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 The implemented programs in the MapReduce processing model are focused in the analysis 
of large volume of data in a distributed and parallel architecture. This architecture is 
automatically managed by the framework, so the developer could be focused in the program 
functionality regardless of infrastructure failures or resource allocation. However, the 
infrastructure state can cause different parallel executions and some could mask the faults 
but others could derive in program failures that are difficult to reveal. During the testing 
phase the infrastructure is usually not considered because commonly the test cases contain 
few data, so it is not necessary to deploy a parallel execution or handle infrastructure 
failures, among others potential issues. This paper proposes a testing technique to generate 
and execute different infrastructure configurations given the test input data and the 
program under test. The testing technique is automatized by a test engine and is applied to 
real world case studies. As a result, the test engine generates and executes several 
infrastructure configurations, revealing a functional fault in two programs. 
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1. Introduction  

The massive data processing trends have brought to light 
several technologies and processing models in the Big Data 
Engineering field [1]. Among them, MapReduce [2] can be 
highlighted as it permits the analysis of large data based on the 
“divide and conquer” principle. These programs run two phases in 
a distributed infrastructure: the Mapper and the Reducer. The first 
one divides the problem into several subproblems, and then the 
Reducer phase solves each subproblem. Usually, MapReduce 
programs run on several computers with heterogeneous resources 
and features. This complex infrastructure is managed by a 
framework, such as Hadoop [3] which stands out due to its wide 
use in the industry [4]. Other frameworks as for example Apache 
Spark [5] and Apache Flink [6] among others also use the 
MapReduce programming model. 

From point of view of the developer, a MapReduce program 
can be implemented only with Mapper and Reducer, regardless of 
the infrastructure. Then the framework that manages the 
infrastructure is also responsible to, over several computers, 
automatically deploy, run the program and lead the data processing 

between the input and output. Among others, the framework 
divides the input into several subsets of data, then processes each 
one in parallel and re-runs some parts of the program if necessary. 

Although that the program can be implemented abstracting the 
infrastructure, the developer needs to consider how the 
infrastructure configuration could affect the program functionality. 
A previous work [7] detects and classifies several faults that 
depend on how the infrastructure configuration affects the program 
execution and produces different output. These faults are often 
masked during the test execution because the tests usually run over 
an infrastructure configuration without considering the different 
situations that could occur in production, as for example different 
parallelism levels or the infrastructure failures [8]. On the other 
hand, if the tests are executed in an environment similar to the 
production, some faults may not be detected because it is common 
that the test inputs contain few data, and in these cases Hadoop 
does not parallelize the program execution. There are some tools 
to enable the simulation for some of these situations (for example 
computer and net failures) [9, 10, 11], but it is difficult to design, 
generate and execute the tests in a deterministic way because there 
are a lot of elements that need fine grained simulation, including 
the infrastructure and framework.  

ASTESJ 

ISSN: 2415-6698 

*Corresponding Author: Jesús Morán, Viesques edificio departamental 1 Gijón 
(Spain) moranjesus@lsi.uniovi.es 
 

 

Advances in Science, Technology and Engineering Systems Journal Vol. 2, No. 1, 90-96 (2017) 

www.astesj.com 

Special Issue on Computer Systems, Information Technology, Electrical and Electronics 
Engineering 

 

 

 

 

 

https://dx.doi.org/10.25046/aj020111  

http://www.astesj.com/
http://www.astesj.com/
https://dx.doi.org/10.25046/aj020111


J. Morán et al. / Advances in Science, Technology and Engineering Systems Journal Vol. 2, No. 1, 90-97 (2017) 

www.astesj.com     91 

The main contribution of this paper is a technique that can be 
used to generate automatically the different infrastructure 
configurations for a MapReduce application. The goal is to execute 
test cases with these configurations in order to detect functional 
faults. Given a test input data, the configurations are obtained 
based on the different executions that can happen in production. 
Then each one of the configurations is executed in the test 
environment in order to detect functional faults of the program that 
may occur in production. This paper extends the previous work 
[12] and the contributions are: 

1. A combinatorial technique to generate the different 
infrastructure configurations, taking into account 
characteristics related to the MapReduce processing and 
the test input data. 

2. Automatic support by means of a test engine based on 
MRUnit [13] that allows the execution of the infrastructure 
configurations. 

