

www.astesj.com 90

Configuration/Infrastructure-aware testing of MapReduce programs

Jesús Morán1*, Bibiano Rivas2, Claudio de la Riva1, Javier Tuya1, Ismael Caballero2, Manuel Serrano2

1University of Oviedo, Department of Computing, 33394, Spain

2University of Castilla-La Mancha, Institute of Technology and Information Systems, 13051, Spain

A R T I C L E I N F O A B S T R A C T
Article history:
Received: 15 December, 2016
Accepted: 20 January, 2017
Online: 28 January, 2017

 The implemented programs in the MapReduce processing model are focused in the analysis
of large volume of data in a distributed and parallel architecture. This architecture is
automatically managed by the framework, so the developer could be focused in the program
functionality regardless of infrastructure failures or resource allocation. However, the
infrastructure state can cause different parallel executions and some could mask the faults
but others could derive in program failures that are difficult to reveal. During the testing
phase the infrastructure is usually not considered because commonly the test cases contain
few data, so it is not necessary to deploy a parallel execution or handle infrastructure
failures, among others potential issues. This paper proposes a testing technique to generate
and execute different infrastructure configurations given the test input data and the
program under test. The testing technique is automatized by a test engine and is applied to
real world case studies. As a result, the test engine generates and executes several
infrastructure configurations, revealing a functional fault in two programs.

Keywords:
Software testing
Functional testing
MapReduce programs
Big Data Engineering
Hadoop

1. Introduction

The massive data processing trends have brought to light
several technologies and processing models in the Big Data
Engineering field [1]. Among them, MapReduce [2] can be
highlighted as it permits the analysis of large data based on the
“divide and conquer” principle. These programs run two phases in
a distributed infrastructure: the Mapper and the Reducer. The first
one divides the problem into several subproblems, and then the
Reducer phase solves each subproblem. Usually, MapReduce
programs run on several computers with heterogeneous resources
and features. This complex infrastructure is managed by a
framework, such as Hadoop [3] which stands out due to its wide
use in the industry [4]. Other frameworks as for example Apache
Spark [5] and Apache Flink [6] among others also use the
MapReduce programming model.

From point of view of the developer, a MapReduce program
can be implemented only with Mapper and Reducer, regardless of
the infrastructure. Then the framework that manages the
infrastructure is also responsible to, over several computers,
automatically deploy, run the program and lead the data processing

between the input and output. Among others, the framework
divides the input into several subsets of data, then processes each
one in parallel and re-runs some parts of the program if necessary.

Although that the program can be implemented abstracting the
infrastructure, the developer needs to consider how the
infrastructure configuration could affect the program functionality.
A previous work [7] detects and classifies several faults that
depend on how the infrastructure configuration affects the program
execution and produces different output. These faults are often
masked during the test execution because the tests usually run over
an infrastructure configuration without considering the different
situations that could occur in production, as for example different
parallelism levels or the infrastructure failures [8]. On the other
hand, if the tests are executed in an environment similar to the
production, some faults may not be detected because it is common
that the test inputs contain few data, and in these cases Hadoop
does not parallelize the program execution. There are some tools
to enable the simulation for some of these situations (for example
computer and net failures) [9, 10, 11], but it is difficult to design,
generate and execute the tests in a deterministic way because there
are a lot of elements that need fine grained simulation, including
the infrastructure and framework.

ASTESJ

ISSN: 2415-6698

*Corresponding Author: Jesús Morán, Viesques edificio departamental 1 Gijón
(Spain) moranjesus@lsi.uniovi.es

Advances in Science, Technology and Engineering Systems Journal Vol. 2, No. 1, 90-96 (2017)

www.astesj.com

Special Issue on Computer Systems, Information Technology, Electrical and Electronics
Engineering

https://dx.doi.org/10.25046/aj020111

http://www.astesj.com/
http://www.astesj.com/
https://dx.doi.org/10.25046/aj020111

J. Morán et al. / Advances in Science, Technology and Engineering Systems Journal Vol. 2, No. 1, 90-97 (2017)

www.astesj.com 91

The main contribution of this paper is a technique that can be
used to generate automatically the different infrastructure
configurations for a MapReduce application. The goal is to execute
test cases with these configurations in order to detect functional
faults. Given a test input data, the configurations are obtained
based on the different executions that can happen in production.
Then each one of the configurations is executed in the test
environment in order to detect functional faults of the program that
may occur in production. This paper extends the previous work
[12] and the contributions are:

1. A combinatorial technique to generate the different
infrastructure configurations, taking into account
characteristics related to the MapReduce processing and
the test input data.

2. Automatic support by means of a test engine based on
MRUnit [13] that allows the execution of the infrastructure
configurations.

3. Evaluation of the approach detecting failures in a two real
world programs.

The rest of the paper is organized as follows. In Section 2 the
principles of the MapReduce paradigm are introduced. The related
work about software testing in MapReduce paradigm is presented
in Section 3. The generation of the different configurations, the
execution and the automatization of the tests are defined in Section
4. In Section 5 it is applied to a two case studies. The paper ends
with conclusions and future work in Section 6.

