
Vom Fachbereich für Mathematik und Informatik

der Technischen Universität Braunschweig

genehmigte Dissertation

zur Erlangung des Grades eines

Doktor-Ingenieurs (Dr.-Ing.)

Andreas Zeller

Configuration Management with Version Sets

A Unified Software Versioning Model

and its Applications

1. April 1997

1. Referent: Prof. Dr. Gregor Snelting

2. Referent: Prof. Dr. Walter F. Tichy

Eingereicht am: 1. November 1996

Zeller, Andreas:

Configuration Management with Version Sets.
A Unified Software Versioning Model and its Applications.

Includes bibliographical references and index.

Revision 1.103 of thesis.tex

Created: 1997-05-22 21:42:28

Formatted: 1997-05-22 23:44:00

Please note: This electronic version differs slightly from the original paper copy. The paper
copy uses a MathTime font for mathematical symbols; this font is copyrighted by Y&Y, Inc.
and must not be distributed electronically. This electronic version uses a Computer Modern
Roman font for mathematical symbols instead. The text itself is unchanged (except for this
note); locations of section headings, figures, etc. have not changed as well.

This electronic version is available via the WWW at

http://www.cs.tu-bs.de/softech/papers/zeller-phd/

Please use this URL when referring to this work.

As an exception of the copyright rules below, you are hereby granted to reproduce this
electronic version for the purposes of viewing its contents on a screen or creating a paper
copy for personal use only, provided that the copyright note below is preserved.

Typeset by Andreas Zeller, Braunschweig using Times 10 pt
Printed at the Technische Universität Braunschweig
Bookbinding by Dissertations Druck Darmstadt (DDD), Darmstadt

Copyright c 1996, 1997 Andreas Zeller, Braunschweig.
All rights reserved. No part of this publication may be reproduced, stored in a retrieval system, or
transmitted, in any form or by any means, electronic, mechanical, photocopying, recording, or
otherwise, without the prior written permission of the publisher.

To my grandfather

Preface

GENTLE READER: This is a book about software configuration management, the

discipline to organize and control evolving software systems. In software con-

figuration management, or SCM for short, one deals with the problem of several

people developing, building, shipping, and maintaining several copies of soft-

ware products, each with an individual set of changes applied to make it fit into

a particular environment. The aim of an SCM engineer is to identify and control

these changes, such that all resulting software products are well-identified and

well-defined.

Software configuration management is a hard task, because few things are so

easy to change and so easy to propagate as software. Fortunately, a number of

automated SCM tools and systems exist that can help enforcing and maintaining

SCM procedures. Unfortunately, there are many such tools and each comes with

its own SCM policy, which is often centered on a specific environment and thus

seldom interoperates, yet alone integrates with other SCM tools. From the SCM

engineer’s point of view, this is an unfortunate situation as the entire development

process must be adapted to a specific SCM policy.

In this work, I have attempted to provide a common formal and adaptive base

for the technical aspects of software configuration management. The base I have

chosen for this integration is feature logic, a logic denoting objects by specifying

their possible attributes (or non-attributes). Characterizing objects by their fea-

tures is a common technique in SCM, and it seemed natural to me to choose a

logic based on this technique.

Using feature logic, I have been able to model and integrate common SCM

functionality such as attributed components, repositories, work spaces, variant

sets, revision histories, or consistency checking in a single concept, called ver-
sion sets. Version sets group versions, components, and configurations by their

features. SCM functionality is realized through set operations. Versions are se-

lected and refined through set intersection. Set union realizes the grouping of

v

vi Preface

versions to repositories. Subsumption and disjointness express inclusion and ex-

clusion of changes, structuring the version space.

Version sets do not introduce new concepts into SCM; instead, they expose

new ways of combining and integrating existing concepts and thus provide much

more flexibility in adapting SCM systems to their users. In short, I have designed

the version set model as an attempt to integrate the current spectrum of SCM

functionality into a single, hopefully simple and elegant formalism, allowing for

adaptive combinations of SCM concepts with predictable effects.

In science, claims are justified by proofs; in engineering, claims are justified

by simulation. Applied computer science is both a scientific and an engineering

discipline. I thus have supplied both proofs and an implementation; the resulting

SCM system ICE (for Incremental Configuration Environment), is presented and

evaluated in its own part at the end of this work. The version set model could not

have been conceived without its usability and efficiency steadily being verified in

ICE.

While conceiving and developing ICE, I have resisted the temptation to en-

rich the wide spectrum of software engineering with yet another eclectic environ-

ment, another eclectic special-purpose formalism, and another eclectic configu-

ration language. Instead, I have designed ICE to work with well-established SCM

techniques and representations wherever possible, in order to keep the learning

curve flat and the integration smooth. It is my hope that ICE will not only help to

demonstrate the effectiveness of the underlying version set model, but also be a

useful aid in addressing today’s practical SCM problems.

To make this book self-contained, the first part summarizes the state of the art

in today’s SCM practice and research, followed by an introduction to feature logic.

The version set model and ICE come in individual parts, closing with answers to

frequently asked questions. In short, this book presents today’s SCM concepts,

their common foundation, and some new applications. Enjoy!

Braunschweig A. Z.

November 1996

Abstract

Software configuration management (SCM) is the discipline for organizing and

controlling evolving complex software systems. Several SCM tools and systems

exist that automate and integrate SCM tasks like version identification, system

modeling, product construction, or team work coordination. However, the choice

of an SCM system is still a long-term commitment: Each SCM system comes

with its own SCM policy, which is often centered on a specific environment and

thus seldom interoperates, yet alone integrates with other SCM tools. This is

unfortunate, as the entire software development process must be adapted to fit the

system’s SCM policy.

We want SCM systems that adapt to their users, rather than vice versa. As a

foundation, we propose a unified versioning model, the version set model. Ver-

sion sets denote versions, components, and configurations by feature terms, that

is, boolean terms over (feature:value)-attributions. Through feature logic, a well-

established formalism for knowledge representation and logic programming, we

define the semantics of SCM tasks and concepts. Our results are as follows:

Unified versioning. Version sets provide one single formalism to express all ver-

sioning dimensions as well as constraints on them, integrating SCM con-

cepts like revisions, variants, workspaces, and configurations in one single

model. The SCM policy is not constrained by decisions made in lower SCM

layers.

Integration of changes and revisions. Configuration constraints, expressed in

feature logic, allow us to capture the entire range of temporal versioning—

from the rigidness of versions-oriented models to the flexibility of change-

oriented models.

Consistency checking under ambiguity. Through feature logic, we deduce the

features and the consistency of configurations as well as derived compo-

vii

viii Abstract

nents and thus describe how features propagate in the SCM process. In-

consistencies are detected even when the configuration description is in-

complete or ambiguous. Ambiguity is not only tolerated in consistency

checking; at all SCM layers, sets rather than single items are the primary

objects of SCM tasks and procedures.

We have implemented the version set model in an experimental SCM system

named ICE for Incremental Configuration Environment. In ICE, the version set

model shows up numerous user-visible benefits. Through the FFS, a virtual file

system, users can access version sets consisting of arbitrary combinations of re-

visions, changes, variants, and workspaces. Individual versions are accessed as

files; version sets as a whole can be handled via version directories or through

the well-known C preprocessor representation. On top of the FFS, specific SCM

protocols are realized efficiently through simple file operations on version sets.

These features make ICE a universal platform for individual well-structured SCM

policies.

Zusammenfassung

Software-Konfigurationsmanagement (SCM, auch Software-Verwaltung) befaßt

sich mit der Organisation und Kontrolle des Entwicklungsprozesses komplexer

Softwaresysteme. Heute gibt es zahlreiche SCM-Werkzeuge und SCM-Systeme,

die Aufgaben wie Versionsbezeichnung, System-Modellierung, Programmkon-

struktion oder Koordination der Gruppenarbeit automatisieren und integrieren.

Allerdings bedeutet die Auswahl eines SCM-Systems immer noch eine langfristi-

ge Verpflichtung: Jedes SCM-System bringt sein eigenes Vorgehensmodell mit,

das oft auf eine bestimmte Umgebung zugeschnitten ist und deshalb nicht mit an-

deren SCM-Systemen zusammenarbeitet, von einer Integration ganz zu schwei-

gen. Das ist um so bedauerlicher, da die gesamte Software-Entwicklung an die

jeweilige Verfahrensweise angepaßt werden muß.

Wir möchten SCM-Systeme, die sich ihren Anwendern anpassen, statt umge-

kehrt. Als Grundlage schlagen wir ein vereinheitlichtes Versionierungs-Modell

vor, das Modell der Versionsmengen. Versionsmengen kennzeichnen Versio-

nen, Komponenten und Konfigurationen durch Feature-Terme – Boolesche Terme

über Ausdrücke der Art (Eigenschaft:Wert). Mit Feature-Logik, einem etablier-

ten Formalismus für Wissensrepräsentation und logische Programmierung, defi-

nieren wir Aufgaben und Konzepte des SCM. Im einzelnen erhalten wir folgende

Ergebnisse:

Vereinheitlichte Versionierung. Versionsmengen sind ein einheitlicher Forma-

lismus, mit dem alle Dimensionen der Versionierung als auch Querbezie-

hungen ausgedrückt werden. Dadurch werden SCM-Begriffe wie Revisio-

nen, Varianten, Arbeitsumgebungen, und Konfigurationen in ein einziges

Modell integriert. Das SCM-Vorgehensmodell wird nicht durch Festlegun-

gen in unteren SCM-Schichten eingeschränkt.

Integration von Änderungen und Revisionen. Konfigurationsbedingungen in

Feature-Logik decken das gesamte Spektrum zeitlicher Versionierung ab –

ix

x Zusammenfassung

von der Strenge der versionsorientierten SCM-Modelle bis zur Kombinati-

onsfreudigkeit der änderungsorientierten SCM-Modelle.

Konsistenzprüfung unter Mehrdeutigkeit. Mit Feature-Logik bestimmen wir

die Eigenschaften und Konsistenz von Konfigurationen als auch abgelei-

teter Komponenten und beschreiben so, wie sich Eigenschaften im SCM-

Prozeß fortpflanzen. Unstimmigkeiten werden auch dann entdeckt, wenn

die Konfigurationsbeschreibung unvollständig oder mehrdeutig ist. Mehr-

deutigkeit ist nicht nur bei der Konsistenzprüfung zulässig; auf allen SCM-

Ebenen arbeiten die SCM-Verfahren mit Versionsmengen statt Versionen.

Wir haben das Modell der Versionsmengen in einem experimentellen SCM-

System namens ICE implementiert (ICE = incremental configuration environment,
inkrementelle Konfigurations-Umgebung). In ICE zeigt das Modell der Versi-

onsmengen zahlreiche Vorteile für den Benutzer. Über das FFS, ein virtuelles

Dateisystem, können Anwender Versionsmengen bearbeiten, die aus beliebigen

Kombinationen von Revisionen, Varianten und Arbeitsbereichen bestehen. Ein-

zelne Versionen werden als Dateien angesprochen; Versionsmengen als ganzes

können über Versions-Verzeichnisse oder über die wohlbekannte C-Präprozessor-

Darstellung bearbeitet werden. Mit FFS als Grundlage lassen sich SCM-Verfahren

durch einfache Dateioperationen auf Versionsmengen effizient realisieren. Diese

Eigenschaften machen ICE zu einer universellen Plattform für individuelle, wohl-

strukturierte SCM-Vorgehensmodelle.

Contents

Part One The State of the Art in SCM 1

1 Configuration Management 3

1.1 The Name of the Game . 3

1.2 From CM to SCM . 4

1.3 SCM Procedures . 4

1.4 SCM Models . 5

1.5 SCM Functionality Areas . 6

2 Components Functionality 9

2.1 Versioning Dimensions . 9

2.2 Versioning Models . 10

2.3 Identifying Component Versions 11

2.4 Determining Version Differences 13

2.5 Storing Component Versions in Repositories 14

2.6 Managing Variance . 15

2.7 Managing Changes . 17

2.8 Discussion . 20

3 Structure Functionality 21

3.1 Describing the System Structure 21

3.2 System Models for SCM . 21

3.3 Selecting System Configurations 24

3.4 Integrated Configuration Languages 29

3.5 Visualizing the Configuration Space 31

3.6 Interfaces and Consistency . 32

3.7 Discussion . 35

xi

xii Contents

4 Construction Functionality 37

4.1 Component Dependencies . 37

4.2 Incremental Construction . 38

4.3 Determining Dependencies Automatically 39

4.4 Versioned Software Construction 39

4.5 Attribute Propagation . 40

4.6 Optimized Software Construction 41

4.7 Conclusion . 42

5 Team Functionality 43

5.1 Cooperation through Workspaces 43

5.2 Workspaces as Private Directories 44

5.3 Workspaces through Application Interfaces 45

5.4 Workspaces through Virtual File Systems 45

5.5 Cooperation Strategies . 48

5.6 Merging and Conflict Resolution 49

5.7 Multi-Site Development . 52

5.8 Process Functionality Areas . 53

5.9 Conclusion . 54

6 Future SCM Requirements 55

6.1 Improved Support for Variant Sets 55

6.2 Consistency of Abstract Configurations 56

6.3 Beyond Version Graphs . 56

6.4 Unified Versioning Models . 57

6.5 Flexible Process Support . 58

6.6 Improved SCM System Architectures 59

6.7 A Unified SCM Model . 60

Part Two Feature Logic 63

7 A SCM Foundation 65

7.1 First Foundation: Sets . 65

7.2 Second Foundation: Attribution 66

7.3 Third Foundation: Unification 67

7.4 Putting it all Together . 67

7.5 First Candidate: First-Order Logic 68

7.6 Second Candidate: Description Logics 68

Contents xiii

7.7 Third Candidate: Feature Logics 69

7.8 Conclusion . 69

8 Feature Logic 71

8.1 The Evolution of Feature Logic 71

8.2 Feature Logic in a Nutshell . 72

8.3 Features and Feature Algebras 73

8.4 Syntax and Semantics of Feature Terms 74

8.5 Properties of Feature Terms . 83

8.6 Conclusion . 87

Part Three The Version Set Model 89

9 Versions and Components 91

9.1 Identifying Versions . 91

9.2 Selecting Versions . 93

9.3 Making Selections Unambiguous 95

9.4 Dynamic Version Creation . 96

9.5 Assigning Features to Versions 97

9.6 Discussion . 99

10 Composing Configurations 101

10.1 Extrinsic and Intrinsic Features 101

10.2 Unifying Extrinsic Features . 102

10.3 A Unification Example . 103

10.4 Handling Intrinsic Features . 105

10.5 Properties of Configurations . 108

10.6 Configurations and Ambiguity 108

10.7 Features of Derived Components 110

10.8 Discussion . 111

11 Changes and Revisions 113

11.1 Revision Graphs . 113

11.2 Identifying Revisions . 115

11.3 Revisions and Variants . 118

11.4 Revision Constraints . 119

11.5 Constraints and Lattices . 121

11.6 An Equivalence Result . 123

xiv Contents

11.7 Discussion . 128

12 Constraints and Repositories 131

12.1 Creating Revisions with a Single Origin 131

12.2 Adding Revisions with Multiple Origins 132

12.3 Removing Revisions . 134

12.4 Orthogonal Changes . 134

12.5 Changes and Other Features . 136

12.6 Changes and Configurations . 137

12.7 Maintaining Configuration Constraints 138

12.8 Conclusion . 139

13 Cooperation Techniques 141

13.1 Working in Workspaces . 141

13.2 Conservative Cooperation Techniques 147

13.3 Optimistic Cooperation Techniques 154

13.4 Discussion . 158

14 Taming Complexity 161

14.1 Deciding Inconsistency for Simple Feature Terms 161

14.2 Deciding Inconsistency for General Feature Terms 162

14.3 A Unification Example . 163

14.4 Reduction of Feature Terms . 164

14.5 A Divide-and-Conquer Approach 166

14.6 Fast Consistency Checking for Simple Terms 167

14.7 Integrating Reduction and Fast Consistency Checking 169

14.8 Two Reduction Examples . 172

14.9 Conclusion . 175

Part Four Applications 177

15 A SCM Environment 179

15.1 The Properties of ICE . 179

15.2 Using Industry Standards . 180

15.3 A Layered Architecture . 181

Contents xv

16 Representing Version Sets 183

16.1 A Multi-Version Representation 183

16.2 Representing Feature Terms . 184

16.3 Syntax and Semantics of CPP Directives 187

16.4 File Encodings . 192

16.5 Implementation Notes . 195

16.6 Conclusion . 195

17 Handling Version Sets 197

17.1 Selecting Version Sets . 197

17.2 Changing Version Sets . 200

17.3 Creating a CPP Representation 203

17.4 File Operations on Version Sets 212

17.5 Implementation Notes . 213

17.6 Conclusion . 213

18 A Shell for Version Set Access 215

18.1 Reading Version Sets . 215

18.2 Writing Version Sets . 216

18.3 Removing Version Sets . 217

18.4 Multi-Version Merging . 218

18.5 Handling Arithmetic Constraints 219

18.6 More ICICLE Features . 220

18.7 Implementation Notes . 220

18.8 Conclusion . 220

19 The Featured File System 223

19.1 A SCM Primitives Layer . 223

19.2 Versioned Directories . 224

19.3 Version Confinements . 226

19.4 Version Shortcuts . 227

19.5 Exploring the Version Space . 229

19.6 A Configuration Browser . 232

19.7 Implementation Notes . 233

19.8 Discussion . 235

xvi Contents

20 Performance Studies 237

20.1 Working On Variants . 237

20.2 A Revision History . 241

20.3 Caching Effects . 245

20.4 Conclusion . 246

21 Efficient SCM 247

21.1 Version Selection . 247

21.2 Versioning Dimensions . 248

21.3 Configuration Consistency . 248

21.4 The Benefits of Low Coupling 248

21.5 The Benefits of High Cohesion 249

21.6 Maintaining Unstructured Software 249

21.7 Conclusion . 250

Part Five Odds and Ends 251

22 Conclusion 253

A Frequently Asked Questions 257

A.1 General Questions . 257

A.2 Topic: Feature Logic . 258

A.3 Topic: The Version Set Model 259

A.4 Topic: Complexity . 260

A.5 Topic: Applications . 261

B Obtaining ICE 263

Acknowledgements 265

About the Author 267

Curriculum Vitae . 267

Publications . 268

Bibliography 269

Abbreviations 283

Index 285

List of Figures

1.1 CM functionality requirements 7

2.1 Version kinds in a version graph 11

2.2 The object pool and some of its projections 12

2.3 Finding textual differences with DIFF 14

2.4 Selecting versions with CPP 16

2.5 Applying changes with PATCH 18

3.1 An AND/OR graph . 23

3.2 A database relationship graph 24

3.3 A SHAPE configuration rule 27

3.4 A database selection rule with preferences 28

3.5 CLEARCASE configuration rules 29

3.6 JASON configuration descriptions 30

3.7 Structural variability in PCL 31

3.8 Mapping variability in PCL . 32

3.9 Version selection from a RCE revision graph 33

3.10 Version threads . 34

3.11 A constraint diagram . 35

3.12 A JASON constraint specification 36

4.1 A simple Makefile . 38

4.2 Tool specifications in CAPITL 41

5.1 Syntax-based merging . 50

6.1 Three levels of CM services 59

9.1 Selecting component versions 94

xvii

xviii List of Figures

10.1 Consistent configurations in a text/graphic editor 104

10.2 Creating a configuration from two components 107

11.1 A revision graph . 114

11.2 Changes and revisions . 117

11.3 A revision graph as subsumption lattice 121

12.1 Adding a revision R7 with a single origin R6 132

12.2 Adding a revision R7 with two origins R5 and R6 133

12.3 Orthogonal changes . 135

12.4 Combining delta features and variant features 136

13.1 Disjoint write contexts . 142

13.2 Changes and workspaces . 143

13.3 Workspaces and configurations 144

13.4 Changing currency in a workspace 146

13.5 Users and projects . 147

13.6 Propagating changes across workspaces 149

13.7 Propagating changes through a production workspace 150

13.8 A production workspace . 151

13.9 Creating user workspaces . 151

13.10 Locking the current version 152

13.11 Changing a locked version . 152

13.12 Committing changes to the production workspace 152

13.13 Updating a workspace from the production workspace 153

13.14 Locking a variant . 153

13.15 Changing a variant . 153

13.16 Committing variant changes 154

13.17 Merging changes from the production workspace 154

13.18 A production workspace and two user workspaces 156

13.19 Changes in user workspaces 157

13.20 Simple synchronization of the production workspace 157

13.21 Updating a user’s workspace 157

13.22 Merging in a user’s workspace 158

13.23 Synchronization of the production workspace after merge . . . 158

15.1 The ICE service layers . 182

16.1 Tagging lines with feature terms 184

List of Figures xix

16.2 Multiple versions in one file with feature and CPP directives . . 185

16.3 Interpretation of #if directives 189

16.4 A program file in C encoding 192

16.5 A Makefile in text encoding 193

16.6 A C++ program file in binary encoding 193

16.7 Binary encoding with character boundaries 194

16.8 Binary encoding with line boundaries 194

17.1 Three version selections from a CPP file 198

17.2 Selecting revisions from a CPP file 199

17.3 Changing a version subset . 201

17.4 Version subsets in internal representation 201

17.5 Determining new line features 203

17.6 CPP representation after a subset change 204

17.7 Alternate CPP representations 205

18.1 Merging of version sets . 219

19.1 A versioned directory . 224

19.2 Three views of a versioned directory 225

19.3 Narrowing the configuration space in the FFS 227

19.4 Symbolic links to workspaces 228

19.5 Using virtual subdirectories to select configurations 230

19.6 Browsing through files and configurations with SKATE 233

19.7 Processes accessing the featured file system 234

20.1 xload configuration constraints 240

20.2 Revision checkin times for ICICLE, RCS, and SCCS 243

20.3 A multi-revision file . 244

List of Tables

2.1 Version-oriented vs. change-oriented models 19

8.1 Syntax and interpretation of feature terms 73

8.2 Formal denotation of feature terms 82

16.1 Representing feature terms in ASCII and as CPP expressions 186

16.2 Encoding tokens . 192

20.1 CPP symbols in xload . 238

20.2 Revision checkin times for ICICLE, RCS, and SCCS 242

20.3 ICICLE checkin times with and without reduction 242

20.4 FFS performance sample . 245

xxi

Part One

The State of the Art in SCM

1

Chapter 1

Configuration Management

We begin with a short presentation of software configuration management. We
show why software configuration management (SCM) is important in creating
complex software, we show the procedures required by SCM, and we give a brief
survey of the SCM models and SCM functionality areas as supported by today’s
automated SCM systems.

1.1 The Name of the Game

In software development, nothing is as persistent as change. Typically, we find

several individuals producing, changing, and exchanging common and individual

software parts, all oriented towards a common goal. Often, this common goal

is not a single static product, but a dynamic collection of components destined

to work with each other, where not all assemblies may result in a complete and

consistent product. There may be hundreds or thousands of such components,

with several hundred persons at different sites maintaining and changing them;

the entire development process becomes a continuous history of changes and im-

provements. To keep all these multi-version, multi-people activities under control,

the need for configuration management arises.

Configuration management (CM) is the discipline for organizing and control-

ling evolving systems. Configuration management is an old discipline, born out

of systems manufacturing. CM mandates procedures for identification of compo-

nents and their assemblies, for controlling releases and changes, for recording the

product status, and for validating the completeness and consistency of a product

[IEE88, IEE90]. Recent CM definitions [Dar91] also include areas like construc-

tion management, process management, and team work control.

3

4 Configuration Management

1.2 From CM to SCM

Software configuration management (SCM) goes beyond these CM procedures in

several ways. First, few things are as malleable as software. This adds special

complexity to configuration management because changes are easy to make, and,

in fact, occur more often than in traditional CM areas. Second, software is easily

duplicated. There may be multiple copies of a software component, some private,

some public, each having its individual set of changes which may diverge in time.

Third, software is complex. Applying a change in a single component may in-

duce hard-to-trace failures in other components. It is these properties that make

software development difficult, and which make CM significantly harder when

applied to software development.

SCM also differs from traditional CM since all components are under com-

puter control. Hence, software configuration management can be widely auto-

mated, compensating for the added complexity. Automation applies to most of the

identification and control tasks, to construction management as well as to com-

pleteness and consistency maintenance. Also, SCM tools can be integrated into

software development tools, which run on computers as well. Today, there are

several SCM tools available that automate SCM procedures. Some SCM systems

encompass the entire SCM process by combining several tools and techniques. In

this chapter, we give a brief survey of SCM functionality, as addressed by these

systems.

