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Abstract 
In this paper, we present a novel solution to the problem 
of configuration management for multi-context 
reconfigurable systems targeting DSP applications, its 
goal being to minimize both, configuration latency and 
power consumption. We assume that this technique is 
applied within a larger compilation framework, which 
provides a scheduled task sequence of the considered 
application. Reconfiguration latency reduction is the first 
criteria to consider, and we prove that the optimal 
solution can be obtained in all cases. Secondly, power is 
optimized without affecting performance. The 
assumptions of the method are supported by the analysis 
of a mathematical model, and its effectiveness is 
demonstrated by some experiments. 
 
1. Introduction 

 
Reconfigurable computing combines a reconfigurable 

hardware processing unit with a programmable processor. 
The processor orchestrates the whole system and it may 
be also used for computations so as to contribute to the 
overall throughput. The reconfigurable hardware 
implements the core of computations. This kind of 
computing is consolidating as a viable design alternative 
to implement a wide range of computationally intensive 
applications. Its main advantage is clearly its versatility. 
These systems can be adapted to almost any target 
application, achieving an acceptable degree of 
performance in many cases. Most reconfigurable systems 
exploit its whole processing potential when executing 
applications with a lot of inherent parallelism. DSP and 
multimedia applications are some of those applications. 
This is why our work is focused on them. Additionally, 
this kind of applications have an internal structure with 
some features, such as regularity, that may be exploited in 
order to simplify the problem formulation. 

The execution of such complex applications requires 
implementing consecutively different configurations 
during computation, which is called run-time 
reconfiguration. The term dynamic reconfiguration 
restricts this concept for the cases such that the 
reconfiguration overhead does not imply an essential 
computation stall. As the technology has produced devices 
with shorter reconfiguration times, the idea of dynamic 
reconfiguration has become a viable possibility. We could 
say that dynamic reconfiguration permits the 
consideration of a new dimension in the design space, 
time multiplexing of hardware resources. Instead of 
increasing the number of available resources, the 
configurations are swapped in and out of the actual 
hardware, as they are needed. Dynamic reconfiguration 
may be implemented in two different configuration 
memory styles. One of them allows selective access to the 
reconfiguration memory in a particular region of the 
reconfigurable device. At the same time the rest of the 
device remains fully operational. Xilinx XC6200 family is 
one example of this choice. In this kind of devices the 
portion of the hardware that is being reconfigured cannot 
be used. Recently, multi-context architectures have 
appeared to facilitate and accelerate the configuration 
switch [1]. They can store a set of different contexts 
(configurations) in a context memory. When a new 
configuration is needed, it is loaded from the context 
memory if available. As the context memory is on-chip, 
this operation is much faster than the reconfiguration from 
an external memory. For example, MorphoSys 
architecture [1] has a context memory that can store 32 
different contexts, and a full change of context only takes 
one clock cycle, compared to one single context transfer 
from the external memory which takes more than 200 
cycles. However, the context memory cannot store all the 
configurations of a specific application. Therefore, it is 
obvious that reconfiguration time may be dramatically 
reduced, but only if the context memory is carefully 
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managed. We address the problem for multi-context 
architectures with an undefined number of contexts. 

Besides performance, the minimization of power 
consumption is another very important issue that should 
be considered, at least for portable systems. Power in 
CMOS integrated circuits is mainly caused by the 
switching activity of internal capacitances. This means 
that power consumption can be reduced if we find a way 
to decrease the switching activity as much as possible in 
the whole chip. Although this kind of optimization can be 
performed at different compilation steps, we address this 
problem from the configuration scheduling and allocation 
point of view; therefore optimizations are physically 
restricted to the context (configuration) memory. 

As typical applications are usually so demanding, 
performance is the first optimization factor to consider so 
that timing constraints are met. Additionally, the optimal 
solution for configuration minimizes the number of 
configuration swaps, which simultaneously produces a 
positive effect on power consumption. Then, the solutions 
with the same latency are explored to achieve further 
power improvements. 