3. Evaluation of the approach detecting failures in a two real 
world programs. 

The rest of the paper is organized as follows. In Section 2 the 
principles of the MapReduce paradigm are introduced. The related 
work about software testing in MapReduce paradigm is presented 
in Section 3. The generation of the different configurations, the 
execution and the automatization of the tests are defined in Section 
4. In Section 5 it is applied to a two case studies. The paper ends 
with conclusions and future work in Section 6. 

2. MapReduce Paradigm 

The function of the MapReduce program is to process high 
quantities of data in a distributed infrastructure. The developer 
implements two functionalities: Mapper task that splits the 
problem into several subproblems and Reducer task that solves 
these subproblems. The final output is obtained from the 
deployment and the execution over a distributed infrastructure of 
several instances of Mapper and Reducer, also called tasks. 
Hadoop (or other framework) automatically carry out the 
deployment and execution. First, several Mapper tasks analyse in 
parallel a subset of input data and determine which subproblems 
these data need. When the execution of all Mappers are finished, 
several Reducers are also executed in parallel in order to solve the 
subproblems. Internally MapReduce handles <key, value> pairs, 
where the key is the subproblem identifier and the value contains 
the information to solve it. 

To explain MapReduce let us suppose a program that calculates 
the average temperature per year from historical data about 
temperatures. This program solves for each year one subproblem, 
so the year is the identifier or key. The Mapper task receives a 
subset of temperature data and emits <year, temperature of this 
year> pairs. Then Hadoop aggregates all values per key. 
Therefore, the Reducer tasks receive subproblems like <year, [all 
temperatures of this year]>, that is all temperatures grouped per 
year. Finally, the Reducer calculates the average temperature. For 
example, in Figure. 1 an execution of the program considering the 
input is detailed: year 2000 with 3º, 2002 with 4º, 2000 with 1º, 
and 2001 with 5º. The first two inputs are analysed in one Mapper 
task and the remainder in another task. Then the temperatures are 
grouped per year and sent to the Reducer tasks. The first Reducer 
receives all the temperatures for the years 2000 and 2002, and the 
other task for the year 2001. Finally, each Reducer emits the 
average temperature of the analysed subproblems: 2º in the year 

2000, 4º in 2002 and 5º in 2001. This program with the same input 
could be executed in another way by the framework, for example 
with three Mappers and three Reducers. Regardless of how the 
framework runs the program, it should generate the expected 
output. 

 
Figure. 1 Program that calculates the average temperature per year 

In order to optimize the program, a Combiner functionality can 
be implemented. This task is run after the Mapper and the goal is 
to remove the irrelevant <key, value> pairs to solve the 
subproblem. In MapReduce there are also other implementations 
such as for example Partitioner that decides for each <key, value> 
pair which Reducer analyses it, Sort that sorts the <key, value> 
pairs, and Group that aggregates the values of each key before the 
Reducer. 

An incorrect implementation of these functionalities could 
cause a failure in one of the different ways in which Hadoop can 
run the program. These faults are difficult to detect during testing 
because the test cases usually contain few input data. In this way it 
is not necessary to split the inputs and therefore the execution is 
over one Mapper, one Combiner and one Reducer [2]. 

3. Related Work 

Despite the testing challenges of the Big Data applications [14, 
15] and the progresses in the testing techniques [16], little effort is 
focused on testing the MapReduce programs [17], one of the 
principal paradigms of Big Data [18]. These large-scale programs 
have several issues and challenges to measure and assure the 
quality [19]. A study of Kavulya et al. [20] analyses several 
MapReduce programs and 3% of them do not finish, while another 
study by Ren et al. [21] places the number between 1.38% and 
33.11%. 

Many of the works about testing of the MapReduce programs 
focus on performance [22, 23, 24] and to a lesser degree 
functionality. A testing approach for Big Data is proposed by 
Gudipati et al. [25] specifying several processes, one of which is 
about MapReduce validation. In this process Camargo et al. [26] 
and Morán et al. [7] identify and classify several functional faults. 
Some of these faults are specific of the MapReduce paradigm and 
they are not easy to detect because they depend on the program 
execution over the infrastructure. One common type of fault is 
produced when the data should reach the Reducer in a specific 
order, but the parallel execution causes these data to arrive 
disordered. This fault was analysed by Csallner et al. [27] and 
Chen et al. [28] using some testing techniques based on symbolic 
execution and model checking. In contrast to the previous works, 
the approach of this paper is not focused on the detection of only 
one type of fault, it can also detect other MapReduce specific 
faults. To do this, the test input data is executed over different 
infrastructure configurations that could lead to failures. 

