)) + min ≤ π2(nofi(t)) − max).

The configuration conf N of N is complete iff

• dom(conf input) = ports input(N),

• dom(conf output) = portsoutput(N),

• dom(conf rem) = portscancel(N), and

• dom(conf nofi) = dom(nofi).

Similar as for EWF-net, we use π1(conf nofi(t)) to refer to the increase of the minimal

number of instances that have to be created for task t, π2(conf nofi(t)) to refer to the de-

crease of the maximal number of instances that can be created, we use π3(conf nofi(t)) for

the increase of the threshold value, and π4(conf nofi(t)) to indicate whether the creation of

instances for the task t should be restricted to a static creation of instances only.

To form complete (or at least “more complete”) configurations out of incomplete con-

figurations, two configurations can be combined to a new configuration. This new configu-

ration is formed by extending the domains of the configuration functions from the first con-

figuration with the domains of the configuration functions from the second configuration.

If, for example, a configuration has only configuration values for the ports of the task Select

payment method from Figure 4 while a second configuration has configuration values for

March 10, 2008 18:5 WSPC/INSTRUCTION FILE C-workflow-ws-ijcis2

20 F. Gottschalk, W.M.P. van der Aalst, M.H. Jansen-Vullers, and M. La Rosa

the ports of the tasks Receive order and Book train ticket, the combined configuration has

configuration values for all three tasks. In case both configurations contain a configuration

value for a particular port, the value of the first configuration is used. In this way, combining

incomplete configurations with complete configurations always creates complete configu-

rations. The configuration values of the incomplete configuration then overwrite the ones

of the complete configuration.

Definition 8 (Combining configurations) Let N = (C, i,o, T, F, split , join, rem,nofi)

be an EWF net. Let further on conf N,1 = (conf input,1, conf output,1, conf rem,1,

conf nofi,1) and conf N,2 = (conf input,2, conf output,2, conf rem,2, conf nofi,2) be two (par-

tial) configurations of N.

Then conf N,1 and conf N,2 can be combined and generate configuration conf N,3 =

(conf input,3, conf output,3, conf rem,3, conf nofi,3) where

• dom(conf input,3) = dom(conf input,1) ∪ dom(conf input,2) and

– ∀p∈dom(conf input,1)
conf input,3(p) = conf input,1(p),

– ∀p∈dom(conf input,2)\dom(conf input,1)
conf input,3(p) = conf input,2(p),

• dom(conf output,3) = dom(conf output,1) ∪ dom(conf output,2) and

– ∀p∈dom(conf output,1)
conf output,3(p) = conf output,1(p),

– ∀p∈dom(conf output,2)\dom(conf output,1)
conf output,3(p) = conf output,2(p),

• dom(conf rem,3) = dom(conf rem,1) ∪ dom(conf rem,2) and

– ∀t∈dom(conf rem,1)
conf rem,3(t) = conf rem,1(t),

– ∀t∈dom(conf rem,2)\dom(conf rem,1)
conf rem,3(t) = conf rem,2(t),

• dom(conf nofi,3) = dom(conf nofi,1) ∪ dom(conf nofi,2) and

– ∀t∈dom(conf nofi,1)
conf nofi,3(t) = conf nofi,1(t),

– ∀t∈dom(conf nofi,2)\dom(conf nofi,1)
conf nofi,3(t) = conf nofi,2(t),

Requirements specification and valid configurations

So far, the configuration opportunities offer a lot of freedom because each task can be

configured in all the described facets. This is of course theory and in practice not all con-

figurations are feasible. For example, in the workflow from Figure 6 it must be ensured

that the Receive order task is always performed, i.e. its input port must always be config-

ured as enabled. Without an order, it is impossible to book any travel. In the same way it

must be ensured that if the customer has paid his travel, the documents are either sent to

him or collected. That means for each payment method at least one input port of the tasks

Send documents and Collect documents must be enabled. Similarly, we cannot block the

input ports of the tasks Credit card payment and Cash Payment as long as the customer

can choose the corresponding payment method in the task Select payment method. Oth-

erwise, the case might deadlock in the conditions a3 or b3. Thus, in fact, quite restrictive

dependencies exist among the configuration decisions for the individual ports.

March 10, 2008 18:5 WSPC/INSTRUCTION FILE C-workflow-ws-ijcis2

Configurable Workflow Models 21

To formulate such dependencies and restrictions of allowed configurations, we use

logical expressions. The logical expressions combine requirements on the configura-

tion of single elements of the EWF-net – the so-called atomic requirements – by

means of common logical operators and quantifiers. The requirement that the input

port of the task Receive order must be enabled is for example atomic and written as

(input , (“Receive order”, {i}), enabled). The requirement that at least one of the input

ports of the task Send documents or of the task Collect documents must be enabled after

a credit card payment has been made (i.e. from condition a4), is composed of two atomic

requirements, connected by a logical operator as

(input , (“Send documents”, {a4}), enabled) ∨

(input , (“Collect documents”, {a4}), enabled).

Definition 9 provides a list of all atomic requirements that can be imposed on a config-

uration of an EWF net.

Definition 9 (Atomic configuration requirements)

Let N = (C, i,o, T, F, split , join, rem,nofi) be an EWF net,portsinput(N) be the in-

put ports of N , and portsoutput(N) be the output ports of N . Then

• req input = {input} × ports input(N) × {enabled , hidden, blocked} is the set of

all requirements on the configurations of input ports,

• reqoutput = {output} × portsoutput(N) × {enabled , blocked} is the set of all

requirements on the configuration of output ports,

• reqrem = {rem} × T × {enabled , blocked} is the set of all requirements on the

configuration of cancellation regions,

• reqnofi = {nofi}×T × (IN0× IN0,inf × IN0,inf ×{restrictable, non-restrictable})

is the set of all requirements on the configurations of the multiplicity of a task

(maximal increase of the minimum, maximal decrease of the maximum, maximal

increase of the threshold for continuation, and if restriction to static creation of

instances is possible), and

• reqN = req input∪reqoutput∪reqrem∪reqnofi is the set of all atomic requirements

for N.

To combine atomic requirements we allow the use of all the common logical operators

(¬,∧,∨, XOR,⇒,⇔ etc.) as well as the use of the quantifiers ∀ and ∃. With quantifiers,

we enable the specification of requirements which have to hold for the configurations of

sets of model elements. In this way it is possible to specify general requirements which are

independent of a particular net.

We distinguish general requirements, which have to hold for every, or at least a certain

group, of EWF-nets, from specific requirements, which only have to hold in a specific net.

Specific requirements are typically content-driven. Therefore, the examples for require-

ments we provided above are specific requirements.

