
Configuration Management in Multi-Context Reconfigurable Systems for
Simultaneous Performance and Power Optimizations*

Rafael Maestre, Milagros Fernandez

Departamento de Arquitectura de Computadores
y Automática

Universidad Complutense de Madrid, SPAIN
http://www.dacya.ucm.es/maestre

Fadi J. Kurdahi, Nader Bagherzadeh, Hartej
Singh

Department of Electrical and Computer
Engineering

University of California, Irvine, USA

Abstract
In this paper, we present a novel solution to the problem
of configuration management for multi-context
reconfigurable systems targeting DSP applications, its
goal being to minimize both, configuration latency and
power consumption. We assume that this technique is
applied within a larger compilation framework, which
provides a scheduled task sequence of the considered
application. Reconfiguration latency reduction is the first
criteria to consider, and we prove that the optimal
solution can be obtained in all cases. Secondly, power is
optimized without affecting performance. The
assumptions of the method are supported by the analysis
of a mathematical model, and its effectiveness is
demonstrated by some experiments.

1. Introduction

Reconfigurable computing combines a reconfigurable

hardware processing unit with a programmable processor.
The processor orchestrates the whole system and it may
be also used for computations so as to contribute to the
overall throughput. The reconfigurable hardware
implements the core of computations. This kind of
computing is consolidating as a viable design alternative
to implement a wide range of computationally intensive
applications. Its main advantage is clearly its versatility.
These systems can be adapted to almost any target
application, achieving an acceptable degree of
performance in many cases. Most reconfigurable systems
exploit its whole processing potential when executing
applications with a lot of inherent parallelism. DSP and
multimedia applications are some of those applications.
This is why our work is focused on them. Additionally,
this kind of applications have an internal structure with
some features, such as regularity, that may be exploited in
order to simplify the problem formulation.

The execution of such complex applications requires
implementing consecutively different configurations
during computation, which is called run-time
reconfiguration. The term dynamic reconfiguration
restricts this concept for the cases such that the
reconfiguration overhead does not imply an essential
computation stall. As the technology has produced devices
with shorter reconfiguration times, the idea of dynamic
reconfiguration has become a viable possibility. We could
say that dynamic reconfiguration permits the
consideration of a new dimension in the design space,
time multiplexing of hardware resources. Instead of
increasing the number of available resources, the
configurations are swapped in and out of the actual
hardware, as they are needed. Dynamic reconfiguration
may be implemented in two different configuration
memory styles. One of them allows selective access to the
reconfiguration memory in a particular region of the
reconfigurable device. At the same time the rest of the
device remains fully operational. Xilinx XC6200 family is
one example of this choice. In this kind of devices the
portion of the hardware that is being reconfigured cannot
be used. Recently, multi-context architectures have
appeared to facilitate and accelerate the configuration
switch [1]. They can store a set of different contexts
(configurations) in a context memory. When a new
configuration is needed, it is loaded from the context
memory if available. As the context memory is on-chip,
this operation is much faster than the reconfiguration from
an external memory. For example, MorphoSys
architecture [1] has a context memory that can store 32
different contexts, and a full change of context only takes
one clock cycle, compared to one single context transfer
from the external memory which takes more than 200
cycles. However, the context memory cannot store all the
configurations of a specific application. Therefore, it is
obvious that reconfiguration time may be dramatically
reduced, but only if the context memory is carefully

* This work has been granted by Spanish Government Grant CICYT TIC 99-0474.

managed. We address the problem for multi-context
architectures with an undefined number of contexts.

Besides performance, the minimization of power
consumption is another very important issue that should
be considered, at least for portable systems. Power in
CMOS integrated circuits is mainly caused by the
switching activity of internal capacitances. This means
that power consumption can be reduced if we find a way
to decrease the switching activity as much as possible in
the whole chip. Although this kind of optimization can be
performed at different compilation steps, we address this
problem from the configuration scheduling and allocation
point of view; therefore optimizations are physically
restricted to the context (configuration) memory.

As typical applications are usually so demanding,
performance is the first optimization factor to consider so
that timing constraints are met. Additionally, the optimal
solution for configuration minimizes the number of
configuration swaps, which simultaneously produces a
positive effect on power consumption. Then, the solutions
with the same latency are explored to achieve further
power improvements.