2. MapReduce Paradigm

The function of the MapReduce program is to process high
quantities of data in a distributed infrastructure. The developer
implements two functionalities: Mapper task that splits the
problem into several subproblems and Reducer task that solves
these subproblems. The final output is obtained from the
deployment and the execution over a distributed infrastructure of
several instances of Mapper and Reducer, also called tasks.
Hadoop (or other framework) automatically carry out the
deployment and execution. First, several Mapper tasks analyse in
parallel a subset of input data and determine which subproblems
these data need. When the execution of all Mappers are finished,
several Reducers are also executed in parallel in order to solve the
subproblems. Internally MapReduce handles <key, value> pairs,
where the key is the subproblem identifier and the value contains
the information to solve it.

To explain MapReduce let us suppose a program that calculates
the average temperature per year from historical data about
temperatures. This program solves for each year one subproblem,
so the year is the identifier or key. The Mapper task receives a
subset of temperature data and emits <year, temperature of this
year> pairs. Then Hadoop aggregates all values per key.
Therefore, the Reducer tasks receive subproblems like <year, [all
temperatures of this year]>, that is all temperatures grouped per
year. Finally, the Reducer calculates the average temperature. For
example, in Figure. 1 an execution of the program considering the
input is detailed: year 2000 with 3º, 2002 with 4º, 2000 with 1º,
and 2001 with 5º. The first two inputs are analysed in one Mapper
task and the remainder in another task. Then the temperatures are
grouped per year and sent to the Reducer tasks. The first Reducer
receives all the temperatures for the years 2000 and 2002, and the
other task for the year 2001. Finally, each Reducer emits the
average temperature of the analysed subproblems: 2º in the year

2000, 4º in 2002 and 5º in 2001. This program with the same input
could be executed in another way by the framework, for example
with three Mappers and three Reducers. Regardless of how the
framework runs the program, it should generate the expected
output.

Figure. 1 Program that calculates the average temperature per year

In order to optimize the program, a Combiner functionality can
be implemented. This task is run after the Mapper and the goal is
to remove the irrelevant <key, value> pairs to solve the
subproblem. In MapReduce there are also other implementations
such as for example Partitioner that decides for each <key, value>
pair which Reducer analyses it, Sort that sorts the <key, value>
pairs, and Group that aggregates the values of each key before the
Reducer.

An incorrect implementation of these functionalities could
cause a failure in one of the different ways in which Hadoop can
run the program. These faults are difficult to detect during testing
because the test cases usually contain few input data. In this way it
is not necessary to split the inputs and therefore the execution is
over one Mapper, one Combiner and one Reducer [2].

3. Related Work

Despite the testing challenges of the Big Data applications [14,
15] and the progresses in the testing techniques [16], little effort is
focused on testing the MapReduce programs [17], one of the
principal paradigms of Big Data [18]. These large-scale programs
have several issues and challenges to measure and assure the
quality [19]. A study of Kavulya et al. [20] analyses several
MapReduce programs and 3% of them do not finish, while another
study by Ren et al. [21] places the number between 1.38% and
33.11%.

Many of the works about testing of the MapReduce programs
focus on performance [22, 23, 24] and to a lesser degree
functionality. A testing approach for Big Data is proposed by
Gudipati et al. [25] specifying several processes, one of which is
about MapReduce validation. In this process Camargo et al. [26]
and Morán et al. [7] identify and classify several functional faults.
Some of these faults are specific of the MapReduce paradigm and
they are not easy to detect because they depend on the program
execution over the infrastructure. One common type of fault is
produced when the data should reach the Reducer in a specific
order, but the parallel execution causes these data to arrive
disordered. This fault was analysed by Csallner et al. [27] and
Chen et al. [28] using some testing techniques based on symbolic
execution and model checking. In contrast to the previous works,
the approach of this paper is not focused on the detection of only
one type of fault, it can also detect other MapReduce specific
faults. To do this, the test input data is executed over different
infrastructure configurations that could lead to failures.

Several research lines suggest injecting infrastructure failures
[29, 30] during the testing, and several tools support their injection
[9, 10, 11]. For example, the work by Marynowski et al. [31]
allows the creation of test cases specifying which computers fail

Mapper Task
<2000, 3º>
<2002, 4º>
<2000, 1º>
<2001, 5º>

<2000, 3º>
<2002, 4º>

Mapper Task

Reducer Task

Reducer Task
<2001, 5º>

<2000, [3º, 1º]>
<2002, [4º]>

<2001, [5º]>

<2000, 2º>
<2002, 4º>

<2001, 5º>
<2000, 1º>

http://www.astesj.com/

J. Morán et al. / Advances in Science, Technology and Engineering Systems Journal Vol. 2, No. 1, 90-97 (2017)

www.astesj.com 92

and when. One possible problem is that some specific MapReduce
faults could not be detected by infrastructure failures, but require
full control of Hadoop and the infrastructure. In this paper, the
different ways in which Hadoop could run the program are
automatically generated from the functional point of view,
regardless of the infrastructure failures and Hadoop optimizations.