General requirements mainly ensure the construction of well-formed nets, i.e. they en-

sure that the configured EWF-net can be transformed into a syntactically valid EWF-net

March 10, 2008 18:5 WSPC/INSTRUCTION FILE C-workflow-ws-ijcis2

22 F. Gottschalk, W.M.P. van der Aalst, M.H. Jansen-Vullers, and M. La Rosa

which also conforms to any applicable modelling guidelines like, e.g., certain soundness

criteria. Typically, general requirements are content-independent and make extensive use

of quantifiers. For example, the requirement “each task of an EWF net which can be en-

abled, i.e. which has at least one enabled or hidden input port, must also have at least one

enabled output port” would be a general requirement. It is needed to ensure the flow of

tokens through the net. It can formally be specified as follows:

∀t ∈ T :

(∃p∈ports input (t)
(input , p, enabled) ∨ (input , p, hidden))

⇒ (∃p∈portsoutput (t)
(output , p, enabled))

On the other hand, if all the input ports of a task are blocked, then there will never be any

inflow to the task and consequently also no outflow. For that reason, we could formulate

the configuration requirement that if all input ports of a task are blocked also all output

ports must be blocked:

∀t ∈ T :

(∀p∈portsinput (t)
(input , p, blocked))

⇒ (∀p∈portsoutput (t)
(output , p, blocked)))

Using general requirements, it is also possible to impose requirements on conditions

although configuration is defined only on elements of tasks. For example, to ensure the

flow of tokens through the net, every token that flows into a condition must also be able

to flow out of it (unless it is in the final condition). Therefore at least one subsequent port

must be enabled or hidden for such conditions:

∀c ∈ (C \ {o}) :

(∃(t1,cs1)∈portsoutput (N)c ∈ cs1 ∧ (output , (t1, cs1), enabled))

⇒ (∃(t2,cs2)∈portsinput (N)c ∈ cs2∧((input , (t2, cs2), enabled)∨(input , (t2, cs2), hidden)))

A requirement is fulfilled if it evaluates to true. To evaluate a requirement, its atomic

requirements have to be evaluated first. An atomic requirement is fulfilled if the specific

port or task addressed by the requirement is configured accordingly. For example, the re-

quirement (input , (“Receive order”, {i}), enabled) evaluates to true if the particular port

between the condition i and the task Receive order is enabled, otherwise it evaluates to

false. In the same way requirements for hidden or blocked input ports, and for enabled or

blocked output or cancellation ports can be evaluated. A requirement on the number of in-

stances configuration like (nofi , “Book train ticket”, (min,max , thres, dyn)) evaluates to

true only if

• π1(conf nofi(t)) ≤ min ,

• π2(conf nofi(t)) ≤ max ,

• π3(conf nofi(t)) ≤ thres , and

• dyn = non-restrictable ⇒ π4(conf nofi(t)) = keep.

March 10, 2008 18:5 WSPC/INSTRUCTION FILE C-workflow-ws-ijcis2

Configurable Workflow Models 23

After all the atomic requirements within a composed requirement are evaluated to true

or false, the composed requirement can be evaluated as in propositional logicd. Of course,

the evaluation of an atomic requirement is only possible if a configuration is defined for the

element of the EWF net that is addressed by the atomic requirement. For that reason, we

assume complete configurations here.

We say that a complete configuration is valid for an EWF net, if the configuration fulfills

all configuration requirements that are imposed on the EWF net, i.e. if all requirements can

be evaluated to true.

Definition 10 (Valid configuration) Let N = (C, i,o, T, F, split , join, rem,nofi) be an

EWF net, reqN be the set of all atomic requirements that can be imposed on N , and req

be a boolean expression over reqN . A configuration conf N of N is valid, if req can be

evaluated to true using the values of conf N to evaluate the atomic requirements contained

in req.

Components of C-EWF nets

To ensure complete configurations without requiring the user of a C-EWF net to configure

every single element, a C-EWF net includes a default configuration. This default configu-

ration must be complete and valid for the EWF net that should be configured. Then, each

(incomplete) configuration can be combined with this complete default configuration to

form a new complete configuration (as explained in Definition 8). The configuration deci-

sions missing in the incomplete configuration are filled up with the default configuration

for these elements. The so-created complete configuration can again be tested on its valid-

ity. If it is valid, we also consider the incomplete configuration as valid for the particular

C-EWF net.

Summarizing, a C-EWF net consists of a syntactically correct EWF net serving as the

basic process model, a set of configuration requirements ensuring syntactical and semanti-

cal correctness of the configuration, and the default configuration.

Definition 11 (C-EWF net) A configurable extended workflow net (C-EWF net) is a tuple

(N, R,D) where

• N is an EWF net,

• R is a set of configuration requirements on N , and

• D is the complete and valid default configuration of N .

Note that the basic EWF net might contain semantically conflicting behavior. Thus, if

no explicit configuration decisions are made, the default configuration also ensures that a

semantically correct EWF net can be derived for the basic EWF net.

dAlthough we are allowing quantifiers, these are always expressed on a finite set of elements (e.g.“for all the

conditions of the EWF net”). So this is referable to the conjunction of a set of propositional logic requirements,

each of them expressed over an element (e.g. over a condition).

March 10, 2008 18:5 WSPC/INSTRUCTION FILE C-workflow-ws-ijcis2

24 F. Gottschalk, W.M.P. van der Aalst, M.H. Jansen-Vullers, and M. La Rosa

4.3. Configurable workflow specifications

A workflow specification organizes EWF nets hierarchically by mapping tasks of EWF nets

onto other EWF nets (cf. Definition 3). Using C-EWF nets instead of EWF net, we will in

this section briefly outline how a configurable workflow specification can be build-up on

top of C-EWF nets. In this context we will use the expression (C-)EWF nets in statements

that hold for both EWF and C-EWF nets.

In a workflow specification each composite task tcomposite of a (C-)EWF net is

mapped onto a set of (C-)EWF nets NS tcomposite
via the map function (i.e. NS tcomposite

=

map(tcomposite)). Whenever tcomposite is triggered, one (C-)EWF net from the set

NS tcomposite
is chosen as an implementation for tcomposite and initiated, i.e. there is a choice

between the different nets of NS tcomposite
. The task tcomposite only completes when the se-

lected (C-)EWF net signalizes its completion. That means, the mapping between tasks and

(C-)EWF nets determines the control flow between the nets. Hence, this mapping offers

configuration opportunities in a configurable workflow specification in addition to the con-

figuration opportunities of C-EWF nets.

Every (C-)EWF net has a unique input condition through which it can be triggered.

Thus, the interface between the superior task tcomposite and the input condition of an im-

plementing (C-)EWF net represents the unique inflow port of the action implemented in the

mapped (C-)EWF net. If this inflow port is configured as blocked, the particular (C-)EWF

cannot be triggered at runtime, i.e. it cannot be chosen as an implementation for tcomposite .

Instead, another (C-)EWF net from NS tcomposite
has to be selected whose inflow port is con-

figured either as enabled or as hidden. Those nets can can be selected and triggered as

normally in YAWL, i.e. as described above. Nets with an enabled inflow port are also exe-

cuted in the same way as ordinary (C-)EWF nets. The action within (C-)EWF nets with a

hidden inflow port must however be skipped completely. For this reason such a (C-)EWF

net should be replaced with the “dummy” EWF net shown in Figure 9 where the τ task

corresponds to the skipped action of the original net.

The completion of a (C-)EWF net is signalized via its unique output condition. The

interface from the output condition back to the superior task tcomposite therefore represents

the unique outflow port of a (C-)EWF net. As each action needs at least one enabled outflow

port to be able to forward the control to subsequent actions, this outflow port must always

be enabled, i.e. it cannot be configured.