This work assumes that the different tasks that compose 
the target application have already been scheduled. This 
task scheduling can be obtained through the approach to 
scheduling in reconfigurable computing presented in [2]. 
It is the first step of a whole design development 
framework [3]. This scheduling technique provides the 
best task execution order, although the effect of the 
following tasks is only estimated. The current work is a 
part of the second step of this framework, and its goal is to 
accomplish the degree of performance that the scheduling 
task assumed, while optimizing power consumption. 

Reconfigurable computing is an emerging area of 
computing that has opened many different research fields. 
For example, scheduling is an area that, although has been 
widely investigated in other fields, needs to incorporate 
the characteristics of this kind of systems. As a matter of 
fact, most approaches are versions of existing high-level 
synthesis techniques, extended to consider specific 
features of reconfigurable systems, such as the 
reconfiguration time [4]-[7]. More especially, context 
scheduling is a relatively new problem that has received 
little attention. To the best of our knowledge, [3] and [8] 
are the only work that explicitly tackles this issue. [8] 
addresses reconfiguration overhead reduction through 
configuration prefetch. However, its applicability is 
restricted to single context architectures. In [3] a heuristic 
solution to the current problem for multi-context 
architectures is presented. Other scheduling 
methodologies in reconfigurable computing, like [10,11], 
do not explicitly address this issue. Finally, we will 
mention that we have not found any previous work about 
power optimizations for multi-context systems. 

The paper is organized into 6 sections. Section 2 
introduces the relevant issues, and provides a first 
approach to the problem. Section 3 analyzes the 
minimization of context loading, which improves both 
performance and power consumption. Section 4 is 
devoted to the allocation of memory replacements, whose 
goal it to achieve the lowest power consumption for the 
optimal performance scheduling. Then, section 5 
summarizes the experimental results that have been 
obtained. Finally, section 6 concludes the paper. 

 
2. Problem Overview 

 
A typical DSP or multimedia application is composed 

of a sequence of macro-tasks that are repeatedly executed 
as a loop. We use the term kernel to refer to one of those 
well-defined macro-tasks [2]. Some examples of those 
applications are MPEG (video compression and 
decompression), JPEG (image compression) and ATR 
(Automatic Target Recognition), whereas DCT (Discrete 
Cosine Transform) or ME (Motion Estimation) may 
exemplify some of these kernels. Hence, in this paper we 
will assume that any kernel sequence is periodic. 
Moreover, as the kernels of those applications can be 
scheduled through the algorithm presented in [2], the 
resulting kernel scheduling constitutes the input to our 
problem. 

In order to provide an intuitive approach to the 
problem, we will consider the examples shown in Fig. 1. 
The figure represents the status of the CM (Context 
Memory) by means of some CM snapshots taken just 
before the beginning of a kernel execution. We have 
represented one single inner iteration of the periodic 
sequence. A whole kernel execution implies the 
implementation of a specific sequence of contexts, which 
will be assumed to be in the CM during its corresponding 
kernel execution. As a kernel always uses the same 
contexts, it may be possible to keep some of them in the 
memory, and reuse them in the next kernel execution. We 
will use the term static to refer to those contexts. On the 
other hand, the rest of the context will have to be loaded 
before the beginning of the next execution, and they will 
be stored in the remaining part of the CM. These contexts 
will be called dynamic contexts. Thus, dynamic contexts 
imply loading time, whereas static contexts save loading 
time, and hence we should maximize the static part of the 
CM. For example Fig. 1 illustrates two solutions with 
different static sizes, and LT (total number of context 
loadings) is bigger for the example with less static 
contexts (Fig. 1.a). 

In subsequent sections we will prove that the static part 
is maximized, and thus LT is minimized, when the 
numbers of loadings for all kernels (all Li) are as equal as 
possible, but first we will provide a brief idea here. 



Imagine one of those solutions, like the one presented in 
Fig. 1.a. If Li were bigger for at least one kernel, this 
would reduce the size of the static part, and therefore 
some static contexts would become dynamic and should 
be later reloaded. This fact would certainly increase the 
total number of loadings. Fig. 1.b represents a solution 
such that Li substantially different for every kernel. As 
shown the solution is worse. In this example the criteria to 
build this solution has been that the number of loadings 
for a kernel is proportional to its context size. 

Similarly, if context loadings are accomplished too 
soon, they will occupy CM positions, which will reduce 
the number of static positions. Therefore, context loadings 
have to be performed as late as possible (ALAP). 