This work assumes that the different tasks that compose
the target application have already been scheduled. This
task scheduling can be obtained through the approach to
scheduling in reconfigurable computing presented in [2].
It is the first step of a whole design development
framework [3]. This scheduling technique provides the
best task execution order, although the effect of the
following tasks is only estimated. The current work is a
part of the second step of this framework, and its goal is to
accomplish the degree of performance that the scheduling
task assumed, while optimizing power consumption.

Reconfigurable computing is an emerging area of
computing that has opened many different research fields.
For example, scheduling is an area that, although has been
widely investigated in other fields, needs to incorporate
the characteristics of this kind of systems. As a matter of
fact, most approaches are versions of existing high-level
synthesis techniques, extended to consider specific
features of reconfigurable systems, such as the
reconfiguration time [4]-[7]. More especially, context
scheduling is a relatively new problem that has received
little attention. To the best of our knowledge, [3] and [8]
are the only work that explicitly tackles this issue. [8]
addresses reconfiguration overhead reduction through
configuration prefetch. However, its applicability is
restricted to single context architectures. In [3] a heuristic
solution to the current problem for multi-context
architectures is presented. Other scheduling
methodologies in reconfigurable computing, like [10,11],
do not explicitly address this issue. Finally, we will
mention that we have not found any previous work about
power optimizations for multi-context systems.

The paper is organized into 6 sections. Section 2
introduces the relevant issues, and provides a first
approach to the problem. Section 3 analyzes the
minimization of context loading, which improves both
performance and power consumption. Section 4 is
devoted to the allocation of memory replacements, whose
goal it to achieve the lowest power consumption for the
optimal performance scheduling. Then, section 5
summarizes the experimental results that have been
obtained. Finally, section 6 concludes the paper.

2. Problem Overview

A typical DSP or multimedia application is composed

of a sequence of macro-tasks that are repeatedly executed
as a loop. We use the term kernel to refer to one of those
well-defined macro-tasks [2]. Some examples of those
applications are MPEG (video compression and
decompression), JPEG (image compression) and ATR
(Automatic Target Recognition), whereas DCT (Discrete
Cosine Transform) or ME (Motion Estimation) may
exemplify some of these kernels. Hence, in this paper we
will assume that any kernel sequence is periodic.
Moreover, as the kernels of those applications can be
scheduled through the algorithm presented in [2], the
resulting kernel scheduling constitutes the input to our
problem.

In order to provide an intuitive approach to the
problem, we will consider the examples shown in Fig. 1.
The figure represents the status of the CM (Context
Memory) by means of some CM snapshots taken just
before the beginning of a kernel execution. We have
represented one single inner iteration of the periodic
sequence. A whole kernel execution implies the
implementation of a specific sequence of contexts, which
will be assumed to be in the CM during its corresponding
kernel execution. As a kernel always uses the same
contexts, it may be possible to keep some of them in the
memory, and reuse them in the next kernel execution. We
will use the term static to refer to those contexts. On the
other hand, the rest of the context will have to be loaded
before the beginning of the next execution, and they will
be stored in the remaining part of the CM. These contexts
will be called dynamic contexts. Thus, dynamic contexts
imply loading time, whereas static contexts save loading
time, and hence we should maximize the static part of the
CM. For example Fig. 1 illustrates two solutions with
different static sizes, and LT (total number of context
loadings) is bigger for the example with less static
contexts (Fig. 1.a).

In subsequent sections we will prove that the static part
is maximized, and thus LT is minimized, when the
numbers of loadings for all kernels (all Li) are as equal as
possible, but first we will provide a brief idea here.

Imagine one of those solutions, like the one presented in
Fig. 1.a. If Li were bigger for at least one kernel, this
would reduce the size of the static part, and therefore
some static contexts would become dynamic and should
be later reloaded. This fact would certainly increase the
total number of loadings. Fig. 1.b represents a solution
such that Li substantially different for every kernel. As
shown the solution is worse. In this example the criteria to
build this solution has been that the number of loadings
for a kernel is proportional to its context size.

Similarly, if context loadings are accomplished too
soon, they will occupy CM positions, which will reduce
the number of static positions. Therefore, context loadings
have to be performed as late as possible (ALAP).

