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Abstract. Deep learning techniques (in particular convolu-

tional neural networks, CNNs) have recently emerged as a

promising approach for statistical downscaling due to their

ability to learn spatial features from huge spatiotemporal

datasets. However, existing studies are based on complex

models, applied to particular case studies and using simple

validation frameworks, which makes a proper assessment of

the (possible) added value offered by these techniques dif-

ficult. As a result, these models are usually seen as black

boxes, generating distrust among the climate community,

particularly in climate change applications.

In this paper we undertake a comprehensive assessment

of deep learning techniques for continental-scale statistical

downscaling, building on the VALUE validation framework.

In particular, different CNN models of increasing complex-

ity are applied to downscale temperature and precipitation

over Europe, comparing them with a few standard bench-

mark methods from VALUE (linear and generalized linear

models) which have been traditionally used for this purpose.

Besides analyzing the adequacy of different components and

topologies, we also focus on their extrapolation capability, a

critical point for their potential application in climate change

studies. To do this, we use a warm test period as a surrogate

for possible future climate conditions.

Our results show that, while the added value of CNNs is

mostly limited to the reproduction of extremes for tempera-

ture, these techniques do outperform the classic ones in the

case of precipitation for most aspects considered. This over-

all good performance, together with the fact that they can

be suitably applied to large regions (e.g., continents) with-

out worrying about the spatial features being considered as

predictors, can foster the use of statistical approaches in in-

ternational initiatives such as Coordinated Regional Climate

Downscaling Experiment (CORDEX).

1 Introduction

The coarse spatial resolution and systematic biases of global

climate models (GCMs) are two major limitations for the

direct use of their outputs in many sectoral applications,

such as hydrology, agriculture, energy or health, particularly

for climate change impact studies (Maraun and Widmann,

2017). These applications typically involve the use of sec-

toral models (e.g., crop or hydrological models) and/or cli-

mate indices (e.g., frost days or warm spells) which require

regional to local weather (daily) series of different variables

(precipitation, temperature, radiation, wind etc.) over mul-

tiple decades representative of the historical and future cli-

mates (see, e.g., Galmarini et al., 2019; Ba et al., 2018;

Sanderson et al., 2017; Teutschbein et al., 2011; Wang et al.,

2017). Moreover, the results of these studies are sensitive to

different aspects of the climate data, such as the temporal

structure (e.g., in agriculture or energy), the spatial and/or

inter-variable structure (e.g., in hydrology) or the extremes

(e.g., in hydrology and health).

In order to bridge this gap, different statistical downscal-

ing (SD; Maraun and Widmann, 2017) methods have been

developed building on empirical relationships established be-

tween informative large-scale atmospheric variables (predic-

tors) and local/regional variables of interest (predictands).

Under the perfect-prognosis approach, these relationships
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are learned from (daily) data using simultaneous observa-

tions for both the predictors (from a reanalysis) and pre-

dictands (historical local or gridded observations), and are

subsequently applied to GCM-simulated predictors (multi-

decadal climate change projections under different scenar-

ios), to obtain locally downscaled values (see, e.g., Gutiérrez

et al., 2013; Manzanas et al., 2018).

A number of standard perfect-prognosis SD (hereafter

just SD) techniques have been developed during the last 2

decades building mainly on (generalized) linear regression

and analog techniques (Gutiérrez et al., 2018). These stan-

dard approaches are widely used by the downscaling com-

munity, and several intercomparison studies have been con-

ducted to understand their advantages and limitations, taking

into account a number of aspects such as temporal structure,

extremes or spatial consistency. In this regard, the VALUE

(Maraun et al., 2015) initiative proposed an experimental val-

idation framework for downscaling methods and conducted a

comprehensive intercomparison study over Europe with over

50 contributing standard techniques (Gutiérrez et al., 2018).

Besides these standard SD methods, a number of machine

learning techniques have been also adapted and applied for

downscaling. For instance, the first applications of neural

networks date back to the late 1990s (Wilby et al., 1998;

Schoof and Pryor, 2001). More recently, other alternative

machine learning approaches have been applied, such as sup-

port vector machines (SVMs; Tripathi et al., 2006), random

forests (Pour et al., 2016; He et al., 2016) or genetic program-

ming (Sachindra and Kanae, 2019). There have been also a

number of intercomparison studies analyzing standard and

machine learning techniques (Wilby et al., 1998; Chen et al.,

2010; Yang et al., 2016; Sachindra et al., 2018), with an over-

all consensus that no technique clearly outperforms the oth-

ers and that limited added value – in terms of performance,

interpretability and parsimony – is obtained with sophisti-

cated machine learning options, particularly in the context of

climate change studies.