1.3 SCM Procedures

A standard definition of configuration management [IEE88, IEE90] mandates the

following CM procedures (cited from [Dar91]):

Identification. Reflects the structure of the product, identifies components and

their type, making them unique and accessible in some form.1

Control. Controls the release of a product and changes to it throughout its life

cycle by having controls in place that ensure consistent software via the

creation of a baseline product.

Status Accounting. Records and reports the status of components and change

requests, and gathers vital statistics about components in the product.

1The IEEE SCM standards [IEE88, IEE90] denote components by configuration items; the syn-
onyms configuration object or simply object are also found.

1.4 SCM Models 5

Audit and Review. Validates the completeness of a product and maintains

consistency among the components, ensuring that the product is a

well-defined collection of components.

Recent SCM surveys [Dar91] broaden this definition to include procedures

like construction management, process management, and team work control:

Manufacture. Manages the construction and building of the product in an

optimal manner.

Process Management. Ensures the carrying out of the organization’s

procedures, policies and life cycle model.

Team work. Controls the work and interactions between multiple developers.

When applied to software development, these CM procedures can be easily

carried out with computer support, since all software components are under com-

puter control. Several software configuration management (SCM) tools and sys-

tems are available today, automating some or all of these CM procedures and

providing a wide range of functionality.

1.4 SCM Models

In [Fei91a], Peter H. Feiler made a first approach to classify SCM functionality.

He examines the software process as it is enforced by existing SCM systems and

distinguishes four configuration management models, each introducing specific

functionality:

Checkin/Checkout Model. The basic SCM model introduces the concept of a

repository holding multiple versions of a product component. Developers

can copy versions from (check out) and to (check in) the repository.

Change-Oriented Model. As its name says, the Change-Oriented Model fo-

cuses on changes rather than on versions. In this model, versions are the

product of change set applied to a baseline. This model is useful for prop-

agating and combining changes across users and sites.

Composition Model. The Composition Model extends SCM from the compo-

nent level to the system level, introducing system models describing the

system structure and configurations denoting versions of several compo-

nents. Consistency issues are also found here.

6 Configuration Management

Long Transaction Model. The Long Transaction Model introduces the notion

of a workspace, where developers are isolated from each other’s changes.

Since Feiler’s survey, many new SCM systems have emerged, and many have ex-

tended their initial functionality to incorporate functionality that was previously

found in other SCM models. Although all of todays SCM systems are essentially

based on one of these SCM model, and although no significantly new SCM mod-

els have emerged, a more fine-grained approach is required to capture the entire

spectrum of functionality in SCM systems.

1.5 SCM Functionality Areas

In [Dar91], Susan Dart uses a typical SCM scenario to define a set of SCM func-
tionality areas users expect from today’s SCM systems, reproduced in figure 1.1

on the facing page. Although some SCM aspects are missing (notably variants
and distribution), it still constitutes a valid schema to capture SCM functionality.

Dart distinguishes between team-centered and process-centered functionality

areas. The team-centered functionality areas deal with the technical aspects of

software configuration management:

Components. Identify, classify, store and access the components that form the

product.

Structure. Represent the architecture of the product.

Construction. Support the construction of the product and its artifacts.

Team. Enable a project team to develop and maintain a family of products.

In contrast to the team-centered areas, the process-centered functionality ar-

eas (shown in grey) cover management issues:

Auditing. Keep an audit trail of the product and its process.

Accounting. Gather statistics about the product and its process.

Controlling. Control how and when changes are made.

Process. Support the management of how the product evolves.

1.5 SCM Functionality Areas 7

Workspaces
Conflict Resolution

Families

Lifecycle Support
Task Management

Communication
Documentation

System Model
Interfaces

Relationships
Selection

Consistency

Versions
Configurations

Versions of Configurations
Baselines

Project Contexts
Repository

Kinds of Components

Building
Snapshots

Optimization
Change Impact Analysis

Regeneration

History
Traceability

Logging

Statistics
Status

Reports

Access Control
Change Requests

Bug Tracing
Change Propagation

Partitioning

Accounting Controlling

Process

Auditing

Construction

Team

Structure

Components

Figure 1.1: CM functionality requirements (after [Dar91])

In this part, we give an overview on the spectrum of functionality in today’s

SCM systems, following the classification of Dart’s survey, and treating SCM mod-

els with their typical concepts. As our work is primarily concerned with the tech-

nical aspects of SCM rather than with the process areas, we focus on the team-

centered functionality areas and only sketch the process-centered functionality

areas. As a conclusion, we identify requirements for future SCM systems.

La maintenance des logiciels de grande taille est très coûteuse.
Cependant, ce thème est souvent ignoré des chercheurs.

— JEAN-MARIE FAVRE, Vers une représentation multi-langages
et multi-versions des programmes

Chapter 2

Components Functionality

We present the component functionality area, as realized in the Checkin/Checkout

Model. A central repository, shared among developers, holds all component ver-
sions as they are created. Versions are accessed by copying component versions
from the repository to a private space (check out) and copy them back again into
the repository (check in). The Checkin/Checkout Model is the simplest and oldest
SCM model; its typical realizations are Rochkind’s Source Code Control System

(SCCS) [Roc75] and Tichy’s Revision Control System (RCS) [Tic85]. As an al-
ternative, we also take a look at the Change-Oriented Model, which focuses on
managing changes instead of versions.

2.1 Versioning Dimensions

Software products are commonly broken down into several components, which

are created and maintained by different people. As these people apply changes

to software components, they create new component versions. Each version is

one of several instances of a single component. This implies that two versions

of a component should be more similar to each other than any two components

are. Depending on the context, the unqualified word component denotes either all

component versions or one single version.

Depending on the intentions of the creator, SCM literature divides versions

into three versioning dimensions [EC95]; ideally, all these dimensions should be

fully orthogonal to each other.

Historical versioning. Versions that are created to supersede a specific version,

e.g. for maintenance purposes, are called revisions [Win87]. When a new

9

10 Components Functionality

revision is created, evolution of the original version is phased out in favor of

the new revision. In practice, a revision of a component is usually created

by modifying a copy of the most recent revision. The old revisions are

permanently stored for maintenance and documenting purposes; they form

the version history or revision history of the component.

Logical versioning. In contrast to revisions, a variant is created as an alternative
to a specific version. They are created in branches, that is, parallel devel-

opment threads that may eventually be merged with the main development

thread. Permanent variants are created when the product is adapted to dif-

ferent environments. Variance can again arise in several dimensions, in-

cluding varying user requirements and varying system platforms, but also

variants for testing and debugging. These variance dimensions need no

more be orthogonal and be subject to several constraints.

Cooperative versioning. A temporary variant is a variant that will later be inte-

grated (or merged) with another variant. Temporary variants are required,

for example, to change an old revision while the new revision is already

under development. We will discuss temporary variants in the context of

cooperation strategies in section 5.5.

2.2 Versioning Models

Figure 2.1 on the next page illustrates the difference between the various version

kinds. The boxes denote various versions as they are created; an arrow from

version A to version B indicates that B was created based on A.1 The entire graph

is the version graph of the component, showing how each version was created.

In a version graph, the SCM distinction between revisions and variants is prag-

matic; deciding whether a version is a revision or a temporary variant or a perma-

nent variant can only be decided a posteriori when taking the later version graph

into account. Upon creation of a new version, the developer must choose a ver-

sion kind depending on the expected history. Since the motives of the developer

may change, it should be possible to change the version kind later.

In most SCM tools and systems, the versioning dimensions are addressed by

separate concepts; changing the version kind thus is a non-trivial task. Also, early

version control tools like SCCS [Roc75] or RCS [Tic85] were primarily conceived

for revision and change control; variance was managed by dedicated variant con-

trol tools like the C preprocessor (CPP) [KR89], discussed in section 2.6.1.

1As stated in section 3.2.2, this is called a is-derived-from relation.

2.3 Identifying Component Versions 11

Original
Version

Revisions
V

a
ri
a

n
ts

Temporary
Variant

Permanent
Variant

(third revision)

Figure 2.1: Version kinds in a version graph

Recently, new versioning models have emerged that overcome the limitations

of version graphs. In [Rei89], Reichenberger coined the term orthogonal version
management, as implemented in the VOODOO SCM tool [Rei95]. In orthogonal

version management, the universe of all components, variants, and revisions con-

stitutes a three-dimensional space, the object pool, from which projections can

be chosen to select groups of variants, revisions, or components, as illustrated in

figure 2.2 on the following page.

In [EC95], Estublier and Casallas also propose a three-dimensional versioning

model, using the historical, logical, and cooperative dimensions, as discussed

above. In contrast to Reichenberger’s orthogonal version management, however,

each dimension is accessed using different kinds of queries or services, according

to the specific needs.

2.3 Identifying Component Versions

Along with the creation of new versions comes a consistent version identification

scheme. It is common practice in SCM to use different identification schemes for

revisions as well as permanent and temporary variants.

2.3.1 Identifying Revisions

Revisions are typically identified by revision numbers which reflect their cre-

ation date: the most recent revision is the one with the highest revision number.

12 Components Functionality

Components

Variants

Revisions

Object
pool

Project
component

Revision
group

Object

Figure 2.2: The object pool and some of its projections (after [Rei89])

Numbering schemes include single integers—the first revision is named 1, the

second 2, and so on, as in CLEARCASE [Leb94]—and pairs of integers as in

SCCS [Roc75] or RCS [Tic85], sometimes called the release number and the level

number. An increment in the release number (for instance, from 2.2 to 3.1) indi-

cates a major change, an increment in the level number (from 3.1 to 3.2) indicates

a minor change. All revision control tools allow for identifying revisions by the

revision date (e.g. the time the revision was created).

In the Change-Oriented Model, revisions are identified by a list of changes

applied to the baseline, as discussed in section 2.7. The individual changes

are named; a version identified by bugfix-3, extension-5 thus has the changes

bugfix-3 and extension-5 applied.

2.3.2 Identifying Variants

Permanent variants are usually named instead of numbered, since they are not

implicitly ordered. One method, realized in the CLEARCASE system is to assign

names to edges in the version graph; zbuf.c@@/main/new GUI/color denotes

a path in the version graph of the component zbuf.c. First, the path to the main

variant is chosen, then the new graphical user interface (GUI) from this main vari-

ant, then the color variant of the GUI. As shown in the example, this identification

2.4 Determining Version Differences 13

scheme imposes a hierarchical order on the variants and is restricted to paths in the

version graph: the specification zbuf.c@@/color does not make sense, because

the major variants are not specified.

Other SCM systems use an approach independent from the version graph.

They assign a set of attribute=value pairs, where each attribute reflects a variance

dimension. For instance, a component occurring in several variants for multiple

languages and multiple operating systems can be identified by two variance di-

mensions language and operating-system. language may take values like english,

german, french and so on, while operating-system is either unix, windows, or mac.

Such schemes are also called attribution schemes. They are used in high-level

SCM systems like ADELE [Est85, Est88, EC94] or in the attributed file system
(AtFS) of SHAPE [LM88, Mah94] as well as in low-level variant control tools like

the C preprocessor, which we discuss in section 2.6.1.

For temporary variants, various identification schemes exist. The RCS and

SCCS way is to introduce additional numbering levels. That is, a variant of the

original revision 1.2 is named 1.2.1.1, with subsequent revisions 1.2.1.2, 1.2.1.3,

and so on. In CLEARCASE, there is no special distinction in identifying version

kinds.

2.4 Determining Version Differences

In order to determine changes made to software, users must be able to determine

the differences between versions. A basic procedure for this task is text file com-
parison [Tic84, MM85], as realized in the UNIX DIFF program. DIFF takes two

text files A and B as input and generates a minimal set of changes (i.e. line dele-

tions and inclusions) that are necessary to convert A into B. In figure 2.3 on the

next page, we show the output of DIFF applied to two text files tichy-cm and dart-

cm; in the DIFF output, lines occurring in tichy-cm only are prefixed with “<”;

lines occurring in dart-cm are prefixed with “>”. DIFF and DIFF-like tools are

the base of many SCM tools and systems, since they are convenient for reducing

the size of repositories (see section 2.5 for details).

Using DIFF is accurate for text data, since we can easily distinguish com-

mon lines from differing lines and manual changes are usually confined to small

regions. Differences that affect the entire file are not well handled by the DIFF al-

gorithm. This is especially true for non-text files, such as pictures, machine code

files, or compressed files, where a minimal change can affect the contents of the

entire file. In the last years, several improvements on the original DIFF algorithm

have thus been developed; it has been empirically shown that these improvements

show better performance than DIFF, notably on binary data [HVT96].

14 Components Functionality

dart-cm

Configuration
management is a
discipline
for controlling
the evolution of
systems.

tichy-cm

Configuration
management is the
discipline
of organizing and
controlling evolving
systems.

diff dart-cm tichy-cm

2c2
< management is a

> management is the
4,5c4,5
< for controlling
< the evolution of

> of organizing and
> controlling evolving

Figure 2.3: Finding textual differences with DIFF

To determine code differences in well-structured data, such as programs, a

structured representation is more effective than the textual representation. In sec-

tion 5.6, we discuss methods to determine code differences in abstract syntax

trees.

Historically, the primary objective of determining differences between ver-

sions is to save space when storing multiple versions at once, as discussed in

section 2.5. However, the difference must also be interpretable by humans to

find out what exactly changed. For these purposes, editors that keep track of

changes [MAM93, WG95] have been created; they track and express differences

in terms of user interactions rather than in terms of changed blocks of data.

2.5 Storing Component Versions in Repositories

As developers create new versions of components, old and new versions must be

stored persistently such that one can identify the product evolution and such that

earlier versions can be reconstructed.

2.5.1 SCM Repositories

Early SCM tools like SCCS and RCS introduced the concept of a repository, where

the component versions are stored together with the related SCM information. A

repository does not store each version on its own, since that would require too

much space. Instead, it exploits the commonality between versions by storing

only the difference (also called deltas) between versions. The mechanisms used

vary from SCM system to SCM system. RCS stores the most recent version as full

text together with the differences (so-called reverse deltas) to earlier versions. In

the SCCS system, each text block is tagged with the version(s) the block belongs

to. Most today’s SCM systems are based on either an RCS or SCCS approach.

2.6 Managing Variance 15

2.5.2 Database Repositories

Emerging from the requirements of computer-aided design (CAD), substantial ef-

forts have been made to store composite and versioned objects in databases. The

common approach is to extend entity-relationship models by explicit version rela-
tionships like derived-from relationships, is-part-of relationships, and so on; we

discuss such relationships in section 3.2.2.

Recently, such database technology has also been introduced in software en-

gineering environments [Dit89]. For instance, the IPSEN software engineering

environment is centered around a graph database which supports version rela-

tionships [SS95]. But the IPSEN authors also state that still there is no database

fulfilling all needs of software engineering environments [ESW93].

2.6 Managing Variance

2.6.1 CPP “Repositories”

A completely different “repository” concept used for variant management is real-

ized in the C programming language. All variants are stored in a single component

visible to the programmer; variant-specific parts are enclosed in C preprocessor

(CPP) #if : : : #endif directives. As part of the compilation, CPP selects a single

variant from the source code determined by a conjunction of attribute/value pairs.

CPP evaluates each #if-expression, with any attribute being replaced by its re-

spective value. The code piece enclosed by the #if : : : #endif is included only

if the #if-expression evaluates to a non-zero value.

As shown in figure 2.4 on the following page, invocation of CPP with the

attributes TICHY set to true and DATE set to 1995 selects exactly the version

tagged with the formula TICHY && DATE >= 1994.

Using CPP, specific environments are described by configuration files that de-

fine attribute values reflecting the properties of a specific environment. Such def-

inition files can also be generated automatically. Tools like AUTOCONF [Mac94]

run a series of tests to determine the features of the environment and create an

appropriate configuration file.

It is common to see conditional compilation, as exemplified by CPP, as a pro-

gramming language feature. In our context, conditional compilation should rather

be regarded as a compiler- and language-independent version-control technique.

In fact, preprocessor use for other purposes than version control is highly dis-

couraged. In [Str94], Bjarne Stroustrup, the designer of the C++ programming

language, states that one of the aims of C++ was to make CPP redundant and

16 Components Functionality

cm-defs

Configuration
#if TICHY && DATE >= 1994
management is the
#else
management is a
#endif
discipline
#if TICHY && DATE >= 1994
of organizing and
controlling evolving
#else
for controlling
the evolution of
#endif
systems.

cpp -D TICHY=true

-D DATE=1995 cm-defs

Configuration
management is the
discipline
of organizing and
controlling evolving
systems.

cpp -D TICHY=false cm-defs

Configuration
management is a
discipline
for controlling
the evolution of
systems.

Figure 2.4: Selecting versions with CPP

to “banish CPP into the program development environment with the other extra-

linguistic tools where it belongs”.

In the extra-linguistic context of SCM, conditional compilation is recognized

as a “flexible and general scheme” [GJM91] and called “normal industry prac-

tice” [GMSW89]. The main advantage of conditional compilation is that vari-

ance is explicitly placed under the control of the programmer, who can view and

edit several variants at once. Conditional compilation is thus frequently used to

enrich revision-oriented SCM systems with orthogonal variance support. Unfortu-

nately, as variance grows, the CPP file can become so strewn with CPP directives

that it is hard to understand, yet harder to change. Hence, the need for dedicated

variant-handling tools arises.

2.6.2 Multi-Variant Editors

On the component level, the problem of handling multiple variants was addressed

by variant-specific editors, exemplified by the P-EDIT and MVPE editors devel-

oped by IBM [SBK88]. These editors follow the CPP paradigm, but allow for

editing arbitrary version subsets. Only a single version is presented and edited,

but the color of each text part indicates whether the text part (and the subsequent

change) applies to the single version only or to several versions at once. For

transparency, the user can change the presented version while editing. A similar

functionality was implemented by Abrahamsen in the CPP-parse-edit-mode for

2.7 Managing Changes 17

the GNU EMACS editor [Abr95], allowing users to examine and edit a restricted

view of a CPP file. The CPP-parse-edit-mode also allows users to color text and

mark text as read-only based on the CPP variable settings. A third approach is

presented by Narayanaswamy [Nar89], where a variant-specific editor encloses

differing code pieces in CPP-like directives.

When program code is stored not as text, but as an abstract syntax tree, struc-

ture editors can make variance explicit by supporting versioned subtrees and al-

lowing the user to switch between variants. Such interactive variant selection is

found in the PSG [BS86, SGS91, Sch95] and IPSEN [ELN+92, SS95] program

development environments. As the common code is stored in the common su-

pertree, the user can apply changes to all configurations by changing the common

supertree only. As shown in [Sch95], such approaches can be combined with syn-

tactical and semantical analysis, resulting in automatic consistency checking. The

problem is that changes occurring near the top of the syntax tree result in distinct

version subtrees, which may have identical, but unshared subtrees.

Multi-variant editors have not gained much acceptance. This may be due to

the fact that traditional techniques (such as conventional text editors and CPP us-

age) suffice in practice, or that users prefer open, tool-based environments to spe-

cialized program development environments. Another reason may be that recent

SCM research introduced other concepts for applying changes to several versions

at once, as discussed in section 2.7.

2.7 Managing Changes

In the concepts discussed so far, individual versions of components were identi-

fied and managed. As an alternative, one can see a version as the result of changes
applied to some original version or baseline. This is the basic idea of the Change-
Oriented Model, as realized in the SCM systems EPOS [LCD+89, MLG+93]

and AIDE-DE-CAMP [Har89], where changes, rather than versions, are identified,

composed and applied on baselines.

In the Change-Oriented Model, changes are individual entities. For instance,

DIFF output, as discussed in 2.4 on page 13, may be regarded as a change rep-

resentation. Related changes, which may involve several components, can be

grouped into change sets (also called patches) to ensure that they be applied as a

single entity.

Using a specialized stream editor, like the UNIX PATCH program, one can

apply change sets on a baseline and create the changed version from the original

version or vice-versa. As an example, consider figure 2.5 on the following page,

where the patch tichy-patch (the output of the DIFF run in figure 2.3 on page 14)

is applied to the baseline dart-cm. In dart-cm, PATCH removes all lines prefixed

18 Components Functionality

dart-cm

Configuration
management is a
discipline
for controlling
the evolution of
systems.

tichy-patch

2c2
< management is a

> management is the
4,5c4,5
< for controlling
< the evolution of

> of organizing and
> controlling evolving

patch dart-cm < tichy-patch

Configuration
management is the
discipline
of organizing and
controlling evolving
systems.

Figure 2.5: Applying changes with PATCH

with “<” and inserts the lines prefixed with “>”, resulting in the “patched” text

on the right (which is actually the tichy-cm text from figure 2.5).

The main differences between change-oriented and version-oriented models

are summarized in table 2.1 on the next page. The principal advantages of the

Change-Oriented Model over version-oriented models are:

A natural link to SCM processes. Most SCM processes are change-driven: A

customer or developer issues a change request (CR), which is considered

by a configuration control board (CCB), and finally incorporated into the

product after CCB approval. The Change-Oriented Model allows changes

to be identified as separate entities and thus linking them with change re-

quests as these are processed.

Support for accounting and controlling is improved. Knowing the set of ap-

plied changes is important for determining the features of the final product.

For instance, one can always determine whether certain faults have been

corrected or whether special extensions have been made. Also, change sets

may reveal dependencies between components that do not show up in the

system model.

Changes may be applied to several variants at once. Representing changes as

individual entities allows users to perform a change on a single version and

to propagate that change to a whole set of versions (called ambition), just

as a patch can be applied to files other than those it was generated from.

Many change combinations are possible. In the version-oriented models, each

version incorporates all changes leading up to that version. In the Change-

Oriented Model, one can choose for each change set whether it should be

2.7 Managing Changes 19

Version-oriented models Change-oriented models

Version space version graphs product-level changes;

(revisions and variants); attributes controlling

version attributes change application

Configuration ∑component versions base version+∑changes

Product white box approach black box approach

structure (query references the structure) (structure transparent to the query)

Version rules expressions over expressions over

version attributes change attributes

Constraints conditions on conditions on

version attributes change combinations

(e.g. consistent variant selection) (e.g. c1 implies c2)

Versioning explicit implicit

(members of the version graph) (any change combination)

Combinability vm 2v

(m modules in v versions) (v changes)

Table 2.1: Version-oriented vs. change-oriented models (from [CW96a])

applied or not. For instance, one may create a version that excludes all

changes but the latest one, which is not possible in version-oriented models.

A problem with change propagation is that the user may not survey how his

change to a single version is propagated to the remaining versions. Another prob-

lem occurs with the ability of applying and combining arbitrary changes: one

must make sure that illegal combinations are excluded. Each application of a

change set C must ensure that all changes C0 that C relies upon are applied as

well.

Until recently, change-oriented SCM systems did not allow users to specify

such mutually exclusive changes. Only combinations resulting in a conflict were

automatically excluded—that is, the change cannot be applied because the origi-

nal lines are not found in the base line.2 In [Mun96], Munch describes the HICOV

system, a constraint-based system that allows users to structure the configuration

space. It remains open, however, whether these constraints could actually be used

to model “traditional” version graphs and thus result in a unified SCM model.

Another recent approach that attempts to unify change-oriented and version-

oriented models is the ASGARD system [MC96], which is realized on top of

CLEARCASE. In ASGARD, each user groups his changes according to a specific

activity. An activity is a group of related changes (e.g. fixing bug #327, extending

the editor, changing the font resolution, and so on) and can thus be defined as a

2See section 5.6 for a description of conflicts.

20 Components Functionality

process resulting in a change set. This simple and intuitive scheme is useful for

organizing SCM tasks and will help to introduce change-oriented versioning in

practice.

2.8 Discussion

We have identified several concepts used for maintaining evolving components.

Various versioning models are used to denote variants, revisions, and components.

As Conradi states in [Est95, p. 80], there is not yet a common agreement on

basic versioning models. At least, the versioning models can be identified and

classified; see [CW96b] for a detailed discussion.

Tools like DIFF can determine the difference (or change, or delta) between

versions automatically; this is useful for maintaining repositories in which a mul-

titude of versions can be stored in a compact fashion. Using tools like CPP or

multi-variant editors, users can apply changes to several versions at once. More

advanced tools, especially suitable for structured texts (e.g. programs) will be

discussed in section 5.6.