The minimization of context loadings optimizes
reconfiguration latency, but at the same time it potentially
improves the power consumption, since the total number
of transitions from “0” to “1” of the internal capacitance
associated to individual CM cells is kept within low
values. Once the solution with the lowest latency has been
generated, power can be further optimized. So far we have
not considered context allocation, which will directly
influence power. The number of bit changes that implies
the consecutive loading of two configurations in the same
CM position determines the actual power consumption,
and there are many different configuration replacements
for a given schedule. For example, in Fig. 1.a K1 contexts
can replace any of K3 or K4 contexts. The exploration of
the alternatives will lead to different power numbers.

All the previous ideas are analyzed in detail in the
following sections.

3. Analysis of Context Loading

Minimization

In this section we present the mathematical analysis

that leads us to the optimal solution in terms of number of
context loadings, which optimizes performance, besides
reducing power consumption. The reasoning is based on
the fact that the size of the CM (SCM) is a physical con-
straint that has to be fulfilled in all cases. It is obvious that
the number of both, dynamic and static contexts cannot
exceed SCM. We suggest the reader to use Fig. 1 in order
to visualize the meaning of the expressions.

The dynamic part of the CM (Dyn) is given by the
maximum number of context loadings (Li):

� �i
i

LMAXDyn
�

. (1)

On the other hand, the static part of the CM (Stc) is
composed of the contexts that are not loaded every
iteration (Ci - Li), thus if Ci is the number of contexts for
kernel Ki,

� ��
�

�

i
ii LCStc .

(2)

Therefore, the total size of the context memory is:

Dynamic
Contexts

Static
Contexts

Sequence of kernels: { K1 , K2 , K3 , K4 }

Size of contexts: { C1= 14, C2= 19, C3= 23, C4= 6 }

32

a. b.

Execution flow
......

Beginning
of K1

Beginning
of K2

Beginning
of K3

Beginning
of K4

32

L2=12 L3=12 L4=6L1=12

12

20
K2 7

K1 2

K1 12

K3 11

K2 7

K1 2

K2 12

K3 11

K2 7

K1 2

K3 12

K3 11

K2 7

K1 2

K4 6

K3 11

K3 6 Dynamic
Contexts

Static
Contexts

Execution flow
......

Beginning
of K1

Beginning
of K2

Beginning
of K3

Beginning
of K4

K1 3 K1 3 K1 3 K1 3

K1 11 K2 15 K3 17

K4 4

K3 13

K3 6 K3 6 K3 6 K3 6
K4 2 K4 2 K4 2 K4 2

K2 4 K2 4 K2 4 K2 4

K3 6

17

15

K3 2

L2=15 L3=17 L4=4L1=11

Number of context loadings for the optimal solution:
{ L1= 12, L2= 12, L3= 12, L4= 6 } � LT=42

Number of context loadings for a non-optimal solution:
{ L1= 11, L2= 15, L3= 17, L4= 4 } � LT=47

Fig. 1. CM snapshots for two possible context loading schedules. The snapshots have been
taken just at the beginning of each kernel execution, and show the content of the CM positions.
Ki stands for the kernel “i”. Li represents the number of loadings regarding kernel Ki, and LT is
the total number of context loadings. Ci is the number of contexts for kernel Ki. The triangles
depict the loaded contexts.

� � � ��
�

�

�� �t

i
iii

i
LCLMAXStcDynSCM .

(3)

From (3) we can express the total number of loadings
as:

� � SCMCLMAXLL
i

ii
i

i
iT ��t ��

�
�

�

.
(4)

This expression proves the idea introduced in the
previous section. If Li is bigger for a particular kernel, Ki,
than Lj for the others, this one will determine the lowest
feasible value of LT. Hence, if Li for all kernels take the
same value and expression (4) is fulfilled, this will be the
optimal solution in terms of reconfiguration latency. It
should be noted that as the number of context loadings for
a kernel cannot exceed its number of contexts (that is Ci t
Li), all Li have to be at least as equal as possible. For
example in Fig. 1.a as C4 t L4 the maximum value for Li is
4. However, the rest of the kernels can fulfill the
requirements, and thus it minimizes the total number of
loadings, LT. Thus, for the example in Fig. 1.a:

� �

� � 32626,12,12,12

42

��

 ��t �
�

�

MAX

SCMCLMAXL
i

ii
i

T (5)

If any Li is increased LT will also be increased, and
hence the example in Fig. 1.a is the optimal solution.