In the last decade, machine learning has gained renewed

attention in several fields, boosted by major breakthroughs

obtained with deep learning (DL) models (see Schmidhu-

ber, 2015, for an overview). The advantage of DL resides

in its ability to extract high-level feature representations in

a hierarchical way due to its (deep) layered structure. In

particular, in spatiotemporal datasets, convolutional neural

networks (CNNs) have gained great attention due to their

ability to learn spatial features from data (LeCun and Ben-

gio, 1995). DL models allow high-dimensional problems to

be treated automatically, thereby avoiding the use of con-

ventional feature extraction techniques (e.g., principal com-

ponents, PCs), which are commonly used in more classic

approaches (e.g., linear models and traditional fully con-

nected neural networks). Moreover, new efficient learning

methods (e.g., batch, stochastic and mini-batch gradient de-

scent), regularization options (e.g., dropout), and computa-

tional frameworks (e.g., TensorFlow; see Wang et al., 2019,

for an overview) have popularized the use of DL techniques,

allowing convolutional neural networks to learn efficiently

from (big) data and avoid overfitting. Different configura-

tions of CNNs have proven successful in a variety of prob-

lems in several disciplines, particularly in image recognition

(Schmidhuber, 2015). There have also been a number of re-

cent successful applications in climate science, including the

detection of extreme weather events (Liu et al., 2016), the

estimation of cyclone intensity (Pradhan et al., 2018), the

detection of atmospheric rivers (Chapman et al., 2019), the

emulation of model parameterizations (Gentine et al., 2018;

Rasp et al., 2018; Larraondo et al., 2019) and full simplified

models (Scher and Messori, 2019). The reader is referred to

Reichstein et al. (2019) for a recent overview.

There have been some attempts to test the application

of these techniques for SD, including simple illustrative

examples of super-resolution approaches to recover high-

resolution (precipitation) fields from low-resolution counter-

parts with promising results (Vandal et al., 2017b; Rodrigues

et al., 2018). In the context of SD, deep learning applications

have applied complex convolutional-based topologies (Van-

dal et al., 2017a; Pan et al., 2019), autoencoder architectures

(Vandal et al., 2019) and long short-term memory (LSTM)

networks (Misra et al., 2018; Miao et al., 2019) over small

case study areas and using simple validation frameworks,

resulting in different conclusions about their performance,

as compared to other standard approaches. Therefore, these

complex (in many cases off-the-shelf) models are usually

seen as black boxes, generating distrust among the climate

community, particularly when it comes to climate change

problems. Recently, Reichstein et al. (2019) outlined this

problem and encouraged research towards the understanding

of deep neural networks in climate science.

In this study we aim to shed light on this problem and per-

form a comprehensive evaluation of deep SD models of in-

creasing complexity, assessing the particular role of the dif-

ferent elements comprising the deep neural network architec-

ture (e.g., convolutional and fully connected or dense layers).

In particular, we use the VALUE validation framework over

a continental region (Europe) and compare deep SD meth-

ods with a few standard benchmark methods best performing

in the VALUE intercomparison (Gutiérrez et al., 2018). Be-

sides this, we also focus on the extrapolation capability of the

different methods, which is fundamental for climate change

studies. Overall, our results show that simple deep CNNs out-

perform standard methods (particularly for precipitation) in

most of the aspects analyzed.

The code needed to fully replicate the experiments and re-

sults shown in this paper is freely available as Jupyter note-

books at the DeepDownscaling GitHub repository (https://

github.com/SantanderMetGroup/DeepDownscaling, last ac-

cess: 23 April 2020; Baño Medina et al., 2020). In addition,

in this paper we introduce downscaleR.keras, an ex-

tension of the downscaleR (Bedia et al., 2019) package
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that integrates keras into the climate4R (Iturbide et al.,

2019) framework (see the “Code availability” section).

2 Experimental intercomparison framework

2.1 Area of study and data

The VALUE COST Action (2012–2015) developed a frame-

work to validate and intercompare downscaling techniques

over Europe, focusing on different aspects such as tem-

poral and spatial structure and extremes (Maraun et al.,

2015). The experimental framework for the first experiment

(downscaling with “perfect” reanalysis predictors) is pub-

licly available at http://www.value-cost.eu/validation (last

access: 23 April 2020) as well as the intercomparison results

for over 50 different standard downscaling methods (Gutiér-

rez et al., 2018). Therefore, VALUE offers a unique oppor-

tunity for a rigorous and comprehensive intercomparison of

different deep learning topologies for downscaling.

In particular, VALUE proposes the use of 20 standard pre-

dictors from the ERA-Interim reanalysis, selected over a Eu-

ropean domain (ranging from 36 to 72◦ in latitude and from

−10 to 32◦ in longitude, with a 2◦ resolution) for the 30-year

period 1979–2008. This predictor set is formed by five large-

scale thermodynamic variables (geopotential height, zonal

and meridional wind, temperature, and specific humidity) at

four different vertical levels (1000, 850, 700 and 500 hPa)

each. The left column of Fig. 1 shows the climatology (and

the grid) of two illustrative predictors used in this study.

The target predictands considered in this work are surface

(daily) mean temperature and accumulated precipitation. In-

stead of the 86 representative local stations used in VALUE,

we used the observational gridded dataset from E-OBS v14

(0.5◦ resolution). Note that this extended experiment allows

for a better comparison with dynamical downscaling experi-

ments carried out under the Coordinated Regional Climate

Downscaling Experiment (CORDEX) initiative (Gutowski

et al., 2016). The right column of Fig. 1 shows the clima-

tology of the two target predictands: temperature and precip-

itation.

Daily standardized predictor values are defined consider-

ing the closest ERA-Interim grid boxes (one or four) to each

E-OBS grid box for the benchmarking linear and generalized

linear techniques (see Sect. 2.3). However, the entire domain

is used for the deep learning models, which allows testing of

their suitability to automatically handle high-dimensional in-

put data, extracting relevant spatial features (note that this is

particularly important for continent-wide applications).