The minimization of context loadings optimizes 
reconfiguration latency, but at the same time it potentially 
improves the power consumption, since the total number 
of transitions from “0” to “1” of the internal capacitance 
associated to individual CM cells is kept within low 
values. Once the solution with the lowest latency has been 
generated, power can be further optimized. So far we have 
not considered context allocation, which will directly 
influence power. The number of bit changes that implies 
the consecutive loading of two configurations in the same 
CM position determines the actual power consumption, 
and there are many different configuration replacements 
for a given schedule. For example, in Fig. 1.a K1 contexts 
can replace any of K3 or K4 contexts. The exploration of 
the alternatives will lead to different power numbers. 

All the previous ideas are analyzed in detail in the 
following sections. 

 
3. Analysis of Context Loading 

Minimization 
 
In this section we present the mathematical analysis 

that leads us to the optimal solution in terms of number of 
context loadings, which optimizes performance, besides 
reducing power consumption. The reasoning is based on 
the fact that the size of the CM (SCM) is a physical con-
straint that has to be fulfilled in all cases. It is obvious that 
the number of both, dynamic and static contexts cannot 
exceed SCM. We suggest the reader to use Fig. 1 in order 
to visualize the meaning of the expressions. 

The dynamic part of the CM (Dyn) is given by the 
maximum number of context loadings (Li): 
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On the other hand, the static part of the CM (Stc) is 
composed of the contexts that are not loaded every 
iteration (Ci - Li), thus if Ci is the number of contexts for 
kernel Ki,
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Therefore, the total size of the context memory is: 
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Size of contexts: { C1= 14, C2= 19, C3= 23, C4= 6 }

32

a. b.

Execution flow
......

Beginning
of K1

Beginning
of K2

Beginning
of K3

Beginning
of K4

32

L2=12 L3=12 L4=6L1=12

12

20
K2 7

K1 2

K1 12

K3 11

K2 7

K1 2

K2 12

K3 11

K2 7

K1 2

K3 12

K3 11

K2 7

K1 2

K4 6

K3 11

K3 6 Dynamic
Contexts

Static 
Contexts

Execution flow
......

Beginning
of K1

Beginning
of K2

Beginning
of K3

Beginning
of K4

K1 3 K1 3 K1 3 K1 3

K1 11 K2 15 K3 17

K4 4

K3 13

K3 6 K3 6 K3 6 K3 6
K4 2 K4 2 K4 2 K4 2

K2 4 K2 4 K2 4 K2 4

K3 6

17

15

K3 2

L2=15 L3=17 L4=4L1=11

Number of context loadings for the optimal solution:
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Number of context loadings for a non-optimal solution:
{ L1= 11, L2= 15, L3= 17, L4= 4 } � LT=47  

Fig. 1. CM snapshots for two possible context loading schedules. The snapshots have been  
taken just at the beginning of each kernel execution, and show the content of the CM positions. 
Ki stands for the kernel “i”. Li represents the number of loadings regarding kernel Ki, and LT is 
the total number of context loadings. Ci is the number of contexts for kernel Ki. The triangles 
depict the loaded contexts. 
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From (3) we can express the total number of loadings 
as: 
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This expression proves the idea introduced in the 
previous section. If Li is bigger for a particular kernel, Ki, 
than Lj for the others, this one will determine the lowest 
feasible value of LT. Hence, if Li for all kernels take the 
same value and expression (4) is fulfilled, this will be the 
optimal solution in terms of reconfiguration latency. It 
should be noted that as the number of context loadings for 
a kernel cannot exceed its number of contexts (that is Ci t 
Li), all Li have to be at least as equal as possible. For 
example in Fig. 1.a as C4 t L4 the maximum value for Li is 
4. However, the rest of the kernels can fulfill the 
requirements, and thus it minimizes the total number of 
loadings, LT. Thus, for the example in Fig. 1.a:
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If any Li is increased LT will also be increased, and 
hence the example in Fig. 1.a is the optimal solution. 