Furthermore, there are other approaches oriented to obtain the
test input data of MapReduce programs, such as [32] that employs
data flow testing, other based on a bacteriological algorithm [33],
and [34] based on input domain together with combinatorial testing
focused on ETL (Extract, Transformation and Load). In this paper,
given a test input data, several configurations of infrastructure are
generated and then executed in order to reveal functional faults.
The test input data of this approach could be obtained with the
previous testing techniques.

The functional tests can be executed directly in the production
cluster or in one computer with Hadoop. Herriot [35] can be used
to execute the tests in a cluster while providing access to their
components supporting, among others, the injection of faults.
Another option is to simulate a cluster in memory with the
MiniClusters libraries [36]. In the unit testing, JUnit [37] could be
used together with mock tools [38], or directly by MRUnit library
[13] adapted to the MapReduce paradigm. These test engines only
execute one infrastructure configuration and usually without
parallelization. In this paper a test engine is implemented by an
MRUnit extension that automatically generates and executes the
different infrastructure configurations that could occur in
production. The test engine proposed extends MRUnit because in
Hadoop is very usual to develop java programs [21], and the java
programs usually employs JUnit libraries [39]. MRUnit put
together JUnit with mocks, reflection and other tools in order to
simplify the execution of the test case for the MapReduce
programs.

4. Generation and Execution of Tests

The generation of the infrastructure configurations for the tests
are defined in Section 4.1, and a framework to execute the tests in
Section 4.2.

4.1. Generation of the test scenarios

To illustrate how the infrastructure configuration affects the
program output, suppose that the example of Section 2 is extended
with a Combiner in order to decrease the data and improve the
performance. The Combiner receives several temperatures and
then they are replaced by their average in the Combiner output.
This program does not admit a Combiner because all the
temperatures are needed to obtain the total average temperature.
The Combiner is added in order to optimize the program, but
injects a functional fault in the program. Figure. 2 represents three
possible executions of this program with the same input (year 1999
with temperatures 4º, 2º and 3º) that could happen in production
considering the different infrastructure configurations.

The first configuration executes one Mapper, one Combiner
and one Reducer and produces the expected output. The second
configuration also generates the expected output executing one
Mapper that processes the temperatures 4º and 2º, another Mapper
for 3º, two Combiner, and finally one Reducer. The third
configuration also executes two Mapper, two Combiner and one
Reducer, but produces an unexpected output because the first
Mapper processes 4º and the second Mapper the temperatures 2º

and 3º. Then one of the Combiner tasks calculates the average of
4º, and the other Combiner of 2º and 3º. The Reducer receives the
previous averages (4º and 2.5º), and calculates the total average in
the year. This configuration produces 3.25º as output instead of the
3º of the expected output. The program has a functional fault only
detected in the third configuration. Whenever this infrastructure
configuration is executed the failure is produced, regardless of the
computer failures, slow net or others. This fault is difficult to reveal
because the test case needs to be executed in a completely
controlled way under the infrastructure configuration that detect it.

Given a test input data, the goal is to generate the different
infrastructure configurations, also called in this context scenarios.
For this purpose, the technique proposed considers how the
MapReduce program can execute these input data in production.
First, the program runs the Mappers, then over their outputs the
Combiners and finally the Reducers. The execution can be carried
out over a different number of computers and therefore the
Mapper-Combiner-Reducer can analyse a different subset of data
in each execution. In order to generate each one of the scenarios,
a combinatorial technique [40] is proposed to combine the values
of the different parameters that can modify the execution of the
MapReduce program. In this work the following parameters are
considered based on previous work [7] that classifies different
types of faults of the MapReduce applications:

• Mapper parameters: (1) Number of Mapper tasks, (2)
Inputs processed per each Mapper, and (3) Data
processing order of the inputs, that is, which data are
processed before other data in the Mapper and which data
are processed after.

• Combiner parameters for each Mapper output: (1) Number
of Combiner tasks, and (2) Inputs processed per each
Combiner.

• Reducer parameters: (1) Number of Reducer tasks, and (2)
Inputs processed per each Reducer.

The different scenarios are obtained through the combination
of all values that can take the above parameters and applying the
constraints imposed by the sequential execution of MapReduce.
The constraints considered in this paper are the following:

1. The values/combinations of the Mapper parameters
depend on the input data because it is not possible more
tasks than data. For example, if there are three data items
in the input, the maximum number of Mappers is three.

2. The values/combinations of the Combiner parameters
depend on the output of the Mapper tasks.

3. The values/combinations of the Reducer parameters
depend on the output of the Mapper-Combiner tasks and
another functionality executed by Hadoop before Reducer
tasks. This other functionality is called Shuffle and for
each <key, value> pair determines the Reducer task that
requires these data, then sorts all the data and aggregates
by key.