Thus, on the level of the workflow specification, the only configurable port of an (C-)

EWF net is its inflow port. We can therefore depict this configuration on the link between

the composite task and the particular (C-)EWF net as, e.g., in Figure 10. The figure depicts

an example configuration for the workflow specification of Figure 6.�
Fig. 9. The dummy net replacing a hidden net, i.e the τ task corresponds to the skipped action of the original net.

March 10, 2008 18:5 WSPC/INSTRUCTION FILE C-workflow-ws-ijcis2

Configurable Workflow Models 25

�����

����	��
�

����
���

�����

��

�����
�

���	��
�

	�
���

��

�����

��
��

���

�����

�����

���

����

�����

��
��

������

����	��
�

����

������

���	��

�����

���	��

��

��

��

��

��

��

��

��

�������

����
��

�

�

!
�
�

�

!
�

�
��
�

������

�����

��

�
���"
��

��������

��
���

���

Fig. 10. The configured workflow specification

Again, not all combinations of configurations among the different (C-)EWF nets are

feasible. For example, it is not possible to block all the (C-)EWF nets implementing a

task because every composite task must have at least one usable, i.e. either enabled or

hidden, implementation. For that reason, atomic requirements must also be imposable

on the configuration of mappings between a composite task and an (C-)EWF net, e.g.

as (map, (task ,net), enabled |blocked |hidden). Such requirements can be combined and

evaluated as the requirements on configurations of C-EWF nets.

This also enables us to combine requirements on the higher-level configurable work-

flow specification with requirements on specific C-EWF nets within the configurable work-

flow specification. For example, the possibility to book reduction cards in the workflow of

Figure 10 might require the possibility to use a certain implementation of the payment tasks

that includes an address, age, or student status verification. Some implementations of a task

may also depend on the data output of a preceding task. Thus, these implementations must

be blocked if the particular task has been hidden or blocked.

Altogether, a configurable workflow specification provides two levels for configuring

a workflow. Distinct approaches can be handled by different (C-)EWF nets mapped onto

a single task. Different variants of the same approach should be handled within a single

C-EWF net by using its configuration opportunities.

5. From C-YAWL to YAWL

To demonstrate the applicability of configurable workflow models, we implemented a

transformation from C-YAWL to YAWL such that we can derive YAWL models which are

March 10, 2008 18:5 WSPC/INSTRUCTION FILE C-workflow-ws-ijcis2

26 F. Gottschalk, W.M.P. van der Aalst, M.H. Jansen-Vullers, and M. La Rosa

executable in the YAWL workflow engine. As a task can be easily mapped onto a selected,

implementing EWF net, we focus in this section just on the transformation from C-EWF

nets to EWF nets and do not explain the rather trivial selection mechanism described in

Section 4.3.

To be able to perform such a transformation, we first have to define a file format for

maintaining the configurations of EWF nets. As the YAWL engine itself uses a well-defined

XML representation for storing YAWL workflow specifications, we decided to extend this

XML schema with configuration opportunities. Afterwards we will provide a transforma-

tion algorithm that “translates” the configuration into a removal of elements from the basic

model. All of this has been realized in the context of the YAWL environment13,49.

5.1. The C-YAWL XML Schema

A workflow specification in a YAWL engine file consists of several decompositions, which

are its EWF nets or the links to other custom web-services that can be triggered by a YAWL

specification. A decomposition of an EWF net contains the data variables used by the net

and a list of process control elements. These are all the conditions and tasks of the EWF

net, starting with the input condition and ending with the output condition. Within each

of these elements, flows define the links to subsequent elements, thus constructing the net.

For tasks the joining and splitting behavior, the cancellation sets, and its multiplicity can

be specified. Also a decomposition that is used to implement the task (as e.g. another EWF

net in case of a composite task) and the data flow in and out of the task can be listed.

As the configuration of a YAWL model is purely defined on the level of tasks, we added

configuration on this level. Any configuration can consist of the four configuration elements

join, nofi, rem, and split. Each of these configuration elements allows for the specification

of the particular configuration value, e.g. for the join a configuration value of “enabled”,

“blocked”, or “hidden” can be specified. The value given for the join and split configuration

is applicable for all input or output ports of the particular task except for those for which

dedicated port subelements specify different configurations. These port elements have a

configuration value as their parent element plus a set of source or target conditions and

tasks identifying the addressed port (see Figure 11).

Instead of or in addition to a configuration of the task, a default configuration can be

specified for each task. The default configuration is specified as a normal configuration,

but is used whenever no explicit configuration value is given for the particular element.

Whenever neither a configuration nor a default configuration is given for a configurable

element, we assume that the task keeps its original behavior, i.e. enabled input, output, and

cancellation ports, as well as no increase of the minimum number of instances, no decrease

of the maximum number of instances, no increase of the threshold value, and keeping of

the creation mode. Thus, a configurable YAWL model for which a default configuration

is specified can be transformed into a YAWL model without any of the configuration val-

ues explicitly specified. As long as all requirements on the configuration are satisfied by

configuring all ports as enabled and not deviating from the original multiple instance con-

figuration, the transformation can even be performed without any configuration or default

March 10, 2008 18:5 WSPC/INSTRUCTION FILE C-workflow-ws-ijcis2

Configurable Workflow Models 27

Fig. 11. The XML specification of the configuration (depicted using XMLSpy).

configuration value specified. The resulting YAWL model would then match exactly the

basic model.

5.2. The Transformation Algorithm

The transformation from C-EWF nets to EWF nets is performed in two steps. First, we

will remove the elements directly affected by the configuration decisions. Second, we will

perform a clean up by removing elements which became obsolete in the first step. The latter

step ensures that the created EWF net conforms to Definition 1 which requires that every

March 10, 2008 18:5 WSPC/INSTRUCTION FILE C-workflow-ws-ijcis2

28 F. Gottschalk, W.M.P. van der Aalst, M.H. Jansen-Vullers, and M. La Rosa

element is on a path between i and o. In this way, we can neglect this requirement in the

first step.

As input to the transformation, let CEWF = (N, R,D) be a C-EWF net with

N = (C, i,o, T, F, split , join, rem,nofi). In addition, let conf N be a valid configu-

ration of CEWF that is applied to CEWF to create a configured EWF net. Let then

(conf input , conf output , conf rem , conf nofi) be the combined configuration of conf N with

D, i.e. (conf input , conf output , conf rem , conf nofi) is complete.

As conditions are not configurable, we initially keep all conditions from the C-EWF

net also in the configured EWF net and remove the superfluous conditions later during the

cleanup. The input and output conditions i and o are the same in the configured net as in

the configurable net.

For transforming the tasks’ behavior, we will start with the conf rem and conf nofi con-

figurations as these can be applied to the tasks straightforwardly.

The configuration of the cancellation region conf rem restricts the set of elements re-

turned by the rem function. Whenever the cancellation region is blocked, the function

returns an empty list.

• ∀t∈dom(rem)∩{t∈T |conf rem(t)=blocked}rem
C(t) = ∅

• ∀t∈dom(rem)\{t∈T |conf rem(t)=blocked}rem
C(t) = rem(t)

The nofi function, assigning the number of instances that can be started to each task,

must be adapted according to the configuration conf nofi . The configured increase of the

minimal number of instances to be started is added to the predefined minimal number of

instances, the configured decrease of the maximal number of instances to be started is

subtracted from the predefined value, and the configured increase of the threshold value is

added to the predefined threshold value. If the predefined task enables the dynamic creation

of task instances and the task is configured to keep the current definition, the creation of

task instances remains dynamic, otherwise it is set to static.