In contrast to the Checkin/Checkout Model, where developers copy individual

versions from and to a central repository, the Change-Oriented Model focuses

on changes being applied to a baseline. Managing changes instead of versions

allows for smooth integration into common SCM processes and provides much

flexibility in combining change sets. Until recently, the Change-Oriented Model

lacked a notion of inconsistency across change sets. This is now addressed by

constraint-based systems like HICOV, although it still seems difficult to integrate

both version-oriented and change-oriented versioning in a unified model.

Both the Checkin/Checkout Model and the Change-Oriented Model are pri-

marily concerned with single components; support for component relationships
is poor. Such structure functionality is found in the Composition Model, which is

discussed in the following chapter.

My second remark is that our intellectual powers
are rather geared to master static relations

and that our powers to visualize processes evolving in time
are relatively poorly developed.

— EDSGER W. DIJKSTRA, Go To Statement Considered Harmful

To look back to antiquity is one thing, to go back to it is another.

— CHARLES CALEB COLTON

Chapter 3

Structure Functionality

We extend SCM from the component level to the system level, using the concepts
of the Composition Model. The central concepts in the Composition Model are a
system model describing the system structure and configuration rules describing
which component versions are to be selected. Developers operate on configura-
tions by composing a system from its components and by selecting the desired
version for each component.

3.1 Describing the System Structure

To build a software product, components are assembled to form a software sys-
tem. To keep the terminology simple, we denote the set of all software com-

ponents that form a product as software system, any subset thereof as software
subsystem, and any unbreakable item as component. A software system together

with any non-software items (such as documentation) forms the software product.
An unstructured set of components is not enough to describe a software sys-

tem. A system model is required that describes the architecture of a software

system, that is, its structure, its components, and how to build it [Dar91]. Since

the system model evolves with the software system, it must be subject of CM

procedures; it is a basic CM principle that the system model must be explicit,

unambiguous and managed as an item in its own right [Whi91].

3.2 System Models for SCM

System models are commonly defined by describing the relationships between

the software items—that is, software components, subsystems, and systems. The

simplest system model describes a system as the aggregation of its components.

21

22 Structure Functionality

Its basic relationship is is-a-part-of : An item A is said to be part of an item B if B

contains A. Using is-a-part-of , one can decompose a system into subsystems and

atomic components and thus describe item hierarchies.

Recent time has seen considerable advances in system modeling, especially

with the introduction of modular and object-oriented approaches. For SCM pur-

poses, specialized system models have been developed. Besides is-a-part-of re-

lationships, these also reflect the relationships between versions.

3.2.1 AND/OR Relationships

Among the first concepts that included version concepts in a system model were

AND/OR graphs [MNR83, Tic81]. In an AND/OR graph, aggregates (systems and

subsystems) are modeled by AND nodes; an edge leading from an AND node A

to a component C indicates that C is a part of A (is-a-part-of relation). To model

version alternatives, special OR nodes are introduced. Each edge leading from

an OR node O to a component C indicates a possible alternative; C is a possible

version of O (is-a-version-of relation).

As an example, consider the AND/OR graph shown in figure 3.1 on the facing

page. The system S is present in two versions 1:0 and 2:0. Version 1:0 consists of

the subsystem R and the component C. R itself comes in two versions 1:0 and 2:0;

version 1:0 of R is built from two arbitrary versions of the components A and B;

version 2:0 of R requires specific versions of A and B.

3.2.2 Database Relationships

One of the drawbacks of the AND/OR graph model is that it does not distinguish

between different version kinds: there is no way to determine an ordering between

versions. Such distinctions were introduced in later models. In his survey on ver-

sion modeling in engineering databases [Kat90], Katz replaces the is-a-version-of

relation by two new relations: The is-derived-from relation models revision histo-

ries; the is-a-kind-of relation models generic components—the set of all versions

of a component. His system model distinguishes four types of relationships:

is-a-part-of: A component A is said to be part of a component B if B contains or

uses A. B is thus either a client of A, using A’s functionality, or an aggregate

containing A. is-a-part-of relationships model component hierarchies.

is-derived-from: A component A is derived from a component B if A is a ver-

sion based on B. Typically, A is a revision of B; Katz does not distinguish

3.2 System Models for SCM 23

1.1 1.2 1.3 1.1 1.2 1.3 1.1 1.2 1.3 1.4

A B C

1.0 2.0

R

1.0 2.0

SOR

AND

Figure 3.1: An AND/OR graph (from [Tic88])

between revisions and variants. Using is-derived-from relationships, one

can determine the version graph.1

is-a-kind-of: A component A is a kind of B if A is an instance of the generic

component B. is-a-kind-of relations unite specific versions of a single com-

ponent.

is-equivalent-to: Some applications, especially CAD, provide a variety of com-

ponent representations. These can be tied together using is-equivalent-to

relationships.

An example of is-derived-from and is-a-kind-of hierarchies is shown in fig-

ure 3.2 on the next page. The component ALU:Layout comes in the five versions

1Note that the term derivation is more frequently used for denoting the relationship between source
components and derived components.

24 Structure Functionality

ALU[0].Layout

ALU[1].Layout

ALU[2].Layout

ALU[3].Layout

ALU[4].Layout

ALU[5].Layout

ALU.Layout

is-a-kind-of

is-derived-from

Figure 3.2: A database relationship graph (from [Kat90])

ALU[0]:Layout to ALU[5]:Layout. ALU[0]:Layout is the original version; both

ALU[4]:Layout and ALU[5]:Layout are derived from the version ALU[2]:Layout.

Since Katz’s system model originates from maintaining design data, it pro-

vides no relationships between target components derived from source compo-

nents, as discussed in chapter 4; Consistency issues (see section 3.6) are left un-

addressed as well. Such issues, specific to software construction, were introduced

in specific SCM models, such as the one realized in the Configuration Manage-
ment Assistant (CMA), discussed in section 3.6.2. It remains unclear, though,

how SCM operations—transitions between relationship graphs—are to be mod-

eled and how constraint relationships such as consistency or compatibility are to

be verified.

3.3 Selecting System Configurations

From a system model, the SCM system (and the developers) can determine what

components are part of the system. To work on a particular set of components,

they determine a configuration. A configuration is a collection of components

3.3 Selecting System Configurations 25

tailored for a specific purpose [Whi91]. Typically, a configuration meets the needs

of a particular environment or user, which is identified by configuration rules
denoting the components and their respective versions.

The configurations described by configuration rules can be grouped into three

configuration types.

Bound configuration. A bound configuration [LCS88] describes an unambigu-

ous configuration independent from a specific context, as the current time

or the state of other components. Bound configurations are typically used

to identify product releases as shipped to customers.

Generic configuration. In contrast to bound configurations, a generic configura-
tion [Tic88] (also called partially bound [LCS88]) describes an unambigu-

ous configuration dependent on the context; for instance, a rule specifying

the most recent version of a component. Generic configurations are typi-

cally used in software development and production.

Abstract configuration. Both bound and generic configurations denote an un-

ambiguous set of components and versions. In case the rules are ambigu-

ous, the configuration specification is incomplete. We call such a configu-

ration abstract because of the similarity to abstract superclasses in object-

oriented design (see section 3.3.6 for details); the synonyms dynamic con-
figuration [Kat90], configuration template [Fei91a, Sch95], configuration
family [PF89], and ambition [LDC+89, MLG+93] are also found.2 Ab-

stract configurations allow for describing sets of configurations and have

recently found increased interest in the domain of dynamically composed

systems (DCS) [SM95a, SM95b].

The configuration rules as realized by SCM systems are discussed below.

3.3.1 Tagging Configurations

Simple SCM tools like SCCS and RCS provide bound configurations: specific ver-

sions are tagged with a label (a configuration tag) identifying the configuration.

This allows for the definition of a configuration baseline. RCS and SCCS do not

2The term dynamic configuration is prone to confusion, since it is widely used in the context of
adaptive systems as the ability to modify the structure of an application while the application continues
to operate [WS95]. The term configuration template suggests an instantiation instead of a refinement.
The term configuration family implies a finite, well-defined set of possible configurations, which
need not be, and the term ambition is too closely related with change propagation, as discussed in
section 2.7.

26 Structure Functionality

allow for specifying the set of components actually included in the configuration.

This is handled by the Concurrent Versions System (CVS) [Ber90], which extends

the tagging mechanism to software systems and thus identifies the set of compo-

nents in the configuration. In all these simple SCM systems, generic configuration

is supported only through selection of the most recent version.

3.3.2 Boolean Attribute Queries

The configuration rules of more advanced SCM systems reflect the respective

identification schemes, as discussed in section 2.3. The basic idea is to use

boolean expressions which must be satisfied by the identification term of selected

version.

The option space as described by Lie et al. [LCD+89] is closely related with

the Change-Oriented Model, where each change can be applied or not. Conse-

quently, configurations are described by a formula in propositional logic, where

each proposition (called option) may be true, standing for a change to be applied,

or false, meaning that the change not be applied.

In ADELE [Est85, Est88, EC94], variants are identified by attributes, where

each attribute can have an arbitrary value; thus, one is not restricted to boolean

values as in the option space. The user can designate a configuration by specifying

a boolean term based upon the desired attributes. The ADELE configuration rule

window-system = x11^ (current_ status 6= experimental)

includes all components in a configuration whose window system is X11; only

current or non-experimental components are to be included. Revisions are se-

lected in a similar fashion by imposing constraints on the date attribute (e.g.

date < 18 02 89). Through this flexible and general scheme, ADELE supports

both bound and generic configurations.

In Nicklin’s context model [Nic91], a similar scheme is used. As an exten-

sion, attributes can be undefined: referencing an undefined attribute results in an

undefined value of the selection term. The richest model of boolean queries, how-

ever, is found in the JASON system [Wie93], where full first-order logic may be

used, including existential and universal quantifiers. These queries can also be

used as general configuration constraints, as discussed in section 3.6.1.

3.3.3 Preferences and Defaults

As most SCM systems cannot handle ambiguity, they provide means to make

selections unambiguous. The idea is to provide special configuration rules for

these tasks:

3.3 Selecting System Configurations 27

Preferences. A preference rule applies if the selection is ambiguous. It selects

one “most preferred” version out of the selection.

Defaults. A default rule applies if the selection is empty. It makes the selection

contain one “default” version.

As an example for preferences and defaults, consider the SHAPE system. In

SHAPE, configuration rules are specified in a PROLOG-like syntax. Each rule

denotes alternatives of boolean conjunctions; the rules are specified according to

their preference: the most preferred versions come first, the least (the default)

comes last.

Figure 3.3 shows a SHAPE configuration rule that implements a change of

a component status from “saved” to “proposed” (components are either saved,

proposed, or published).

i test rule :– gt(status, saved), max(version);
eq(status, proposed), eq(test switch, on);
ge(status, published), max(version);
cut(Cannot bind $+ — something’s wrong here!).

Figure 3.3: A SHAPE configuration rule

The first preference clause selects the most recently published version with

status saved or better. If the first clause fails, such a version is is not available.

Hence, the second clause chooses a proposed version dedicated for testing (with

a test switch set to on). If this clause again fails, the next default clause applies,

stating that all remaining objects are to be chosen from the home baseline—that

is, the most recently published version. If this clause also fails, the final clause

issues a diagnostic and aborts the selection.

3.3.4 Preferences in Queries

Another approach for specifying preferences and defaults is found in database
queries. When databases are used as component repositories, database queries

are used to retrieve specific component versions. In [LL87], Lacroix and Lavency

point out that traditional database query languages are not sufficient for selec-

tion of configurations. Since configuration queries are intensional, they denote

objects by their properties rather than by their name (or exact version specifi-

cations). But intensional queries may be ambiguous and result in more than one

selected version; the SCM user must select the best suitable version manually. The

28 Structure Functionality

select the instances of CONF
having

the version of MAIN
having

same TARGET as the version
of PROCESS-DATA and

same TARGET as the version
of GET-DATA

from which
prefer those

having
the version of MAIN

having STATUS = tested
prefer those

having
the version of PROCESS-DATA

having STATUS = tested

Figure 3.4: A database selection rule with preferences (from [LL87])

authors thus suggest to extend database query languages by preferences and de-

faults to make the selection process explicit. A self-documenting example of such

a database query, selecting component versions with a certain status, is shown in

figure 3.4.

3.3.5 Search Paths in the Version Graph

All query mechanisms discussed so far rely on versions tagged with a set of at-

tribute/value pairs; each query mechanism can be expressed by specifying a first-

order boolean formula which the selected versions must satisfy (for database se-

lection rules, second-order formulas may be required). Systems relying on other

identification schemes provide alternate configuration rules.

As discussed in section 2.3.2, CLEARCASE identifies versions by labeling

edges in the version graph. The CLEARCASE configuration rules are thus search
paths in the version graph. Search options can include the work areas, variants,

and revisions in either all components or selected subsets.

Figure 3.5 on the facing page illustrates the usage of configuration rules in the

CLEARCASE system. Each rule, beginning with the keyword element, contains

a wildcard denoting the components it applies to (“*” applies to all components)

and a version graph query.

3.4 Integrated Configuration Languages 29

— Rules for maintenance to an old release:

— if the file is checked out, use this version.

element * CHECKEDOUT

— otherwise, use latest version on maintenance branch.

element * : : : /vs fixes/LATEST

— otherwise, use the official V2 released version.

element * V2 -mkbranch v2 fixes

Figure 3.5: CLEARCASE configuration rules (from [Leb94])

If a query finds one or more versions, the latest version is taken; otherwise,

the next rule is tried. Each developer is assigned a set of rules describing his

particular environment.

3.3.6 Refinement of Configurations

Rather than disambiguating selections as soon as possible, a few SCM systems

also handle abstract configurations, as discussed in section 3.3, and allow for

operating with several configurations at once.

The JASON system [Wie93] uses partial attribute descriptions to denote ab-

stract configurations. Abstract configurations are used as abstract superclasses of

further instantiated configurations; subclassed configurations inherit the attributes

of their superclasses. JASON thus realizes an object-oriented SCM model.

Figure 3.6 on the next page illustrates JASON configuration descriptions. The

configuration EMailSpec is defined as a subclass of DesignSpec: an abstract

configuration denoting all electronic mail systems, inheriting all DesignSpec at-

tributes like contents, version, or revision.

Even more concrete (less abstract) configurations may be obtained through

further subclassing: Starting with an abstract configuration like EMailSpec, the

set of configurations is constrained through additional attribute specifications until

a fully instantiated (bound or generic) configuration is obtained.

3.4 Integrated Configuration Languages

Recently, specialized configuration languages have been developed that attempt

to integrate all SCM aspects of system modeling into one single formalism. PCL,

the configuration language of the PROTEUS system [TGC95], allows to express

variability in the composition of a system, including relationships between com-

ponents and versions, as well as the selection of a bound consistent configuration

(called binding in PROTEUS).

30 Structure Functionality

In figure 3.7 on the facing page, we see a PCL example modeling a family

of calculator programs named CalcProg. The attributes section declares the

attributes by which the individual versions differ—in this case, one version has a

graphical user interface (xgui = true), and the other does not.

The parts section declares the components of the CalcProg family; calc is a

member of the Calculator family, while math is a member of the mathlib family.

The user interface part, is only present in the graphical user interface version, as a

member of the XGUI component family; the non-graphical version (xgui = false)

does not require such a component.

In PROTEUS, primitive entities like Calculator are mapped to physical files.

Again, this mapping can be subject to variability, as shown in figure 3.8 on

page 32—if the expression attribute is set to infix, the files expr.C and expr.h
are chosen, and if expression is set to reverse polish, the files rpn expr.C and

rpn expr.h are chosen.

Version selection is done by a simple instantiation of attributes; for instance,

by assigning the value true to the xgui attribute and the value reverse polish to

the expression attribute. PROTEUS also allows partial instantiations to refine the

selection incrementally.

The benefit of a full-fledged configuration language like PROTEUS is that it

integrates several SCM aspects—in this case, system modelling, configuration se-

lection, and manufacturing—into one single formalism. The question is how far

such a formalism is more than the sum of its parts. If each SCM aspect is rep-

resented by yet another language feature, the language gets easily overloaded by

individual, non-orthogonal features.

DesignSpec: class
f

system: String,
contents: Document,
version: Integer,
revision: Integer

g

EMailSpec: family of DesignSpec
f

system = “Electronic Mail System”
g

Figure 3.6: JASON configuration descriptions (from [Wie93])

3.5 Visualizing the Configuration Space 31

family CalcProg
attributes

: : :
xgui: boolean default false;

end

parts
ui) if xgui = true then XGUI endif;
calc) Calculator;
math) mathlib;

end

end

Figure 3.7: Structural variability in PCL (from [TGC95])

3.5 Visualizing the Configuration Space

To keep track of the growing number of possible configurations, users must be

able to conceptualize and visualize the configuration space. In this section, we

present some visualization techniques.

Version graphs. The first approach to visualizing the version space, and still by

far the most popular, is to display component-based version graphs and let

the user choose versions interactively. Version graphs are useful for sin-

gle components only and thus useful for SCM tools realizing the Checkin/

Checkout model. In figure 3.9 on page 33, we see a revision graph as dis-

played in RCE [Xcc95, Tic95], an RCS successor providing a graphical user

interface.

Version threads. To illustrate version selection for systems built from several

components, version threads have been suggested as notation, as shown in

figure 3.10 on page 34. Each system revision (shown on the left) consists of

one revision of each system component, as indicated by the specific version

thread. This notation does not support variants, even temporary ones, and

does not visualize consistency constraints.

Constraint formalisms. Both version graphs and version threads only show a set

of existing configurations, rather than visualizing the set of possible config-

urations. In [Gul93], Bjørn Gulla presents a visualization of configuration

constraints using graphs. Nodes indicate configuration options, arrows im-

plications between options, diamonds stand for disjunctions and thick dot-

32 Structure Functionality

family Calculator
attributes

: : :
expression: expr type default infix;

end

physical
calc) (“Calculator.C”, “Calculator.h”);
expr) if expression = infix then

(“expr.C”, “expr.h”)
elsif expression = reverse polish then

(“rpn expr.C”, “rpn expr.h”)
endif;

end

end

Figure 3.8: Mapping variability in PCL (from [TGC95])

ted lines represent mutually exclusive sets. Different abstraction levels are

obtained by defining new options as subexpressions (or subgraphs).

In figure 3.11 on page 35, users can choose between one of the mutually

exclusive options PM, X11, or SunView. After choosing X11, users have

the choice between Hp9000, Dec, and Sun3, while PM implies the IBM
machine just as SunView or Sparc imply the Sun3 machine.

As no technique is fully satisfying, it is obvious that the work on visualiza-

tion of configurations is still in its infancy. As Gulla himself states, “this is a

first proposal that will probably need refinements and validation in an industrial

environment.”

3.6 Interfaces and Consistency

Selecting an arbitrary configuration from a collection of components does not

suffice; as stated in section 1.3, the configuration must be consistent. In SCM

systems, we find maintenance of external consistency (respective to some spec-

ification) and of internal consistency (the syntactic and static correctness of a

program).

3.6 Interfaces and Consistency 33

Figure 3.9: Version selection from a RCE revision graph (from [Xcc95])

3.6.1 External Consistency

External consistency is consistency respective to a specification separated from

the software components. Typically, such a specification is coupled with the iden-

tification scheme; it can be expressed through consistency constraints in the con-

figuration selection rule as discussed in section 3.3.

As consistency constraints usually apply to each possible configuration, they

are often separated from the actual selection rules. Each consistent configuration,

selected in a separate process, must satisfy these constraints. The JASON system,

for instance, allows to specify configuration constraints as first-order boolean for-

mulas on version attributes including universal and existential quantifiers. The

scheme is general enough to specify module interconnection constraints like “No

resource is provided by more than one component”, as illustrated in figure 3.12

on page 36.

Another generic approach is found in the Configuration Management Assis-
tant (CMA). In [PF89], Ploedereder and Fergany introduce the following relation-

ships to model source/target and consistency dependencies:

is-instance-of: Instance relationships are used to model dependencies between

34 Structure Functionality

1.2 2.1 1.0 1.11.0

1.1

1.2.1

1.2.2

1.3

1.3.1

2.0

1.3

1.5

2.3

1.1

1.2

1.3

1.4

1.2

Revision

Component A Component B Component C Component D

Figure 3.10: Version threads (after [Gul93])

source components (e.g. source code) and derived components (e.g. object

code).

is-consistent-to: Two components are said to be consistent with each other if

“they correctly operate together”.

is-compatible-to: Two versions of a component are called compatible if

replacing one version with another still results in a consistent system.

Based on the semantics of the version attributes and these relationships, the CMA

can determine the consistency of a configuration. However, as in other SCM sys-

tems, consistency largely relies on user specifications.

3.6.2 Internal Consistency

In some cases, consistency violations can be determined automatically when the

actual contents of the software components are taken into account. For instance,

violations of the static correctness of a software system can be verified. The sim-

plest way to determine violations is to rely on the build tools and check for failing

3.7 Discussion 35

IBM PS/2

Hp9000

Dec

Sun3

X11

PM

SunView

Sparc

Figure 3.11: A constraint diagram (after [Gul93])

build attempts; in chapter 4, we discuss how SCM systems covering software

builds maintain the static correctness by determining the impact of a component

change and rebuilding all dependent components.

Besides this basic functionality, some SCM systems infer and use interface
information for maintaining the static correctness for a configuration. Such an

approach is found in the IPSEN software development environment [ELN+92,

SS95]. Based on the module interfaces as specified in the components and the

inferred dependency graph, IPSEN can ensure the syntactic and static correctness

of a configuration. In the proposed versioning model for the PSG system [SGS91,

Sch95], such consistency violations can even be deduced for fine-grained changes

within components.

3.7 Discussion

The Composition Model extends SCM from the component level to the system

level. The system structure is expressed in a system model. Developers op-

erate on configurations by first composing a system from its components and

36 Structure Functionality

Rule-2: constraint on (config: Configuration)
for-all comp-1, comp-2 in config.components:

comp-1 6= comp-2 implies
for-all resource in comp-1.provides:

not comp-2.provides(resource)

Figure 3.12: A JASON constraint specification (from [Wie93])

then by selecting the desired version for each required component. Several se-

lection schemes exist, from pattern-matching search paths in the version graph

via first-order boolean formulas to full-fledged database queries. Consistency is

ensured through appropriate selection schemes or through additional constraints;

SCM systems tailored for specific programming languages may also check for

internal consistency.

The Composition Model does not support changes as individual entities, as

does the Change-Oriented Model. As such, the Composition Model does not

provide special construction or team facilities. These facilities shall be discussed

in the following chapters.

Mahler: Is a configuration a description
or is it the result of applying the description?

Audience: Yes! (Laughter)

— SUMMARY OF SVCC’88 PLENARY DISCUSSION [Win88]

Chapter 4

Construction Functionality

Building a software system requires a system model enhanced with build infor-
mation. The simplest of these system models is a build command file containing
a procedural description of the processing steps to build all derived components
of a configuration from the source components. Through more advanced system
models, a SCM system can support automated incremental software construction
and perform management of derived components.

4.1 Component Dependencies

For large systems, building a system from scratch can be very expensive, espe-

cially, if the system must be completely rebuilt after each change. The solution

to that problem is to determine the components affected by a change in a source

component. In general, a component A is said to depend upon a component B

if a change in B might require changes in A such that A remains correct. Whit-

gift [Whi91] distinguishes four types of dependency:

1. An implementation of a component depends upon its specification.

2. A derived component depends upon its source components.

3. A software component depends upon the components whose functionality
it uses.

4. Documentation and program code depend upon each other.

Most of these dependencies must be resolved manually after a change, but depen-

dencies of type 2 can be processed automatically through incremental construc-
tion.

37

38 Construction Functionality

4.2 Incremental Construction

One of the first approaches for incremental software construction and probably

one of the most successful software tools ever written, was Feldman’s MAKE

tool [Fel79]. In MAKE, the system model is represented through a Makefile. The

Makefile declares the dependencies between source and derived components and

the processing steps to build derived components. At each MAKE run, MAKE

checks the last modification date of all source and derived components. Each

derived component that does not exist or that is dependent on a younger source

component is rebuilt.

As an example, consider the simple Makefile shown in figure 4.1. Each de-

pendency is shown by a declaration of the form D: S1 S2 � � � Sn, meaning that the

derived component D depends on the n source components S1; : : : ;Sn. The actual

commands building D follow the dependency declaration. For instance, the tty.o
component depends on the source components tty.c and common.h; to build it,

the command cc -c tty.c is issued. For convenience, OBJECTS defines a list of

objects referenced as $OBJECTS.