Suppose the program of Figure. 2 to illustrate how the
parameters are combined and how the constraints are applied. The
input of this program contains three records, and these data
constrain the values that the Mapper parameters can take because
the maximum number of Mapper tasks is three (one Mapper per
each <key, value> pair). The first scenario is generated with one
Mapper, one Combiner and one Reducer. For the second scenario

http://www.astesj.com/

J. Morán et al. / Advances in Science, Technology and Engineering Systems Journal Vol. 2, No. 1, 90-97 (2017)

www.astesj.com 93

the parameter “Number of Mapper tasks” is modified to 2, where
the first Mapper analyses two <key, value> pairs, and the second
processes one pair. The third scenario maintains the parameter
“Number of Mapper tasks” at 2, but modifies the parameter
“Inputs processed per each Mapper”, so the first Mapper analyses
one <key, value> pair and the other Mapper processes two pairs.
The scenarios are generated by the modification of the values in
the parameters in this way and considering the constraints

4.2. Execution of the test scenarios

The testing technique proposed in the previous section is
focused in the generation of scenarios that represent different
infrastructure configurations according to the characteristics of the
MapReduce processing. The test cases are systematically executed
in these scenarios according to the framework described in Figure.
2.

Figure. 2 General famework of test execution

The framework takes as input a test case that contains the input
data and optionally the expected output. The test input data can be
obtained with a generic testing technique or one specifically
designed for MapReduce, such as MRFlow [32]. Then, the ideal
scenario is generated (1) and executed (2, 3). This is the scenario
formed by one Mapper, one Combiner and one Reducer which is
the usual configuration executed in testing. Next, new scenarios
are iteratively generated (4) and executed (5) through the technique
of the previous section. The output of each scenario is checked
against the output of the ideal scenario (6), revealing a fault if the
outputs are not equivalent (7). Finally, if the test case contains the
expected output, the output of ideal scenario is also checked
against the expected output (8), detecting a fault when both are not
equivalent (9, 10).

Given a test case, the scenarios are generated according to the
previous section, then they are iteratively executed and evaluated
following the following pseudocode:
Input: Test case with:
 input data
 expected output (optional)
Output: scenario that reveals a fault
(0) /* Generation of scenarios (section 4.1)*/
(1) Scenarios ← Generate scenarios from input data
(2) /* Execution of scenarios */
(3) ideal scenario output ← Execution of ideal
 scenario
(4) ∀ scenario ∈ Scenarios:
(5) scenario output ← Execution of scenario
(6) IF scenario output <> ideal scenario output:
(7) RETURN scenario with fault
(8) IF ideal scenario output <> expected output:
(9) RETURN ideal scenario
(10) ELSE:

 (11) RETURN Zero faults detected

For example, Figure. 2 contains the generation and execution
of a program that calculates the average temperature per year in
three scenarios considering the same test input: year 1999 with
temperatures 4º, 2º and 3º. The first execution is the ideal scenario
that produces 3º as output through one Mapper, one Combiner and
one Reducer. Then the second scenario that contains two Mappers
and two Combiners is executed and also produces 3º. Finally, a
third scenario with two Mappers and two Combiners is executed,
but with different information in the Mappers than the second
scenario, and produces 3.25º as output. This temperature is not
equivalent to the 3º of the ideal scenario output. Consequently, a
functional fault is revealed without any knowledge of the expected
output of the test case.

This approach is automatized by means of a test engine based
on MRUnit library [13]. This library is used to support the
execution of each scenario. In MRUnit the test cases are executed
in the ideal scenario, but this library is extended to generate other
scenarios and enable parallelism. In order to support the execution
of several Mapper, Combiner and Reducer tasks, MRUnit is
extended providing support for advanced functionalities as for
example customized Partitioners.

5. Case Studies

The following two real world programs are used as case studies
in order to evaluate the proposed approach: (1) the Open Ankus
recommendation system [41], and (2) the MapReduce program
described in I8K|DQ-BigData framework [42]. Each case study is
detailed in the below sections.

5.1. Open Ankus recommendation system

This recommendation system is part of a machine learning
library implemented in the MapReduce paradigm. The system
predicts and recommends several items (books, films or others) to
each user based on the personal tastes saved in the profile. One
functionality checks the accuracy of the recommendations based
on the points predicted by the systems against points assigned by
the users for each item. This functionality has a MultipeInputs [43]
design that consists in two different Mapper implementations: one
receives the points predicted by the system and the other the points
assigned by the user, but both Mappers emit data to the same
Reducer implementation. The Mappers tasks receive from all users
and all items the points predicted and the points assigned, and then
the Mapper aggregates these points for each user-item pair. The

Input data

Are all
scenarios
tested?

Ideal scenario

Run scenario Ideal
output

Generation of
new scenario Run scenario

Output

Are
equals?