2.2 Evaluation indices and cross-validation

The validation of downscaling methods is a multi-faceted

problem with different aspects involved, such as the rep-

resentation of extremes (Hertig et al., 2019) or the tem-

poral (Maraun et al., 2019) and spatial (Widmann et al.,

Figure 1. Climatology for (a) two typical predictors (air tempera-

ture, T , and specific humidity, Q, at 1000 mbar), as given by the

ERA-Interim reanalysis (2◦), and (b) the observed target variables

of this work, temperature and precipitation from E-OBS (0.5◦).

Dots indicate the center of each grid box.

2019) structure. VALUE developed a comprehensive list

of indices and measures (available at the VALUE vali-

dation portal: http://www.value-cost.eu/validationportal, last

access: 23 April 2020) which allows most of these aspects

to be properly evaluated. Moreover, an implementation of

these indices in an R package (VALUE, https://github.com/

SantanderMetGroup/VALUE, last access: 23 April 2020) is

available for research reproducibility. In this work we con-

sider the subset of VALUE metrics shown in Table 1 to assess

the performance of the downscaling methods to reproduce

the observations. Note that different metrics are considered

for temperature and precipitation.

For temperature, biases are given as absolute differences

(in ◦C), whereas for precipitation they are expressed as rel-

ative differences with respect to the observed value (in %).

Note that, beyond the bias in the mean, we also assess the

bias in extreme percentiles, in particular the 2nd percentile

(P2, for temperature) and the 98th (P98, for both tempera-

ture and precipitation). We also compute the biases for four

temporal indices used in VALUE: the median warm (WAMS)

and cold (CAMS) annual max spells for temperature and the

median wet (WetAMS) and dry (DryAMS) annual max spells

for precipitation. In addition to the latter temporal metrics we

include the (lag 1) autocorrelation (AC1) for temperatures

and the annual cycle’s relative amplitude for precipitation,

the latter computed as the difference between maximum and

minimum values of the annual cycle (defined using a 30 d

moving window over calendar days), relative to the mean of

these two values. We also consider the root mean square er-

ror (RMSE), which measures the average magnitude of the

forecast errors; in the case of precipitation this metric is cal-

culated conditioned to observed wet days (rainfall > 1 mm).

To evaluate how close the predictions follow the observa-
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Table 1. Subset of VALUE metrics used in this study to validate the different downscaling methods considered (see Table 2). The symbol

“–” denotes nondimensionality.

Description Variable Units

Bias (for the mean) temp., precip. ◦C , %

Bias (for the 2nd percentile, P2) temp. ◦C

Bias (for the 98th percentile, P98) temp., precip. ◦C , %

Root mean square error (RMSE) temp., precip. ◦C, mm d−1

Ratio of standard deviations temp. –

Pearson correlation temp. –

Spearman correlation precip. –

ROC skill score (ROCSS) precip. –

Bias (warm annual max spell, WAMS) temp. d

Bias (cold annual max spell, CAMS) temp. d

Bias (wet annual max spell, WetAMS) precip. d

Bias (dry annual max spell, DryAMS) precip. d

Bias (lag 1 autocorrelation, AC1) temp. –

Bias (relative amplitude of the annual cycle) precip. –

tions, we also assess correlation, in particular the Pearson

coefficient for temperature and the Spearman rank one (ad-

equate for non-Gaussian variables) for precipitation; for the

particular case of temperature, the seasonal cycle is removed

from both observations and predictions in order to avoid its

(known) effect on the correlation. This is done by removing

the annual cycle defined by a 31 d moving window centered

on each calendar day. For this variable we also consider the

ratio of standard deviations, i.e., that of the predictions di-

vided by that of the observations. Finally, to evaluate how

well the probabilistic predictions of rain occurrence discrim-

inate the binary event of rain or no rain, we consider the ROC

skill score (ROCSS) (see, e.g., Manzanas et al., 2014), which

is based on the area under the ROC curve (see Kharin and

Zwiers, 2003, for details).

The VALUE framework builds on a cross-validation ap-

proach in which the 30-year period of study (1979–2008) is

chronologically split into five consecutive folds. We are par-

ticularly interested in analyzing the out-of-sample extrapola-

tion capabilities of the deep SD models. Therefore, follow-

ing the recommendations of Riley (2019, “the question you

want to answer should affect the way you split your data”),

we focus on the last fold, for which warmer conditions have

been observed. Therefore, in this work we apply a simplified

hold-out approach using the period 2003–2008 for validation

and train the models using the remaining years (1979–2002).

Figure 2 shows the climatology of the training period for both

temperature and precipitation (top and bottom panel, respec-

tively), as well as the mean differences between the test and

the training periods (the latter taken as a reference). For tem-

perature, warmer conditions are observed in the test period –

over 0.7◦ for both mean values and extremes, which is espe-

cially significant for the 2nd percentile (cold days), for which

temperatures increase up to 2◦ in northern Europe – com-

pared with the training period. This allows us to estimate the

extrapolation capabilities of the different methods, which is

particularly relevant for climate change studies.

Importantly, note that the differences between the test and

training periods in Fig. 2 reveal some inconsistencies in the

dataset for both temperature (southern Iberia and the Alps)

and precipitation (northeastern Iberia and the Baltic states).

This may be an artifact due to changes or interruptions in the

national station networks used to construct E-OBS and may

not correspond to a real change in the dataset. This will be

taken into account when analyzing the results in Sect. 4.