In order to obtain the best Li distribution, we will make 
the assumption that all the kernels may have equal values 
of Li, A = Li, which means that MAX(Li) = A, and LT = 
NT*Li, where NT is the total number of kernels. 
Consequently, from (4):
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If some kernel/s cannot satisfy this expression, we will 
choose the lowest Ci and its Li will take the highest 
possible value, as in the example of Fig. 1.a. Then, this 
kernel will not be considered in the next computation of 
equation (6). This process is repeated until a feasible 

solution is obtained. As the reader may imagine, the 
complexity of this algorithm is very low, and it can easily 
handle sets with a big number of kernels, generating the 
optimal solution in very short times. 

 
4. Allocation for Power Optimization 

 
The solution presented in section 3 minimizes the total 

number of loadings, and consequently not only optimizes 
reconfiguration latency, but also reduces the number of 
context replacements, which improves power consump-
tion. At the level of abstraction we are working on, power 
can only be reduced by minimizing the number of bit level 
transitions of the CM cells. Thus, we have to explore 
context allocation alternatives, in order to find the con-
figuration replacements with the lowest number of bit 
changes. Fig. 2 illustrates the allocation of a bit specifica-
tion of dynamic contexts for a small example of three 
kernels and a CM with contexts of 4 bits. 

The only way to evaluate the power consumption that a 
specific replacement implies is to count the number of bit 
changes between contexts. At first sight, it may seem that 
the number of combinations is too high, since we should 
obtain the bit changes between all contexts. In a solution 
of the type proposed in section 3, most kernels have the 
same number of context loadings, and these contexts fill 
the whole dynamic part of the CM. Therefore, it is very 
common that a context can only replace the contexts that 
belong to the previously executed kernel, which reduces 
the number of potential combinations. For example in Fig. 
2, K2 contexts can only replace K1 contexts. However, for 
some kernels there may be some additional possibilities. 
Thus, in Fig. 2 the number of K3 context loadings is lower 
than the size of the dynamic part. This implies that the 
contexts of the following kernel, K1, can replace either K2 
or K3 contexts, what introduces additional choices. To 
generalize this idea, we could say that a given context can 
replace any previously executed one, only if the dynamic 
part of the CM is not completely used between the 
corresponding kernel executions, like between kernels K2 
and K1. In this case we will say that there is a direct path 
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Fig. 2. Snapshots of the CM dynamic part for a possible scheduling showing 
some hypothetical allocation of contexts of 4 bits. The dotted arrow indicates 
the number of bit changes for a context allocation. 



between contexts (which can also be applied to 
consecutive kernels). 

The procedure that we propose requires computing BC 
(number of bit changes) between all the contexts with a 
direct path. Fig. 3 shows the possible direct paths and its 
BCs to one K1 context. BC characterizes each 
replacement, and can be used as a guideline to build the 
final allocation. In this way, if the replacements with the 
lowest BC are consecutively allocated we will obtain a 
solution with a low total BC. This BC will be optimal if it 
is composed of all the replacements with lowest BC. 
However, we might think that sometimes the optimal set 
of replacements cannot be obtained in this manner, 
because the selection of some particular replacements 
might prevent some future selections that may produce an 
overall BC reduction. In order to check this kind of 
solutions we could explore some replacement allocations 
that produce a BC increase. Then, if no improvement is 
obtained later, these replacements will be discarded. 

Fig. 4 illustrates the exploration process. First, the 
replacements are numbered in ascending order in 
accordance to BC. The replacements with the lowest 
number (that can be allocated) are evaluated up to a 
certain depth. For example in Fig. 4 the first branch of the 
exploration tree is explored to a depth of 3, and it is 
composed of the replacements {1,2,5}. Note that it is 
assumed that the allocation of replacements 1 and 2 
prevent the allocation of 3 and 4, which forces to allocate 
5. Then, we check for some solutions that might improve 
the result. Thus, in Fig. 4 we now consider the branch 
{1,3,4}, which in some cases may improve the result of 
the first branch. It depends on the actual values of BC. It 
should be noted that it is not necessary to explore any 
branch that begins with {2,...}, since the best possible 
branch would be {2,3,4}, which is certainly equal or 
worse that any of the two explored. All the elements of 
{2,3,4} are equal or worse than {1,3,4}. This 
consideration dramatically reduces the exploration time, 
since the exploration of all the branches may imply a 

combinatorial explosion even if carried out up to a small 
depth. After that, the best replacement (1 in the figure) is 
allocated and the exploration continues in the same way. 