In order to obtain the best Li distribution, we will make
the assumption that all the kernels may have equal values
of Li, A = Li, which means that MAX(Li) = A, and LT =
NT*Li, where NT is the total number of kernels.
Consequently, from (4):

1N

SCMC
L

T

i
i

i
�

�

�
� . (6)

If some kernel/s cannot satisfy this expression, we will
choose the lowest Ci and its Li will take the highest
possible value, as in the example of Fig. 1.a. Then, this
kernel will not be considered in the next computation of
equation (6). This process is repeated until a feasible

solution is obtained. As the reader may imagine, the
complexity of this algorithm is very low, and it can easily
handle sets with a big number of kernels, generating the
optimal solution in very short times.

4. Allocation for Power Optimization

The solution presented in section 3 minimizes the total

number of loadings, and consequently not only optimizes
reconfiguration latency, but also reduces the number of
context replacements, which improves power consump-
tion. At the level of abstraction we are working on, power
can only be reduced by minimizing the number of bit level
transitions of the CM cells. Thus, we have to explore
context allocation alternatives, in order to find the con-
figuration replacements with the lowest number of bit
changes. Fig. 2 illustrates the allocation of a bit specifica-
tion of dynamic contexts for a small example of three
kernels and a CM with contexts of 4 bits.

The only way to evaluate the power consumption that a
specific replacement implies is to count the number of bit
changes between contexts. At first sight, it may seem that
the number of combinations is too high, since we should
obtain the bit changes between all contexts. In a solution
of the type proposed in section 3, most kernels have the
same number of context loadings, and these contexts fill
the whole dynamic part of the CM. Therefore, it is very
common that a context can only replace the contexts that
belong to the previously executed kernel, which reduces
the number of potential combinations. For example in Fig.
2, K2 contexts can only replace K1 contexts. However, for
some kernels there may be some additional possibilities.
Thus, in Fig. 2 the number of K3 context loadings is lower
than the size of the dynamic part. This implies that the
contexts of the following kernel, K1, can replace either K2
or K3 contexts, what introduces additional choices. To
generalize this idea, we could say that a given context can
replace any previously executed one, only if the dynamic
part of the CM is not completely used between the
corresponding kernel executions, like between kernels K2
and K1. In this case we will say that there is a direct path

L2=4 L3=2 L1=4L1=4

K1 1010
K1 0011
K1 0101
K1 1011

1
1
1
3

K2 1000
K2 0111
K2 0100
K2 0000

0
0
1
2

K2 1000
K2 0111
K3 1100
K3 0110

Beginning
of K1

Beginning
of K2

Beginning
of K3

1
1
2
3

K1 1010
K1 0011
K1 0101
K1 1011

Beginning
of K1

...

Fig. 2. Snapshots of the CM dynamic part for a possible scheduling showing
some hypothetical allocation of contexts of 4 bits. The dotted arrow indicates
the number of bit changes for a context allocation.

between contexts (which can also be applied to
consecutive kernels).

The procedure that we propose requires computing BC
(number of bit changes) between all the contexts with a
direct path. Fig. 3 shows the possible direct paths and its
BCs to one K1 context. BC characterizes each
replacement, and can be used as a guideline to build the
final allocation. In this way, if the replacements with the
lowest BC are consecutively allocated we will obtain a
solution with a low total BC. This BC will be optimal if it
is composed of all the replacements with lowest BC.
However, we might think that sometimes the optimal set
of replacements cannot be obtained in this manner,
because the selection of some particular replacements
might prevent some future selections that may produce an
overall BC reduction. In order to check this kind of
solutions we could explore some replacement allocations
that produce a BC increase. Then, if no improvement is
obtained later, these replacements will be discarded.