2.3 Standard statistical downscaling methods used for

benchmarking

We use as a benchmark some state-of-the-art standard tech-

niques which ranked among the top in the VALUE intercom-

parison experiment. In particular, multiple linear and gen-

eralized linear regression models (hereafter referred to as

GLMs) exhibited good overall performance for temperature

and precipitation, respectively (Gutiérrez et al., 2018). Here,

we consider the version of these methods described in Bedia

et al. (2019) which use the predictor values in the four grid

boxes closest to the target location. This choice is a good

compromise between feeding the model with full spatial in-

formation (all grid boxes, which is problematic due to the

resulting high dimensionality) and insufficient spatial repre-

sentation when considering a single grid box. For the sake

of completeness we also illustrate the results obtained with

a single grid box, in order to provide an estimate of the

added value of extending the spatial information considered

for the different variables. These benchmark models are de-

noted GLM1 and GLM4 for one and four grid boxes, respec-

tively (first two rows in Table 2).

In the case of temperature a single multiple-regression

model (i.e., GLM with Gaussian family) is used, whereas
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J. Baño-Medina et al.: Deep learning for statistical downscaling 2113

Figure 2. Top panel, top row: E-OBS climatology for the mean value, the P02 and the P98 of temperature in the training period (1979–2002).

Top panel, bottom row: mean difference between the test and training periods (the latter taken as a reference) for the different quantities shown

in the top row. Bottom panel: as in the top panel but for precipitation, showing the mean value, the frequency of rainy days and the P98. In

all cases, the numbers within the panels indicate the spatial mean values.

for precipitation two different GLMs are applied, one for the

occurrence (precipitation > 1 mm) and one for the amount of

precipitation, using binomial and gamma families with a log-

arithmic link, respectively (see, e.g., Manzanas et al., 2015).

In this case, the values from the two models are multiplied to

obtain the final prediction or precipitation, although occur-

rence and amount are also evaluated separately.

3 Deep convolutional neural networks

Despite the success of deep learning in many fields, these

complex and highly nonlinear models are still seen as black

boxes, generating distrust among the climate community,

particularly when it comes to climate change problems, since

their validation and generalization capability is configura-

tion specific and thus difficult to assess in general. Recently,

Reichstein et al. (2019) outlined this problem and encour-

aged research towards the understanding of deep neural net-

works in climate science. In this study we aim to shed light

on the particular role of the different elements comprising

the deep neural network architecture (e.g., convolutional and

fully connected or dense layers). To do this, we build and

evaluate deep SD models of increasing complexity, starting

with a simple benchmark linear model (GLM) and adding

additional “deep” components, in particular convolution and

dense layers, as shown schematically in Fig. 3.

The basic neural network topology relies on feed-forward

networks composed of several layers of nonlinear neurons

which are fully connected between consecutive layers, from

the input to the output (these are commonly referred to as

“dense” networks; see Fig. 3). Each of these connections is

characterized by a weight which is learned from data (e.g.,

the two layers of 50 neurons each in Fig. 3 result in a to-

tal of 50 × 50 internal weights, besides the input and output

connections). Differently to standard dense networks (whose

input is directly the raw predictor data), convolutional net-

works generate data-driven spatial features to feed the dense

network. These layers convolute the raw gridded predictors

using 3-D kernels (variable, latitude and longitude), consid-

ering a neighborhood of the corresponding grid box (3×3 in

this work) in the previous layer (see Fig. 3). Instead of fully

www.geosci-model-dev.net/13/2109/2020/ Geosci. Model Dev., 13, 2109–2124, 2020
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Table 2. Description of the deep learning architectures intercompared in this study, together with the two benchmark methods: GLM1

and GLM4 (these models are trained separately for each of the 3258 land-only grid boxes in E-OBS). Convolutional layers are indicated

with boldfaced numbers. The numbers indicating the architecture correspond to the number of neurons in the different layers (in bold for

convolutional layers).

Model Architecture Rationale

GLM1 20-1 (× 3258) Simplest linear local model for benchmarking

GLM4 80-1 (× 3258) Increasing the predictor’s spatial domain

CNN-LM 20-50-25-1-3258 Using convolutions to automatically obtain meaningful spatial predictors

CNN1 20-50-25-1-3258 Testing the added value of CNN nonlinearity

CNN10 20-50-25-10-3258 Increasing the complexity of last CNN feature’s layer

CNN-PR 20-10-25-50-3258 Using standard topologies from pattern recognition

CNNdense 20-50-25-10-50-50-3258 Using complex dense CNN models

Figure 3. Scheme of the convolutional neural network architecture used in this work to downscale European (E-OBS 0.5◦ grid) precipitation

based on five coarse (2◦) large-scale standard predictors (at four pressure levels). The network includes a first block of three convolutional

layers with 50, 25 and 10 (3 × 3 × no. inputs) kernels, respectively, followed by two fully connected (dense) layers with 50 neurons each.

The output is modeled through a mixed binomial–lognormal distribution, and the corresponding parameters are estimated by the network,

obtaining precipitation as a final product, either deterministically (the expected value) or stochastically (generating a random value from the

predicted distribution). The output layer is activated linearly except for the neurons associated with the parameter p, which present sigmoidal

activation functions.

connecting the subsequent layers, kernel weights are shared

across regions, resulting in a drastic reduction in the degrees

of freedom of the network. Due to these convolutional oper-

ations, layers consist of filter maps, which can be interpreted

as the spatial representation of the feature learned by the ker-

nel. This is crucial when working with datasets with an un-

derlying spatial structure.