• ∀t∈dom(nofi)π1(nofiC(t)) = π1(nofi(t)) + π1(conf nofi(t))

• ∀t∈dom(nofi)π2(nofiC(t)) = π2(nofi(t)) − π2(conf nofi(t))

• ∀t∈dom(nofi)π3(nofiC(t)) = π3(nofi(t)) + π3(conf nofi(t))

• Tdyn = {t ∈ dom(nofi)|π4(conf nofi(t)) = keep ∧ π4(nofi(t)) = dynamic}

• ∀t∈Tdyn
π4(nofiC(t)) = dynamic

• ∀t∈dom(nofi)\Tdyn
π4(nofiC(t)) = static

The configuration of output ports conf output influences the flows subsequent to a task.

If one of the output ports referring to a particular flow is enabled, the flow is part of the

configured EWF net. Otherwise it is not. As tasks with an AND-split behavior have just a

single port, all flows subsequent to such tasks must be removed if the port is configured as

blocked. In case of an XOR-split, each flow is addressed by exactly one port. Thus, a flow

must be removed if the corresponding port is blocked. The output ports of a task with an

OR-split semantics can be configured in different ways even if the different ports refer to

March 10, 2008 18:5 WSPC/INSTRUCTION FILE C-workflow-ws-ijcis2

Configurable Workflow Models 29

�������

�

�
	

�

�

	

�
�

�
	

�
	

�
�
	

�������

	

�

�

Fig. 12. Transforming the output port configuration into a YAWL model

�������

�
�

	

�

�

	

�
�

�
	

�
	

�
�
	

�������

	

�

�

Fig. 13. Transformation of an OR-split into an XOR-split.

�������

�

�
	

�

�

	

�
�

�
	

�
	

�
�
	

�������

	

�

�

Fig. 14. Transformation of an OR-split into an AND-split.

the same flow. Then, as said above, the flow must be kept as part of the configured EWF

net if any output port referring to the flow is enabled. For example, in Figure 12 only the

two ports connecting Task B either with condition b or with conditions b and c are enabled.

All other output ports are blocked. Therefore, the flow from Task B to d can be removed,

but the flows to the conditions b and c cannot be removed. The blocking of ports referring

to these flows that must be kept in the net, e.g. the blocking of the output port c, is realized

by adapting the flows’ predicates. Based on process data, predicates determine at run-time

if a flow is triggered or not.

• FC
output = {(t, c) ∈ F |t ∈ T ∧ c ∈ C ∧ ∃(t,cs)∈portsoutput (N)c ∈ cs ∧

conf output((t, cs)) = enabled}

March 10, 2008 18:5 WSPC/INSTRUCTION FILE C-workflow-ws-ijcis2

30 F. Gottschalk, W.M.P. van der Aalst, M.H. Jansen-Vullers, and M. La Rosa

The splitting behavior of a task basically corresponds to its behavior in the EWF net.

Only in two special cases of configuration of a task with an OR-split behavior the splitting

changes. If all the output ports of such a task which refer to more than a single flow are

blocked, the splitting behavior is changed into an XOR-split behavior (see Figure 13).

If all the output ports of a task are blocked except a single port, the splitting behavior is

transformed into an AND-split (see, e.g., Figure 14). In all other cases the splitting behavior

remains the same.

• TC
XOR = {t ∈ T |∀(t,cs)∈portsoutput (t)

(|cs| > 1 ⇒ conf output((t, cs)) =

blocked)}

• TC
AND = {t ∈ T |∀(t,cs)∈portsoutput (t)

(|cs| < |{(t, c) ∈ FC
output}| ⇒

conf output((t, cs)) = blocked)}

• ∀t∈T C
XOR

splitC(t) = XOR

• ∀t∈T C
AND

\T C
XOR

splitC(t) = AND

• ∀t∈T\(T C
XOR

∪T C
AND

)split
C(t) = split(t)

Finally, the configuration of the join behavior conf input has to be applied to the EWF

net. If a task has an AND-join or an OR-join behavior, it just has a single input port. If

this port is blocked, the task can never be enabled. Therefore, all inflows into the the task

are not part of the configured EWF net. If the input port of a task t is hidden, this means

that the execution behavior of the task must be skipped. For that reason, task t is replaced

with a silent task τt. The silent task does not include any “action” as, e.g., any execution of

work from the original task but has still exactly the same joining, splitting, and cancellation

behavior as the original task.

A task with an XOR-join behavior can have different configurations for different input

ports. In this case it might be required that a net includes both a silent version and an active

version of a task. For example in Figure 15 the input ports from the conditions a and b

are hidden, the input port from condition c is enabled and the input port from condition

d is blocked. Then the conditions a and b should trigger the silent task τTaskA, whereas

condition c should trigger the active task. Therefore, we split up the set of tasks for the

configured net into a set of enabled and a set of hidden tasks, i.e. TC = TC
enabled ∪TC

hidden .

The silent task must be introduced whenever a task has at least one hidden input port. The

(normal) enabled task remains in the net whenever there is at least one enabled input port.

• TC
enabled = {t ∈ T |∃(t,cs)∈portsinput (t)

conf input((t, cs)) = enabled}

• TC
hidden = {τt|t ∈ T ∧ ∃(t,cs)∈portsinput (t)

conf input((t, cs)) = hidden}

• ∀τt∈T C
hidden

:

– joinC(τt) = join(t)∧

– splitC(τt) = splitC(t)∧

– remC(τt) = remC(t)∧

– nofiC(τt) = nofiC(t)

To connect the tasks with conditions, all flows connected to an enabled port remain in

the net. All flows connected to a hidden port are reconnected to the hidden task. Therefore,

March 10, 2008 18:5 WSPC/INSTRUCTION FILE C-workflow-ws-ijcis2

Configurable Workflow Models 31

�

�

������

�

	

������

�
������

�

	

�

�

�

�

�

	

�

�

�

�

�

Fig. 15. Transforming the input port configuration into a YAWL model.

conditions a and b in the example of Figure 15 are connected to the silent task, whereas

c remains connected to Task A. All flows connected to a blocked input port are not part

of the configured net. For that reason the flow connecting d with Task A is not part of the

configured net.

• FC
input = {(c, t) ∈ F |c ∈ C ∧ t ∈ T∧

∃(t,cs)∈ports input (N)c ∈ cs ∧ conf input((t, cs)) = enabled}

∪{(c, τt)|c ∈ C ∧ t ∈ T ∧ (c, t) ∈ F∧

∃(t,cs)∈ports input (N)c ∈ cs ∧ conf input((t, cs)) = hidden}

The joining behavior of all enabled tasks in the configured net is the same as the joining

behavior in the configurable net.

• ∀t∈T C
enabled

joinC(t) = join(t)

Altogether, we transformed the C-EWF net into the net NC = (C, i,o, TC
enabled ∪

TC
hidden , FC

input ∪ FC
output , split

C , joinC , remC ,nofiC). However, as mentioned in the be-

ginning, the resulting net does not necessarily conform to the requirements of an EWF net

in which every node in the graph must be on a directed path from i to o. Due to the removal

of flows, some conditions and tasks might not be reachable anymore from i. To create an

EWF net from NC , it is therefore necessary to remove all nodes which are not on a path

from i to o. Removing of conditions preceding AND-joins or succeeding AND-splits leads

however to changes in the semantics of the net. Thus, in case such conditions should be

removed, not only the conditions must be removed, but also the tasks with the AND-join/

-split, although these tasks might theoretically be on paths from i to o. If there is no such

path at all, the configuration is not transformable into a well defined EWF net and should

be forbidden in the requirements on the C-EWF net.