OBJECTS = tty.o display.o
editor: $(OBJECTS)

cc -o editor $(OBJECTS)
tty.o: tty.c common.h

cc -c tty.c
display.o: display.c common.h

cc -c display.c

Figure 4.1: A simple Makefile

Should the tty.c component be changed after a build, the display.o component

will not be rebuild, because it does not depend on tty.c. Only the tty.o and editor
components will be rebuilt. Should the common.h component change, all objects

must be rebuilt, since all depend on common.h.

The problem with MAKE when used in an SCM context is that MAKE does

not determine dependencies and that it does not know about component versions;

some MAKE extensions like GNU MAKE at least include conditional evaluation

and automatic check-out from RCS repositories. Also, relying only on the mod-

ification date to determine changes may result in unnecessary rebuilds. These

problems were addressed by later build tools that allowed for automatic depen-

dency determination, versioned source access using the configuration selection

rules and for automatic identification of derived components with their prove-

4.3 Determining Dependencies Automatically 39

nance and build environment.

4.3 Determining Dependencies Automatically

With language-specific knowledge, build tools can automatically deduce depen-

dencies and the impact of changes. The ODIN system [Cle88, Cle93], for exam-

ple, can automatically deduce dependencies by scanning source components for

appropriate statements. This scanning is language-dependent; for instance, com-

ponents written in the C or C++ programming language are scanned for #include
directives. ODIN saves its derivation history across builds; this allows for deleting

intermediate components such as object files when the final system does not need

to be rebuilt.

Another language-specific approach is found in the RATIONAL software de-

velopment environment [FDD88, Mor88]. RATIONAL can determine the impact

of changes to ADA programs—for instance, a change applying to comments only

does not cause any rebuilds.

An elegant and language-independent method for determining dependencies

is undertaken in CLEARCASE. Through its virtual file system, discussed in sec-

tion 5.4.2, the CLEARCASE MAKE utility (called CLEARMAKE) monitors all file

accesses performed by the build commands and thus determines all dependencies

while the system is being built. For each derived component C, each file accessed

is considered a source component that C is dependent upon.

4.4 Versioned Software Construction

In all SCM systems supporting software construction, building a system is done

by specifying the desired configuration, as discussed in section 3.3. The main

problem is the identification of derived components, which must take the entire

build environment into account—that is, the versions of the source components

as well as the versions, parameters, and environment variables of the build tools.

In CLEARCASE, each derived component is tagged with a bill of material
(also called bound configuration thread or BCT) describing the build environment.

The bill of material is determined automatically file access monitoring. The un-

fortunate side effect is that minor changes in the environment—for instance, the

change of an environment variable unrelated with software builds—may result in

an unnecessary rebuild. CLEARCASE thus allows to distinguish between critical
environment aspects (those that cause a change in the derived components) and

non-critical aspects (whose change does not imply a rebuild).

In the SHAPE system, the user has a similar control about the settings that in-

fluence rebuilds. For each variant, the user can specify by which MAKE variables

40 Construction Functionality

it is dependent upon. Hence, the change of a compilation flag may result in a re-

build, while the change of the installation directory may not. Similar approaches

have been undertaken by Kielmann [Kie92], who uses PROLOG for software con-

struction.

4.5 Attribute Propagation

The CAPITL system [RS91, AS95] uses a description logic called Persistent ob-
jects with logic (POL) to identify components and to infer build plans. POL terms

are conjunctions of name) value pairs, called attributes. Each component is

tagged with a POL term denoting its attributes.

For the purpose of planning and building, six attributes are used:

code: a list of possible build expressions;

contents: the contents (e.g. source or object code) of the component;

provenance: the record of how the component was created;

form: its type when used as argument to a tool;

functionality: a description of what the component does; and

references: other components this component depends upon.

Through the provenance attribute, each derived component is tagged with its

derivation history and thus uniquely identified. Just as in SHAPE, users can con-

trol which attributes cause differing variants and how attributes are propagated

from tools and source components to derived components.

As an example for attribute propagation, consider the tool specification rule

in figure 4.2 on the next page. The specification Cc debug describes an exe-
cutable C compiler whose functionality is to generate an object code from a

c source. The functionality F, which matches an entire POL term, is propagated

from the source component to the object component. However, the dbg sym and

opt attributes of the generated object codes differ. The Cc debug tool generates

debugging symbols and thus sets the dbg sym attribute to yes; as it does not op-

timize, the opt attribute is set to no. Using the Cc opt tool, these attribute values

are just inverted.

By making attribute propagation explicit and through its underlying well-de-

fined attribute logic, CAPITL provides the most versatile identification scheme for

derived components found in today’s SCM systems. As POL terms can also be

denoted as graphs (an alternate name is cyclic terms), they also provide a means

4.6 Optimized Software Construction 41

Cc debug: obj(
form) executable,
functionality)

func(in) obj(form) c source, functionality) F),
out) obj(form) object code(dbg sym) yes, opt) no,

functionality) F),
contents) “hactual Cc executable codei”

),
Cc opt: obj(

form) executable,
functionality)

func(in) obj(form) c source, functionality) F),
out) obj(form) object code(dbg sym) no, opt) yes,

functionality) F),
contents) “hactual Cc executable codei”

)

Figure 4.2: Tool specifications in CAPITL (after [AS95])

to unify attributes and relationships: each relation X ! Y is represented by an

attribute in X with a value of Y and a name standing for the relation kind.

4.6 Optimized Software Construction

Most SCM repositories only store source components, since determining the dif-

ference between derived components (often binary files) does not lead to efficient

compression of the repository. Many SCM systems provide a cache for derived

components (also called object pool or binary pool), where frequently used de-

rived components are stored.

When components are unchanged across versions, building a derived compo-

nent can be avoided when the derived component is still cached as the result of a

previous build. Such techniques are found in SHAPE and CLEARCASE; of course,

the source components must not have changed in between. Besides caching de-

rived components, CLEARCASE gains additional speed through distributed and

parallel construction. The correctness criteria for such build optimizations have

been formalized by Gunter [Gun96].

42 Construction Functionality

4.7 Conclusion

Most SCM construction tools are descendants of MAKE. Typical extensions in-

clude automatic generation of dependencies, versioned software construction that

propagate version identification from source components and tools to derived

components, and optimizations to reuse derived components from a central cache.

The more innocuous the modification appears to be,
the further its influence will extend

and the more the design will have to be redrawn.

— FYFE’S SECOND LAW OF REVISION

Chapter 5

Team Functionality

To allow for parallel work, SCM systems provide the notion of a workspace, iso-
lating developers from each other’s changes. SCM systems differ in the way work-
spaces are realized and in the specific cooperation strategy—that is, how changes
are propagated across workspaces.

5.1 Cooperation through Workspaces

One of the central functionality areas in SCM is team functionality. Team func-

tionality enables a team of developers to develop and maintain the software prod-

uct. The benefit of team functionality is that developers can work in parallel,

isolating individual developer’s changes from each other and coordinating the

propagation of changes.

The central concept in team functionality is the workspace (also called long
transaction, due to a similarity with database transactions [EGLT76, Gra81]). A

workspace is the individual area of a developer, isolating him from changes made

by others, and isolating others from his changes. Any propagation of changes

across a workspace boundary is an explicit SCM operation.

A workspace is usually accessed as a file system. This is necessary because

the vast majority of software development tools cannot access its sources directly

from the repository, but requires sources in a file system instead. Hence, work-

spaces perform the integration of a SCM system into a software development en-

vironment.

Other aspects of team functionality are cooperation strategies and conflict res-
olution. When developers work in parallel, the SCM system must ensure that their

changes do not conflict with each other. This is realized through a cooperation

43

44 Team Functionality

strategy that either relies on locking components against changes or on merging

parallel changes. Finally, the SCM system must provide support for projects that

span multiple sites.

5.2 Workspaces as Private Directories

The simplest workspace concept is that of a private file system (e.g. a user’s di-

rectory), copying versions from and to the central repository. This is the base of

the Checkin/Checkout Model, as discussed in chapter 2. Developers must copy

(or check out) components from the repository into their workspace (a private di-

rectory), work with them and copy them back (check in) into the repository after

changes have been made. Besides the components the developer wants to change,

the workspace must also contain all components required for compilation, testing,

or searching; these must be checked out as well.

This component-based approach can be extended to systems; in fact, most re-

pository-based SCM systems following the Composition Model use this scheme.

The CVS system, for instance, allows for checking out all components of a sys-

tem at once, creating a private copy of the entire system source for each developer.

CVS provides an automatic scheme that exports all changes from the private work-

space to the central repository and vice-versa, synchronizing the workspace with

the repository.

This “to-and-fro copying” scheme has one advantage, its simplicity. It also

has several disadvantages.

Copying is waste. Giving each developer a private copy of the entire system may

require huge amounts of storage resources. Copying can be affordable for

medium-sized projects; in fact, the CVS developers state that the purchase

of additional mass storage for a new developer can be neglected when com-

pared to other work costs. But maintaining a copy for each developer is

unlikely for large systems with thousands and thousands of developers—

especially because every developer must build his own system copy.

Sharing is non-transparent. Some SCM systems suited for large systems pro-

vide sharing mechanisms that allow developers to share environments. Un-

fortunately, sharing is non-transparent to the developers, who must take

additional care when accessing shared versions.

Components are copied away from version control. This is the central prob-

lem with copying schemes: a checked out component is no more under

SCM control. Neither can the SCM system save space by determining the

5.3 Workspaces through Application Interfaces 45

version differences, nor can one use SCM tools to determine the state of

a checked-out component, nor can build tools exploit equality of derived

components across workspaces. Developers can propagate changes and

component versions directly between workspaces, bypassing the SCM sys-

tem.

These problems have led to the development of methods that allow developer

tools to access the repository directly, without the need of copying to and from a

repository. Using these methods, workspaces are actually parts of the repository

and fully under SCM control.

5.3 Workspaces through Application Interfaces

The first approach to overcome to-and-fro copying was the development of “stan-

dard” repositories that could be accessed through an application programmer in-

terface (API). That is, all development tools must be extended such that they ac-

cess source components through the repository interface instead of the file system.

This approach has several advantages; in particular, it allows to overcome the

shortcomings of a file system, such as transaction insecurity, inappropriate object

identification, and so on. A developer’s workspace would consist of a configu-

ration rule, identifying the components and the respective versions. Developers

can share source components and derived components (which are stored in the

repository). For a survey of repository-based software engineering environments,

and the required repository techniques, see [BESS96].

The single, but fatal disadvantage of such encapsulated environments is that

still, a file system is the smallest common denominator between nearly all de-

velopment tools; the consequence is that even when using a standard repository,

users must still copy versions from and to the repository.

5.4 Workspaces through Virtual File Systems

The most successful approach to realize direct repository access is to provide a

virtual file system mapping the repository into a file system. This ensures that

derived components are created within the workspace, placing them under SCM

control.

5.4.1 Explicit Version Access

On the component level, the SHAPE toolkit provides a dynamically linked library

that interprets file names containing version specifications. This allows arbitrary

programs to access the SHAPE repository directly, providing transparent version

46 Team Functionality

access. For instance, opening a virtual file like prog.c:3.1 returns version 3.1 of

the file prog.c. A similar approach is found the RATIONAL system.

A generic approach is pursued in the multiple dimensional file system (n-

DFS), as discussed by Fowler et al. in [FKR94]. In the n-DFS, arbitrary services
can be attached to a file system. For instance, a versioning service may provide

direct repository access through means of virtual file names.

Instead of extending file names with versioning information, RCE provides

a library that hooks into the user interface. RCE extends the standard file selec-

tion dialog with a version selection dialog, as shown in figure 3.9 on page 33.

Whenever a user selects a file for processing, he may also select a version to work

upon.

One problem is common to all these approaches: Versioning is explicit. There

is no way to switch between versions implicitly, without embedding the version

in the path name—or specifying the version in an interactive dialog. It may be

desirable, though, to access several components from a specific configuration,

without having to specify the version of each single component. This is realized

through implicit version access, as described below.

5.4.2 Explicit/Implicit Version Access

Instead of appending a version specification to a path name, the CAPITL exten-

sible file system (EFS) prepends the version specification. Through changing

the current directory, a current version can be selected that applies by default:

Through changing the current directory to 3.2.1:, all subsequent file accesses re-

fer to the respective 3.2.1 version. This method allows for both implicit version

access (using relative paths from a versioned directory) as well as explicit version

access (using absolute paths containing the version specification).

In the CLEARCASE system, explicit and implicit access are handled by differ-

ent methods. Explicit version access is achieved by appending the version spec-

ifier to the component name, as shown above. A CLEARCASE version specifier

has the form “@@/”, followed by the path in the version graph. The color variant

of component zbuf.c can thus be accessed under the name zbuf.c@@/color, for

instance.

Additionally, CLEARCASE allows versioned access to entire file systems via

configuration rules, discussed in section 3.3.5. If a component is accessed with-

out a version specifier, the version according to the configuration rules is selected.

Using this two-fold scheme, CLEARCASE allows explicit version access (by ap-

pending a version specifier) as well as implicit access (by specifying the config-

uration rule). A CLEARCASE workspace is thus defined by a configuration rule,

5.4 Workspaces through Virtual File Systems 47

providing a specific view on the repository.

Another approach realizing both implicit and explicit version access is real-

ized in the SUN Network Software Environment (NSE) [Cou89], which realizes

the so-called Long Transaction Model. In NSE, workspaces are also views on a

central repository. The workspace is mounted as a virtual file system in the user’s

directory; upon mounting, a specific configuration must be selected. NSE per se
thus allows only implicit version access; by mounting different configurations at

different places, explicit version access can be realized.

5.4.3 Realizing Virtual File Systems

To realize virtual file systems, three major approaches can be found.

Replace the system libraries. In the SHAPE AtFS, the n-DFS, and RCE, virtual

file access is realized through extended variants of the system libraries.

That is, file accesses containing version specifications are diverted to access

the repository instead. Programs must be linked with the specialized library

in place of the system library; in case the operating system supports shared

libraries, replacing the shared system library will suffice for dynamically

linked programs.

The advantage of this approach is its good performance; the disadvantage

is that, depending on the operating system, some or even all programs must

be relinked to include virtual file system access. Another problem is that

process size is increased with repository access code.

Provide a specialized NFS server. The NSE and the CAPITL EFS are realized on

top of a modified network file system (NFS) [SGK+85] server. NFS was

originally indented to allow network-wide file system access, but it can

also be used to create virtual file systems by modifying the NFS server.

The advantage of the NFS-based approach is that any programs can access

the virtual file system without modification; the NFS server is easily in-

stalled and incorporated in existing heterogeneous environments. The dis-

advantage is that NFS lowers performance significantly, especially in con-

trast to direct local file system access.

Extending the system kernel. The CLEARCASE system bypasses the NFS bot-

tleneck by extending the operating system kernel with specialized device

drivers, providing an abstract file system interface or directly replacing disk

device drivers.

48 Team Functionality

As all programs access their file systems through the kernel, the kernel ex-

tension approach allows for a wide range of system-specific optimizations.

The NFS bottleneck for local file systems is also avoided. The drawback is

that realization and installation are non-trivial tasks.

5.5 Cooperation Strategies

When several people work in parallel, it is important that their changes be coor-

dinated such that one change does not, by accident, undo the effects of another

change. As this is a key element in SCM, each SCM system realizes a specific

cooperation strategy.

5.5.1 Conservative Cooperation Strategies

Conservative cooperation strategies prevent conflicting changes using a simple

locking scheme. Developers working on a specific component version or con-

figuration can lock it against further changes. While a version or configuration

is locked, other developers are excluded from creating new revisions. They are

allowed, however, to create temporary variants, that is, a branch in the revision

history.

Explicit locking is the scheme followed by RCS and SCCS; it is also used in

systems using the Composition Model such as CLEARCASE. In CLEARCASE,

a workspace initially is read-only: to change a component, a developer must ex-

plicitly create a temporary variant and ensure that his configuration rule gives him

access to this variant. Besides explicit locking, this scheme has the benefit that

read-only components are shared across workspaces; hence, creating a workspace

in CLEARCASE does not require additional resources.

Locking a version or configuration is inappropriate when a developer makes a

major change over a long time, since this prevents other developers from making

quick fixes. Hence, developers are allowed to create temporary variants instead,

starting an individual development path. All changes made in this individual path

must eventually be integrated with the changes made in the original development

path, which may or may not be difficult.

5.5.2 Optimistic Cooperation Strategies

In contrast to conservative strategies, an optimistic strategy by default allows par-

allel changes; changes are integrated in a later stage. In an optimistic strategy,

each developer is assigned individual temporary variants to work upon. The CVS

5.6 Merging and Conflict Resolution 49

and NSE systems, for example, realize optimistic cooperation strategies through

workspaces.

When a CVS or NSE workspace is created, temporary variants are created for

all configuration components, resulting in a multitude of branches. This scheme

allows developers to perform changes to any component without further explicit

branching. Despite abundant branching and creation of temporary variants, opti-

mistic strategies need not be inefficient: NSE implements a “copy-on-write” pol-

icy where unchanged components are shared between the originating version in

the repository and the derived workspace; a similar technique is found as view-
pathing in the n-DFS.

Optimistic strategies are appropriate when the number of expected conflicts is

low—for instance because parallel development is made on disjunct subsystems,

making conflicting changes unprobable.

5.6 Merging and Conflict Resolution

In both conservative and optimistic cooperation strategies, parallel changes must

eventually be integrated or merged. To see how this can be done, we take a look at

the conflict resolution strategies as found in SCM systems. Each of the following

strategies creates a so-called merged version that integrates the changes from two

or more temporary variants.

5.6.1 Textual Merging

The most frequently found mechanism for change merging is textual merging,
as realized in the UNIX tool DIFF3. The DIFF3 program performs a three-way

comparison between two temporary variants V1 and V2 and their common ances-

tor V0, the so-called base version. V1, V2, and V0 are scanned in parallel. Each text

fragment that occurs in V1 and V2 is included in the merged version M. If a text

fragment differs between V1 and V2, then only the text fragment different from V0

(that is, the changed one) is included in M. A text fragment different in all three

versions V1, V2, and V0 indicates a conflict : the text fragment has been changed

both in V1 and V2. Such a conflict must then be resolved manually.

The principal limitation of textual merging is that the content of the text is not

considered. Whether two changes conflict or not is simply determined by size of

text fragments compared: the smaller the textual distance between two changes,

the higher are the chances that they be flagged as in conflict with each other.

Even if no conflicts are detected, the results of textual merging must be carefully

inspected.

50 Team Functionality

Base revision V0

MODULE M;

VAR Colour: (White, Grey, Black);

BEGIN

Colour := White

END M.

Variant V1

MODULE M;

VAR Colour: (White, Grey, Black);

BEGIN

Colour := Grey

END M.

Variant V2

MODULE M;

TYPE ColourType = (White, Grey, Black);

VAR Colour: ColourType;

BEGIN

Colour := Black

END M.

Merged revision M

MODULE M;

TYPE ColourType = (White, Grey, Black);

VAR Colour: ColourType;

BEGIN

Colour := ?

END M.

Figure 5.1: Syntax-based merging (from [Wes91])

5.6.2 Syntax-Based Merging

Automatic merging becomes more effective if internal consistency is ensured, as

discussed in 3.6 on page 32. This requires knowledge about syntactical invariants

that must hold after merging operations.

In [Wes91], Westfechtel describes a generic merging algorithm working on

abstract syntax trees, realized in the IPSEN system. Each node class (identifier,

structure, or list) is treated by a different merge rule. As an example, consider

figure 5.1. In variant V1, the assignment to Colour was changed from White to

Grey. In variant V2, a new type ColourType was introduced, the type of the

Colour variable was adapted, and the Colour assignment was changed to Black.

The merge rule for lists states that insertions in one variant be applied in the

merged version M as well. Hence, M contains the new type ColourType intro-

duced in V2. Name changes applied in one variant only are also reflected in M;

hence the type change for the Colour variable in V2 is propagated to M. Conflicts

may still occur if a substructure is changed in both variants. Hence, the third

5.6 Merging and Conflict Resolution 51

change in V2, the Colour assignment value conflicts with the change in V1 and

must be resolved manually. Using textual merging, all three changes would have

been in conflict because they are too close together.

Westfechtel’s syntax-based merging also ensures a certain amount of internal

consistency by preserving the context-free correctness and detecting context-free

conflicts. Besides the context-free syntax, it also takes the binding of identifiers

to their declarations into account, detecting anomalies and conflicts with respect

to binding changes. However, it relies on determining the differences between ab-

stract syntax trees, which is expensive, or on logs of tree manipulations generated

by the editor.

Westfechtel’s work has been extended by Schroeder in [Sch95], ensuring the

correctness of the statical semantics even for incomplete subtrees, using PSG con-

text relations [Sne91, SGS91]. Recent work in syntax-based merging includes

collaborative work in structure editors, as in the MJØLNER project [MAM93,

MA96], as well as the integration of incremental analysis with version manage-

ment [WG95]. Syntax-based merging programs that do not rely on an external

abstract syntax tree have also been presented [Buf95].

5.6.3 Semantics-Based Merging

While syntax-based merging guarantees the syntactic correctness of the merge re-

sult M, one still has no guarantee about how the execution behavior of M relates

to the execution behavior of the merged variants V1 and V2. A first attempt, based

on denotational semantics, is found in [Ber94], but the first approach that per-

formed true semantics-based merging was presented by Horwitz, Prins, and Reps

in [HPR89]. Their algorithm relies on the assumption that behavior differences,
rather than textual or structural differences, are significant and must be preserved

in M.

The algorithm works on a program dependency graph (PDG) representation

for the programs to be merged. Each node stands for a program statement; edges

indicate control and data dependence. A program slice is the subgraph of a PDG

that can reach a given component. To determine interference of changes, the

algorithm determines the program slices in V1 and V2 that are changed from the

base V0 and the slices that are unchanged from V0. The changed and unchanged

slices are then merged, and if there is no interference, a merged program M is

produced from the merged slices. The algorithm ensures that M captures the

changed behavior of both V1 and V2 as well as the behavior that was unchanged

from the base V0.

While the original algorithm [HPR89] had severe restrictions on the class of

52 Team Functionality

programs it could be applied upon, it was later refined by Binkley, Horwitz, and

Reps in [BHR95] and now constitutes a mature algorithm for multi-procedure

merging.

5.7 Multi-Site Development

SCM is not only a problem of several people working on multiple versions. Often,

these people also work at multiple sites. This imposes another technical challenge

on SCM systems, as local version access must not be slowed down by low con-

nectivity between the sites.

Distributed SCM is a relatively new feature in SCM systems. We can distin-

guish four ways to realize distribution:

Use a central repository server. Both RCS and CVS have been extended for dis-

tribution. The resulting DRCS [OG90] and DCVS [HK92] tools rely on a

client/server relationship between local RCS or CVS clients and a central

repository server. For instance, if a local user checks out a RCS version, the

local RCS client fetches the version from the remote central RCS repository

server. The drawbacks of DRCS and DCVS are that all operations depend

on the reachability of one single server and that traffic is huge since entire

versions (or configurations, as in DCVS) are transferred.

Propagate changes across sites. Communication overhead between sites can be

reduced if sites share a common baseline and transmit changes instead of

versions, as in the Change-Oriented Model. This approach has been un-

dertaken in the MISTRAL tool [Gad95], realizing distributed SCM in the

ADELE system. However, all difficulties of change propagation apply, as

discussed in section 2.7.

Assign each site an individual workspace. Another possibility to manage dis-

tributed SCM is to assign each site an individual workspace or temporary

variant. This is the base of the MULTISITE tool [AFK+95], which enhances

the CLEARCASE system with distributed CM. To maintain consistency,

each site has branches in its repository representing the other sites; these

branches are updated periodically. Each site can only modify its local

branch, but merge in changes made at other sites. This simple and real-

istic solution fits practical users needs, as the authors claim, but relies on

frequent merging.

Use a distributed repository. The most recent approach to distributed CM is the

usage of a distributed repository that allows to access versions transpar-

5.8 Process Functionality Areas 53

ently from arbitrary sites. On top of the Network for unified configuration
management (NUCM) prototype [vdHHW96], a variety of CM models can

be realized through a combination of three generic models (storage, access,

and distribution). The initial implementation of NUCM realizes a distrib-

uted, decentral repository using peer-to-peer relationships between local

CM repositories.