No

Yes

No

Yes

Expected output
(optional)

Are equals?

Yes

NoTest
case

Au
to

m
at

ic
 T

es
t e

xe
cu

tio
n (1)

(2)
(3)

(4)
(5)

(6)(7)

(8)

(9)
(10)

Figure. 3 Different infrastructure configurations for a program that calculates the
average temperature per year with Combiner task

http://www.astesj.com/

J. Morán et al. / Advances in Science, Technology and Engineering Systems Journal Vol. 2, No. 1, 90-97 (2017)

www.astesj.com 94

Reducer tasks receive for each user-item all points predicted by the
system and all points assigned by the user, and then calculate the
accuracy of the predictions.

For this program a test case is obtained using the MRFlow
testing technique based on data flow adaptation to the MapReduce
programs [7]. The test input data contain two predictions and two
user assignments for one item: (1) the system predicts that Carol
could assign 0 points to Don Quixote item, (2) Carol assigns 0
points to Don Quixote, (3) later the system detects a change in the
Carol taste and predicts that Carol could assign 10 points to Don
Quixote, and (4) Carol assigns 10 points to Don Quixote. These
data are passed to the test engine saved in two files, one for
predictions and other for assignments. The expected output is
100% of accuracy in the predictions.

The procedure described in Section 4 is applied on the previous
program using the previous test case as input. As a result, a fault is
detected and causes a failure when some inputs are processed
before others. In this case, the program should check the points
assigned by the user against their predictions, but could check it
against other predictions and then a wrong accuracy could be
obtained. In the previous test case, a failure occurs when the
system checks the prediction 0 against the 10 points assigned by
the user instead to check against the 0 points assigned by the user.
The bottom of Figure. 4 represents one scenario that reveals the
failure. This scenario starts with one Mapper to analyse the
predictions and other two Mappers for the points assigned, 0 and
10 respectively. In this scenario the 10 points assigned by the user
are analysed before the 0 points also assigned by the user. The
Reducer task receives several points predicted and assigned by the
user, and then checks the first prediction against the first points
assigned by the user, and so on. In this scenario the Reducer task
receives: (1) the predictions 0 and 10 points, and (2) the points
assigned by the user, 10 and 0. This Reducer task generates a
wrong accuracy because checks the 0 points predicted against the
10 points assigned by the user instead the 0 points. As output, the
system did not predict well, but given the test input data the system
should have predicted perfectly.

Figure. 4 Execution of the Open Ankus test case in different scenarios

The testing technique proposed in this paper detects the fault
with the previous test case. However, the following test
environments do not detect the fault: (a) Hadoop cluster in
production with 4 computers, Hadoop in local mode (simple
version of Hadoop with one computer), and (c) MRUnit unit
testing library. These environments mask the fault because only
execute the test cases in one scenario represented in the top of
Figure. 4. This scenario is the ideal scenario with only two
Mappers due a MultipleInputs design of the program: one for

predictions and other for points assigned by user. In the ideal
scenario there is no parallelization for predictions and points
assigned by user, then the fault is masked.

The test engine proposed in this paper detects the fault because
executes the test case in several scenarios that could happen in
production. In contrast with the other environments, this test
engine does not need the expected output to reveal the fault. At
first point, the test engine obtains the output from the ideal
scenario and then checks if the other scenario produces an
equivalent output or not. For example, in the previous test case, for
the same input some scenarios produce one output (the system
predictions are perfect) and other scenarios produce different
output (the system predictions are wrong).

5.2. 18K|DQ-BigData framework

 This program measures the quality of the data exchanged
between organizations according to part 140 of the ISO/TS 8000
[44]. The program receives (1) the data exchanged in a row-
column fashion, together with (2) a set of mandatory columns that
should contain data and (3) a percentage threshold that divides the
data quality of each row in two parts: the first part is maximum if
all mandatory columns contain data and zero otherwise, and the
second part of the data quality is calculated as the percentage of
the non-mandatory columns that contain data. The output of the
program is the data quality of each row, and the average of all rows.

Over the previous program, a test case is obtained using again
a specific MapReduce testing technique based on data flow [7].
The test input data and the expected output of the test case contain
two rows represented in Table. 1. Row 1 contains two columns
(Name and City), and only one column has data, so the data quality
is 50%. Row 2 contains data in all columns, so the data quality is
100%. The total quality is 75%, which is the average of both rows.