Fig. 4 illustrates the exploration process. First, the
replacements are numbered in ascending order in
accordance to BC. The replacements with the lowest
number (that can be allocated) are evaluated up to a
certain depth. For example in Fig. 4 the first branch of the
exploration tree is explored to a depth of 3, and it is
composed of the replacements {1,2,5}. Note that it is
assumed that the allocation of replacements 1 and 2
prevent the allocation of 3 and 4, which forces to allocate
5. Then, we check for some solutions that might improve
the result. Thus, in Fig. 4 we now consider the branch
{1,3,4}, which in some cases may improve the result of
the first branch. It depends on the actual values of BC. It
should be noted that it is not necessary to explore any
branch that begins with {2,...}, since the best possible
branch would be {2,3,4}, which is certainly equal or
worse that any of the two explored. All the elements of
{2,3,4} are equal or worse than {1,3,4}. This
consideration dramatically reduces the exploration time,
since the exploration of all the branches may imply a

combinatorial explosion even if carried out up to a small
depth. After that, the best replacement (1 in the figure) is
allocated and the exploration continues in the same way.

As the exploration depth grows the probability of
finding a better solution increases. In the limit, when the
depth equals the number of possible replacements, the
optimal solution is always found. However, the experience
shows that the exploration time grows exponentially as the
depth increases, which makes unfeasible to perform the
optimal exploration in medium and big size problems. The
higher depth that can be handled is typically around 15.

It should be noted that if the tree is visited from the top
to any leaf, it is not possible to find a descending edge
sequence. This fact guarantees that every solution is only
generated once. For example, the replacement sequence,
{4,1,3}, will never be generated, as it is equivalent to the
sequence {1,3,4}.

5. Experimental Results

We have carried out a series of experiments in order to

demonstrate the effectiveness of the proposed techniques.
We have chosen MorphoSys [11-12] as the target multi-
context system in order to use real system parameters.
MorphoSys has a configuration memory of 32 contexts,
and each one is composed of 8 words of 32 bits.
Therefore, each context has a total of 256 bits. This data
has been used in order to generate the experiment
information as explained below.

The experiments are formed of three real applications,
as well as a set of randomly generated ones. MPEG is a
standard for video compression, while ATR stands for
Automatic Target Recognition and we consider its two
main tasks SLD (Second Level Detection) and FI (Final
Identification). Both tasks, SLD and FI, have the same
number of kernels and contexts, and therefore we present

K1 1010

K2 1000

K2 0111

K2 0100

K2 0000

K3 1100

K3 0110

BC=1
BC=3

BC=3

BC=2
BC=2

BC=2

Fig. 3. Evaluation of CM possible
replacements of Fig. 2, between one K1
context and the contexts with a direct path.
BC is the number of bit changes between
contexts.

0

d .

3

c .

5

a .

1

b .

2

2

e .

4

c .

5

Fig. 4. Exploration tree example. The
exploration depth is assumed to be 3. The
replacements have been numbered in
ascending order of BC, and the edge labels
stand for the explored replacements.

the results for only one experiment. As shown in Table 1
the proposed methodology generates similar results for
both, real and synthetic experiments.

The numbers of contexts in the real applications (for
example {8,4,21,6,6,21,4} for MPEG) correspond to real
data, however all the configuration patterns have been
randomly generated, since we do not know its actual form.
In a first approach all the bits were independently
generated. This led us to a completely random structure
such that any replacement implied almost the same
number of bit changes. As this is not the real case, we
decided to change the configuration generation procedure.
In a system like MorphoSys each 32-bit context word
configures the functionality of one single reconfigurable
cell. The structure of a context word is not completely
random, and keeps within certain ranges. Moreover, a
particular functionality of a cell may be later reused by a
later implemented context. The replacement of these two
cell configurations would produce no power consumption.
Consequently, first we randomly generated a big number
of 32-bit context words within the architectural
constraints, and then configurations were randomly
composed of the generated context words. This enables us
to generate experiments with similar features to real
applications.

In order to demonstrate that the proposed scheduling
technique always generates the optimal solution for
context scheduling, we implemented an exhaustive search
algorithm, which can explore the whole search space for
medium and small size examples (lower than 7). The
results for both methods match in all those cases, however
the exploration time is order of magnitudes smaller for our
algorithm.