5.8 Process Functionality Areas

So far, we have discussed the team-centered aspects of SCM. In contrast to these

more technical issues, the process-centered functionality areas cover manage-
ment issues. As this is beyond the scope of this work, we only give a brief intro-

duction on each of these functionality areas, following Dart’s survey [Dar91].

5.8.1 Auditing Functionality

An important feature in SCM systems is an audit trail or change history where

the SCM system logs all changes made to the developed product. Such an audit

trail usually includes a change comment, details on the reason and effects of the

change. Every SCM system that supports revisions maintains such audit trails and

provides simple tools to print, filter or analyze the trail.

5.8.2 Accounting Functionality

The accounting functionality area, as found in SCM systems, includes mecha-

nisms to record statistics about the product and the process. The questions that

accounting must answer include the current status of a component, whether a

change request (CR) has been approved by the configuration control board, which

component version implements a specific CR or how many faults per month are

detected and corrected.

5.8.3 Controlling Functionality

Controlling functionality assigns work to individual developers. Access control
means granting or revoking version access. Change control provides procedures

by which changes are requested, authorized, scheduled, and tracked. Change con-

trol includes on-line support for change requests, a developer’s request to change

a component, and problem reports, stressing the circumstances and consequences

of a fault, as well as procedures to propagate changes across different versions of a

54 Team Functionality

product (e.g. from an experimental version to the released version). Finally, con-

trolling functionality also must track faults and report how, when, and by whom

they are dealt with.

5.8.4 Process Functionality

The functionality areas discussed so far can be subsumed as process functionality.
Process functionality is the significant area of all non-technical SCM functional-

ity. In short, SCM systems should support the life cycle model and policies of

the user’s organization; identify tasks to be done, how and when they are com-

pleted; as well as basic facilities to direct information about relevant events to the

appropriate people and facilities for documenting the product knowledge.

5.9 Conclusion

The central SCM concept to realize cooperative work is the notion of a work-
space, preventing developers from interfering with one another’s work. A work-

space usually comes as a file system and thus integrates the SCM system into the

software development environment. Various concepts for the realization of work-

spaces exist, the most advanced being a virtual file system with both explicit and

implicit version access.

To coordinate changes, SCM systems either provide conservative cooperation

strategies that rely on version locking, or optimistic cooperation strategies that

rely on a later conflict resolution between parallel changes. Conflict resolution is

realized through merging of changes, where textual merging is the most versatile

and semantics-based merging the most secure approach.

Recent SCM systems also support development at geographically distributed

sites with low connectivity. The pragmatic approach is to assign each site a sepa-

rate workspace; future repositories may be realized in a distributed manner.

Besides the technical, team-centered functionality, process functionality areas

cover the management part of SCM, which is not discussed in this work.

While process management and control are necessary
for a repeatable, optimized development process,

a solid configuration management foundation for that process is essential.

— DAVID W. EATON, Configuration Management Frequently Asked Questions

In any case, it must be borne in mind that,
tools can be encapsulated whilst users can not.

— JACKY ESTUBLIER and RUBBY CASALLAS,
The ADELE Configuration Manager

Chapter 6

Future SCM Requirements

There can be no doubt that today’s SCM systems largely satisfy Dart’s require-
ments on CM functionality [vdHHW95]. For each functionality, we have iden-
tified a large number of SCM concepts as realized in one or more SCM systems.
Some commercial SCM systems, such as CLEARCASE, provide satisfactory solu-
tions for each required CM functionality.

Since Dart’s survey, new requirements and problems have emerged. We iden-
tify five major problems in current SCM systems, which also constitute require-
ment areas for future SCM systems.

6.1 Improved Support for Variant Sets

SCM still has poor support for manipulating sets of configurations, or abstract

configurations. As a simple example, consider the editing of multiple versions.

The number one technique for variation in the small, the C preprocessor (CPP)

fails when variance becomes too large. As Gentleman et al. state in [GMSW89],

Code containing conditional compilation directives becomes quite

unreadable when variants associated with different factors interact.

In fact, large variance leads to a lose-lose situation. Either commonality between

variants is exploited, then the CPP directives become too complex, or commonal-

ity is not exploited, then code duplication follows:

Interleaved directives are incomprehensible, and the code expansion

of conditional compilation directives can be intolerable.

55

56 Future SCM Requirements

The alternate technique, change propagation from a single variant X to the re-

maining variants Y as discussed in section 2.7, is still considered inferior than

“classical” approaches such as preprocessing. In [Whi91, p. 44], Whitgift states:

This approach is better than revising both X and Y manually, but it

only works well when X and Y are very similar. Even then the tech-

niques described in the next two subsections [CPP and multi-variant

editors] are a more reliable way of managing similar permanent vari-

ants.

The only consequence can be to keep the number of permanent variants as small

as possible. Not only can they seldom be handled by SCM systems. More even,

common software engineering principles like abstraction, parameterization, gen-

eralization, and localization are far better ways to keep software variable than

to introduce variants for every new environment. But these techniques can only

apply to permanent, planned variance, not to temporary variance as it may re-

sult anytime during parallel development. Hence, the need to manipulate several

variants at once is still present, and insufficiently covered by todays SCM sys-

tems [Mah94].

6.2 Consistency of Abstract Configurations

Another problem of SCM systems regarding abstract configurations is the lack of

determining their consistency. As Schmerl and Marlin point out in [SM95a], this

is especially important in the domain of dynamically composed systems (DCS):

DCS are composed incrementally, and therefore some of the compo-

nents may not yet be bound (meaning that it is a partial configura-

tion). It is still desirable to analyse this partially bound configuration

so that we can answer questions about what comprises the system,

and whether or not the partially bound configuration is inconsistent.

Unfortunately, today’s SCM systems rely on completely bound configurations to

determine consistency. Even where ambiguity is allowed, as in ADELE configu-

ration rules, heuristics to find the single “best-fitting” variant are applied to make

the configuration bound.

6.3 Beyond Version Graphs

Lack of support for abstract configurations may be founded in inadequate ver-

sioning models that do not tolerate ambiguity. Among the few SCM concepts that

6.4 Unified Versioning Models 57

in principle tolerate ambiguity is the Change-Oriented Model, as it allows to ap-

ply changes to several versions at once. The advantages of the change-oriented

model are the disadvantage of the version-oriented models and vice versa:

Change-oriented models: the drawback of flexibility. The strength of change-

oriented models is that arbitrary change combinations are possible—that

is, all change combinations that do not result in a conflict. This strength is

also its major weakness, as users cannot ensure that the change application

results in a consistent configuration.

Version-oriented models: few change combinations. Version-oriented models

focus on the creation of versions, instead of changes. Hence, the number

of actually existing versions is much smaller. Each change resulting in

the creation of a new revision implies all previous changes leading up to

that revision, thus ensuring change consistency. But this rigidity also has

its drawbacks: creation of versions including arbitrary changes is always

explicit, as is the application of changes to multiple versions at once.

Unfortunately, both models cannot be used to simulate each other. In the

change-oriented models, recent approaches like HICOV [Mun96] have begun to

introduce consistency constraints. But it is still unclear how a “classical” version

graph would be realized through these constraints. On the other side, simulating

the Change-Oriented Model through version-oriented models reveals the weak-

ness of the version graph paradigm, since the arbitrary combination of changes

results in a much larger number of potential versions than could possibly be

maintained through revision graphs. Moreover, it is still an open question how

revisions and changes are to be integrated with logical and cooperative version-

ing [EC95].

6.4 Unified Versioning Models

The divergence of change-oriented and version-oriented models is the largest dif-

ference between SCM versioning models, but by far not the only one. SCM in

general suffers from a multitude of incompatible versioning models, as Conradi

and Tryggeseth complain in [Est95, p. 80]:

Is the versioning model linked to the data model, the product model

(schema), the transaction model (uni-version subdatabases), or is it

independent? At what granularity are “deltas” expressed, computed

and merged—on the base of whole files, text lines, or syntactical

entities? And how is versioning combined with e.g. inheritance and

58 Future SCM Requirements

parameterization? Does basic versioning only apply to atomic and

textual objects, and not to composites or to the entire database?

How to version relationships, and thus configurations? How to ex-

press intentional version selection, and how to express constraints,

defaults and preferences for such selections? Is the selection based

on symbolic attribute values, that together constitute a version space?

Can the constraints and attribute domains evolve over time? Given a

system model with objects and relationships: is the product selection

(AND-closure) done before the version selection within each group

(OR-choices), or vice versa, or intertwined?

It is also symptomatic that hardly no visualization techniques beyond version

graphs exist. To summarize, citing Gulla from [Gul93]:

The lack of proper conceptual models and visualization techniques

is a serious draw-back that limits the use and usefulness of current

tools.

6.5 Flexible Process Support

The multitude of versioning models may be the effect of the multitude of SCM

processes and models as they are realized in SCM systems. In his survey on con-

figuration management models in commercial environments [Fei91a], Peter H.

Feiler closes with:

CM capabilities can be found not only in CM tools and environment

frameworks, but also in development tools. Integration of such tools

into environments raises the need for different CM models to inter-

operate. Therefore, it is desirable to evolve to a unified CM model

that encompasses the full range of CM concepts and can be adapted

to different software process needs.

Things have not much changed since Feiler’s study, except that the problem is

generally accepted. In the fifth international workshop on software configuration

management [Est95, p. 136], Jacky Estublier states:

There is a large consensus, including SCM designers and vendors,

that SCM must include, in one way or another, some process support.

This is a major change in relationship to previous workshops, where

most industrials considered this topic as academic.

6.6 Improved SCM System Architectures 59

CM Policy
Quality assurance, CM Process, etc.

CM Protocol
Transactions, workspaces, etc.

CM Primitives
Tool primitives, Operating system operations, etc.

Figure 6.1: Three levels of CM services (from [BDFW91])

Estublier also points out that almost all today’s SCM systems ignore other process

tools, and that only a few, including EPOS and ADELE, provide a layer on top of

which process support tools can be built. He concludes with:

Most think the major challenge for future SCM tools will be the

process dimension. In the future, it is expected an SCM tool will be

selected based on its ability to support processes. The current state

of practice is pretty far away from ideals.

6.6 Improved SCM System Architectures

Good process support means a flexible process support. This flexibility must be

obtained through the architecture of SCM systems.

In their report on the state and future of automated configuration manage-

ment, Brown et al. suggest a federated architecture for SCM systems, as shown

in figure 6.1. Each service domain represents a virtual machine layer of ser-

vices [BDFW91]:

CM Primitives layer. The CM primitives layer provides a set of primitive oper-

ations that would be supported in a particular CM tool, or provided as part

of an environment framework. For example, basic versioning capabilities,

data object locking, and access control are typical of the services at this

level.

60 Future SCM Requirements

CM Protocol layer. The CM protocol layer supports one or more of the CM con-

cepts and models. At this level the operations are independent of underly-

ing implementation techniques. For example, operations of check in/out of

data items from workspaces, transaction management, and coordination of

change sets would be provided.

CM Policy layer. The CM policy layer makes use of the CM protocol operations

to encode some procedures specific to an organization. For example, these

could be company standards for handling change requests, quality assur-

ance procedures, and so on.

As Brown et al. state,

The advantage of using three layers of service domains in providing

CM support is that many of the issues that are often confused can be

drawn out in isolation, and the relationships between different ele-

ments more clearly expressed.

In [vdHHW95], van der Hoek, Heimbigner, and Wolf recognize that most of

today’s SCM systems follow this architecture. But they also state that there is an

increasing lack of flexibility, the higher the level considered:

CM systems allow some restricted flexibility at the low level (e.g.,

one can choose to use RCS, a file system, or a DBMS), and even less

flexibility at the middle level (e.g. the naming and locking mech-

anisms are usually fixed). At the high level of process, second-

generation CM systems either provide no explicit support for express-

ing policies or they provide particular processes for a specific task,

such as change control. (ADELE is a notable exception to this.)

Van der Hoek et al. conclude that the lack of flexibility at the lower architectural

levels is the cause for bad process support, and that alternative architectural views

might lead to novel CM solutions.

6.7 A Unified SCM Model

For Brown et al., the key to flexibility in SCM lies in the combination of a feder-

ated architecture and a unified CM model. As they summarize in [BDFW91],

We believe that progress will have to be made in three areas in order

that future CM support as outlined in our federated vision can be

realized in practice.

6.7 A Unified SCM Model 61

First, the spectrum of concepts and the four conceptual models have

to be integrated into a unified CM model whose semantics are well-

defined. This will result in a common set of interfaces to CM services.

Second, the service-based approach of the federated environment ar-

chitecture can provide a migration path from the current state of

CM services (being provided in a fragmented manner by CM tools,

environment frameworks, and CASE tools) toward the notion of a

common repository and shared environment framework services, but

still accommodating heterogeneity in software development environ-

ments. CM will be a key component of such a federated environment

architecture by being a service domain in the form of a set of proto-

cols, which are derived from the unified CM services model.

Third, the set of CM services reflected in the unified model will pro-

vide a virtual machine layer on top of which process adaptation can

be performed. Process adaptation results in encoding elements of the

software process in a software development environment, in this case

those aspects of the software process that relate to CM.

These are the issues we have addressed in this work.

Although there is a bunch of appropriate techniques
and powerful tools, none of them is sufficient

for solving all involved problems.

— AXEL MAHLER, Variants

Part Two

Feature Logic

63

Chapter 7

A SCM Foundation

In chapter 6, we have found that “the major challenge for future SCM tools will be
the process dimension” and that a flexible CM policy can only be attained through
flexibility at the lowest levels, notably a unified configuration management model.

This unified SCM model, as postulated by Brown et al. [BDFW91] must integrate
all four conceptual SCM models as discussed by Feiler [Fei91a] and have a well-
defined semantics.

In this chapter, we try to determine a formal foundation for such a unified
SCM model. We discuss the properties of such a unified SCM model, using the
requirements of chapter 6 and their implications, and identify SCM foundations
fitting these properties.

7.1 First Foundation: Sets

As stated in section 6.1, most of todays SCM systems lack support for manipulat-

ing variant sets. But also configuration sets, that is, abstract configurations, lack

proper SCM support. Generally, version and configuration sets play an important

role in three areas:

Inheritance. Abstract configurations can be used as templates for further refine-

ment. See section 3.3.6 for details.

Ambiguity support. Abstract configurations and version sets allow manipulat-

ing several versions and configurations at once. See the CPP concepts in

section 2.6.1 and the ambition concept in section 2.7 for a discussion.

65

66 A SCM Foundation

Consistency. In dynamically composed systems, inconsistency in configurations

must be detected even if the configuration is incomplete. See section 6.2

for an example.

We conclude that a unified SCM model should be set-oriented rather than object-
oriented 1, as manipulating sets generalizes manipulating single objects. For in-

stance, editing a set of versions or checking a set of configurations for consistency

subsumes editing a single version or checking a single configuration. Conse-

quently, the unified SCM model should support version and configuration sets as

first-class objects.

7.2 Second Foundation: Attribution

Attributes and relationships play an important role in SCM versioning models.

Identification. All of the selection schemes discussed in section 3.3 rely on that

either versions or changes be tagged with attributes. Attribution is one of

the few techniques common to the whole SCM area. We recognize attri-

bution as a key element for identification and selections in a unified SCM

model.

Propagation. As any SCM identification scheme must include composed and de-

rived objects as well, there should be a well-defined relationship between

the attributes of a simple component version and the attributes of a set of

objects. This includes the propagation of attributes from versions to com-

ponents, from components to configurations, from source components to

derived components, and from changes to change sets.

Relationships. To handle propagation, the unified SCM model must allow de-

scribing the relationships between components, such as is-instance-of re-

lationships to model derivation or is-a-part-of relationships to model com-

position.

The most advanced SCM system in this field is the CAPITL system, discussed in

section 4.5; its attribution and propagation schemes should be considered in a

unified SCM model. It also shows how attribution can be generalized to include

relationships, provided the underlying attribution model is rich enough.

We conclude that the unified SCM model should be attribute-oriented: at-

tributes should be used for identification and selections. It should also describe

how attributes propagate between components, using the component relation-

ships.

1Pun intended.

7.3 Third Foundation: Unification 67

7.3 Third Foundation: Unification

In SCM, attribute expressions are used for both identification and selection. This

duality is illustrated by the CPP and JASON systems:

Strong identification, weak selection. Across all SCM systems, CPP, the C pre-

processor, realizes the most general identification scheme. Arbitrary logical

and arithmetic expressions involving attributes are used for variant identifi-

cation; see section 2.6.1 for details. Version selection in CPP is done using

a conjunction of attributes.

Strong selection, weak identification. The most general selection scheme is re-

alized in the JASON system, which uses full first-order logic over attribute

expressions, as discussed in section 3.6.1. In JASON, individual versions

are identified by a conjunction of attributes.

It is remarkable that strength in identification comes with weakness in selection,

and vice versa. Such restrictions are necessary to keep selection decidable.2 Un-

less we decide to ignore variant set support such as provided by CPP, the unified

SCM model should support the smallest common superset of both approaches and

thus rely on unification techniques to match selection terms with identification

terms.

7.4 Putting it all Together

We have found that the unified SCM model should be

set-oriented: Supports manipulating consistent sets of versions and configura-

tions.

attribute-oriented: Follows SCM conventions for the identification and selection

of objects and allows for predictable identification of composed and derived

objects.

unification-oriented: Encompasses the largest possible common subset of SCM

identification and selection schemes.

We now discuss adequate foundations to express the semantics of our unified

SCM model. Basically, there are three candidates for this SCM foundation, each

with its own pros and cons.

2If we combined the strength of both systems, we would be challenged by general arithmetical
problems; for instance, whether a version identified by the CPP expression n > 2 is matched by the
JASON selection term 9a;b;c 2 N(an

+bn
= cn

). Such problems are undecidable in general, although
some of them may be eventually proved [Wil95].

68 A SCM Foundation

7.5 First Candidate: First-Order Logic

The first candidate for an SCM foundation is very general and widely known.

Boolean first-order logic is the base of several SCM selection schemes, includ-

ing JASON’s; even CPP’s arithmetic version identification may be replaced by

boolean first-order terms without much loss. First-order terms may be used for

both identification and selection, using boolean unification [Boo47, BJSS90] to

match identification and selection terms.

The expressive power of first-order logic is no doubt sufficient for describing

the semantics of a unified SCM model. But first-order logic is far too general; it

lacks the central property of being attribute-oriented. As we have already seen

how important attributes are in the SCM area, this implies that all SCM function-

ality like selection through attributes, attribute propagation, or inheritance of ab-

stract configurations requires explicit formalization using first-order axioms and

rules. We would have to set up another formal layer in terms of first-order logic

in order to describe these attribute fundamentals.

7.6 Second Candidate: Description Logics

As an alternative to first-order logic, there are several formalisms that denote sets

of objects by their attributes (called roles), subsumed under the term description
logics or terminological logics. Their most important domains are:

Knowledge representation. In the domain of knowledge representation, con-
cept descriptions, also called frames [BL84, Neb90, NS89], are used to

represent sets of objects by attribute/value combinations.

Configuration of technical systems. To configure technical systems, termino-
logical configuration systems like CLASSIC [BMPS+91a, BMPS+91b], K-

REP [MDW91], BACK [Pel91], LOOM [Mac91], or KRIS [BH91, BFH+94]

are more and more preferred to domain-specific configuration systems like

XCON [McD82, McD84] or customizable systems like PLAKON [CGS91].

These terminological systems rely on description logic as a semantic foun-

dation to identify component properties as well as to express configuration

constraints.

All these description logics combine attribute descriptions with full boolean set

semantics, including set union (disjunction) and set complement (negation). This

makes them ideal choices for SCM selection and identification schemes—and last

but not least, they already have been used to describe and solve configuration

problems. However, attribute propagation from components to composites must

be explicitly stated for each single role.

7.7 Third Candidate: Feature Logics 69

7.7 Third Candidate: Feature Logics

A special subset of description logics are feature logics. Here, attributes are called

features. In contrast to roles, features are functional : each feature of a compo-

nent can have only one value. The features of composite objects are implicitly

determined from the unified features of their components. Typical applications of

feature logics are:

Language analysis. In the semantic analysis of natural language [KB82, Kay84,

SUP+83], feature logics are used to represent and propagate grammatical

information—for instance, how the features of a sentence are determined

by the features of its verb.

Programming. In programming languages, attribute/value combinations are fre-

quently used in record structures. Aı̈t-Kaci was the first to study such

structures mathematically, calling them ψ-terms [AK86]. The resulting

ψ-term calculus is the formal foundation of the PROLOG-like program-

ming languages LOGIN [AKN86] and LIFE [AKP91], using feature uni-
fication[SAK90] instead of PROLOG’s syntactic unification. A variant of

LOGIN, called CONGRESS, is the base of the CAPITL build planner dis-

cussed in section 4.5.

The advantage of feature logics is that they provide a natural way of attribute

propagation from components to composites—a property that already has been

successfully exploited in the SCM domain. The disadvantage of the feature log-

ics listed is that only conjunctions of attribute/value combinations are supported;

negations or disjunctions are not allowed. This restriction would severely con-

strain identification and selection schemes, not to speak of CPP arithmetic expres-

sions, or quantifiers in JASON.

7.8 Conclusion

For the SCM domain, we need the best of three worlds:

Boolean operations as in first-order logic. This is a must for modelling SCM

identification and selection schemes.

Attribute descriptions and set operations as in description logics. These for-

malisms are needed for identifying versions according to their properties.

Attribute propagation and unification as in feature logics. This is needed to

describe the features of derived and composed objects.

70 A SCM Foundation

Fortunately, there is a special feature logic that includes quantification, disjunc-

tion, and negation over attribution terms, forming a full boolean algebra while

preserving the functional nature of features and describing how features propa-

gate from components to composites. This logic, described by Smolka in 1992,

and simply called feature logic, is presented in chapter 8.

I was to learn later in life
that we tend to meet any new situation

by reorganizing;
and a wonderful method it can be

for creating the illusion of progress
while producing confusion, inefficiency, and demoralization.

— PETRONIUS ARBITER

Chapter 8

Feature Logic

After a short excursion into the evolution of feature logic, we give an informal
overview. For a deeper understanding, we present the formal syntax and seman-
tics of feature logic, based on [Smo92].

8.1 The Evolution of Feature Logic

Feature descriptions and feature logic have two sources. The first source is ori-

ented towards boolean formulae, providing for the declaration and specification

of linguistic knowledge. The lexical-functional grammar [KB82], of Bresnan

and Kaplan, as well as Shieber’s PATR-II formalism [SUP+83] and Johnson’s

attribute-value logic [Joh88] use boolean combinations of features, constants, and

variables.

The second source is oriented towards set-denoting feature expressions, called

feature terms in this work, used in programming languages and knowledge rep-

resentation. This includes Kay’s functional unification grammar [Kay84], Aı̈t-

Kaci’s ψ-term calculus [AK86, SAK90], and the logic of Kasper [KR86] and

Rounds [MR87]. These feature terms also have much in common with concept
descriptions used in knowledge representation [BL84, Neb90, NS89].

In [Smo92], Smolka unified these two approaches and showed that the dif-

ferent feature descriptions can be embedded into first-order predicate logic with

equality.

We have chosen Smolka’s feature logic as a SCM foundation. Not only does

it provide a simple and clear semantics, but it also allows us to describe SCM

concepts by attribution without losing the expressiveness of boolean first-order

logic.

71

72 Feature Logic

8.2 Feature Logic in a Nutshell

We begin with an informal overview of feature logic. Feature terms denote sets

of objects characterized by certain features. A feature is a functional property

or attribute of abstract objects. In their simplest form, feature terms consist of a

conjunction of (feature:value)-pairs, called slots, where each feature represents

an attribute of an object. Feature values include literals, variables, and (nested)

feature terms.

As an example, consider the following feature term T , which expresses the

linguistic properties of a natural language fragment:

T =

2
664

tense:present;

predicate: [verb:sing;agent:x;what:y] ;

subject: [x;num:singular;person: third] ;

object:y

3
775

This term says that the language fragment is in present tense, third person sin-

gular, that the agent of the predicate is equal to the subject, and so on. In other

words, T denotes the sentence template “x sings y”.