Input

Expected output Data quality threshold: 50%
Mandatory columns: “Name”

Row 1
Name: Alice

50%

75% (Average)
City: (no data)

Row 2
Name: Bob

100%
City: Vienna

Table. 1 TEST CASE OF THE I8K|DQ-BIGDATA PROGRAM

The procedure described in Section 4 is applied on the previous
program using the previous test case as input. As a result, a fault is
detected and reported to the developer. This failure occurs when
the rows are processed in different Mappers and only the first
Mapper receives the information related to the mandatory columns
and the data quality threshold, because Hadoop splits the input data
into several subsets. Without this information, the Mapper cannot
calculate the data quality and does not emit any output. The bottom
of Figure. 5 represents the scenario that produces the failure. There
are two Mappers that process different rows. The first Mapper
receives the data quality threshold (value of 50%), the mandatory
column (“Name”) and the two columns of row 1 with only data in
one column, so the Mapper emits 50% as data quality of row 1.
The second Mapper processes only row 2, but no other information
about the mandatory columns or data quality threshold, so this
Mapper cannot emit any output. Then the Reducer receives only
the data quality of row 1 and emits an incorrect output of the
average data quality.

Mappper
prediction

Prediction: 0
Prediction: 10
Assignment: 0
Assignment: 10

Reducer

Carol -> Don Quixote
Prediction Assignment

0 0
10 10

Carol->Don Quixote

Mapper
assignment

<Carol-> Don Quixote, [
Prediction: 0,
Prediction: 10,
Assignment: 0,
Assignment: 10]>

Mapper
prediction

Prediction: 0
Prediction: 10

Assignment: 0

Assignment: 10

Reducer

Carol -> Don Quixote
Prediction Assignment

0 10
10 0

Carol->Don Quixote

Mapper
assignment

Mapper
assignment

<Carol -> Don Quixote, [
Prediction: 0,
Prediction: 10,
Assignment: 10,
Assignment: 0]>

Same input Different scenario Different output

M
RU

ni
t o

r r
ea

l
en

vi
ro

nm
en

t
O

ne
 sc

en
ar

io
 o

f t
he

te

st
 e

ng
in

e

Fault automatically
detected without the

expected output

http://www.astesj.com/

J. Morán et al. / Advances in Science, Technology and Engineering Systems Journal Vol. 2, No. 1, 90-97 (2017)

www.astesj.com 95

This fault is difficult to detect because it implies the parallel
and controlled execution of the program. Moreover, this fault is
not revealed by the execution of the test case in the following
environments: (a) Hadoop cluster in production with 4 computers,
Hadoop in local mode (simple version of Hadoop with one
computer), and (c) MRUnit unit testing library. These
environments do not detect the fault because they only execute one
scenario that masks the fault. Normally these environments run the
program in the ideal scenario that is formed by one Mapper, one
Combiner and one Reducer, and then the fault is masked due to a
lack of parallelism.

Figure. 5 Execution of the 18K|DQ-BigData test case in different scenarios

The test engine proposed in this paper executes the test case in
the different scenarios that can occur in production with large data
and infrastructure failures. In contrast with the other environments,
the test engine proposed does not need the expected output to
detect faults. For example, in this case study the fault is revealed
automatically because the outputs of the different scenarios are not
equivalent to each other. The execution of some scenarios obtains
an average quality of 75%, whereas the execution of other
scenarios obtains 50%. These outputs are not equivalent, and the
test engine detects automatically a fault despite the unknown
expected output.

After the detection and report of the fault during the test phase,
the developer fixed the program and then the test case passed.

6. Conclusions

A testing technique for MapReduce applications is described
and automatized as a test engine that generates and executes
different infrastructure configurations for a given test case. This
test engine can detect automatically functional faults related to the
MapReduce paradigm without the expected output. In general,
these design faults are difficult to detect in test/production
environments because the execution is performed without
parallelization or infrastructure failures. This testing technique is
applied in test cases with little data in two real world programs. As
a result, functional faults are revealed automatically.

As future work the generation of the infrastructure
configurations could be improved by the extension of the testing
technique in order to select efficiently the configurations that are
more likely to detect faults. The current approach is off-line
because the tests are not carried out when the program is in
production. As future work we plan to extend the approach to on-
line testing, in order to monitor the functionality with the real data
when the program is executed in production and detect the faults
automatically.

Conflict of Interest

The authors declare no conflict of interest.

Acknowledgment

This work was supported in part by PERTEST (TIN2013-46928-
C3-1-R), project funded by the Spanish Ministry of Science and
Technology; TESTEAMOS (TIN2016-76956-C3-1-R) and
SEQUOIA (TIN2015-63502-C3-1-R), projects funded by the
Spanish Ministry of Economy and Competitiveness; GRUPIN14-
007, funded by the Principality of Asturias (Spain); CIEN LPS-
BIGGER project; and ERDF funds.

References

[1] ISO/IEC JTC 1 – Big Data, preliminary report 2014, ISO/IEC Std., 2015.

[2] J. Dean and S. Ghemawat, “MapReduce: Simplified Data Processing on Large
Clusters,” in Proc. of the OSDI - Symp. on Operating Systems Design and
Implementation. USENIX, 2004, pp. 137–149.

[3] Apache Hadoop: open-source software for reliable, scalable, distributed
computing, https://hadoop.apache.org, accessed: 2017-01-16.

[4] Institutions that are using Apache Hadoop for educational or production uses,
http://wiki.apache.org/hadoop/PoweredBy, accessed: 2017-01-16.