This cleanup step can be performed as a depth-first search, starting with the input con-

dition, looking for all paths to the output condition. If such a path is found, all elements

on this path are marked for being kept in the process. In addition, all visited elements

are marked, such that elements do not need to be visited multiple times. All tasks and

conditions not on such a path are afterwards removed. If a condition is removed which

March 10, 2008 18:5 WSPC/INSTRUCTION FILE C-workflow-ws-ijcis2

32 F. Gottschalk, W.M.P. van der Aalst, M.H. Jansen-Vullers, and M. La Rosa

is preceded or succeeded by an AND-join or -split, the corresponding task is removed as

well even though it might be on a path between input and output condition. In this way

we prevent changing the semantics of the task. But this might make additional elements

“loosing” their path from the input to the output condition. For that reason, we repeat the

whole cleanup process until in one iteration no such tasks are removed. Considering usual

sizes of workflow models this implementation is sufficient.

We implemented this transformation in the context of the YAWL workflow engine.

Using the YAWL editor the integrated model of the different process variants can be defined

as depicted in Figure 4 and exported into a YAWL engine file. Such an engine file can be

loaded into the YAWL engine to execute the whole workflow. To restrict the workflow to

the desired variants, configurations can be added to the YAWL engine file as depicted in

Section 5.1. Without any manual modelling effort, the algorithm depicted in this section

then generates a new YAWL engine file according to the configuration. As the original

file, the generated file can directly be used in the workflow engine to execute the desired

workflow variant. It can also be imported back into the YAWL editor to inspect or further

adapt the resulting workflow.

The EWF net derived in this way from the example configuration for a travel agency as

depicted in Figure 6a is shown in Figure 16; the EWF net derived from the configuration

for the internet shop depicted in Figure 6b is shown in Figure 18. To demonstrate the need

to remove dead model parts, Figure 17 depicts the net resulting from the internet shop’s

configuration with the elimination of dead model parts disabled.

This transformation therefore enables a user who wants to implement a variant of a

standard workflow (which is already designed, e.g., by consultants) to avoid any expensive

and complex workflow modelling. By only adding the individual configuration to the work-

flow, running the transformation, and loading the resulting model into the YAWL engine,

the individual adapted workflow can be executed as the screenshot in Figure 19 shows. It

depicts the worklist of the internet shop’s travel booking workflow with several bookings

in progress. The workflow definition used for this example is the engine file which resulted

from the configuration shown in Figure 3.

�

Fig. 16. The YAWL net derived from the configuration of the travel agency.

March 10, 2008 18:5 WSPC/INSTRUCTION FILE C-workflow-ws-ijcis2

Configurable Workflow Models 33

�

Fig. 17. The net derived from the internet shop’s configuration, but without the removal of any “dead” parts.

�

Fig. 18. The YAWL net derived from the configuration of the internet shop having all “dead” model parts removed.

Both C-YAWL and the C-YAWL to YAWL transformation will become part of future

YAWL releases and thus be available to all YAWL users.49

6. Configuration of other workflow languages

YAWL is a workflow language with an academic background which was developed to

demonstrate that a workflow engine can easily support a multitude of workflow patterns

without having a very complicated language. To implicitly cover the configurability of all

these patterns, we so far demonstrated how a workflow language can be made configurable

based on YAWL. To show the universal applicability of the approach to many languages

we will now also briefly highlight, how it can be applied to a commercial workflow engine,

namely the workflow engine of SAP R/3 (SAP WebFlow), and to a standard notation,

namely BPEL.

SAP WebFlow

SAP WebFlow is a workflow engine delivered with every SAP R/3 enterprise system in-

stallation since the R/3 Release 3.0.12 Its workflow language (see Figure 20) is mainly

based on so-called steps and events. Steps can represent both routing constructs and system

functionalities. Activities such as the Book train ticket step or the Book reduction card step

execute a task defined within the SAP system. Steps representing routing constructs often

March 10, 2008 18:5 WSPC/INSTRUCTION FILE C-workflow-ws-ijcis2

34 F. Gottschalk, W.M.P. van der Aalst, M.H. Jansen-Vullers, and M. La Rosa

Fig. 19. The worklist of the internet shop’s travel booking workflow with several bookings in progress

branch the control flow. Examples for such branching steps are conditions like the Select

payment method step in Figure 20 which represent an XOR choice between two paths, or

forks like the Receive order step which are dependent on a condition of the joining fork

and can be used to represent both AND splits/joins or deferred choice constructs. Any such

branching of the control flow is matched by a dedicated corresponding join. Similar to

composite tasks in YAWL, ad hoc anchors can be replaced with another workflow which

is selected from a set of possible replacements at runtime.

In this way the workflows of SAP WebFlow are organized in a block structure. Each

step represents a dedicated block. Since every split corresponds to a join, the subprocess in

between such a split and join also forms a block. All steps included in such a block are then

sub-blocks of the routing construct’s block. To demonstrate the block structure in Figure 20

the three main blocks are highlighted in grey while their sub-blocks in the various branches

have a white background.

To configure such workflow activities in SAP we can use the concepts identified in

Section 3. Due to the block structure we can even go a step further and say that each

block can be seen as an action. Every block contains just one unique input path and one

March 10, 2008 18:5 WSPC/INSTRUCTION FILE C-workflow-ws-ijcis2

Configurable Workflow Models 35

Workflow

started

Receive

order

Book train

ticket

Book

reduction

card

Book hotel

Select

payment

method

Credit card

payment

Cash

payment

Collect

documents

Send

documents

1 from 2

Workflow

completed

Legend

Activity

Ad Hoc Anchor (replaced

by a workflow at runtime)

Condition (XOR)

Fork

(AND, Deferred Choice)

Start / End Event

Fig. 20. The travel booking workflow in a SAP

WebFlow notation with the block structure high-

lighted

��������

�	
�	��

������

�����

�����	�
��

	����	
�������	��

������	�

�������	�

�����

�������	�

��������

���������

������	��

Fig. 21. A configuration of the workflow

unique output path. Thus it contains a unique input port and a unique output port. The

largest block is the complete workflow itself. It is the only block which can be triggered

in multiple ways as it can be triggered not only manually but also by (various) external

events which are linked to the workflow block. Such events can also be linked to a block

to terminate it. Thus, each of these links connecting an event to a workflow block can also

be seen as a port. As they have some different characteristics from a block’s in- and output

ports, we call them event ports.

For input ports the concepts of enabling, blocking, and hiding can be applied in a

straightforward manner. If the input port of a block is enabled, cases can enter normally

and be executed in the block. If the input port is hidden like the one of the Select payment

method step in Figure 21, a case entering the block is directly forwarded to the unique

output port of the block, quasi bypassing all the content of the block. If the input port is

blocked as the port of the Book reduction card step in Figure 21, the case cannot enter the

block at all and needs to continue via one of the other alternative branches.