Several research lines suggest injecting infrastructure failures 
[29, 30] during the testing, and several tools support their injection 
[9, 10, 11]. For example, the work by Marynowski et al. [31] 
allows the creation of test cases specifying which computers fail 
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and when. One possible problem is that some specific MapReduce 
faults could not be detected by infrastructure failures, but require 
full control of Hadoop and the infrastructure. In this paper, the 
different ways in which Hadoop could run the program are 
automatically generated from the functional point of view, 
regardless of the infrastructure failures and Hadoop optimizations. 

Furthermore, there are other approaches oriented to obtain the 
test input data of MapReduce programs, such as [32] that employs 
data flow testing, other based on a bacteriological algorithm [33], 
and [34] based on input domain together with combinatorial testing 
focused on ETL (Extract, Transformation and Load). In this paper, 
given a test input data, several configurations of infrastructure are 
generated and then executed in order to reveal functional faults. 
The test input data of this approach could be obtained with the 
previous testing techniques. 

The functional tests can be executed directly in the production 
cluster or in one computer with Hadoop. Herriot [35] can be used 
to execute the tests in a cluster while providing access to their 
components supporting, among others, the injection of faults. 
Another option is to simulate a cluster in memory with the 
MiniClusters libraries [36]. In the unit testing, JUnit [37] could be 
used together with mock tools [38], or directly by MRUnit library 
[13] adapted to the MapReduce paradigm. These test engines only 
execute one infrastructure configuration and usually without 
parallelization. In this paper a test engine is implemented by an 
MRUnit extension that automatically generates and executes the 
different infrastructure configurations that could occur in 
production. The test engine proposed extends MRUnit because in 
Hadoop is very usual to develop java programs [21], and the java 
programs usually employs JUnit libraries [39]. MRUnit put 
together JUnit with mocks, reflection and other tools in order to 
simplify the execution of the test case for the MapReduce 
programs. 

4. Generation and Execution of Tests 

The generation of the infrastructure configurations for the tests 
are defined in Section 4.1, and a framework to execute the tests in 
Section 4.2. 

4.1. Generation of the test scenarios 

To illustrate how the infrastructure configuration affects the 
program output, suppose that the example of Section 2 is extended 
with a Combiner in order to decrease the data and improve the 
performance. The Combiner receives several temperatures and 
then they are replaced by their average in the Combiner output. 
This program does not admit a Combiner because all the 
temperatures are needed to obtain the total average temperature. 
The Combiner is added in order to optimize the program, but 
injects a functional fault in the program. Figure. 2 represents three 
possible executions of this program with the same input (year 1999 
with temperatures 4º, 2º and 3º) that could happen in production 
considering the different infrastructure configurations. 

The first configuration executes one Mapper, one Combiner 
and one Reducer and produces the expected output. The second 
configuration also generates the expected output executing one 
Mapper that processes the temperatures 4º and 2º, another Mapper 
for 3º, two Combiner, and finally one Reducer. The third 
configuration also executes two Mapper, two Combiner and one 
Reducer, but produces an unexpected output because the first 
Mapper processes 4º and the second Mapper the temperatures 2º 

and 3º. Then one of the Combiner tasks calculates the average of 
4º, and the other Combiner of 2º and 3º. The Reducer receives the 
previous averages (4º and 2.5º), and calculates the total average in 
the year. This configuration produces 3.25º as output instead of the 
3º of the expected output. The program has a functional fault only 
detected in the third configuration. Whenever this infrastructure 
configuration is executed the failure is produced, regardless of the 
computer failures, slow net or others. This fault is difficult to reveal 
because the test case needs to be executed in a completely 
controlled way under the infrastructure configuration that detect it. 

Given a test input data, the goal is to generate the different 
infrastructure configurations, also called in this context scenarios. 
For this purpose, the technique proposed considers how the 
MapReduce program can execute these input data in production. 
First, the program runs the Mappers, then over their outputs the 
Combiners and finally the Reducers. The execution can be carried 
out over a different number of computers and therefore the 
Mapper-Combiner-Reducer can analyse a different subset of data 
in each execution. In order to generate each one of the scenarios, 
a combinatorial technique [40] is proposed to combine the values 
of the different parameters that can modify the execution of the 
MapReduce program. In this work the following parameters are 
considered based on previous work [7] that classifies different 
types of faults of the MapReduce applications: 

• Mapper parameters: (1) Number of Mapper tasks, (2) 
Inputs processed per each Mapper, and (3) Data 
processing order of the inputs, that is, which data are 
processed before other data in the Mapper and which data 
are processed after. 