The syntax of feature terms is summarized in table 8.1 on the facing page,

where we denote variables by x, y, z; features by f , g, h; constants by a, b, c; and

feature terms denoted by S, T , and U . Feature terms are constructed using the

well-known boolean set operations intersection, union, and complement. Each

of these set operations may also be interpreted as logical constraint on the object

features, representing the set of objects satisfying this constraint. For instance, let

S = [f :a], the set of all objects whose feature f has the value a, and T = [g:b],
the set of all objects whose feature g has the value b. Then, Su T = [f :a;g:b]
may be read as the intersection of S and T as well as the set of objects whose

feature f is a and whose feature g is b. Similarly, StT = f f :a;g:bg is the union

of S and T as well as the set of objects whose feature f is a or whose feature g

is b. As feature terms form a boolean algebra, all boolean transformations like

distribution, de Morgan’s law etc. hold for feature terms as well.

Feature terms have two important properties which make them especially suit-

able in the context of SCM.

Each feature of an object may have only one value. This property is due to the

functional nature of features. For instance, the term [os:dos;os:unix] is

equivalent to ?, the empty set. This property is useful for selection and

consistency checking.

8.3 Features and Feature Algebras 73

Notation Name Interpretation

> (also []) Top Ignorance

? (also fg) Bottom Inconsistency

a Atom

x Variable

f :S Selection The value of f is S

f :> Existence f is defined

f" Divergence f is undefined

f #g Agreement f and g have the same value

f "g Disagreement f and g have different values

�S Complement S does not hold

SuT (also [S;T]) Intersection Both S and T hold

StT (also fS;Tg) Union S or T holds

S ! T Implication If S holds, then T holds

S $ T Equivalence S holds if and only if T holds

9x(S) Quantification There is an x such that S holds

Table 8.1: Syntax and interpretation of feature terms

Feature terms always allow for further specialization. Every feature term can

be refined by specifying further features, like subclasses in object-oriented

models. This property allows for attribute propagation and abstract config-

urations.

In this chapter, we give a formal definition of features and feature terms,

closely following Smolka’s definitions in [Smo92] and further clarified by Fischer

in [Fis93]. For each operator in table 8.1, we give its denotational semantics and

show its respective properties.

8.3 Features and Feature Algebras

The definition of features as functional properties implies that we can model fea-

tures as partial functions that, applied to abstract objects, result in a single feature
value. For instance, the feature os of a component X may be os(X) = unix. The

functional nature of features also implies that each feature of an object may have

only one value.

74 Feature Logic

We now define these properties of features formally, introducing feature alge-
bras as interpretations of feature descriptions.

Definition 8.1 (Feature algebra, Feature) A feature algebra I is a pair (DI ; �I)
consisting of a nonempty set DI , called the domain of I, and an interpretation
function �I assigning to every atom a an element aI 2 DI and to every feature f a

set of ordered pairs f I � DI �DI such that the following conditions are satisfied:

1. If (d;e) and (d;e0) are in f I , then e = e0 (features are functional),

2. If a 6= b, then aI 6= bI (unique-name assumption),

3. If f is a feature and a is an atom, then there exists no d 2 DI such that

(aI ;d) 2 f I (atoms are primitive). 2

The first condition captures the functional nature of features; the third definition

restricts the application of features to non-primitive objects.

For the denotation of variables, we introduce I-assignments:

Definition 8.2 (Assignment) Let I be a feature algebra. An I-assignment is a

mapping from the set of all variables to the domain of I. 2

The set of all I-assignments is denoted as ASS[I].

8.4 Syntax and Semantics of Feature Terms

We now introduce feature terms, a denotation for sets in feature algebras. For

each construct, we give its syntax, followed by its denotation SI
α � DI , where I is

a feature algebra, and α 2 ASS[I] an I-assignment.

8.4.1 Top and Bottom

Top denotes the entire universe of objects, bottom the empty set.

Definition 8.3 (Top) The symbol > denotes the entire domain of the feature al-

gebra I:

>I
α = DI

2

Definition 8.4 (Bottom) The symbol? denotes the empty set:

?I
α = /0

2

8.4 Syntax and Semantics of Feature Terms 75

8.4.2 Atoms and Variables

The primitives of feature logic are atoms and variables.

Definition 8.5 (Atom) An atom a is a primitive object for which no features are

defined. An atom denotes a singleton set containing itself:

aI
α = faIg

2

Definition 8.6 (Variable) A variable x is a placeholder for some feature term. Its

denotation is the term it stands for:

xI
α = fα(x)g

2

A variable is called free if it is not bound by any quantifier.

8.4.3 Selection

The basic operation of feature logic is selection, denoting the objects where a

feature has a specific value.

Definition 8.7 (Selection) The term f :S denotes the set of all objects whose fea-

ture f has a value S:

(f :S)I
α = fd 2 DI j 9e 2 SI

α:(d;e) 2 f Ig

2

For instance, the feature term tested: true denotes all objects whose feature tested

has a value of true.

In feature logic, there is no distinction between objects and feature values.

Hence, feature values may be feature terms again, denoting other objects. As an

example, consider existence. As follows from definitions 8.3 and 8.7, a term f :>

(Existence) denotes all objects for which the feature f is defined with an arbitrary

value:

(f :>)I
α = fd 2 DI j 9e 2 DI :(d;e) 2 f Ig

76 Feature Logic

Note that the suggestive f :? does not stand for all objects whose feature f is

undefined, but for the empty set instead. As follows from definitions 8.4 and 8.7,

f :?=? holds for all I and α:

(f :?)I
α = fd 2 DI j 9e 2 ?I

α:(d;e) 2 f Ig

= fd 2 DI j 9e 2 /0:(d;e) 2 f Ig

= /0

=?I
α

Hence, we need an alternate construct to capture undefined features.

8.4.4 Divergence

A feature may be undefined on certain objects.

Definition 8.8 (Divergence) The set f" is the set of all objects whose feature f

is undefined:

(f")I
α = fd 2 DI j 8e 2 DI :(d;e) 62 f Ig

2

8.4.5 Agreement and Disagreement

Special notations exist for sets of objects whose features have equal or unequal

values.

Definition 8.9 (Agreement) The set f # g is the set of all objects for which the

feature f has the same value as the feature g:

(f #g)I
α = fd 2 DI j 9e 2 DI:(d;e) 2 f I \gIg

2

Definition 8.10 (Disagreement) The set f " g is the set of all objects for which

the feature f has another value than the feature g:

(f "g)I
α = fd 2 DI j 9e;e0 2 DI :(d;e) 2 f I ^ (d;e0) 2 gI ^ e 6= e0g

2

Assuming that we classify compilers by their host and target architectures, we

may thus specify a cross-compiler as host-arch" target-arch. Note that agreement

and disagreement imply that both features f and g be actually defined.

8.4 Syntax and Semantics of Feature Terms 77

8.4.6 Complement

The set complement respective to > is denoted by the complement sign �.1

Definition 8.11 (Complement) The set �S denotes all objects other than those

denoted by S:

(�S)I
α = DI�SI

α

2

When speaking of features rather than objects, the term �S may also be read

as negation. Hence, the term T = operating-system:�windows denotes all objects

whose feature operating-system is not windows. This must not be confounded

with the term T 0 =�operating-system:windows, which consists of the objects of

T as well as of the objects whose feature operating-system is undefined.

The definition implies that the well-known equivalences2 for set complements

apply:

�>=?

��S = S

8.4.7 Intersection

Intersections are used to denote objects by several features.

Definition 8.12 (Intersection) We write SuT for the intersection of S and T :

(SuT)I
α = SI

α \T I
α

2

When speaking of features instead of objects, terms like S u T may also

be read as conjunction. As an example, the term T = author:zeller u status:

experimental denotes all objects whose author is Zeller and whose status is ex-

perimental.

Feature conjunctions occur very frequently. We thus introduce the more con-

venient matrix notation for feature terms, which traces back to the very roots of

1Smolka [Smo92] uses the : symbol.
2See definition 8.25 on page 85 for a formal definition of equivalence.

78 Feature Logic

feature logic [Kay79]. In matrix notation, conjunctions are surrounded by square

brackets, such that the following equivalences hold:

[]�>

[S]� S

[S1;S2; : : : ;Sn]� S1uS2u �� �uSn

Hence, the feature term T = age:30umood:happy may also be written as T =
[age:30;mood:happy].

Definition 8.12 implies associativity, commutativity, and idempotency of in-

tersection:

(SuT)uU = Su (T uU)

SuT = T uS

SuS = S

The neutral element respective to intersection is >; the zero element respective to

intersection is ?.

Su>= S

Su?=?

Intersection with a complement is the empty set:

Su�S =?

Intersections and complements as feature values can be lifted to the top level:

[f :(SuT)] = [f :S]u [f :T]

[f :�S] = [f :>]u�[f :S]

8.4.8 Union

Unions are used to denote alternatives.

Definition 8.13 (Union) The term StT denotes the union of S and T :

(StT)I
α = SI

α [T I
α

2

8.4 Syntax and Semantics of Feature Terms 79

Again, when speaking of features instead of objects, the union operator has

the meaning of a boolean disjunction operator. As an example, consider the term

T = operating-system:dost operating-system:unix, denoting all objects whose

operating system is DOS or UNIX.

In matrix notation, conjunctions are surrounded by curly braces, such that the

following equivalences hold:

fg � ?

fSg� S

fS1;S2; : : : ;Sng � S1tS2t �� �tSn

Hence, the term T = status:proposedt status:experimental may also be written

as T = fstatus:proposed;status:experimentalg or, according to definition 8.13, as

T = status:fproposed;experimentalg.

Again, we can deduce associativity, commutativity, and idempotency:

(StT)tU = St (T tU)

StT = T tS

StS = S

Respective to union, the neutral element is ?; the zero element is >.

St?= S

St>=>

Union with a complement is the universe.

St�S =>

Regarding unions and intersections, distribution and absorption rules apply:

(StT)uU = (SuU)t (T uU)

(SuT)tU = (StU)u (T tU)

St (SuT) = S

Su (StT) = S

De Morgan’s laws apply as well.

�(SuT) =�St�T

�(StT) =�Su�T

80 Feature Logic

Unions as feature values can also be lifted to the top level:

[f :(StT)] = [f :S]t [f :T]

8.4.9 Implication

The implication S! T is a short-hand notation for�StT :

Definition 8.14 (Implication) The term S! T denotes all objects which are in T

or not in S:

(S! T)I
α =

�
DI�SI

α
�
[T I

α

2

All rules for implications are deduced from the equivalence

S! T =�StT

The following absorption rules have practical relevance:

(S! T)uS = T

(S! T)u�T =�S

8.4.10 Equivalence

The equivalence S$ T is a short-hand notation for (S! T)u (T ! S):

Definition 8.15 (Feature equivalence) The term S! T denotes the objects that

are either in S and T or in neither S nor T :

(S$ T)I
α =

��
DI�SI

α
�
[T I

α
�
\
��

DI�T I
α
�
[SI

α
�

2

All rules for equivalences are deduced from

S$ T = (S! T)u (T ! S)

which can also be expressed as

S$ T = (SuT)t (�Su�T) :

8.4 Syntax and Semantics of Feature Terms 81

8.4.11 Quantification

The final element in the syntax of feature terms is existential quantification.

Definition 8.16 (Existential quantification) The term 9x(S) defines the union

of all sets S where x is instantiated by some object:

�
9x(S)

�I

α =
[

d2DI

SI
α[x d]

2

Here, the term α[x d] stands for the instantiation of x with d: If α is an I-

assignment and d 2 DI , then α[x d] denotes the I-assignment obtained from α
by mapping x to d rather than to α(x).

Again, 9x(S) may be interpreted as denoting features rather than objects: a

term 9x(S) then denotes all objects where there exists an x such that S is satisfied.

Our presentation of the syntax and semantics of feature terms is now com-

plete. As a summary, consider table 8.2 on the following page: Given a feature

algebra I and a I-assignment α, the denotation of a feature term S in I under α is

a subset of DI defined inductively as shown.

8.4.12 An Interpretation Example

As a simple example for the interpretation of feature terms, let

DI = fBICYCLE;CAR;TRUCK;ONE;TWO;FOUR;SIXg

be some domain, let WHEELS and PASSENGERS be features, and let �I be an interpre-

tation function such that

wheelsI = WHEELS

=
�
(BICYCLE;TWO);(CAR;FOUR);(TRUCK;SIX)

	
and

passengersI = PASSENGERS

=
�
(BICYCLE;ONE);(CAR;FOUR);(TRUCK;TWO)

	
:

Furthermore, let us interpret the atoms 1;2;4;6 as 1I = ONE, 2I = TWO, 4I = FOUR,

and 6I = SIX.

82 Feature Logic

>I
α = DI

?I
α = /0

aI
α =

�
aI
	

xI
α =

n
α(x)

o
(f :S)I

α =
�

d 2 DI j 9e 2 SI
α :(d;e) 2 f I

	
(f")I

α =
�

d 2 DI j 8e 2 DI :(d;e) 62 f I
	

(f #g)I
α =

�
d 2 DI j 9e 2 DI :(d;e) 2 f I \gI

	
(f "g)I

α =
�

d 2 DI j 9e;e0 2 DI:(d;e) 2 f I ^ (d;e0) 2 gI ^ e 6= e0
	

(�S)I
α = DI �SI

α

(SuT)I
α = SI

α \T I
α

(StT)I
α = SI

α [T I
α

(S ! T)I
α =

�
DI �SI

α
�
[T I

α

(S $ T)I
α =

��
DI �SI

α
�
[T I

α
�
\
��

DI �T I
α
�
[SI

α
�

�
9x(S)

�I

α =
[

d2DI

SI
α[x d]

Table 8.2: Formal denotation of feature terms

The denotation of the feature term S = [passengers:2] under the feature alge-

bra I = (DI ; �I) and some I-assignment α is then determined as

SI
α = [passengers:2]Iα

=
�

d 2 DI j 9e 2 2I
α:(d;e) 2 passengersI

	
=
�

d 2 DI j 9e 2 fTWOg:(d;e) 2 PASSENGERS
	

=
�

d 2 DI j (d;TWO) 2 PASSENGERS
	

= fTRUCKg :

The term T = 9x[passengers:x;wheels:x] is interpreted as

T I
α = 9x[passengers:x;wheels:x]Iα

=
[

d2DI

[passengers:x;wheels:x]Iα[x d]

8.5 Properties of Feature Terms 83

= � � � [[passengers:x;wheels:x]Iα[x FOUR] [�� � :

We focus upon the assignment of x with FOUR, giving

T I
α = � � � [

�
[passengers:x]Iα[x FOUR] \ [wheels:x]Iα[x FOUR]

�
[�� �

which reduces to

T I
α = � � � [

�n
d 2 DI j 9e 2 xI

α[x FOUR]:(d;e) 2 passengersI
o
\ �� �

�
[�� �

= � � � [
��

d 2 DI j 9e 2 fFOURg:(d;e) 2 passengersI
	
\ �� �

�
[�� �

= � � � [
��

d 2 DI j (d;FOUR) 2 PASSENGERS
	

\
�

d 2 DI j (d;FOUR) 2 WHEELS
	�

[�� �

= � � � [
��

d 2 DI j (d;FOUR) 2 PASSENGERS^ (d;FOUR) 2 WHEELS
	�

[�� �

This leaves only the CAR element as possible interpretation:

T I
α = � � � [

�
fCARg\fCARg

�
[�� �

All other assignments for x result in the empty set, giving

T I
α = /0[

�
fCARg\fCARg

�
[/0

= fCARg :

Existential quantification 9x(S) in feature terms, as in the example above,

imposes some decidability and complexity problems. Existential quantification is

thus often implicitly expressed through equivalent agreement and disagreement

terms. The term T = 9x[passengers:x;wheels:x] can be expressed through the

equivalent T = passengers #wheels, for instance. The algorithms discussed in

this work all require that their feature terms be free of existential quantifiers.

8.5 Properties of Feature Terms

8.5.1 Redundant Forms

Smolka observes that most of the introduced feature term forms are redundant

and may be reduced to six primitive forms.

84 Feature Logic

Definition 8.17 (Primitive feature term) A feature term is called primitive if it

contains only the forms a, x, f :S, SuT , �S, and 9x(S). 2

Proposition 8.18 Every feature term can be rewritten in linear time to an equiv-

alent primitive feature term by using the following equivalences:

f"=�(f :>) ?= xu�x

f #g = 9x(f :xug:x) >=�?

f "g = 9x(f :xug:�x) StT =�(�Su�T)

S! T =�(Su�T) S$ T =�(Su�T)u�(T u�S)

PROOF. Follows from definitions. 2

8.5.2 Special Feature Terms

We now introduce the notions of closed, quantifier-free, basic, and simple feature

terms.

Definition 8.19 (Closed feature term) A feature term is called closed if it has

no variables. 2

Definition 8.20 (Quantifier-free feature term) A feature term is quantifier-free
if it contains no quantifications 9x(S). 2

Definition 8.21 (Basic feature term) A feature term is basic if it is quantifier-

free and contains only complements of the from�a or�x. 2

Every quantifier-free feature term can be transformed into a basic feature term,

where negations occur only at the atom and variable level.

Proposition 8.22 Every quantifier-free feature term can be rewritten in linear

time to an equivalent basic feature term by using the following equivalences:

� f :S = f"t f :�S �?=>

� f"= f :> �>=?

� f "g = f"tg"t f #g �(SuT) =�St�T

� f #g = f"tg"t f "g �(StT) =�Su�T

��S = S S! T =�StT

S$ T = (�StT)u (�T tS)
PROOF. Follows from definitions. 2

8.5 Properties of Feature Terms 85

Definition 8.23 (Simple feature term) A feature term is simple if it is basic and

contains no unions. 2

Definition 8.24 (Disjunctive normal form) A feature term is in disjunctive nor-
mal form (DNF) if it has the form S1 t �� � t Sn, where all S1; : : : ;Sn are simple

feature terms. 2

8.5.3 Equivalence

The meaning of an expression S = T is the intuitive one.

Definition 8.25 (Term equivalence) Two feature terms S and T are called equiv-
alent (written S =I T or S = T where unambiguous) if SI

α = T I
α for every feature

algebra I and an I-assignment α.3 2

Using this equivalence notion, we find that feature terms constitute a boolean

algebra.

Proposition 8.26 Let f be the set of feature terms, as defined in section 8.4. Then

(f ;t;u;�;?;>) is a boolean algebra under the equivalence =I .

PROOF. All properties required for boolean algebras (commutativity, associativity,

idempotency, absorption, distribution, etc.) apply. 2

8.5.4 Subsumption

In our SCM context, subsumption is frequently needed for eliminating redundant

feature terms and to express implications.

Definition 8.27 (Subsumption) A feature term S is said to be subsumed by a

feature term T (written SvT or T w S) if SI
α � T I

α holds for every feature algebra I

and every I-assignment α.4 2

The following propositions hold for all feature terms S, T , U :

Sv S (8.1)

Sv T uT v S) S = T (8.2)

S v T uT vU) SvU (8.3)

3Smolka [Smo92] writes S � T instead of S= T .
4Smolka [Smo92] says that S is included by T , written S4 T .

86 Feature Logic

as well as

SuT v S f :S v f :T , Sv T Sv>

Sv StT �Sv�T , T v S ?v S :

As subsumption is reflexive (8.1), antisymmetric (8.2), and transitive (8.3), it im-

poses a partial order on feature terms—for instance, we have>w [fruit:apple]w
[fruit:apple;color:green]w [fruit:apple;color:green;wormy:no]w �� � w ?. This

order constitutes a lattice structure in the set of feature terms.

Proposition 8.28 The set of all feature terms f and subsumption constitute a

subsumption lattice (f ;v) with a supremum of StT and an infimum of SuT for

all S;T 2 f .

PROOF. Follows from proposition 8.26 on the page before. 2

8.5.5 Consistency

The notion of consistent feature terms is important for defining the consistency

of a configuration.

Definition 8.29 (Consistency) A feature term S is called coherent or consistent
if there exists a feature algebra I and an I-assignment α such that SI

α 6= /0. A

feature term is called incoherent or inconsistent if it is not consistent. 2

Definition 8.30 (Mutual consistency) Two feature term S and T are called con-
sistent with each other if their intersection is consistent—that is, if SuT is con-

sistent. 2

Definition 8.31 (Disjointness) Two feature terms S and T are called disjoint if

their intersection is inconsistent—that is, if SuT is inconsistent. 2

Both deciding subsumption and equivalence can be tracked down to deciding

consistency.

Proposition 8.32 Consistency, subsumption, and equivalence of feature terms

are linear-time reducible to each other:

S inconsistent , S =? (8.4)

Sv T , Su�T inconsistent (8.5)

S = T , Sv T ^T v S (8.6)

PROOF. Follows from definitions. 2

8.6 Conclusion 87

8.6 Conclusion

Feature logic combines boolean formulas with attribute descriptions. Its basic

notions are features, functional properties or attributes of abstract objects, and

feature terms, denoting sets of objects by their features. Feature logic has a con-

venient and natural set notation, describes objects by attributes, and provides a

suitable notion of consistency. Feature logic thus fulfills our requirements for a

SCM foundation, as discussed in chapter 7.

In this work, we always interpret feature terms as sets of objects, unless oth-

erwise specified. “Traditional” set notation will not be required, with one single

exception: We write jSj to express the cardinality (the number of elements) of a

set denoted by the feature term S under a given interpretation. All other required

notation is already provided by feature logic, as introduced above. Having pro-

vided the necessary foundation, we now apply feature logic in the context of SCM,

developing a layer of CM primitives on top of feature logic.

In the first place, Herodotus,
you must understand what it is that words denote,

in order that by reference to this
we may be in a position to test opinions, inquiries, or problems,

so that our proofs may not run untested ad infinitum,
nor the terms we use be empty of meaning.

— EPICURUS, Diog. Laert, Epicurus, X, 37

Part Three

The Version Set Model

89

Chapter 9

Versions and Components

Let us now return to the SCM domain. In this part, we show how feature logic can
be used to describe SCM tasks and concepts, and how a unified SCM model can
integrate the common four SCM models.

We begin with the SCM primitives layer, that is, basic versioning and access
capabilities. We introduce the concept of version sets, sets of component versions
denoted by feature terms. We show how the features of components are modeled
as alternatives over the features of the individual versions, and demonstrate how
specific versions are selected by intersection.

9.1 Identifying Versions

According with the SCM standards, as stated in section 1.3, we consider that the

object of interest in SCM is a family of software products. Each of these software

products breaks down in several components, each of which may exist in sev-

eral component versions. A component version is an unbreakable, unambiguous

configuration item.

In our setting, a component is a set of component versions and thus identifi-

able by a feature term. Each of the individual component versions is identified by

a singleton subset. To bind these component versions together, we must assume

at least one common feature across all component versions. Hence, we assume

that each component can be identified uniquely via an object feature assigning

each component a simple (unambiguous) component identifier.

Definition 9.1 (Component) A component is a set K v [object:k], where k is a

simple feature term uniquely identifying the component. 2

91

92 Versions and Components

For instance, [object:printer] denotes a component, but [fruit:apple] does not.

A component version is uniquely identified by a singleton component. As a

matter of convenience, we use the same name for singleton sets and the object

they denote. Hence, a component version means both a singleton set and the

object contained in that set.

Definition 9.2 (Component version) A component version is a component K

with K v [object:k] and jKj = 1, where k is a simple feature term uniquely iden-

tifying the component. 2

Definition 9.3 (Abstract component) A component K is called generic or ab-
stract if it occurs in more than one version, i.e. jKj> 1. 2

As an example, let

printer1 = [object:printer;print-language:postscript]

printer2 = [object:printer;print-language:ascii]

denote versions of a printer component, distinguished by their input language

(PostScript or ASCII). The term [object:printer] then denotes an abstract compo-

nent, since it occurs in (at least) two versions.

Definition 9.4 (Bound component) A component K is called unambiguous or

bound if it occurs in exactly one version, i.e. jKj= 1. 2

Following our example, if both component versions printer1 and printer2 are

bound, the abstract component [object:printer] comes in exactly two versions.

We now abstract from components and speak of versions alone. A collection

of arbitrary components in arbitrary versions is called a version set. We still

assume that a object feature exists.

Definition 9.5 (Version set) A version set is any set V v [object:>]. 2

For consistency, a version is a singleton version set. This implies that a compo-

nent version is both a component and a version.

Definition 9.6 (Version) A version is any version set V v [object:>] such that

jV j= 1. 2

9.2 Selecting Versions 93

The features of a component are modeled as alternatives over the features

of each component version. That is, a component is the union of its individual

component versions:

Definition 9.7 (Components vs. Component versions) A component K exist-

ing in n component versions V1;V2; : : : ;Vn, is determined as the union of all Vi:

K = V1tV2t �� �tVn =
G

1�i�n

Vi : (9.1)

2

Features F of the component itself (as [object:k]) are the same across all com-

ponent versions, and hence can be factored out through (F uV1)t (F uV2) =
F u (V1tV2).