To maximize the performance of convolutional topologies,

it is necessary to select an adequate number of layers, number

of filter maps and kernel size, which has been done here fol-

lowing a screening procedure testing different configurations

varying mainly in the number of layers (up to 6), the kernel

size (3×3, 5×5 and 7×7 kernels) and the number of neurons

in the dense layer (25, 50 and 100). As a result of this screen-

ing we obtained an optimum of three convolutional layers

and a 3 × 3 kernel size; moreover, the best results when in-

cluding the dense final component were obtained with two

layers of 50 neurons each; this resulting configuration is dis-

played in Fig. 3. Therefore, additional layers seem to not

benefit the model due to an over-parameterization when more

nonlinearity is actually not needed. Likewise, the final choice

of kernel size (3 × 3) is related to the fact that this is an in-

formative scale for downscaling at the resolution considered

in this work, with more spatial information gathered as a re-

sult of layer composition. Besides the different deep learning

architectures, we also analyzed the effect of basic elements

such as the activation function or the layer configuration, test-

ing different configurations.

All the deep models used in this work have been trained

using daily data for both predictors and predictand. For tem-

perature, the output is the mean of a Gaussian distribution

(one output node for each target grid box) and training is

performed by minimizing the mean square error. For precip-

itation, due to its mixed discrete–continuous nature, the net-

work optimizes the negative log likelihood of a Bernoulli–

gamma distribution following the approach previously intro-
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duced by Cannon (2008). In particular, the network estimates

the parameter p (i.e., probability of rain) of the Bernoulli dis-

tribution for rain occurrence and the parameters α (shape)

and β (scale) of the gamma rain amount model, as illustrated

in the output layer of Fig. 3. The final rainfall value for a

given day i, ri , is then inferred as the expected value of a

gamma distribution, given by ri = αi × βi .

The first two methods analyzed in this work are the two

benchmark GLM models (i.e., multiple linear regression for

temperature and Bernoulli–gamma GLM for precipitation)

considering local predictors at the nearest (four nearest)

neighboring grid boxes. They are labeled as GLM1 (GLM4)

in Table 2. Selecting information only from the local grid

boxes could be a limitation for the methods, and, therefore,

some GLM applications consider spatial features as predic-

tors instead, such as principal components from the empirical

orthogonal functions (EOFs) (Gutiérrez et al., 2018). Convo-

lutional networks are automatic feature extraction techniques

which learn spatial features of increasing complexity from

data in a hierarchical way, due to its (deep) layered structure

(LeCun and Bengio, 1995). Therefore, as a third model we

test the potential of convolutional layers for spatial feature

extraction by considering a linear convolutional neural net-

work with three layers (with 50, 25 and 1 feature each) and

linear activation functions (CNN-LM in Table 2). The bene-

fits of nonlinearity are tested considering the same convolu-

tional network, CNN-LM, but with nonlinear (ReLu) activa-

tion functions in the hidden layers, making the model nonlin-

ear (CNN1 in Table 2). Moreover, the role of the number of

convolutional features in the final layer is tested considering

a nonlinear convolutional model, but with 10 feature maps

(coded as CNN10).

Note that the previous models are built using a decreasing

number of features in the subsequent convolutional layers.

However, the approach usually used in computer vision for

pattern recognition tasks is the opposite (i.e., the number of

convolutional maps increases along the network). Therefore,

we also tested this type of architecture considering a convo-

lutional neural network with an increasing number of maps

(10, 25 and 50, labeled as CNN-PR).

Finally, a general deep neural network is formed by includ-

ing a dense (feed-forward) network as an additional block

taking input from the convolutional layer (see Fig. 3). This

is the typical topology considered in practical applications,

which combines both feature extraction and nonlinear mod-

eling capabilities (denoted as CNNdense in Table 2).

All deep learning models listed in Table 2 have been tested

with and without padding (padding maintains the original

resolution of the predictors throughout the convolutional lay-

ers, avoiding the loss of information that may occur near the

borders of the domain), keeping in each case the best results

for the final intercomparison. Padding was found to be useful

only when the amount of feature maps in the last layer was

small, so padding is only used for CNN1 model.

4 Results

In this section we intercompare and discuss the performance

of the different models shown in Table 2 for temperature

(Sect. 4.1) and precipitation (Sect. 4.2).

4.1 Temperature

Figure 4 shows the validation results obtained for tempera-

ture in terms of the different metrics explained in Sect. 2.2.

Each panel contains seven boxplots, one for each of the meth-

ods considered (Table 2), representing the spread of the re-

sults along the entire E-OBS grid. In particular, the gray

boxes correspond to the 25–75th-percentile range, whereas

the whiskers cover the 10–90 % range. The horizontal red

line plots the median value obtained from the GLM4 method,

which is considered as a benchmark.

In general, all methods provide quite satisfactory results,

with low biases and RMSE (panels a, d, e and f), a real-

istic variability (panel c) and very high correlation values

(after removing the annual cycle from the series; panel b).