• Combiner parameters for each Mapper output: (1) Number 
of Combiner tasks, and (2) Inputs processed per each 
Combiner. 

• Reducer parameters: (1) Number of Reducer tasks, and (2) 
Inputs processed per each Reducer. 

The different scenarios are obtained through the combination 
of all values that can take the above parameters and applying the 
constraints imposed by the sequential execution of MapReduce. 
The constraints considered in this paper are the following: 

1. The values/combinations of the Mapper parameters 
depend on the input data because it is not possible more 
tasks than data. For example, if there are three data items 
in the input, the maximum number of Mappers is three. 

2. The values/combinations of the Combiner parameters 
depend on the output of the Mapper tasks. 

3. The values/combinations of the Reducer parameters 
depend on the output of the Mapper-Combiner tasks and 
another functionality executed by Hadoop before Reducer 
tasks. This other functionality is called Shuffle and for 
each <key, value> pair determines the Reducer task that 
requires these data, then sorts all the data and aggregates 
by key. 

Suppose the program of Figure. 2 to illustrate how the 
parameters are combined and how the constraints are applied. The 
input of this program contains three records, and these data 
constrain the values that the Mapper parameters can take because 
the maximum number of Mapper tasks is three (one Mapper per 
each <key, value> pair). The first scenario is generated with one 
Mapper, one Combiner and one Reducer. For the second scenario 
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the parameter “Number of Mapper tasks” is modified to 2, where 
the first Mapper analyses two <key, value> pairs, and the second 
processes one pair. The third scenario maintains the parameter 
“Number of Mapper tasks” at 2, but modifies the parameter 
“Inputs processed per each Mapper”, so the first Mapper analyses 
one <key, value> pair and the other Mapper processes two pairs. 
The scenarios are generated by the modification of the values in 
the parameters in this way and considering the constraints  

4.2. Execution of the test scenarios 

The testing technique proposed in the previous section is 
focused in the generation of scenarios that represent different 
infrastructure configurations according to the characteristics of the 
MapReduce processing. The test cases are systematically executed 
in these scenarios according to the framework described in Figure. 
2. 

 
Figure. 2 General famework of test execution 

The framework takes as input a test case that contains the input 
data and optionally the expected output. The test input data can be 
obtained with a generic testing technique or one specifically 
designed for MapReduce, such as MRFlow [32]. Then, the ideal 
scenario is generated (1) and executed (2, 3). This is the scenario 
formed by one Mapper, one Combiner and one Reducer which is 
the usual configuration executed in testing. Next, new scenarios 
are iteratively generated (4) and executed (5) through the technique 
of the previous section. The output of each scenario is checked 
against the output of the ideal scenario (6), revealing a fault if the 
outputs are not equivalent (7). Finally, if the test case contains the 
expected output, the output of ideal scenario is also checked 
against the expected output (8), detecting a fault when both are not 
equivalent (9, 10). 

Given a test case, the scenarios are generated according to the 
previous section, then they are iteratively executed and evaluated 
following the following pseudocode: 
Input: Test case with: 
   input data 
   expected output (optional) 
Output: scenario that reveals a fault 
(0)  /* Generation of scenarios (section 4.1)*/ 
(1)  Scenarios ← Generate scenarios from input data 
(2)  /* Execution of scenarios */ 
(3)  ideal scenario output ← Execution of ideal  
                                            scenario 
(4)  ∀ scenario ∈ Scenarios: 
(5)    scenario output ← Execution of scenario 
(6)    IF scenario output <> ideal scenario output: 
(7)    RETURN scenario with fault 
(8)  IF ideal scenario output <> expected output: 
(9)    RETURN ideal scenario 
(10) ELSE: 

  (11)   RETURN Zero faults detected 

For example, Figure. 2 contains the generation and execution 
of a program that calculates the average temperature per year in 
three scenarios considering the same test input: year 1999 with 
temperatures 4º, 2º and 3º. The first execution is the ideal scenario 
that produces 3º as output through one Mapper, one Combiner and 
one Reducer. Then the second scenario that contains two Mappers 
and two Combiners is executed and also produces 3º. Finally, a 
third scenario with two Mappers and two Combiners is executed, 
but with different information in the Mappers than the second 
scenario, and produces 3.25º as output. This temperature is not 
equivalent to the 3º of the ideal scenario output. Consequently, a 
functional fault is revealed without any knowledge of the expected 
output of the test case. 