As an example, reconsider our printer setting. The printer component itself is

determined as the union of printer1 and printer2:

printer = printer1tprinter2

=
�
object:printer;print-language:fpostscript;asciig

�
:

The term printer can be read either as union of the component versions printer1

and printer2, or as the features of the printer component, which is “the printer

language is PostScript or ASCII”.

9.2 Selecting Versions

To retrieve individual versions of a version set, the version set is intersected with

a selection term containing the desired features. For any version set T and a

selection term S, we can identify the versions satisfying S by calculating T 0 = T u

S—that is, the version set that is a subset of S as well as a subset of T . If T 0 =?,

selection fails—T 0 does not denote any existing version.

For instance, consider the printer example from section 9.1. In figure 9.1 on

the following page, we have represented some version sets using the well-known

Venn diagrams; each curve represents a set enclosing the denoted objects. We

see that selecting S = [print-language:postscript] from printer returns printer1,

since printer1 is a subset of S (that is, printer1 v S), while printer2 is not (that is,

printer2 v�S).

Formally, we have printeru S = (printer1 t printer2)u S = (printer1 u S)t
(printer2u S) = printer1t? = printer1. Here, printer2u S = ? holds since the

print-language feature may have only one value.

94 Versions and Components

�
object:printer;

print-language:ascii

� �
object:printer;

print-language:postscript

�

[object:printer]

[print-language:postscript]

Figure 9.1: Selecting component versions

The selection term may be an arbitrary feature term. For instance, we may

select any printer except printer1, by selecting

S =�printer1

=�[object:printer;print-language:postscript]

=�[object:printer]t�[print-language:postscript]

Obviously, we have printeruS = printer2, since (printer1tprinter2)u�printer1

= printer2 holds.

Due to the semantics of feature logic, there is a potential danger in selec-

tions. Since every non-existing feature must be specified as explicitly as every

existing feature, a selection with non-specified, orthogonal features may result in

counter-intuitive results. For instance, selecting S = [colors:4] from printer =
printer1tprinter2 would result in the entire printer set, although the colors fea-

ture is neither defined nor undefined in each printer1 and printer2. Which is even

worse, printeru S results in a new term augmented with the colors feature from

S:

9.3 Making Selections Unambiguous 95

printeru [colors:4]

=
�
object:printer;print-language:fpostscript;asciig;colors:4

�
Although this behavior makes sense in a set-theoretic context, it is undesirable for

SCM selection purposes. Fortunately, this behavior can easily be avoided in an

implementation by disallowing non-orthogonal selection terms. In section 19.5,

we discuss techniques for safe interactive exploration of the version space.

To conclude, the ability to use boolean expressions for both identification and

selection complies with the requirement for unification as stated in section 7.3. It

allows our model to encompass attribute-oriented identification schemes as well

as attribute-oriented selection schemes. Alas, the expressiveness of feature logic

comes with the cost of N P-completeness, which implies exponential time com-

plexity for selections in the worst case. Fortunately, all of today’s SCM tasks can

be realized efficiently, as we discuss in chapter 14.

9.3 Making Selections Unambiguous

As our selection scheme is set-oriented, the result of each selection T 0 of a se-

lection T 0 = T u S is just another version set and may thus be ambiguous. To

make our selection unambiguous, we may give a second selection term S0 and se-

lect T 00 = T 0 uS0, give a third selection term S00, and so on, narrowing the choice

set incrementally until a singleton set is selected, containing the desired version.

Such techniques can be used to explore the configuration space interactively, nar-

rowing and extending the selection as desired. We discuss such interactive tools

in section 19.5.

As discussed in section 3.3, most SCM tools make their selection unambigu-

ous as soon as possible, using configuration rules to express preferences and de-

faults. The semantics of such complex selection schemes can be described on

top of feature logic, by defining preference operators and default operators which

handle ambiguity and inconsistency.

Definition 9.8 (Preferences and defaults) The preference operator “and-then”

and the default operator “or-else” are defined as

S1 and-thenS2 =

(
S1 if S1 is unambiguous (i.e. jS1j= 1),

S1 uS2 otherwise

S1 or-elseS2 =

(
S1 if S1 is non-empty (i.e. S1 6=?),

S2 otherwise

96 Versions and Components

where the equivalences T u (S1 and-thenS2) = (T u S1 and-thenT u S2) and T u

(S1 or-elseS2) = (T uS1 or-elseT uS2) hold. 2

Using “and-then” and “or-else”, we can express preferences and defaults in

our selection terms. For instance, S =
�
[current:>]or-else [fixed: true]

�
first se-

lects the current version, and, if there is none, a “fixed” current version. The se-

lection S =
�
[os:unix]and-then [unix-flavour:bsd]

�
selects the UNIX version and,

should this choice be ambiguous, the BSD variant.

Another practical extension are additional constraints, for instance quantifica-

tion, arithmetic constraints or function interfaces. Such constraints can be handled

as additional constraints in Smolka’s feature unification algorithm when deciding

about the inconsistency of simple feature terms; they can be evaluated as soon as

their variables (features) are instantiated [Sne91]. Well-known constraint solving

systems like the Simplex Method or language-specific consistency checkers, as

discussed in section 3.6.2, may help to decide about inconsistence. Such con-

straints are discussed in section 18.5.

Users must be aware, however, that the usage of preferences or additional con-

straints may lead to unresolved constraints due to undecidability. Such unresolved

constraints can be avoided by using extensions either only for version identifica-

tion or only for version selection, making preferences and additional constraints

useful extensions in many environments.

9.4 Dynamic Version Creation

So far, we have thought of components as a union over a finite set of versions.

But it is also conceivable that specific versions are dynamically created and in-
stantiated just as they are requested. As an example, consider a component

network-interface that can be customized with a specific network address. As the

number of network addresses is (in theory) infinite, the network-interface compo-

nent is the union over an infinite set of possible versions. Hence, the features of

network-interface become

network-interface = [object:network-interface;address:>]

which means that for any version (subset) of network-interface, the address fea-

ture must be defined. A SCM system may now be set up such that a selection

network-interfaceu [address:127:0:0:1] would actually instantiate the generic

network-interface component with a version for the address 127:0:0:1, creating

versions on-the-fly as needed. In practice, this specific example would probably

not be implemented via a SCM system, but through some run-time configuration

mechanism (which may again realize the version set model).

9.5 Assigning Features to Versions 97

As a more SCM-specific example, consider change sets, as discussed in sec-

tion 2.7. As (more or less) arbitrary combinations of change sets are possible, an

SCM system should be set up such that these versions are created only when re-

quested. A selection term like [change-41:>;change-42:>], for instance, would

result in the creation of a version with the changes 41 and 42 applied. We fur-

ther discuss this idea of representing change sets and dynamic version creation in

chapter 11.

9.5 Assigning Features to Versions

We close this chapter by discussing the question which features of components

and versions are significant and how these should be modeled in feature logic.

The specific attribution methodology is part of higher SCM layers (notably the

protocol and policy layers); in order to maintain flexibility at these layers, we do

not impose more meaning than necessary on specific features.

There are only few existing attribution methodologies; we have already dis-

cussed the CAPITL methodology in section 4.5; another frequently-cited scheme

is faceted classification [PD87, OHPDB92]. However, we can supply some gen-

eral guidelines imposed by feature logic.

9.5.1 Variants must be Disjoint

Definition 9.2 requires that each component version be singleton and thus un-

ambiguous. This implies that the intersection of any two different component

versions Vi and V j must be empty, or Vi uV j = ?. For instance, consider the

following terms:

screen1 = [object:screen;depth:1]

screen2 = [object:screen;x-resolution:1024;y-resolution:1024]

screen1 and screen2 do not identify two distinct component versions, as their

intersection is non-empty:

screen1u screen2

= [object:screen;depth:1;x-resolution:1024;y-resolution:1024]

is the set of all screens with depth 1 and a resolution of 1024� 1024 pixels. To

have screen1 and screen2 denote two unambiguous variants, screen1 must include

resolution features, and screen2 must include a depth feature.

98 Versions and Components

9.5.2 Feature Values keep Versions Disjoint

A simple way to keep versions disjoint is to assign each of them a common feature

with differing values. For instance, two variants for the UNIX and WINDOWS

operating systems would be easily distinguished via an operating-system feature:

os1 = [object:os;operating-system:dos]

os2 = [object:os;operating-system:unix]

As all features, operating-system can have only one value. Hence, selecting

the UNIX variant [operating-system:unix] automatically excludes the DOS vari-

ant [operating-system:dos] and vice versa.

The alternative, introducing dos and unix features, is less convenient, since the

alternative operating system must be excluded explicitly; this would only make

sense if we expected some future version to support both UNIX and DOS variants.

9.5.3 Features Model Variance Dimensions

Re-consider the screen example. Let us assume that in fact, arbitrary combina-

tions of depth and resolution are possible. In this case, both depth and resolution

constitute orthogonal variance dimensions and should be modeled by different

features. With dynamic version creation, each of these instantiations of depth and

resolution could be created on-the-fly, making the screen component a union over

an infinite number of possible component versions, or

screen = [object:screen;depth:>;x-resolution:>;y-resolution:>] :

9.5.4 Alternatives may Denote Multiple Features

Sometimes, a single version supports several alternatives. Let smart-printer be

a specific printer component may determine automatically the language of its

printer data and thus support several languages at once. This can again be mod-

eled as alternative, for instance as:

smart-printer =
�
object:printer;print-language:fascii;pcl;postscriptg

�
where smart-printer is a singleton set; thus, the selections

smart-printeru [print-language:ascii] ;

smart-printeru [print-language:postscript] ;and

smart-printeru [print-language:pcl]

all return the same component version.

9.6 Discussion 99

9.5.5 Constraints Exclude Feature Combinations

It is often easier to specify the non-existence of certain feature combinations

rather than to specify all existent combinations. This is especially true for dy-

namic version creation. Such feature constraints are best modeled as common

features of the component. A screen with one plane, for instance, is monochrome:

it can only show either black or white pixels. This general constraint can be ex-

pressed through an implication

C = (planes:1! colors:2) =�[planes:1]t [colors:2] ;

stating that the screen has either more than one plane (strictly spoken, any other

number of planes than one) or two colors. This constraint may become part of the

common features of the screen component:

screen = (planes:1! colors:2)u (screen1t �� �t screenn)

which makes the relationship between planes and colors explicit and saves users

from specifying it in each term denoting the component versions.

9.6 Discussion

Using feature terms for both identification and selection of version sets constitutes

an expressive and general scheme. By handling version sets instead of individual

versions, we allow ambiguity as well as dynamic creation of versions. Through

preference and default operators, we can model disambiguation as found in SCM

systems.

Flexibility has its drawbacks. Using complex terms for identification as well

as for selection may result in exponential time complexity. Selection with orthog-

onal terms leads to counter-intuitive results. Finally, there are only few attribution

methodologies that would help classifying versions according to their features.

All three issues must be and can be addressed at the higher SCM layers.

When you have mastered numbers,
you will in fact no longer be reading numbers,

any more than you read words when reading books.
You will be reading meanings.

— HAROLD GENEEN, Managing

Chapter 10

Composing Configurations

Having discussed how individual components are versioned, we can now turn to
collections of components, or configurations. We discuss how features propagate
from components to configurations, and how the features of a configuration are
determined by the common features of its component versions. We show how
common features are used as a means to determine consistency, and discuss how
configurations integrate with other versioning concepts discussed so far.

10.1 Extrinsic and Intrinsic Features

In chapter 9, we have seen how features propagate from versions to components:

Each feature of a component version becomes an alternative feature in the compo-

nent itself. The next questions are: how do features propagate from components

to configurations, and how do these features interact with each other? Basically,

there are two alternatives.

Feature unification. The features of the configuration are determined by the

common (i.e. unified) features of the component versions; these common

features determine the component versions. For instance, adding a [os:dos]
version to a configuration makes [os:dos] a feature of the entire configura-

tion, excluding all non-DOS versions in other components.

Feature union. The features of the configuration are determined by the united

features of the component versions; component features do not interact. For

instance, when composing a configuration from two components vector =
[object:vector] and multiset = [object:multiset], the features of the configu-

ration should be [object:fvector;multisetg]—that is, the objects are vector

and multiset.

101

102 Composing Configurations

A solution to this dilemma is to distinguish between extrinsic features, which are

unified, and intrinsic features, which are not.

Definition 10.1 (Extrinsic and intrinsic features) Features of a component ver-

sion are either extrinsic or intrinsic. A dependent or extrinsic feature of a com-

ponent is a feature that determines the features of other components in a configu-

ration. An independent or intrinsic feature is a feature that is not extrinsic. 2

Extrinsic features are typically features that must be common across all com-

ponents, for instance operating-system customer, or bug-fix-377. Intrinsic fea-

tures are often process-driven and used for identifying purposes only, like author,

date, or change-log. The object feature is also an intrinsic feature.

We first discuss the treatment of extrinsic features, including a larger example,

and than turn to the integration of intrinsic features.

10.2 Unifying Extrinsic Features

In chapter 9, we have seen that in our model, feature terms may be used for

identification as well as for selection purposes. Until now, we have identified a

component version by its intrinsic features. But we may also use the feature term

of a component version to specify the features of its environment, notably the

features of other component versions—that is, extrinsic features.

As an example, consider a simple portable CD-ROM player built from a screen

and a drive component. Each comes in two versions screen = screen1 t screen2

and drive = drive1tdrive2, where

screen1 = [object:screen;resolution:high;drive-speed:high]

screen2 =
�
object:screen;resolution:medium;

drive-speed:fhigh;medium; lowg
�

drive1 = [object:drive;drive-speed:high]

drive2 = [object:drive;drive-speed:medium] ;

that is, screen1 is a high-resolution screen, which requires a high-speed drive,

and screen2 is a medium-resolution screen, which also works with medium- or

low-speed drives.

Indeed, the version set model does not make a distinction between provid-
ing and requiring features. In the screen component, the drive-speed feature is

required; in the drive component, the drive-speed feature is provided. The only

10.3 A Unification Example 103

statement we can make is that any configuration of the screen and drive compo-

nents should exclude drive2 if screen1 is included. This leads us to the general

idea that each configuration should inherit the features of its components, and

that the common features of the components determine the features of the config-

uration:

Definition 10.2 (Configuration features) Let C be a configuration of n compo-

nents with the extrinsic features K1;K2; : : : ;Kn. Then, C has the features

C = K1 uK2 u �� �uKn = G
1�i�n

Ki : (10.1)

2

As a simple configuration example, consider the CD-ROM drive. The config-

uration of screen and drive has the features

C =
�
[resolution:high;drive-speed:high]

t [resolution:medium;drive-speed:fhigh;medium; lowg]
�

u
�
[drive-speed:high]t [drive-speed:medium]

�
= [resolution:high;drive-speed:high]

t [resolution:medium;drive-speed:high]

t [resolution:medium;drive-speed:medium] ;

that is, actually three possible configurations with different resolutions and drive

speeds.

Even without handling of intrinsic features, we already see that a configura-

tion will again be represented as a set and may be possibly ambiguous. We also

see that composing a configuration is very much like selection: each component

in the configuration imposes its constraints on the other components. This scheme

can be used for checking consistency with regard to the features, as discussed in

the next section.

10.3 A Unification Example

As a larger example for illustrating configuration consistency, consider figure 10.1

on the next page. We see three source components of a text editor, where each

component comes in several variants. We can choose between two operating sys-

tems (dos and unix), four screen types (ega, tty, x11 and news), and two screen de-

vice drivers (dumb and ghostscript). The dumb driver assumes that the screen type

104 Composing Configurations

[os: dos,
 screen-type: {ega, tty},
 concurrent: false]

[os: unix,
 screen-type: {x11, news, tty}]

[screen-type: ega,
 screen-data: bitmap]

[screen-type: tty,
 screen-data: ascii]

[screen-type: x11,
 screen-data: bitmap]

[screen-type: news,
 screen-data:
 {postscript, bitmap}]

[screen-device: dumb,
 data: D,
 screen-data: D]

[screen-device: ghostscript,
 data: postscript,
 screen-data: bitmap,
 concurrent: true]

S
cr

ee
n
 d

ev
ic

e
S

cr
ee

n
 t

y
p
e

O
p
er

at
in

g
 s

y
st

em

Figure 10.1: Consistent configurations in a text/graphic editor

can handle the data directly (expressed through the variable D); the ghostscript

driver is a separate process that can convert postscript data into a bitmap. The

component features imply that at most one version of each component can be

included in a bound configuration.

Let us now compose a consistent configuration from these three source com-

ponents. We begin by selecting the operating system, and choose the dos version.

This implies that we cannot choose the x11 or news screen types, since (in our

example), dos does not support them: Formally,�
os:dos;screen-type:fega; ttyg

�
u
�
screen-type:fx11;newsg

�
=?

due to the differing screen-type features—we cannot use x11 or news screen types.

We can, however, choose ega or tty screen types, as indicated by plain lines.

As final component, we must choose a screen device driver. ghostscript can-

not be chosen, since it requires concurrent to be true, which is not the case under

dos. The dumb driver remains; D is instantiated to bitmap or ascii, depending on

the screen type, making our choice complete: editor can be built in a ega and a tty

variants, inheriting the features of its source components. As an alternative, con-

sider the choice [os:unix], as indicated by dashed lines. Again, each path stands

for a consistent configuration.

10.4 Handling Intrinsic Features 105

The ability of treating component features as configuration constraints al-

lows for arbitrary localization of configuration constraints: components can be

tagged with constraints regarding their usage, but global constraints regarding

(sub-)systems are permitted as well. The drawback is that one single language

must be used to specify constraints, to specify the component features, and to

select component versions. With feature logic, we hope having chosen a well-

established foundation with sufficient richness of expression.

10.4 Handling Intrinsic Features

We now show how to propagate intrinsic features in configurations. As stated

in the introduction, it makes perfectly sense for intrinsic features like author or

status, to differ across components; object features even differ by definition. To

keep these intrinsic features from constraining other component versions, we lo-

calize them, that is, we make them depend on the specific component.

A possible approach to localize intrinsic features is to prefix all intrinsic fea-

tures f with the component name k. This would result in orthogonal features like

tty-author or screen-status. A more elegant alternative is to express this depen-

dency explicitly in feature logic, using implications [object:k]! T that enforce

the version T whenever the component k is required. The idea is to create a

configuration term with these implications that automatically selects the desired

version(s) from each component.

To construct such implications, we define a special aggregation operator. The

operator “+uI” is similar to “u”, but has a special handling of intrinsic features:

instead of unifying them, it makes them dependent on the specific component;

object features are stripped altogether.

Definition 10.3 (Aggregation) Let I = f f1:>; f2:>; : : : ; fn:>g be a feature term

denoting intrinsic features. Let S and T denote components with

S = [object:s]uS0uS00 and

T = [object:t]uT 0uT 00 ; (10.2)

such that S00;T 00 v I denote the intrinsic features, and S0;T 0 6v I denote extrinsic

features. The aggregation of S and T , written S +uI T , is then defined as

S +uI T = S0uT 0u
�
[object:s]! S00

�
u
�
[object:t]! T 00

�
: (10.3)

2

Every aggregation S +uI T selects version subsets from [object:s] and [object:t]:

106 Composing Configurations

Proposition 10.4 Let S v [object:s] and T v [object:t] denote components, and

I denote intrinsic features, as described above. Then,

[object:s]u (S +uI T)v S (10.4)

holds.

PROOF. Let T = [object:t]u T 0 u T 00, as in (10.2), satisfying the requirements of

definition 10.3 on the preceding page. Then, we have

U = [object:s]u (S +uI T)

= [object:s]u
�
S0uT 0u

�
[object:s]! S00

�
u
�
[object:t]! T 00

��
: (10.5)

We reduce the first sub-formula, following the pattern Au (A! B) = AuB:

[object:s]u
�
[object:s]! S00

�
= [object:s]u

�
�[object:s]tS00

�
= [object:s]uS00 (10.6)

as well as the second, following the pattern Au (�A! B) = A:

[object:s]u
�
[object:t]! T 00

�
= [object:s]u

�
�[object:t]tT 00

�
= [object:s] (10.7)

and can reformulate (10.5) using (10.6) and (10.7) to

U = [object:s]u (S0uT 0uS00)

=
�
[object:s]uS0uS00

�
uT 0

= SuT 0 :

Hence, U = [object:s]u (S +uI T) = SuT 0 v S, which was to be shown. 2

Using the aggregation operator, we can extend definition 10.2 with object fea-

tures and intrinsic features and formally define how all kinds of features propagate

from components to configurations.

Definition 10.5 (Configuration vs. components) If we have a configuration C

composed of n components K1;K2; : : : ;Kn with Ki v [object:ki], and a term I de-

noting the intrinsic features, the configuration C is identified by

C = [object:k1t k2t �� �t kn]uK1 +uI K2 +uI � � � +uI Kn

= [object:k1t k2t �� �t kn]u +G
1�i�n

I
Ki ;

(10.8)

10.4 Handling Intrinsic Features 107

[object: iterator] [object:container]C

[access:sequential]

[author: tom] [author: lisa]

Figure 10.2: Creating a configuration from two components

that is, object features are united, intrinsic features are made dependent on the

respective component, and all other features are unified. 2

As an example, consider two components

container =
�
object:container;author: lisa;access:fsequential;randomg

�
iterator = [object: iterator;author: tom;access:sequential] :

Let I = [author:>] be the set of intrinsic features. According to definition 10.5

on the preceding page, the configuration C containing container and iterator is

C =
�
object:fcontainer; iteratorgu (container +uI iterator)

�
=

�
object:fcontainer; iteratorg;access:sequential;

(object:container! author: lisa);(object: iterator! author: tom)
�

:

Not only does the term C unify the extrinsic features of container and iterator

to [access:sequential]. As illustrated in figure 10.2, it also ensures that whenever

the container component is selected, Lisa’s version is returned:

Cu [object:container]v [author: lisa]

108 Composing Configurations

and that whenever the iterator component is required, Tom’s version is returned:

Cu [object: iterator]v [author: tom] :

Likewise, requesting Tom’s version returns the iterator component:

Cu [author: tom]v [object: iterator] :

10.5 Properties of Configurations

We can now define some properties of configurations formally, according to defi-

nition 10.5 on page 106.

Definition 10.6 (Configuration) A configuration is a set Cv [object:c], where c

is a feature term identifying the set of configuration components. 2

Definition 10.7 (Consistent configuration) A configuration C is called consis-
tent with respect to its features if C 6=?—that is, if the number of possible con-

figurations is non-zero. 2

Definition 10.8 (Bound configuration) A configuration C is called unambigu-

ous or bound if it is an aggregation of component versions; formally, C is bound

if it is a set C v [object:c] such that jCj= jcj holds. 2

Definition 10.9 (Abstract configuration) A configuration C is called ambigu-

ous, dynamic, or abstract, if it is not bound; that is, jCj> jcj holds. 2

Definition 10.10 (Generic configuration) A configuration C is called partially

bound or generic if it is abstract and a true subset of the configuration universe;

that is, jcj< jCj< j[object:>]j holds. 2

We see that the informal definitions given in section 3.3 can now be put more

precisely through well-founded formal definitions.

10.6 Configurations and Ambiguity

As configurations are again ordinary version sets (albeit containing several com-

ponents), all selection properties for component versions apply, as discussed in

chapter 9. A configuration can be dynamically created, for example; but it can

10.6 Configurations and Ambiguity 109

also occur in multiple versions. We have already seen how ambiguity in a compo-

nent propagates to all configurations containing this component. But ambiguity

may also affect the actual set of components contained in the configuration.

As a simple example, consider a problem occurring in the 4.1 release of the

SunOS operating system. The system library libc comes in two versions: one

dynamic version for dynamically linked programs, and one static version for sta-

tically linked programs. Both libraries are identical, except for one minor differ-

ence: The strerror() function is only contained in the dynamic library. This means

that programs using this function must include their own strerror component if

compiled statically, and omit this component if compiled dynamically.

For simplicity, let us assume a program with only one component program,

and without any specific features. Using version sets, the alternative configura-

tions C are modeled as

C = [object:program;�linkage:static] (10.9)

t [object:fprogram;strerrorg; linkage:static]

= [object:program]

+uI ([object:strerror; linkage:static]t�[linkage:static])

= [object:program] +uI (linkage:static! object:strerror) : (10.10)

The disjunctive form in (10.9) shows what the actual configurations look like.