Table 1 and Fig. 5 summarizes the experimental results
we have obtained. In order to compare the configuration
latency and power consumption improvements, we present
the number of context loadings (LT) and bit changes (BC)
for the proposed technique, as well as for three greedy
approaches that do not perform some of the proposed
optimizations.
1. The first algorithm only performs context loading (LT)

optimizations (column 6 in Table 1 and white bars in
Fig. 5). BC is obtained when allocation is not
considered. The relative increments are within 12-30%
worse than the proposed approach.

2. The results presented in columns 7-8 and the gray bars
in Fig. 5, show for only allocation optimizations. In this
case we assume that contexts are loaded when
necessary. Now BC increments range from 5% to 74%.
Similarly, LT increments range form 5 to 82%.

Proposed solution
(All optimizations)

Only LT
optimi-
zations

Only allocation
optimizations

Without
optimi-
zations

Exploration time Experimental data

L
T
 BC

Depth=1 Depth=12

BC
(RI)

L
Ti

(RI)
BC
(RI)

BC
(RI)

Ex1:
N

T
=3; C

i
={10,15,25} 27 2448 0.01s 19.78s 3160

(29%)
40

(48%)
3504
(43%)

4756
(94%)

Ex2:
N

T
=4; C

i
={26,15,30,17} 80 7208 0.12s 18.71s 9372

(30%)
84

(5%)
7578
(5%)

9850
(37%)

ATR (SLD and FI):
 NT

=4; C
i
={24,24,24,12} 72 6882 0.06s 2.37s 8724

(27%)
84

(17%)
8104
(18%)

10178
(48%)

Ex3:
N

T
=5; C

i
={20,5,7,18,3} 28 2998 0.02s 19.36s 3472

(16%)
51

(82%)
5226
(74%)

6330
(111%)

Ex4:
N

T
=6; C

i
={8,10,16,3,4,21} 38 3978 0.02s 9.69s 4771

(20%)
57

(50%)
5890
(48%)

7228
(82%)

Ex5:
N

T
=7; C

i
={25,8,10,2,9,11,6} 47 5192 0.02s 7.68s 5767

(11%)
57

(21%)
6238
(20%)

6980
(34%)

MPEG:
 NT

=7; C
i
={8,4,21,6,6,21,4} 48 5108 0.05s 41.48s 5928

(16%)
70

(46%)
7272
(42%)

8572
(68%)

Ex5:
N

T
=8; C

i
={10,5,9,3,8,12,20,2} 44 4954 0.02s 15.34s 5582

(13%)
61

(39%)
6808
(37%)

7784
(57%)

Ex6:
N

T
=12;C

i
={10,5,12,2,15,1,7,9,22,1,3,8} 78 9575 0.18s 430.74s 11084

(16%)
92

(18%)
10641
(11%)

12844
(34%)

Ex7: NT
=15

C
i
={15,2,8,19,7,9,17,1,25,13,8,2,1,6,8} 129 15347 0.26s 161.04s 17704

(15%)
139
(8%)

16038
(5%)

19010
(24%)

Ex8: NT
=20

C
i
={8,7,12,20,4,2,17,5,25,7,4,24,3,6,8,

4,6,5,10,20}
184 20794 0.7s 92.31s 23414

(13%)
196
(7%)

21971
(6%)

24926
(20%)

LT = Total number of context loadings. BC= Number of bit changes. RI= Relative increment of BC with
respect to the proposed solution when some of the optimizations are not performed.

Table 1. Experimental results.

3. Finally, we present the results for the first generated
solution when no optimization is considered (column 9
in Table 1 and black bars in Fig. 5). BC increments are
now really big: 20-111%. LT is the same as in point 2.
In all cases the performance and power improvements

are clearly significant.
We have carried out all experiments for a depth range

from 1 to 12, and the impact on the final result is
negligible. The reason is that most contexts replace just
executed contexts, which does not prevent the allocation
of other replacements. The replacement with lowest BC
can almost always be allocated leading to a quasi-optimal
solution. In the table we show the exploration time for two
different values of depth. The algorithm is carried out in a
really short exploration time for a depth= 1. We could say
that the proposed technique provides substantial
performance and power improvements in very short
exploration times.