This approach is automatized by means of a test engine based 
on MRUnit library [13]. This library is used to support the 
execution of each scenario. In MRUnit the test cases are executed 
in the ideal scenario, but this library is extended to generate other 
scenarios and enable parallelism. In order to support the execution 
of several Mapper, Combiner and Reducer tasks, MRUnit is 
extended providing support for advanced functionalities as for 
example customized Partitioners. 

5. Case Studies 

The following two real world programs are used as case studies 
in order to evaluate the proposed approach: (1) the Open Ankus 
recommendation system [41], and (2) the MapReduce program 
described in I8K|DQ-BigData framework [42]. Each case study is 
detailed in the below sections. 

5.1. Open Ankus recommendation system 

This recommendation system is part of a machine learning 
library implemented in the MapReduce paradigm. The system 
predicts and recommends several items (books, films or others) to 
each user based on the personal tastes saved in the profile. One 
functionality checks the accuracy of the recommendations based 
on the points predicted by the systems against points assigned by 
the users for each item. This functionality has a MultipeInputs [43] 
design that consists in two different Mapper implementations: one 
receives the points predicted by the system and the other the points 
assigned by the user, but both Mappers emit data to the same 
Reducer implementation. The Mappers tasks receive from all users 
and all items the points predicted and the points assigned, and then 
the Mapper aggregates these points for each user-item pair. The 
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Figure. 3 Different infrastructure configurations for a program that calculates the 
average temperature per year with Combiner task 
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Reducer tasks receive for each user-item all points predicted by the 
system and all points assigned by the user, and then calculate the 
accuracy of the predictions. 

For this program a test case is obtained using the MRFlow 
testing technique based on data flow adaptation to the MapReduce 
programs [7]. The test input data contain two predictions and two 
user assignments for one item: (1) the system predicts that Carol 
could assign 0 points to Don Quixote item, (2) Carol assigns 0 
points to Don Quixote, (3) later the system detects a change in the 
Carol taste and predicts that Carol could assign 10 points to Don 
Quixote, and (4) Carol assigns 10 points to Don Quixote. These 
data are passed to the test engine saved in two files, one for 
predictions and other for assignments. The expected output is 
100% of accuracy in the predictions. 

The procedure described in Section 4 is applied on the previous 
program using the previous test case as input. As a result, a fault is 
detected and causes a failure when some inputs are processed 
before others. In this case, the program should check the points 
assigned by the user against their predictions, but could check it 
against other predictions and then a wrong accuracy could be 
obtained. In the previous test case, a failure occurs when the 
system checks the prediction 0 against the 10 points assigned by 
the user instead to check against the 0 points assigned by the user. 
The bottom of Figure. 4 represents one scenario that reveals the 
failure. This scenario starts with one Mapper to analyse the 
predictions and other two Mappers for the points assigned, 0 and 
10 respectively. In this scenario the 10 points assigned by the user 
are analysed before the 0 points also assigned by the user. The 
Reducer task receives several points predicted and assigned by the 
user, and then checks the first prediction against the first points 
assigned by the user, and so on. In this scenario the Reducer task 
receives: (1) the predictions 0 and 10 points, and (2) the points 
assigned by the user, 10 and 0. This Reducer task generates a 
wrong accuracy because checks the 0 points predicted against the 
10 points assigned by the user instead the 0 points. As output, the 
system did not predict well, but given the test input data the system 
should have predicted perfectly. 

 
Figure. 4 Execution of the Open Ankus test case in different scenarios 

The testing technique proposed in this paper detects the fault 
with the previous test case. However, the following test 
environments do not detect the fault: (a) Hadoop cluster in 
production with 4 computers, Hadoop in local mode (simple 
version of Hadoop with one computer), and (c) MRUnit unit 
testing library. These environments mask the fault because only 
execute the test cases in one scenario represented in the top of 
Figure. 4. This scenario is the ideal scenario with only two 
Mappers due a MultipleInputs design of the program: one for 

predictions and other for points assigned by user. In the ideal 
scenario there is no parallelization for predictions and points 
assigned by user, then the fault is masked. 

The test engine proposed in this paper detects the fault because 
executes the test case in several scenarios that could happen in 
production. In contrast with the other environments, this test 
engine does not need the expected output to reveal the fault. At 
first point, the test engine obtains the output from the ideal 
scenario and then checks if the other scenario produces an 
equivalent output or not. For example, in the previous test case, for 
the same input some scenarios produce one output (the system 
predictions are perfect) and other scenarios produce different 
output (the system predictions are wrong). 