[5] Apache Spark: a fast and general engine for large-scale data processing,
https://spark.apache.org, accessed: 2017-01-16.

[6] Apache Flink: Scalable batch and stream data processing, https://-
flink.apache.org/, accessed: 2017-01-16.

[7] J. Morán, C. de la Riva, and J. Tuya, “MRTree: Functional Testing Based on
MapReduce’s Execution Behaviour,” in Future Internet of Things and Cloud
(FiCloud), 2014 International Conference on, 2014, pp. 379–384.

[8] K. V. Vishwanath and N. Nagappan, “Characterizing cloud computing
hardware reliability,” in Proceedings of the 1st ACM symposium on Cloud
computing. ACM, 2010, pp. 193–204.

[9] AnarchyApe: Fault injection tool for hadoop cluster from yahoo anarchyape,
https://github.com/david78k/anarchyape, accessed: 2017-01-16.

[10] Chaos Monkey, https://github.com/Netflix/SimianArmy/wiki/Chaos-Monkey,
accessed: 2017-01-16.

[11] Hadoop injection framework, https://hadoop.apache.org, accessed: 2017-01-
16.

[12] J. Moran, B. Rivas, C. De La Riva, J. Tuya, I. Caballero, and M. Serrano,
“Infrastructure-aware functional testing of mapreduce programs,” 2016 IEEE
4th International Conference on Future Internet of Things and Cloud
Workshops (FiCloudW), Aug 2016. [Online]. Available: http://dx.doi.org/-
10.1109/W-FiCloud.2016.45

[13] Apache MRUnit: Java library that helps developers unit test Apache Hadoop
map reduce jobs, http://mrunit.apache.org, accessed: 2017-01-16.

[14] S. Nachiyappan and S. Justus, “Getting ready for bigdata testing: A
practitioner’s perception,” in Computing, Communications and Networking
Technologies (ICCCNT), 2013 Fourth International Conference on. IEEE,
2013, pp. 1–5.

[15] A. Mittal, “Trustworthiness of big data,” International Journal of Computer
Applications, vol. 80, no. 9, 2013.

[16] A. Bertolino, “Software testing research: Achievements, challenges, dreams,”
in Future of Software Engineering, 2007. FOSE ’07, 2007, pp. 85–103.

[17] L. C. Camargo and S. R. Vergilio, “Mapreduce program testing: a systematic
mapping study,” in Chilean Computer Science Society (SCCC), 32nd
International Conference of the Computation, 2013.

[18] M. Sharma, N. Hasteer, A. Tuli, and A. Bansal, “Investigating the inclinations
of research and practices in hadoop: A systematic review,” confluence The
Next Generation Information Technology Summit (Confluence), 2014 5th
International Conference -.

Same input Different scenario Different ouput

Threshold: 50%
Mandatory: Name

Row 1
Row 2

Mapper Reducer

50%
100% Row 1: 50%

Row 2: 100%
Avg: 75%

O
ne

 sc
en

ar
io

 o
f

th
e

te
st

 e
ng

in
e

Mapper Reducer
50% Row 1: 50%

Avg: 50%

Mapper No output due the lack of
threshold and mandatory columns

Threshold: 50%
Mandatory: Name

Row 1
Row 2

M
RU

ni
t o

r r
ea

l
en

vi
ro

nm
en

t

http://www.astesj.com/

J. Morán et al. / Advances in Science, Technology and Engineering Systems Journal Vol. 2, No. 1, 90-97 (2017)

www.astesj.com 96

[19] J. Merino, I. Caballero, B. Rivas, M. Serrano, and M. Piattini, “A data quality
in use model for big data,” Future Generation Computer Systems, 2015.

[20] S. Kavulya, J. Tan, R. Gandhi, and P. Narasimhan, “An analysis of traces from
a production mapreduce cluster,” in Cluster, Cloud and Grid Computing
(CCGrid), 2010 10th IEEE/ACM International Conference on. IEEE, 2010, pp.
94–103.

[21] K. Ren, Y. Kwon, M. Balazinska, and B. Howe, “Hadoop’s adolescence: an
analysis of hadoop usage in scientific workloads,” Proceedings of the VLDB
Endowment, vol. 6, no. 10, pp. 853–864, 2013.

[22] M. Ishii, J. Han, and H. Makino, “Design and performance evaluation for
hadoop clusters on virtualized environment,” in Information Networking
(ICOIN), 2013 International Conference on, 2013, pp. 244–249. [Online].
Available: http://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=6496384

[23] Z. Liu, “Research of performance test technology for big data applications,” in
Information and Automation (ICIA), 2014 IEEE International Conference on.
IEEE, 2014, pp. 53–58.