Each case entering a block must be able to leave the block via its unique output port.

Thus, this port can only be blocked if the block’s input port is blocked. However, if the input

port is blocked no tokens can arrive at the output port, i.e. the configuration has no influence

on the execution of the process. We can therefore consider the output port configuration as

practically irrelevant in SAP WebFlow.

An event triggers a new instance of a workflow if the corresponding event port is en-

abled. SAP WebFlow already supports deactivating such a link, quasi corresponding to the

blocking of the particular event port. Although a triggering event port is an inflow port, the

March 10, 2008 18:5 WSPC/INSTRUCTION FILE C-workflow-ws-ijcis2

36 F. Gottschalk, W.M.P. van der Aalst, M.H. Jansen-Vullers, and M. La Rosa

hiding of such a port is at least questionable as it would result in the skipping of the whole

workflow without performing any steps.

Terminating event ports are output ports. Even though terminating events are exter-

nally triggered, they enforce the removal of the case from the particular block. Thus, the

functionality of SAP to activate or deactivate such linkages already provides exactly the

required functionality to configure terminating event ports.

As in a configurable YAWL, also a configurable SAP WebFlow may not allow for a

free configuration of all ports. For example, the three grey blocks are essential to complete

the workflow of Figure 20 and can thus not be blocked (but might be hidden, e.g. because

someone billing tickets directly to a responsible organization might be able to skip the

billing process as in Figure 21). As all these configuration restrictions are on a port level,

they can be enforced with boolean expressions in the same way as we have shown for

YAWL in Section 4.

The conversion of a workflow according to a configuration which conforms to the con-

figuration requirements is straightforward. The input arc of a hidden block is directly con-

nected to its output arc while blocked blocks are simply removed.17

BPEL

The Web Services Business Process Execution Language (WS-BPEL, or just BPEL for

short) is a standard developed for the composition and orchestration of web services. BPEL

uses an XML-based representation to define workflows and the language can be seen as a

mixture of graph-based and programming-like constructs. Similar to SAP WebFlow, ac-

tivities in BPEL are also block structured. Within this block structure BPEL distinguishes

between six structured activities organizing the control-flow of its sub-blocks and three

primitive activities that perform the required actions. Examples for structured activities are

the sequence which enforces the sequential execution of its sub-blocks (see Figure 22), the

flow which allows for a parallel execution of the sub-blocks, or the switch which can be

used to define an XOR choice among the sub-blocks. The primitive invoke activities call

a linked operation, e.g. of a web service or another workflow, and wait for its response.

For example, in Figure 22 the first invoke activity calls the operation requestTravel of the

booking eingine. The other two primitive types of receive and reply activities wait for such

calls and provide the results.

Within the block structure BPEL activities have the same unique input ports and output

ports as the steps of SAP WebFlow. Thus, we can enable, block, or hide the input ports of

activity blocks in the same way as we have suggested for SAP WebFlow and we do not

need to configure the output ports.

However, in addition to the structured activities such as a sequence, switch, etc. BPEL

allows for expressing control flow relations between activities also through control links.

Control links establish a control flow from one to another activity possibly breaking BPEL’s

block structure. For this reason not only the unique output port is triggered when an activity

completes, but also outgoing control links can be activated. In Figure 22 three such control

links are, e.g., specified for the first invoke activity. An activity for which a corresponding

March 10, 2008 18:5 WSPC/INSTRUCTION FILE C-workflow-ws-ijcis2

Configurable Workflow Models 37

<process ...>

<sequence ...>

<flow ...>

<links>

<linkName="trainTicket"/><linkName="reductionCard"/><linkName="hotel"/>

</links>

<invoke partner="BookingEngine" operation="requestTravel"

inputVariable=... outputVariable="travelNeeds" ...>

<source linkName="trainTicket"

transitionCondition="bpws:getVariableData(travelNeeds, trainReq)=true"/>

<source linkName="reductionCard"

transitionCondition="bpws:getVariableData(travelNeeds, cardReq)=true"/>

<source linkName="hotel"

transitionCondition="bpws:getVariableData(travelNeeds, hotelReq)=true"/>

</invoke>

<invoke partner="TicketProvider" operation="getTicket" ...>

<target linkName="trainTicket"/>

</invoke>

<invoke partner="CardProvider" operation="orderCard" ...>

<target linkName="reductionCard"/>

</invoke>

<invoke partner="HotelReservationSystem" operation="reserve" ...>

<target linkName="hotel"/>

</invoke>

</flow>

<flow ...>

<links>

<linkName="creditCardPayment"/><linkName="cashPayment"/>

</links>

<invoke partner="PaymentEngine" operation="getPaymentDetails"

inputVariable=... outputVariable="paymentDetails" ...>

<source linkName="creditCardPayment"

transitionCondition="bpws:getVariableData(paymentDetails, card)=true"/>

<source linkName="cashPayment"

transitionCondition="bpws:getVariableData(paymentDetails, cash)=true"/>

</invoke>

...

</flow>

...

</sequence>

</process>

Fig. 22. The travel booking workflow specified in BPEL

incoming control link is specified can then only be executed if it is triggered through the

structure of the workflow, and if all the incoming links have been activated. The invoke

activity in Figure 22 that gets the ticket is thus only activated if on the one hand the en-

closing flow activity is activated and on the other hand the link trainTicket is activated. In

the context of an activity also a join condition over the data provided by the links has to be

true. Therefore, all incoming links and the input port of the activity synchronize the work-

flow in the same way as an AND join. Even if we consider incoming links, an activity thus

has only the single input port which we mentioned before that can be enabled, blocked, or

hidden.

For each outgoing control link, a separate condition can be given to specify whether

it will be activated. The trainTicket link of Figure 22 is thus only enabled if the trainReq

parameter is true. Depending on the conditions any combination of activating outgoing

control links is therefore possible which means that the links are in an OR relation. Like

the output ports of an OR split in YAWL, a dedicated outgoing link port can be specified

for each combination of the outgoing links. If such a port is enabled, the activation of the

March 10, 2008 18:5 WSPC/INSTRUCTION FILE C-workflow-ws-ijcis2

38 F. Gottschalk, W.M.P. van der Aalst, M.H. Jansen-Vullers, and M. La Rosa

particular links is subject to the corresponding conditions. If the port is blocked and exactly

the conditions of the links belonging to the particular port evaluate to true while all other

conditions evaluate to false, all the links of the port will still not be activated and thus

inhibit a continuation of the process through those links.

As for YAWL or SAP WebFlow, configuration requirements for a configurable BPEL

can be specified and evaluated using boolean expressions. To derive the configured BPEL

workflow, all activities with hidden input ports are replaced with a dummy invoke activ-

ity which completes without any work. All activities with blocked input ports and their

sub-blocks are eliminated from the workflow. However, note that this results in semantic

problems when sub-blocks of a sequence or a while loop are blocked. If these sub-blocks

are removed the BPEL semantics imply that the execution continues with the next task in

the sequence or that the workflow contains an empty loop. If on the other hand a new se-

mantics in line with the configuration idea would prevent this then the configuration would

result in a deadlock or livelock which is undesired behavior as well. Therefore, blocking is

generally considered as not possible for the input ports of sub-blocks of these two BPEL

activity types. Instead, the whole enclosing sequence or while activity should be blocked.