5.2. 18K|DQ-BigData framework 

 This program measures the quality of the data exchanged 
between organizations according to part 140 of the ISO/TS 8000 
[44]. The program receives (1) the data exchanged in a row-
column fashion, together with (2) a set of mandatory columns that 
should contain data and (3) a percentage threshold that divides the 
data quality of each row in two parts: the first part is maximum if 
all mandatory columns contain data and zero otherwise, and the 
second part of the data quality is calculated as the percentage of 
the non-mandatory columns that contain data. The output of the 
program is the data quality of each row, and the average of all rows. 

Over the previous program, a test case is obtained using again 
a specific MapReduce testing technique based on data flow [7]. 
The test input data and the expected output of the test case contain 
two rows represented in Table. 1. Row 1 contains two columns 
(Name and City), and only one column has data, so the data quality 
is 50%. Row 2 contains data in all columns, so the data quality is 
100%. The total quality is 75%, which is the average of both rows. 

Input 

Expected output Data quality threshold: 50% 
Mandatory columns: “Name” 

Row 1 
Name: Alice 

50% 

75% (Average) 
City: (no data) 

Row 2 
Name: Bob 

100% 
City: Vienna 

Table. 1 TEST CASE OF THE I8K|DQ-BIGDATA PROGRAM 

The procedure described in Section 4 is applied on the previous 
program using the previous test case as input. As a result, a fault is 
detected and reported to the developer. This failure occurs when 
the rows are processed in different Mappers and only the first 
Mapper receives the information related to the mandatory columns 
and the data quality threshold, because Hadoop splits the input data 
into several subsets. Without this information, the Mapper cannot 
calculate the data quality and does not emit any output. The bottom 
of Figure. 5 represents the scenario that produces the failure. There 
are two Mappers that process different rows. The first Mapper 
receives the data quality threshold (value of 50%), the mandatory 
column (“Name”) and the two columns of row 1 with only data in 
one column, so the Mapper emits 50% as data quality of row 1. 
The second Mapper processes only row 2, but no other information 
about the mandatory columns or data quality threshold, so this 
Mapper cannot emit any output. Then the Reducer receives only 
the data quality of row 1 and emits an incorrect output of the 
average data quality. 
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This fault is difficult to detect because it implies the parallel 
and controlled execution of the program. Moreover, this fault is 
not revealed by the execution of the test case in the following 
environments: (a) Hadoop cluster in production with 4 computers, 
Hadoop in local mode (simple version of Hadoop with one 
computer), and (c) MRUnit unit testing library. These 
environments do not detect the fault because they only execute one 
scenario that masks the fault. Normally these environments run the 
program in the ideal scenario that is formed by one Mapper, one 
Combiner and one Reducer, and then the fault is masked due to a 
lack of parallelism. 

 
Figure. 5 Execution of the 18K|DQ-BigData test case in different scenarios 

The test engine proposed in this paper executes the test case in 
the different scenarios that can occur in production with large data 
and infrastructure failures. In contrast with the other environments, 
the test engine proposed does not need the expected output to 
detect faults. For example, in this case study the fault is revealed 
automatically because the outputs of the different scenarios are not 
equivalent to each other. The execution of some scenarios obtains 
an average quality of 75%, whereas the execution of other 
scenarios obtains 50%. These outputs are not equivalent, and the 
test engine detects automatically a fault despite the unknown 
expected output. 

After the detection and report of the fault during the test phase, 
the developer fixed the program and then the test case passed. 

6. Conclusions 

A testing technique for MapReduce applications is described 
and automatized as a test engine that generates and executes 
different infrastructure configurations for a given test case. This 
test engine can detect automatically functional faults related to the 
MapReduce paradigm without the expected output. In general, 
these design faults are difficult to detect in test/production 
environments because the execution is performed without 
parallelization or infrastructure failures. This testing technique is 
applied in test cases with little data in two real world programs. As 
a result, functional faults are revealed automatically. 

As future work the generation of the infrastructure 
configurations could be improved by the extension of the testing 
technique in order to select efficiently the configurations that are 
more likely to detect faults. The current approach is off-line 
because the tests are not carried out when the program is in 
production. As future work we plan to extend the approach to on-
line testing, in order to monitor the functionality with the real data 
when the program is executed in production and detect the faults 
automatically. 
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