As the exploration depth grows the probability of 
finding a better solution increases. In the limit, when the 
depth equals the number of possible replacements, the 
optimal solution is always found. However, the experience 
shows that the exploration time grows exponentially as the 
depth increases, which makes unfeasible to perform the 
optimal exploration in medium and big size problems. The 
higher depth that can be handled is typically around 15. 

It should be noted that if the tree is visited from the top 
to any leaf, it is not possible to find a descending edge 
sequence. This fact guarantees that every solution is only 
generated once. For example, the replacement sequence, 
{4,1,3}, will never be generated, as it is equivalent to the 
sequence {1,3,4}. 

 
5. Experimental Results 

 
We have carried out a series of experiments in order to 

demonstrate the effectiveness of the proposed techniques. 
We have chosen MorphoSys [11-12] as the target multi-
context system in order to use real system parameters. 
MorphoSys has a configuration memory of 32 contexts, 
and each one is composed of 8 words of 32 bits. 
Therefore, each context has a total of 256 bits. This data 
has been used in order to generate the experiment 
information as explained below. 

The experiments are formed of three real applications, 
as well as a set of randomly generated ones. MPEG is a 
standard for video compression, while ATR stands for 
Automatic Target Recognition and we consider its two 
main tasks SLD (Second Level Detection) and FI (Final 
Identification).  Both tasks, SLD and FI, have the same 
number of kernels and contexts, and therefore we present 
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the results for only one experiment. As shown in Table 1 
the proposed methodology generates similar results for 
both, real and synthetic experiments. 

The numbers of contexts in the real applications (for 
example {8,4,21,6,6,21,4} for MPEG) correspond to real 
data, however all the configuration patterns have been 
randomly generated, since we do not know its actual form. 
In a first approach all the bits were independently 
generated. This led us to a completely random structure 
such that any replacement implied almost the same 
number of bit changes. As this is not the real case, we 
decided to change the configuration generation procedure. 
In a system like MorphoSys each 32-bit context word 
configures the functionality of one single reconfigurable 
cell. The structure of a context word is not completely 
random, and keeps within certain ranges. Moreover, a 
particular functionality of a cell may be later reused by a 
later implemented context. The replacement of these two 
cell configurations would produce no power consumption. 
Consequently, first we randomly generated a big number 
of 32-bit context words within the architectural 
constraints, and then configurations were randomly 
composed of the generated context words. This enables us 
to generate experiments with similar features to real 
applications. 

In order to demonstrate that the proposed scheduling 
technique always generates the optimal solution for 
context scheduling, we implemented an exhaustive search 
algorithm, which can explore the whole search space for 
medium and small size examples (lower than 7). The 
results for both methods match in all those cases, however 
the exploration time is order of magnitudes smaller for our 
algorithm. 

Table 1 and Fig. 5 summarizes the experimental results 
we have obtained. In order to compare the configuration 
latency and power consumption improvements, we present 
the number of context loadings (LT) and bit changes (BC) 
for the proposed technique, as well as for three greedy 
approaches that do not perform some of the proposed 
optimizations. 
1. The first algorithm only performs context loading (LT) 

optimizations (column 6 in Table 1 and white bars in 
Fig. 5). BC is obtained when allocation is not 
considered. The relative increments are within 12-30% 
worse than the proposed approach. 

2. The results presented in columns 7-8 and the gray bars 
in Fig. 5, show for only allocation optimizations. In this 
case we assume that contexts are loaded when 
necessary. Now BC increments range from 5% to 74%. 
Similarly, LT increments range form 5 to 82%. 