Blocked outgoing link ports are simply removed from the workflow. In this way they cannot

be activated anymore which is the intension of blocking them.

7. Summary and Outlook

In this paper we presented a general approach to extend common workflow modelling

languages such as YAWL, BPEL, or SAP WebFlow with opportunities for predefining al-

ternative model versions within a single workflow model. The approach allows the config-

uration, i.e. the restriction, of workflow models to a relevant variant in a controlled way.

To form a concrete configurable language, it is required to identify the configurable ele-

ments within the workflow modelling language and to define their configuration options.

A set of model-dependent requirements limits these options and a default configuration

conforming to these requirements provides a valid starting point for the configuration of

such a model. To demonstrate the approach on a concrete language, we added configura-

tion opportunities to YAWL, and formalized these configurable models. An algorithm for

transforming configured C-YAWL models into ordinary YAWL models was provided and

a tool demonstrating the applicability of the concepts was implemented.

With the help of the tool, we plan to use a few complex, configurable models and

numerous configurations of these models to derive a huge set of configured models. An-

alyzing the cleanup of these models, e.g. using machine learning techniques, we aim at

gaining further insights into interdependencies between configurations of single elements

of the net, especially regarding their influence on the net’s soundness. This will hopefully

allow us to provide further guidance on how to set-up requirements on the configuration,

and on how to configure a model under various circumstances.

We are also in the process of applying the ideas presented in this paper to other lan-

guages. For example and as briefly highlighted here we have successfully applied the con-

cepts of this paper to SAP WebFlow, a workflow engine shipped more than 100.000 times

March 10, 2008 18:5 WSPC/INSTRUCTION FILE C-workflow-ws-ijcis2

Configurable Workflow Models 39

with every SAP R/3 enterprise system installation.17 Combining the ideas of how to set

up configurable workflow models with ideas of using domain knowledge to configure pro-

cess models50, we are also confident to be able to setup a general framework for system

configuration. This framework will not only allow for the synchronized configuration of

different workflow systems, but also their alignment with other configurable systems as,

e.g., configurable software systems.

References

1. W.M.P. van der Aalst and K.M. van Hee. Workflow Management: Models, Methods, and Systems.

MIT press, Cambridge, MA, 2002.

2. P. Lawrence, editor. Workflow Handbook 1997, Workflow Management Coalition. John Wiley

and Sons, New York, 1997.

3. T. Curran, G. Keller, and A. Ladd. SAP R/3 Business Blueprint: Understanding the Business

Process Reference Model. Prentice Hall, Upper Saddle River, NJ, USA, 1998.

4. P. Fettke and P. Loos. Classification of Reference Models – a Methodology and its Application.

Information Systems and e-Business Management, 1(1):35–53, 2003.

5. P. Fettke, P. Loos, and J. Zwicker. Business Process Reference Models: Survey and Classifica-

tion. In C. Bussler and A. Haller, editors, Business Process Management Workshops, volume

3812 of Lecture Notes in Computer Science, pages 469–483, Berlin Heidelberg, February 2006.

Springer Verlag.

6. M. Rosemann. Using reference models within the enterprise resource planning lifecycle. Aus-

tralian Accounting Review, 10(3):19–30, November 2000.

7. G. Keller, M. Nüttgens, and A.W. Scheer. Semantische Prozeßmodellierung auf der Grundlage

Ereignisgesteuerter Prozeßketten (EPK). Veröffentlichungen des Instituts für Wirtschaftsinfor-

matik, Heft 89 (in German), University of Saarland, Saarbrücken, 1992.

8. A. Arkin et al. Business Process Modeling Language (BPML), Version 1.0, 2002.

9. Pallas Athena BV. Protos User Manual. Plasmolen, The Netherlands, 2004.

10. Staffware plc. Staffware 2000 / GWD User Manual. Berkshire, UK, 2000.

11. Staffware plc. Staffware Process Suite Version 2 – White Paper. Maidenhead, UK, 2003.

12. A. Rickayzen, J. Dart, C. Brennecke, and M. Schneider. Practical Workflow for SAP – Effective

Business Processes using SAP’s WebFlow Engine. Galileo Press, 2002.

13. W.M.P. van der Aalst, L. Aldred, M. Dumas, and A.H.M. ter Hofstede. Design and Implemen-

tation of the YAWL System. In A. Persson and J. Stirna, editors, Advanced Information Sys-

tems Engineering, Proceedings of the 16th International Conference on Advanced Information

Systems Engineering (CAiSE’04), volume 3084 of Lecture Notes in Computer Science, pages

142–159. Springer-Verlag, Berlin, 2004.

14. W.M.P. van der Aalst and A.H.M. ter Hofstede. YAWL: Yet Another Workflow Language. In-

formation Systems, 30(4):245–275, 2005.

15. W.M.P. van der Aalst, A.H.M. ter Hofstede, B. Kiepuszewski, and A.P. Barros. Workflow Pat-

terns. Distributed and Parallel Databases, 14(1):5–51, 2003.

16. T. Rieke and C. Seel. Supporting Enterprise Systems Introduction through Controlling-enabled

Configurative Reference Modeling. In J. Becker and P. Delfmann, editors, Reference Model-

ing. Efficient Information Systems Design Through Reuse of Information Models, pages 79–102,

2007.

17. F. Gottschalk, W.M.P. van der Aalst, and M.H. Jansen-Vullers. SAP WebFlow Made Config-

urable: Unifying Workflow Templates into a Configurable Model. In G. Alonso, P. Dadam, and

M. Rosemann, editors, BPM 2007, volume 4714 of Lecture Notes in Computer Science, pages

262–270, Berlin Heidelberg, September 2007. Springer Verlag.

March 10, 2008 18:5 WSPC/INSTRUCTION FILE C-workflow-ws-ijcis2

40 F. Gottschalk, W.M.P. van der Aalst, M.H. Jansen-Vullers, and M. La Rosa

18. J. Becker, P. Delfmann, A. Dreiling, R. Knackstedt, and D. Kuropka. Configurative Process Mod-

eling – Outlining an Approach to increased Business Process Model Usability. In Proceedings

of the 15th IRMA International Conference, New Orleans, 2004. Gabler.

19. J. Becker, P. Delfmann, and R. Knackstedt. Adaptive Reference Modelling: Integrating Configu-

rative and Generic Adaptation Techniques for Information Models. In J. Becker and P. Delfmann,

editors, Reference Modeling. Efficient Information Systems Design Through Reuse of Informa-

tion Models, pages 27–58. Springer, 2007.

20. M.-J. Blin, J. Wainer, and C. Bauzer Medeiros. A Reuse-Oriented Workflow Definition Lan-

guage. International Journal of Cooperative Information Systems, 12(1):1–36, 2003.

21. W.M.P. van der Aalst, A. Dreiling, F. Gottschalk, M. Rosemann, and M.H. Jansen-Vullers. Con-

figurable Process Models as a Basis for Reference Modeling. In C. Bussler and A. Haller, editors,

Business Process Management Workshops, volume 3812 of Lecture Notes in Computer Science,

pages 512–518. Springer Verlag, February 2006.

22. M. Rosemann and W.M.P. van der Aalst. A Configurable Reference Modelling Language. Infor-

mation Systems, 32(1):1–23, March 2007.