Among the classic linear methods, GLM4 clearly outper-

forms GLM1, which highlights the fact that including pre-

dictor information representative of a wider area around the

target point helps to better describe the synoptic features de-

termining the local temperature. However, most of the lo-

cal variability seems to be explained by linear predictor–

predictand relationships, as both GLM4 and CNN-LM pro-

vide similar results to more sophisticated neural networks

which account for nonlinearity (regardless of their architec-

ture). Nevertheless, the biases provided by CNN1, CNN10,

CNN-PR and CNNdense for P02 and P98 are lower than

those obtained from GLM1, GLM4 and CNN-LM (panels e

and f), which suggests that nonlinearity adds some value to

the prediction of extremes. Despite the addition of nonlin-

earity to the model, benefits of convolutional topologies also

include the ability to learn adjustable regions and overcome

the restrictive limitation of considering just four neighbors

as predictor data. Among the neural-based models, the CN-

Ndense model is the worst in terms of local reproducibil-

ity. This suggest that mixing the spatial features learned with

the convolutions in dense layers results in a relevant loss of

spatial information affecting the downscaling. Furthermore,

CNN10 (identified with a darker gray) provides the lowest

RMSE and the highest correlations, being overall the best

method.

According to the temporal metrics computed (panels g, h

and i in Fig. 4) we can state that no method clearly outper-

forms the others in terms of reproduction of spells for tem-

perature. Despite there being some spatial variability (spread

of the boxplots), the median results are nearly unbiased in all

cases (except for the CNNdense model).

For a better spatial interpretation of these results, Fig. 5

shows maps for each metric (in columns) for GLM1, GLM4

and CNN10 (in rows), representing the two initial bench-
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Figure 4. Validation results obtained for temperature. Each panel (corresponding to a particular metric) contains seven boxplots, one for

each of the methods tested, which represents the spread of the results along the entire E-OBS grid (the gray boxes correspond to the 25–

75th-percentile range, whereas the whiskers cover the 10–90 % range). The horizontal red line plots the median value obtained from the

GLM4 method, which is considered as a benchmark, whereas the gray one indicates the “perfect” value for each metric. The dark shaded

box indicates the best-performing method, taking into account all metrics simultaneously (CNN10 in this case).

marking methods and the best-performing CNN model in

this case. Due to its strong local dependency, GLM1 leads to

patchy (discontinuous) spatial patterns, something which is

solved by GLM4 – including local predictor information rep-

resentative of a wider area around the target point provides

smother patterns. Beyond this particular aspect, the improve-

ment of GLM4 over GLM1 is evident for RMSE and corre-

lation, and to a lesser extent also for the bias in P98. How-

ever, the best results are found for the CNN10 method for the

abovementioned particularities, which improves all the vali-

dation metrics considered, and in particular the bias for P2.

As already pointed out in Sect. 2.1, note that the anomalous

results found for southern Iberia could likely be related to

issues in the E-OBS dataset.

It is important to highlight that the three methods present

very small (mean) biases along the entire continent, which

suggests their good extrapolation capability and therefore

their potential suitability for climate change studies (recall

that the anomalously warm test period that has been selected

for this work may serve as a surrogate for the warmer con-

ditions that are expected due to climate change). In order to

further explore this issue, we have also analyzed the capabil-

ity of the models to produce extremes which are larger than

those in the calibration data. To this end, we have considered
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Figure 5. Maps showing the spatial results obtained in terms of the different metrics considered for temperature (in columns) for the two

benchmarking versions of GLM (top and middle row) and the best-performing method, the CNN10 (bottom row). The numbers within the

panels show the spatial mean absolute values (to avoid error compensation).

Figure 6. Frequency of exceeding the 99th-percentile value of the training period in each of the grid boxes for the observations in the test

period and the test predictions of the GLM1, GLM4 and CNN10 models (in columns). Note that a frequency of 1 % (in boldface) would

indicate the same amount of values exceeding the (extreme) threshold as in the training period.

the 99th percentile over the historical period as a robust ref-

erence of an extreme value, and calculated the frequency of

exceeding this value in the test period for the observations

and the GLM1, GLM4 and CNN10 downscaled predictions.

The results are shown in Fig. 6 and indicate that the three

models (in particular the latter two) are able to reproduce the

same frequency and spatial pattern of out-of-sample days ob-

served in the test period.

4.2 Precipitation

Figure 7 is similar to Fig. 4 but for precipitation (note that the

validation metrics considered for this variable differ). Sim-

ilarly to the case of temperature, GLM4 performs notably

better than GLM1, in particular for the ROCSS (panel a), the

RMSE (panel b) and the correlation (panel c). Note that to

compute the ROCSS we use the probabilistic output of the

logistic regression for the GLM1 and GLM4 models, and the

direct estimation of the parameter p for the neural models.

Nevertheless, with the exception of CNN-LM and CNN-PR,

convolutional networks yield in general better results than

GLM4. Differently to the case of temperature, the results

obtained indicate that accounting for nonlinear predictor–

predictand relationships is key to better describe precipita-

tion. The latter is based on the improvement of nonlinear

models with respect to the linear ones (GLM1, GLM4 and

CNN-LM), especially in terms of ROCSS and correlation.