Proposed solution 
(All optimizations) 

Only LT 
optimi-
zations 

Only allocation 
optimizations 

Without 
optimi-
zations 

Exploration time Experimental data 

L
T
 BC 

Depth=1 Depth=12 

BC 
(RI) 

L
Ti 

(RI) 
BC 
(RI) 

BC 
(RI) 

Ex1:  
N

T
=3; C

i
={10,15,25} 27 2448 0.01s 19.78s 3160 

(29%) 
40 

(48%) 
3504 
(43%) 

4756 
(94%) 

Ex2: 
N

T
=4; C

i
={26,15,30,17} 80 7208 0.12s 18.71s 9372 

(30%) 
84 

(5%) 
7578 
(5%) 

9850 
(37%) 

ATR (SLD and FI): 
 NT

=4; C
i
={24,24,24,12} 72 6882 0.06s 2.37s 8724 

(27%) 
84 

(17%) 
8104 
(18%) 

10178 
(48%) 

Ex3: 
N

T
=5; C

i
={20,5,7,18,3} 28 2998 0.02s 19.36s 3472 

(16%) 
51 

(82%) 
5226 
(74%) 

6330 
(111%) 

Ex4: 
N

T
=6; C

i
={8,10,16,3,4,21} 38 3978 0.02s 9.69s 4771 

(20%) 
57 

(50%) 
5890 
(48%) 

7228 
(82%) 

Ex5: 
N

T
=7; C

i
={25,8,10,2,9,11,6} 47 5192 0.02s 7.68s 5767 

(11%) 
57 

(21%) 
6238 
(20%) 

6980 
(34%) 

MPEG: 
 NT

=7; C
i
={8,4,21,6,6,21,4} 48 5108 0.05s 41.48s 5928 

(16%) 
70 

(46%) 
7272 
(42%) 

8572 
(68%) 

Ex5:  
N

T
=8; C

i
={10,5,9,3,8,12,20,2} 44 4954 0.02s 15.34s 5582 

(13%) 
61 

(39%) 
6808 
(37%) 

7784 
(57%) 

Ex6: 
N

T
=12;C

i
={10,5,12,2,15,1,7,9,22,1,3,8} 78 9575 0.18s 430.74s 11084 

(16%) 
92 

(18%) 
10641 
(11%) 

12844 
(34%) 

Ex7: NT
=15 

C
i
={15,2,8,19,7,9,17,1,25,13,8,2,1,6,8} 129 15347 0.26s 161.04s 17704 

(15%) 
139 
(8%) 

16038 
(5%) 

19010 
(24%) 

Ex8: NT
=20 

C
i
={8,7,12,20,4,2,17,5,25,7,4,24,3,6,8,

4,6,5,10,20} 
184 20794 0.7s 92.31s 23414 

(13%) 
196 
(7%) 

21971 
(6%) 

24926 
(20%) 

LT = Total number of context loadings. BC= Number of bit changes. RI= Relative increment of BC with 
respect to the proposed solution when some of the optimizations are not performed. 

Table 1. Experimental results. 



3. Finally, we present the results for the first generated 
solution when no optimization is considered (column 9 
in Table 1 and black bars in Fig. 5). BC increments are 
now really big: 20-111%. LT is the same as in point 2. 
In all cases the performance and power improvements 

are clearly significant.  
We have carried out all experiments for a depth range 

from 1 to 12, and the impact on the final result is 
negligible. The reason is that most contexts replace just 
executed contexts, which does not prevent the allocation 
of other replacements. The replacement with lowest BC 
can almost always be allocated leading to a quasi-optimal 
solution. In the table we show the exploration time for two 
different values of depth. The algorithm is carried out in a 
really short exploration time for a depth= 1. We could say 
that the proposed technique provides substantial 
performance and power improvements in very short 
exploration times. 

 
6. Conclusions and Future Work 
 

In this paper we have presented a new approach to the 
problem of context scheduling and allocation for multi-
context reconfigurable systems targeting DSP and multi-
media applications. The goals of this approach are to 
minimize configuration latency and power consumption. 
The analysis of a mathematical model enabled us to 
deduce an algorithm for context scheduling that generates 
the optimal solution in all cases. We also propose a 
technique to efficiently explore context allocation 
possibilities, which leads to an overall power 
improvement without affecting the achieved system 
performance. The effectiveness of the proposed work is 
analyzed in the experimental results section. The results 
for real application and synthetic experiments validate our 
assumptions, and show the quality of the technique. Future 
work will explore the power improvements that can be 
obtained when we additionally consider configuration 
latency increases. 
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Fig. 5. Relative increment of BC when the 
proposed optimizations are not performed. 