23. G. Keller, M. Nüttgens, and A.-W. Scheer. Semantische Prozeßmodellierung auf der Grund-

lage ”Ereignisgesteuerter Prozeßketten (EPK)” (in German). Technical report, Institut für

Wirtschaftsinformatik, Saarbrücken, 1992.

24. P. Soffer, B. Golany, and D. Dori. ERP modeling: a comprehensive approach. Information Sys-

tems, 28(6):673–690, September 2003.

25. F. Puhlmann, A. Schnieders, J. Weiland, and M. Weske. Variability Mechanisms for Process

Models. PESOA-Report TR 17/2005, Process Family Engineering in Service-Oriented Applica-

tions (PESOA), June, 2005.

26. D. S. Batory. Feature Models, Grammars, and Propositional Formulas. In J. H. Obbink and

K. Pohl, editors, SPLC, volume 3714 of Lecture Notes in Computer Science, pages 7–20.

Springer, 2005.

27. V. Cechticky, A. Pasetti, O. Rohlik, and W. Schaufelberger. XML-Based Feature Modelling. In

International Conference on Software Reuse (ICSR), pages 101–114, Madrid, Spain, 2004.

28. K. Kang, S. Cohen, J. Hess, W. Novak, and A. Peterson. Feature-Oriented Domain Analysis

(FODA) Feasibility Study. Technical Report CMU/SEI-90-TR-21, Software Engineering Insti-

tute, Carnegie Mellon University, Pittsburgh PA, USA, 1990.

29. K. Czarnecki and M. Antkiewicz. Mapping Features to Models: A Template Approach Based on

Superimposed Variants. In Robert Glück and Michael Lowry, editors, 4th International Confer-

ence on Generative Programming and Component Engineering, GPCE 2005, volume 3676/2005

of Lecture Notes in Computer Science, pages 422–437, 2005.

30. D. Karastoyanova, F. Leymann, and A. Buchmann. An Approach to Parameterizing Web Service

Flows. In Service-Oriented Computing - ICSOC 2005, volume 3826/2005 of Lecture Notes in

Computer Science, pages 533–538, 2005.

31. A. Dreiling, M. Rosemann, and W.M.P. van der Aalst. From Conceptual Process Models to

Running Workflows: A Holistic Approach for the Configuration of Enterprise Systems. In Pro-

ceedings of the 9th Pacific Asia Conference on Information Systems, pages 363–376, Bangkok,

Thailand, 2005.

32. R. S. Pressman. Software Engineering: A Practitioners Approach. McGraw-Hill, 6 edition, 2004.

33. J. Estublier and R. Casallas. The Adele Software Configuration Manager, chapter 4, pages 99–

139. Configuration Management. J. Wiley and Sons, 1994.

34. E. Turkay, A.S. Gokhale, and B. Natarajan. Addressing the Middleware Configuration Chal-

lenges using Model-based Techniques. In Proceedings of the 42nd ACM Southeast Regional

Conference, pages 166–170, Huntsville AL, USA, 2004.

35. I. Classen, H. Weber, and Y. Han. Towards Evolutionary and Adaptive Workflow Systems-

infrastructure Support Based on Higher-Order Object Nets and CORBA. In Proceedings of the

March 10, 2008 18:5 WSPC/INSTRUCTION FILE C-workflow-ws-ijcis2

Configurable Workflow Models 41

1st International Enterprise Distributed Object Computing Conference (EDOC ’97), pages 300–

308, Los Alamitos, CA, USA, 1997. IEEE Computer Society.

36. G. Faustmann. Configuration for Adaptation – A Human-centered Approach to Flexible Work-

flow Enactment. Computer Supported Cooperative Work (CSCW), V9(3):413–434, November

2000.

37. Y. Han, T. Schaaf, and H. Pang. A Framework for Configurable Workflow Systems. In Pro-

ceedings of the 31st International Conference on Technology of Object-Oriented Language and

Systems, pages 218–224, Los Alamitos, CA, USA, 1999. IEEE Computer Society.

38. Y. Han, A. Sheth, and C. Bussler. A Taxonomy of Adaptive Workflow Management. In Workshop

of the 1998 ACM Conference on Computer Supported Cooperative Work, Seattle, Washington,

USA, November 1998.

39. P. J. Kammer, G. A. Bolcer, R. N. Taylor, A. S. Hitomi, and M. Bergman. Techniques for

Supporting Dynamic and Adaptive Workflow. Computer Supported Cooperative Work (CSCW),

V9(3):269–292, November 2000.

40. S. Rinderle, M. Reichert, and P. Dadam. Disjoint and Overlapping Process Changes: Challenges,

Solutions, Applications. In R. Meersman and Z. Tari, editors, On the Move to Meaningful Inter-

net Systems 2004: CoopIS, DOA, and ODBASE: OTM Confederated International Conferences,

CoopIS, DOA, and ODBASE, volume 3290, pages 101–120, January 2004.

41. S. Tam, W.B. Lee, W.W.C. Chung, and E.L.Y. Nam. Design of a re-configurable workflow sys-

tem for rapid product development. Business Process Management Journal, 9(1):33–45, Febru-

ary 2003.

42. F. Gottschalk, W.M.P. van der Aalst, and M.H. Jansen-Vullers. Configurable Process Models –

A Foundational Approach. In J. Becker and P. Delfmann, editors, Reference Modeling. Efficient

Information Systems Design Through Reuse of Information Models, pages 59–78. Springer, July

2007.

43. W.M.P. van der Aalst and T. Basten. Inheritance of workflows: an approach to tackling problems

related to change. Theoretical Computer Science, 270(1-2):125–203, January 2002.

44. T. Basten and W.M.P. van der Aalst. Inheritance of behavior. Journal of Logic and Algebraic

Programming, 47(2):47–145, 2001.

45. W.M.P. van der Aalst and T. Basten. Identifying Commonalities and Differences in Object Life

Cycles using Behavioral Inheritance. In J.M. Colom and M. Koutny, editors, Application and

Theory of Petri Nets 2001, volume 2075 of Lecture Notes in Computer Science, pages 32–52.

Springer-Verlag, Berlin, 2001.

46. M. Adams, A.H.M. ter Hofstede, D. Edmond, and W.M.P. van der Aalst. Implementing Dy-

namic Flexibility in Workflows using Worklets. BPM Center Report BPM-06-06, BPMcen-

ter.org, 2006.

47. N. Russell, A.H.M. ter Hofstede, W.M.P. van der Aalst, and N. Mulyar. Workflow Control-Flow

Patterns: A Revised View. BPM Center Report BPM-06-22, BPMcenter.org, 2006.

48. W. Reisig and G. Rozenberg, editors. Lectures on Petri Nets I: Basic Models, volume 1491 of

Lecture Notes in Computer Science. Springer-Verlag, Berlin, 1998.

49. YAWL Home Page. http://www.citi.qut.edu.au/yawl/.

50. M. La Rosa, J. Lux, S. Seidel, M. Dumas, and A. H. M. ter Hofstede. Questionnaire-driven Con-

figuration of Reference Process Models. In Proceedings of the 19th International Conference on

Advanced Information Systems Engineering (CAiSE), volume 4495 of LNCS, pages 424–438,

Trondheim, Norway, June 2007.