[24] G. Song, Z. Meng, F. Huet, F. Magoules, L. Yu, and X. Lin, “A hadoop
mapreduce performance prediction method,” in High Performance Computing
and Communications & 2013 IEEE International Conference on Embedded
and Ubiquitous Computing (HPCC_EUC), 2013 IEEE 10th International
Conference on, 2013, pp. 820–825. [Online]. Available: http://-
ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=6832000

[25] M. Gudipati, S. Rao, N. D. Mohan, and N. K. Gajja, “Big data: Testing
approach to overcome quality challenges,” Big Data: Challenges and
Opportunities, pp. 65–72, 2013.

[26] L. C. Camargo and S. R. Vergilio, “Cassicação de defeitos para programas
mapreduce: resultados de um estudo empírico,” in SAST - 7th Brazilian
Workshop on Systematic and Automated Software Testing, 2013.

[27] C. Csallner, L. Fegaras, and C. Li, “New ideas track: testing mapreduce-style
programs,” in Proceedings of the 19th ACM SIGSOFT symposium and the
13th European conference on Foundations of software engineering. ACM,
2011, pp. 504–507.

[28] Y.-F. Chen, C.-D. Hong, N. Sinha, and B.-Y. Wang, “Commutativity of
reducers,” in Tools and Algorithms for the Construction and Analysis of
Systems. Springer, 2015, pp. 131–146.

[29] F. Faghri, S. Bazarbayev, M. Overholt, R. Farivar, R. H. Campbell, and W. H.
Sanders, “Failure scenario as a service (fsaas) for hadoop clusters,” in
Proceedings of the Workshop on Secure and Dependable Middleware for
Cloud Monitoring and Management. ACM, 2012, p. 5.

[30] P. Joshi, H. S. Gunawi, and K. Sen, “Prefail: A programmable tool for
multiple-failure injection,” in ACM SIGPLAN Notices, vol. 46, no. 10. ACM,
2011, pp. 171–188.

[31] J. E. Marynowski, A. O. Santin, and A. R. Pimentel, “Method for testing the
fault tolerance of mapreduce frameworks,” Computer Networks, vol. 86, pp.
1–13, 2015.

[32] J. Morán, C. de la Riva, and J. Tuya, “Testing Data Transformations in
MapReduce Programs,” in Proceedings of the 6th International Workshop on
Automating Test Case Design, Selection and Evaluation, ser. A-TEST 2015.
New York, NY, USA: ACM, 2015, pp. 20–25.

[33] A. J. Mattos, “Test data generation for testing mapreduce systems,” in Master’s
degree dissertation, 2011.

[34] N. Li, Y. Lei, H. R. Khan, J. Liu, and Y. Guo, “Applying combinatorial test
data generation to big data applications,” Proceedings of the 31st IEEE/ACM
International Conference on Automated Software Engineering - ASE 2016,
2016. [Online]. Available: http://dx.doi.org/10.1145/2970276.2970325

[35] Herriot: Large-scale automated test framework, https://wiki.apache.org/-
hadoop/HowToUseSystemTestFramework, accessed: 2017-01-16.

[36] Minicluster: Apache Hadoop cluster in memory for testing, https://-
hadoop.apache.org/docs/stable/hadoop-project-dist/hadoop-common/-
CLIMiniCluster.html, accessed: 2017-01-16.

[37] JUnit: a simple framework to write repeatable tests, http://junit.org/, accessed:
2017-01-16.

[38] Mockito: Tasty mocking framework for unit tests in java, http://mockito.org/,
accessed: 2017-01-16.

[39] D. Qiu, B. Li, and H. Leung, “Understanding the api usage in java,”
Information and Software Technology, vol. 73, pp. 81–100, 2016.

[40] M. Grindal, J. Offutt, and S. F. Andler, “Combination testing strategies: a
survey,” Software Testing, Verification and Reliability, vol. 15, no. 3, pp. 167–
199, 2005.

[41] Open Ankus: Data mining and machine learning based on mapreduce, http://-
www.openankus.org/, accessed: 2017-01-16.

[42] B. Rivas, J. Merino, M. Serrano, I. Caballero, and M. Piattini, “I8k| dq-bigdata:
I8k architecture extension for data quality in big data,” in Advances in
Conceptual Modeling. Springer, 2015, pp. 164–172.

[43] Multipleinputs: library to support mapreduce jobs that have multiple input
paths with a different inputformat and mapper for each path, https://-
hadoop.apache.org/docs/current/api/org/apache/hadoop/mapred/lib/-
MultipleInputs.html, accessed: 2017-01-16.

[44] ISO/TS 8000-140, Data quality - Part 140: Master data: Exchange of
characteristic data: Completeness, ISO/TS Std., 2009.

http://www.astesj.com/

	2. MapReduce Paradigm
	3. Related Work
	4. Generation and Execution of Tests
	4.1. Generation of the test scenarios
	4.2. Execution of the test scenarios

	5. Case Studies
	5.1. Open Ankus recommendation system
	5.2. 18K|DQ-BigData framework

	6. Conclusions
	Conflict of Interest
	Acknowledgment
	References