Moreover, the standard architecture for pattern recognition

(CNN-PR) is not suitable for this prediction problem prob-

ably due to an over-parameterization in the connection be-

tween the last hidden layer (50 feature maps) and the out-

put layer (three variables per grid point in contrast to the

downscaling of temperature where there was only one vari-

able to estimate). In terms of errors (RMSE and the differ-

ent biases considered), all convolutional networks perform

similarly, exhibiting very small biases for the mean centered

around zero. With respect to the P98, the slight underestima-

tion shown by deterministic configurations (panel e) can be
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Figure 7. As in Fig. 4 but for precipitation. For the relative bias of the P98 the labels “DET” and “STO” refer to deterministic and stochastic,

respectively.

solved by stochastically sampling from the predicted gamma

distribution (panel f), but at the cost of losing part of the tem-

poral and spatial correlation achieved by deterministic set-

ups (not shown). Note that, as usual, the correlations found

for all methods are much lower than those obtained for tem-

perature, with the CNN-LM method yielding similar values

to those obtained with GLM4. The existence of CNN-LM

permits marginalizing the role of the convolutions on the spa-

tial predictor data from the nonlinearity of the rest of the

neural-based models. This analysis suggests that choosing

the four nearest grid boxes as predictors allows the key spa-

tial features that affect the downscaling of precipitation with

linear models to be captured (at least over Europe). Differ-

ently to the case of temperature, note also that there is not

a significant change in the climatological mean between the

training and test periods for precipitation (see Fig. 2), so the

particular train–test partition considered in this work does not

allow a proper assessment of the extrapolation capability of

the different methods to be carried out.

Similarly to the analysis of the temperature, there is no

clearly outstanding method when analyzing the spells (pan-

els h and i of Fig. 7). GLM4 seems to be unbiased for the We-

tAMS; however all models tend to overestimate the DryAMS

by 2–3 d on average. The GLM1 model performs clearly

worse than the rest, probably due to the limited amount of

predictor information involved in this method. It has to be

noted in this analysis that temporal components have not

been explicitly added to the models (e.g., in the form of

recurrent connections), whether linear or neural ones, and

therefore the reproduction of spells can be affected.
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Figure 8. As in Fig. 5 but for precipitation. In this case, CNN1 is taken as the best-performing method (bottom row). The numbers within

the panels show the spatial mean absolute values (to avoid error compensation).

Overall, the best results are obtained for CNN1 (marked

with a darker gray) and CNNdense, which differ from

CNN10 in the amount of neurons placed in the last hidden

layer. This suggests that, while one feature map was a lit-

tle restrictive in the case of temperature, for precipitation 10

maps over-parameterized the network, worsening its general-

ization capability. The latter may be directly proportional to

the number of connections in the output layer, which is de-

pendent on the number of filter maps of the last hidden layer

and on the output neurons, which is 3 times bigger for the

downscaling of precipitation than for temperature.

Figure 8 is the equivalent of Fig. 5 but for precipitation.

Again, the best-performing method (CNN1 in this case; bot-

tom row) is shown, together with the two benchmarking ver-

sions of GLM (top and middle rows). In all cases, the deter-

ministic implementation is considered. As for temperature,

GLM4 provides better results than GLM1 for all metrics,

with the spatial pattern of improvement being rather uniform

in all cases. Likewise, CNN1 outperforms GLM4 for all met-

rics and regions, especially over central and northern Europe.

These results suggest the suitability of convolutional neural

networks to downscale precipitation, which may be a conse-

quence of their ability to automatically extract the important

spatial features determining the local climate, as well as to

efficiently model the nonlinearity established between local

precipitation and the large-scale atmospheric circulation.

Finally, notice that the anomalous results found over north-

eastern Iberia and the Baltic states might be due to issues in

the E-OBS dataset. Nonetheless, particularly bad results are

also found over the Greek peninsula (especially for the mean

bias), for which we do not envisage a clear explanation.

5 Conclusions

Deep learning techniques have gained increasing attention

due to the promising results obtained in various disciplines.

In particular, convolutional neural networks (CNNs) have re-

cently emerged as a promising approach for statistical down-

scaling in climate due to their ability to learn spatial fea-

tures from huge spatiotemporal datasets, which would allow

for an efficient application of statistical downscaling to large

domains (e.g., continents). Within this context, there have

been a number of intercomparison studies analyzing standard

and machine learning (including CNN) techniques. However,

these studies are based on different case studies and use dif-

ferent validation frameworks, which makes a proper assess-

ment of the (possible) added value offered by CNNs difficult

and, in some cases, leads to contradictory results (e.g. Vandal

et al., 2019; Sachindra et al., 2018).

In this paper we build on a comprehensive framework for

validating statistical downscaling techniques (the VALUE

validation framework) and evaluate the performance of dif-

ferent CNN models of increasing complexity for downscal-

ing temperature and precipitation over Europe, comparing

them with a few standard benchmark methods from VALUE

(linear and generalized linear models). Besides analyzing the

adequacy of different network architectures, we also focus on

their extrapolation capability, a critical point for their possi-

ble application in climate change studies, and use a warm test

period as a surrogate for possible future climate conditions.

Regarding the classic (generalized) linear methods, our re-

sults show that using predictor data in several grid boxes

helps to better describe the synoptic features determining the
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local climate, thus yielding better predictions both for tem-