6. Conclusions and Future Work

In this paper we have presented a new approach to the
problem of context scheduling and allocation for multi-
context reconfigurable systems targeting DSP and multi-
media applications. The goals of this approach are to
minimize configuration latency and power consumption.
The analysis of a mathematical model enabled us to
deduce an algorithm for context scheduling that generates
the optimal solution in all cases. We also propose a
technique to efficiently explore context allocation
possibilities, which leads to an overall power
improvement without affecting the achieved system
performance. The effectiveness of the proposed work is
analyzed in the experimental results section. The results
for real application and synthetic experiments validate our
assumptions, and show the quality of the technique. Future
work will explore the power improvements that can be
obtained when we additionally consider configuration
latency increases.

References

[1] G. Lu, H. Singh, M. Lee, N. Bagherzadeh, F. J. Kurdahi, E.

M. C. Filho, “MorphoSys: An Integrated Re-configurable
Architecture”, Proceedings of the 5th International Euro-Par
Conference Toulouse, France, August/September 1999, pp. 727-
734

[2] R. Maestre, F. J. Kurdahi, N. Bagherzadeh, H. Singh, R.
Hermida, M. Fernandez, “Kernel Scheduling in Reconfigurable
Computing”, DATE Proceedings, pp. 90-96, 1999.

[3] R. Maestre, M. Fernandez, R. Hermida, N. Bagherzadeh,
“A Framework for Scheduling and Context Allocation in
Reconfigurable Computing”, International Symposium on
System Synthesis Proceedings, San Jose, California, USA,
pp.134-140, November 1999.

[4] I.Ouaiss, S. Govindarajan, V. Srinivasan, M. Kaul and R.
Vemuri, "An Integrated Partitioning and Synthesis system for
Dynamically Reconfigurable Multi-FPGA Architectures", 5th
Reconfigurable Architectures Workshop, 1998 (RAW'98).

[5] M. Vasilko and D. Ait-Boudaoud, "Architectural Synthesis
Techniques for Dynamically Reconfigurable Logic", 6th
International Workshop on Field-Programmable Logic and
Applications, FPL '96 Proceedings, pp.290-296.

[6] M. Vasilko and D. Ait-Boudaoud, "Scheduling for
Dynamically Reconfigurable FPGAs", in Proceeding of
International Workshop on Logic and Architecture Synthesis,
IFIP TC10 WG10.5, Grenoble, France, Dec. 18-19, 1995, pp.
328-336.

[7] K. M. GajjalaPurna, D. Bhatia, "Temporal partitioning and
scheduling for reconfigurable computing", Proceedings of IEEE
Symposium on FPGAs for Custom Computing Machines, 1998,
pp. .329-330.

[8] S. Hauck, “Configuration Prefetch for Single Context
Reconfigurable Coprocessors” ACM/SIGDA International
Symposium on Field-Programmable Gate Arrays, pp. 65-74,
1998.

[9] K. M. GajjalaPurna, D. Bhatia, "Temporal partitioning and
scheduling for reconfigurable computing", Proceedings of IEEE
Symposium on FPGAs for Custom Computing Machines, 1998,
pp. .329-330.

[10] M. Kaul and R. Vemuri, “Temporal Partitioning
Combined with Design Space Exploration for Latency
Minimization of Run-Time Reconfigured Designs”, Design,
Automation and Test In Europe Proceedings, 1999 (DATE’99),
pp. 202-209.

[11] H. Singh, M. Lee, G. Lu, F. J. Kurdahi, N. Bagherzadeh,
T. Lang, R. Heaton and E. M. C. Filho, “MorphoSys: An
Integrated Re-configurable Architecture”, Proceedings of the
NATO Symposium on System Concepts and Integration,
Monterey, CA, April 1998.

[12] H. Singh, N. Bagherzadeh, F. J. Kurdahi, G. Lu, M. Lee,
E. Chaves, R. Maestre, “MorphoSys: Case Study of a Recon-
figurable Computing System Targeting Multimedia Applica-
tions”, Design Automation Conference Proceedings, DAC-2000.

0

20

40

60

80

100

120

C

E
x1

E
x2

A
T

R

E
x3

E
x4

E
x5

M
P

E
G

E
x6

E
x7

E
x8

E
x9

E xperim ents

O n ly load ing op tim iz a tion
O n ly a lloc a tion op tim iz a tions
No op tim iz a tion

Fig. 5. Relative increment of BC when the
proposed optimizations are not performed.