perature and precipitation. Furthermore, in the case of tem-

perature, we find that the added value of nonlinear CNNs (re-

gardless of the architecture considered) is limited to the re-

production of extremes, as most of the local variability of this

variable is well captured with standard linear methods. How-

ever, convolutional topologies can handle high-dimensional

domains (i.e., continent-sized) performing an intrinsic fea-

ture reduction step in the hidden layers, avoiding tedious and

somewhat limited feature selection/reduction techniques out

of the learning process. The latter results in an advantage of

convolutional networks over classical approaches even when

the predictor–predictand link is linear. However, for temper-

ature, mixing the spatial features learned in the dense lay-

ers (CNNdense) adds an unnecessary complexity to the net-

work due to the linearity of the link, resulting in worse pre-

dictions than those obtained with the GLMs. Moreover, for

precipitation, CNNs yield in general better results than stan-

dard generalized linear methods, which may reflect the abil-

ity of these techniques to automatically extract the impor-

tant spatial features determining the local climate, as well

as to efficiently model the nonlinearity established between

this variable and the large-scale atmospheric circulation. In

addition, due to the dense connection to the output’s layer

(which for precipitation is 3 times bigger than for temper-

ature), the size of the last hidden layer plays a major role

in the over-parameterization of the net, leading to overfitted

predictions when the number of filter maps is too high (e.g.,

CNN-PR and CNN10). For these reasons, the models CNN1

and CNN10 were found to be the “best” topologies for the

downscaling of precipitation and temperature, respectively.

It is worth mentioning that all of the methods considered

in this work are specifically designed to reproduce advanced

temporal aspects such as spells. In the near future, we plan to

explore another battery of methods which explicitly aim to

accurately reproduce the observed temporal structure, such

as recurrent neural networks.

Note that the overall good results found for the CNNs

tested here, together with the fact that they can be suitably

applied to large domains without worrying about the spatial

features being considered as predictors, can foster their use

for statistical downscaling in the framework of international

initiatives such as CORDEX, which has traditionally relied

on dynamical simulations.
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Table A1. Computation times (in minutes) required for the calcula-

tion (training and prediction of the test period) for three downscal-

ing methods used in this study: GLM1, GLM4 and CNN1 (the rest

of the deep configurations yield similar computing times).

GLM1 GLM4 CNN1

Precipitation 47 80 74

Temperature 22 28 58

Appendix A: Computing times

In this Appendix we analyze the computation times required

for the calculation of the downscaling methods used in this

study. All methods build on the R framework climate4R

(https://github.com/SantanderMetGroup/climate4R, last ac-

cess: 23 April 2020; Iturbide et al., 2019), in particular

on the package downscaleR (Bedia et al., 2019) for

the linear (GLM) benchmark models and on the package

downscaleR.keras (presented in this study) for the new

deep learning CNN models. In order to test the computational

effort of the methods, we have isolated in both packages the

code needed to train the models and to predict the test pe-

riod. The resulting times for both generalized linear models

(GLM) and deep CNN models are shown in Table A1, corre-

sponding to the execution on a single machine with the op-

erating system Ubuntu 16.04 LTS (64 bits), with 16 GB of

memory and eight Intel® Core™ i7-6700 3.40 GHz process-

ing units.

It must be noted that for precipitation there are two GLMs

to train (a binomial logistic and a gamma logarithmic for

the occurrence and amount of rain, respectively), and there-

fore the time included in the table for GLM1 and GLM4

is the sum of these two individual GLMs. Differently, in

deep learning models the occurrence and amount of rain are

trained simultaneously. In this case, the speed of training de-

pends on some parameters such as the learning rate (learning

rate is equal to 0.0001 in this work) and the early-stopping

criteria (patience with 30 epochs), which mainly drive the

number of epochs or iterations needed to train the model;

these parameters have been configured for the particular ap-

plication of this paper using a screening process.

Table A1 indicates that GLM4 is more time consuming

than the simplified counterpart (GLM1) due to a larger num-

ber of predictors. Moreover, the time needed to train the deep

CNN1 is similar to that required for GLM4 for precipitation

(twice for temperature, in agreement with the use of a single

model (two models) for temperature (precipitation) GLMs).

Therefore, the computational effort is not a strong limitation

for continent-wide applications of deep learning models. The

main reason for this result is that the GLMs are trained at the

grid box level (one model trained for each grid box), whereas

the CNN is naturally multisite; therefore, although the train-

ing is very time consuming, a single CNN model is needed

for the whole domain. However, note that for smaller do-

mains (e.g., nation-wide) the difference between GLMs and

CNNs could be large (the computation time of GLMs de-

creases linearly with the number of grid boxes) and could

make a difference.
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Code availability. For the purpose of research transparency, we

provide notebooks with the full code needed to reproduce

the experiments presented in this paper, which can be found

in the DeepDownscaling GitHub repository: https://github.com/

SantanderMetGroup/DeepDownscaling (last access: 23 April 2020)

(Baño Medina et al., 2020). The code builds on the open-source

climate4R (Iturbide et al., 2019) and keras (Chollet, 2015) R

frameworks, for the benchmark and the CNN models, respectively.

The former is an open R framework for climate data access, pro-

cessing (e.g., collocation, binding and subsetting), visualization and

downscaling (package downscaleR; Bedia et al., 2019), allow-

ing for a straightforward application of a wide range of downscal-

ing methods. The latter is a popular R framework for deep learning

which builds on TensorFlow.

Moreover, in order to facilitate the development of

deep learning downscaling methods, we developed an

extension of the downscaleR package using keras,

which is referred to as downscaleR.keras (https:

//github.com/SantanderMetGroup/downscaleR.keras, last ac-

cess: 23 April 2020) and is used for the first time in this paper (see

the companion notebooks).

Moreover, the validation of the methods has been car-

ried out with the package VALUE and its climate4R wrapper

climate4R.value (https://github.com/SantanderMetGroup/

climate4R.value, last access: 23 April 2020), which enables a direct

application of the VALUE validation metrics in the framework of

climate4R.
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