The implication constraint in (10.10), however, explicitly states that whenever

static linkage is required, the strerror object must be contained as well. These

two possibilities of expressing alternatives—enumeration or constraints—will be

discussed further when dealing with revisions and changes in chapter 11.

As the components of a configuration may be configurations again, we can

describe a full system model by compositions (+uI) and alternatives (t), similar

to AND/OR graphs discussed in section 3.2.1. Through transformations of the

configuration term according to the rules of feature logic, arbitrary interchanged

selection and composition stages are possible. Additionally to compositions and

alternatives, complements may be used to express that a specific version set not
be included in a selection—for instance, S0 = Su�T contains all configurations

of S that do not contain T . As versions, components, and configurations are all

modeled by version sets, all version set operations can be applied equally, making

configurations first-class objects.

110 Composing Configurations

10.7 Features of Derived Components

Closely related to the composition of configurations is the derivation of compo-

nents from a set of source components, as discussed in chapter 4. To determine the

features of derived components, we use a variation of definition (10.8). Again, de-

rived components must be consistent, which implies that the source configuration
be consistent as well. To ensure consistency across multiple derivation stages,

each derived component must inherit the extrinsic features of its source compo-

nents, just as a configuration inherits the extrinsic features of its components.

Definition 10.11 (Derivation) Let a component K v [object:k] be derived from

n source components K1;K2; : : : ;Kn, and let a term I denote their intrinsic features.

K is then identified by

K v [object:k]uK1 +uI K2 +uI � � � +uI Kn

v [object:k]u +G
1�i�n

I
Ki ;

(10.11)

The term K1 +uI � � � +uI Kn is called source configuration of K. 2

The explicit setting of the object feature removes all implications generated

by the aggregation operator—only extrinsic features remain to be unified. As an

example, consider the editor example from figure 10.1 on page 104. Let us denote

the three components by

os = [object:os;author: tom] ;

screen-type = [object:screen-type;author: lisa] ;and

screen-device= [object:screen-device;author: john] ;

respectively; let the intrinsic features be I = [author:>]. If we derive an editor

component from a DOS/EGA configuration, it is identified by

K v [object:editor]

u
�
[object:os;author: tom;screen-type:fega; ttyg;concurrent: false]

+uI [object:screen-type;author: lisa;

screen-type:ega;screen-data:bitmap]

+uI [object:screen-device;author: john;

screen-device:dumb;data:D;screen-data:D]
�

v [object:editor;screen-type:ega;concurrent: false;

screen-data:bitmap;screen-device:dumb;data:bitmap] ;

10.8 Discussion 111

that is, the object features and intrinsic features of the source components are

stripped, and all extrinsic features are unified.

10.8 Discussion

By raising the version set model from components to configurations, we have

supplied a uniform denotation for components and systems with uniform query

mechanisms. In our model, configurations are full first-class objects; in fact, a

component is just the special case of a configuration with a single component.

Ambiguity is allowed in configurations just as in components; even the set of

components can depend on other features. Extrinsic features are propagated to

configurations as well as to derived components, while intrinsic features remain

dependent on the specific component.

Our configuration setting also has some drawbacks. While feature propaga-

tion from versions to components was simple and smooth, feature propagation

from components to configurations is much less elegant, due to the variety of

feature interactions in configurations. With the distinction between intrinsic and

extrinsic features, and the special handling of object features, we hope having

supplied solutions for modeling the large majority of feature interactions.

Uniting object features has the desired effect of excluding all components

which are not part of the configuration. But using a union for what should ac-

tually be a set value has some unfortunate side-effects, notably when talking

about ambiguous configurations. For instance, how shall a configuration C =
[object:fa;b;cg] be interpreted: as a configuration of three components a, b, and

c; or as an ambiguous configuration involving either a, b, or c?

To solve this problem, the best solution for that problem would be a feature

logic enhanced with set values. Smolka [Smo92] discusses such an extension

of feature logic, generalizing feature terms to concept descriptions, using set-

valued features called roles. object could then be represented as role instead of

a feature, allowing multiple object values. Unfortunately, Smolka does not give

a consistency notion for concept descriptions, let alone a consistency-checking

algorithm like feature unification. In [Man94], Manandhar presents an alternative

feature logic whose consistency notion encompasses set values. But Manandhar’s

logic has no complement operator and hence no negation. The integration of

set-valued features or roles in a feature logic including a consistency-checking

constraint system remains an open problem.

In the absence of roles, there is an ad hoc solution for SCM systems interpret-

ing feature terms: always use the widenest possible set. In our case, this results

in C being interpreted as set of three objects, as was our intention. Ambiguity is

112 Composing Configurations

still possible as soon as other features are involved. For example, consider

C0 =
��

device:x11;object:fa;b;cg]; [device:win;object:fa;bg
�	

:

Given C0, an SCM system would interpret the outer union as alternative, because

the united version sets are disjunct; there is no unambiguous widenest possible

set. The inner unions, however, can be interpreted as set values, as in C.

As is often the case,
providing information about the system as a whole

implies properties of individual components.

— DEBORAH L. McGUINNESS, LORI ALPERIN RESNICK and CHARLES ISBELL,
Description Logic in Practice

Interchangeable parts won’t.

— LAWS OF ASSEMBLY, II

Chapter 11

Changes and Revisions

We shall now turn from planned versions, that is, versions as they occur in the
final product, to unplanned versions, that is, versions as they occur during soft-
ware development and maintenance. In this chapter, we show how to model re-
visions and changes through feature logic. The basic idea is to identify revisions
by the applied changes, as in the change-oriented models. By expressing revi-

sion constraints, we constrain the versioning space by disallowing specific change
combinations—up to revision graphs as in the version-oriented models.

11.1 Revision Graphs

In section 2.7, we discussed the Change-Oriented Model, where revisions are the

result of changes applied to a baseline. In our model, we also assume that new

revisions are created by applying changes on existing revisions. In contrast to the

Change-Oriented Model, we still focus on versions and do not treat changes as

separate entities. However, we identify revisions by the changes applied and the

changes not applied.

Let us denote the revisions of a version set by R0;R1;R2; : : : , and so on;

δ1;δ2;δ3; : : : denote individual changes. Each revision Ri is created by applying

a change δi to some originating revisions R j; : : : ;Rk—for instance, the change δ1

results in revision R1. The exception to the rule is the baseline R0, which has no

associated change.

A simple way to illustrate the relationships between revisions and changes is a

version graph, as discussed in section 2.2. In this chapter, we shall use a revision
graph where each derivation between revisions is annotated with the associated

113

114 Changes and Revisions

δ2
δ1

δ3 δ4

δ5
R1

R3 R4

R2
R5

R6
δ6

R0

Figure 11.1: A revision graph

change. In short, an edge

Ri

δj
�! R j

between two revisions Ri and R j means that R j was created by applying the

change δj on Ri. Since this implies that Ri is older than R j, revision graphs repre-

sent the evolution of a version set in time.

As an example of a revision graph, consider figure 11.1. Most revisions have

one single origin—for example, revision R1 was created by applying δ1 on the

baseline R0. But there is also a case of multiple origins: Revision R5 was created

from R2 and R4 by applying the change δ5.

Individual revisions can be uniquely identified by the included and excluded

changes. For instance, revision R1 includes the change δ1, and excludes all others.

Revision R4 includes δ1, δ3, and δ4, and excludes δ2, δ5, and δ6. Revision R6

includes all changes except δ5.

But why should one care about identifying revisions by their changes? The

answer is: if there are n changes, there might be up to 2n revisions—that is, one

revision for each combination of included and excluded changes. Assigning revi-

sion numbers is convenient for a small set of revisions, but if there is a large num-

ber of changes that can be applied independently, any linear numbering scheme

for revisions soon runs out of numbers.

With a given revision graph, it suffices to state only a few of the included and

excluded changes to identify individual revisions. Let us take a look at figure 11.1.

To identify revision R6, it suffices to state that the change δ6 should be included.

Likewise, to select R3, we only need to state that δ3 should be included and that δ4

should be excluded.

This simplification is possible because revision graphs express implications
between changes. For instance, applying the δ4 change implies that the δ3 change

be applied as well—there is no revision including δ4 and excluding δ3. Hence,

when selecting a revision that includes the change δ4, we do not need to specify

that the implied changes δ3, δ2, and δ1 are to be included as well. Likewise,

11.2 Identifying Revisions 115

excluding the change δ4 means that the changes implying δ4 are excluded as

well—that is, δ5 and δ6, since they imply δ4 to be applied.

In this chapter, we show how to identify revisions just by stating included

and excluded changes, and how to use implications between changes to structure

revision graphs.

11.2 Identifying Revisions

We now formally define the notions of changes and revisions. We begin with

introducing delta features, which we use to identify changes.

Definition 11.1 (Delta feature) A delta feature is an identifier δi denoting the

application of some change δi. 2

Delta features are convenient for grouping revisions into version sets, called

delta sets.

Definition 11.2 (Delta set) A delta set ∆i = [δi : >] is the set of objects where

the change δi has been applied. 2

In figure 11.1 on the facing page, the delta set ∆4 contains R4, R5, and R6; the

delta set ∆6 contains R6 alone; and the delta set ∆1 contains all revisions except R0.

Since we want to identify revisions by the excluded changes as well, we in-

troduce a short-hand notation for the complement of a delta set:

Definition 11.3 (Nabla set) The complement of a delta set is called nabla set,
written as ∇ i =�∆i = [δi"]. It denotes the set of objects where the change δi has

not been applied. 2

In figure 11.1, the nabla set ∇ 1 identifies R0 alone, while ∇ 5 contains all revi-

sions except R5.

To ensure that each revision Ri is associated with a delta set ∆i and a nabla

set ∇ i, we define ∆0 and ∇ 0 accordingly.

Definition 11.4 (∆0; ∇ 0) We define ∆0 => and ∇ 0 =�∆0 =?. 2

Intersections of delta and nabla sets are useful for identifying revisions.

Definition 11.5 (Revision features) For a given revision graph, the features of

each revision Rk are

Rk = (∆1u �� �u∆k)u (∇ k+1u �� �u ∇ m)

u (∇ m+1u �� �u ∇ j)u (∇ j+1u �� �u ∇ n) (11.1)

116 Changes and Revisions

where each ∆i is a change leading up to a revision Ri:

� R1; : : : ;Rk�1 are ancestors of Rk.

� Rk+1; : : : ;Rm are direct descendants of Rk.

� Rm+1; : : : ;R j are indirect descendants of Rk—that is, descendants of the

direct descendants Rk+1; : : : ;Rm.

� R j+1; : : : ;Rn are neither ancestors nor descendants of Rk. 2

For the revision graph in figure 11.1, definition 11.5 yields the following re-

vision features:

R0 = ∇ 1 u ∇ 2 u ∇ 3 u ∇ 4 u ∇ 5 u ∇ 6

R1 = ∆1 u ∇ 2 u ∇ 3 u ∇ 4 u ∇ 5 u ∇ 6

R2 = ∆1 u ∆2 u ∇ 3 u ∇ 4 u ∇ 5 u ∇ 6

R3 = ∆1 u ∇ 2 u ∆3 u ∇ 4 u ∇ 5 u ∇ 6

R4 = ∆1 u ∇ 2 u ∆3 u ∆4 u ∇ 5 u ∇ 6

R5 = ∆1 u ∆2 u ∆3 u ∆4 u ∆5 u ∇ 6

R6 = ∆1 u ∇ 2 u ∆3 u ∆4 u ∇ 5 u ∆6

(11.2)

Figure 11.2 on the next page illustrates the relationship between delta sets

and revisions for the revision graph given in figure 11.1. We see that each delta

set contains exactly those revisions where the change has been applied; likewise,

each revision is contained in the delta sets denoting its changes.

If we create a revision set, a version set containing revisions (a RCS or SCCS

repository, for example), we can select individual revisions by stating the ex-

cluded or included changes. As an example, let us create a revision set R con-

taining the revisions R0; : : : ;R6, as determined in (11.2). According to (9.1), R is

determined as

R = R0 tR1tR2tR3tR4tR5tR6 :

Arbitrary version sets can now be selected from R by specifying a conjunction

of applied and non-applied changes, denoting paths in the revision graph. For

instance, the selection Ru∆4 denotes R4 and its descendants R5 and R6, as they

all include the δ4 change (formally, R4tR5tR6 vRu∆4); since R0; : : : ;R3 do not

include the δ4 change (R0u�� �uR3 v ∇ 4), they are excluded (R0tR1tR2tR3 v

Ru ∇ 4). The selection Ru [∆2; ∇ 5] returns the single revision R2, since R5, the

only other revision including the change δ2, also includes the change δ5 and is

thus excluded by ∇ 5 = [δ5"].

11.2 Identifying Revisions 117

∆6

∆4 ∆3 ∆1

R0

R2R5R3 R6 R4

∆5

R1

∆2

Figure 11.2: Changes and revisions

Generally, to select a single revision, it suffices to include the change lead-

ing up to that revision and to exclude the changes leading up to its immediate

descendants.

We conclude with a few formal definitions regarding revision sets. In a re-

vision set R, we call a revision R j an ancestor of Ri if R contains no revision

including the change δi while excluding δj—that is, ∆i v ∆ j holds.

Definition 11.6 (Ancestor, Descendant) In a revision set R, consider a pair of

revisions Ri v R and R j v R. If i 6= j holds and Ru (∆iu ∇ j) is inconsistent, R j is

called ancestor of Ri and Ri is called descendant of R j. 2

An immediate ancestor is called origin; an immediate descendant is called

successor.

Definition 11.7 (Origin, Successor) In a repository R, let R j; : : : ;Rk be the an-

cestors of a revision Ri. Each Rl v R j t �� � tRk is called immediate ancestor or

origin of Ri if there is no change δm 6= δl such that Rm is a descendant of Rl and

an ancestor of Ri; revision Ri is called immediate descendant or successor of Rl .

2

118 Changes and Revisions

11.3 Revisions and Variants

The introduction of delta features allows us to distinguish revisions from variants

formally. Basically, a revision is a version set that cannot be refined any further

by specifying more delta features in a selection term. For instance, the feature

term R = [object: foo;∆47] denotes a revision if R = Ru∆i = Ru ∇ i holds for all

i 6= 47.

Likewise, a variant is a version set that cannot be refined any further by spec-

ifying any more non-delta features in a selection term. For example, the term

V = [object:bar; tested: true] denotes a variant if V =V u [f :>] =V u [f"] holds

for all features f such that f 6= object and f 6= tested and f is not a delta feature.

Neither variants nor revisions are necessarily singleton: A variant may still

come in multiple singleton revisions, and that a revision may come in multiple

singleton variants. If a version set can no more be refined, we have a singleton

version, following definition 9.6 on page 92.

Here come the formal definitions, beginning with refinement. A term T refines

a term S if T uS is different from S and non-empty. Like cardinality, refinement

can only be determined for some given interpretation.

Definition 11.8 (Refinement) A feature term T is said to refine a feature term S

if SuT 6= S and SuT 6=? hold. 2

If a version set cannot be refined by stating more delta features, we call it a

revision.

Definition 11.9 (Revision set, Revision) A revision set is a version set R that is

a subset of some delta or nabla set. A revision set S is called a revision if there is

no revision set R such that R refines S. 2

If a version set cannot be refined by stating more non-delta features, we call

it a variant.

Definition 11.10 (Variant set, Variant) A variant set is a version set R that is

not a revision set. A variant set S is called a variant if there is no variant set V

such that V refines S. 2

Note that a version V may be a revision as well as a variant:

� If V is distinguished from another version via a delta feature only, V was

created by applying a change and is thus a revision.

11.4 Revision Constraints 119

� If V is distinguished from another version via a non-delta feature only, V is

a variant.

� If V is distinguished via delta features as well as via other features, there

was a change that affected other features as well; V is a revision as well as

a variant.

In section 12.5, we will further investigate the relationships between delta

features and other features.

11.4 Revision Constraints

In (11.2), we have seen that the terms Ri denoting the individual revisions may

become quite large—each of R0; : : : ;Rn contains n primitives. If we represent the

features of the revision set R in DNF, as stated in (11.2), R contains (n+1)�n =
n2+n primitives, resulting in quadratic time behavior for any repository accesses.

In this section, we discuss an alternate representation for R, using an inter-

section of revision constraints, that is, implications between delta sets. Using

revision constraints, the revision set R from (11.2) can be expressed as

R = (∆2 ! ∆1)u (∆3 ! ∆1)u (∆4 ! ∆3)u (∆5 ! ∆2)u (∆5 ! ∆4)

u (∆6 ! ∆4)u (∆2u∆3 ! ∆5)u (∆2u∆6 !?) ; (11.3)

that is, one single implication for each edge in the revision lattice as well as one

single implication for each integration. Not only does such a representation save

much space, it also immediately reflects the structure of the revision graph. Be-

sides that, the constraint representation is much easier to maintain when new re-

visions are added, since all we have to do is to intersect R with an additional

constraint.

When selecting revisions from R, all revision features are created by applying

revision constraints—every revision constraint in R is reduced to some delta or

nabla set. As an example, consider the selection Ru∆5, which should return R5,

as defined in (11.2). Following the general scheme

(∆i ! ∆ j)u∆i = (∇ i t∆ j)u∆i = ∆iu∆ j ; (11.4)

we begin with intersecting the constraints involving ∆5 in (11.3) and obtain

(∆5 ! ∆2)u∆5 = ∆2u∆5

(∆5 ! ∆4)u∆5 = ∆4u∆5 ;

120 Changes and Revisions

that is, Ru∆5 v ∆2 and Ru∆5 v ∆4 hold. Consequently, we can intersect the

other constraints with ∆2 or ∆4 to eliminate alternatives:

(∆2 ! ∆1)u∆2 = ∆1u∆2

(∆4 ! ∆3)u∆4 = ∆3u∆4

and find that Ru∆5 v ∆1 and Ru∆5 v ∆3 hold. Ru∆5 v ∇ 6 also holds:

(∆2u∆6 !?)u∆2 = ∇ 6u∆2 :

The remaining constraint is trivially reduced to

(∆2u∆3 ! ∆5)u∆5 =>u∆5 :

We obtain Ru∆5 as

Ru∆5 = (∆1u∆1u∆3u∆2u∆4u∆4u>u ∇ 6)u∆5

= ∆1u∆2u∆3u∆4u∆5u ∇ 6

= R5 :

As another example, consider the selection Ru ∇ 1, which should return R0, as

defined in (11.2). We now rely on a variant of (11.4), namely

(∆i ! ∆ j)u ∇ j = (∇ i t∆ j)u ∇ j = ∇ iu ∇ j ; (11.5)

in order to reduce revision constraints to revision features. Intersecting the first

two constraints in (11.3) with ∇ 1 yields

(∆2 ! ∆1)u ∇ 1 = ∇ 2u ∇ 1

(∆3 ! ∆1)u ∇ 3 = ∇ 3u ∇ 1 ;

that is, Ru ∇ 1 is a subset of ∇ 2 and ∇ 3. Hence, Ru ∇ 1 = Ru ∇ 1u ∇ 3 holds, and

we can intersect the other constraints with ∇ 3 to obtain further features:

(∆4 ! ∆3)u ∇ 3 = ∇ 4u ∇ 3

(∆5 ! ∆4)u ∇ 4 = ∇ 5u ∇ 4

(∆6 ! ∆4)u ∇ 4 = ∇ 6u ∇ 4

11.5 Constraints and Lattices 121

w

w

w w

w∆0 ∆1
∆3 ∆4

∆2
∆5

∆6
w

w

?

Figure 11.3: A revision graph as subsumption lattice

The last two constraints are easily reduced to >:

(∆2u∆3 ! ∆5)u ∇ 2 =>u ∇ 2

(∆2u∆6 !?)u ∇ 2 =>u ∇ 2

We obtain

Ru ∇ 1 = (∇ 2u ∇ 3u ∇ 4u ∇ 5u ∇ 5u ∇ 6u>u>)u ∇ 1

= ∇ 1u ∇ 2u ∇ 3u ∇ 4u ∇ 5u ∇ 6

= R0 :

11.5 Constraints and Lattices

How does one obtain these revision constraints? Revision constraints are deduced

from the revision lattice. The revision lattice is the subsumption lattice obtained

from the subsumption relation between delta sets. If ∆i v∆ j holds, requesting the

change δi implies that δj be applied as well. Using (8.4) and (8.5), we have

∆i v ∆ j , ∆iu ∇ j =? :

Consequently, if ∆i v ∆ j holds, there is no revision such that δi is applied, but

δj is not.

These subsumption relations between delta sets can be visualized in a graph.

The revision lattice for our example is shown in figure 11.3. In the revision lattice,

the supremum of any two revision sets ∆i and ∆ j is the set of ancestor revisions

∆it∆ j; their infimum is the (possibly empty) set of integrated revisions ∆iu∆ j.

We see that the revision lattice is isomorph to the revision graph, as shown in

figure 11.3; the only difference is that we have added a? element to complete the

lattice. The structure similarity does not surprise—the revision graph is structured

by change implications δi ! δj, which correspond to the subsumption relations

∆i w ∆ j in the revision lattice.

Using the revision lattice, we can compute revision constraints.

122 Changes and Revisions

Definition 11.11 (Revision constraint) For any two delta sets ∆i and ∆ j in a re-

vision lattice, let ∆i; j w (∆i t∆ j) be their lowest common ancestor (supremum),

and let ∆i; j v (∆i u ∆ j) be their (possibly empty) highest common descendant

(infimum) in the revision lattice. The revision constraint Ci; j is defined as

Ci; j = (∆it∆ j ! ∆i; j)u (∆iu∆ j ! ∆i; j) (11.6)

2

In the common case of changes that imply each other (that is, ∆i w ∆ j), revi-

sion constraints take a much simpler form:

Corollary 11.12 If ∆i w ∆ j holds, the revision constraint Ci; j is

Ci; j = ∆ j ! ∆i (11.7)

PROOF. We have ∆i; j = ∆i and ∆i; j = ∆ j. Consequently,

Ci; j = (∆it∆ j ! ∆i; j)u (∆iu∆ j ! ∆i; j)

=
�
(∇ iu ∇ j)t∆i

�
u
�
(∇ it ∇ j)t∆ j

�
= (∇ j t∆i)u>

= ∆ j ! ∆i ;

which was to be shown. 2

Constraints involving ∆0 are trivial.

Corollary 11.13 For all j, C j;0 =C0; j => holds.

PROOF. Because of (11.7), C j;0 =C0; j = ∆ j ! ∆0 = ∆ j !>=>. 2

As an example of revision constraints, consider the revision graph in fig-

ure 11.3 on the page before, where we have

C2;4 = (∆2t∆4 ! ∆1)u (∆2u∆4 ! ∆5)

as well as

C2;6 = (∆2t∆6 ! ∆1)u (∆2u∆6 !?) :

The conjunction of all revision constraints in a revision graph is called con-
straint representation of the revision graph.

11.6 An Equivalence Result 123

Definition 11.14 (Constraint representation) Given a revision lattice with delta

sets ∆1; : : : ;∆n, the constraint representation C of a revision graph is defined as

the conjunction

C = G
1�i�n

1< j<i

Ci; j ; (11.8)

where each revision constraint Ci; j is defined according to (11.6). 2

It now turns out that this conjunction of constraints, as defined in (11.8), is

equivalent to the union of revisions, as defined through (9.1), and thus constitutes

a suitable representation for revision graphs, as demonstrated in section 11.4. The

proof is given in section 11.6.

11.6 An Equivalence Result

In this section, we show that the conjunction of constraints C, as defined in (11.8),

is equivalent to the union of revisions R, as defined through (9.1). The road map

to the proof is as follows:

� In lemma 11.15 on the following page, we show that a selection in C stating

the included and excluded changes actually contains the desired revisions.

� In lemma 11.16 on page 125, we show that this selection does not return

any other revisions.

� Proposition 11.17 on page 127 combines lemmas 11.15 and 11.16 and

states that we can select a single revision Rk from C by specifying the in-

cluded and excluded changes.

� Lemma 11.18 on page 127 applies proposition 11.17 to revision sets and

shows that we can select a revision and all its descendants from C.

� Finally, theorem 11.19 on page 128 applies lemma 11.18 to R0, showing

that R=C holds.

We begin with some selection results. First, we show that we can select a

revision Rk from C by stating the change leading up to Rk and excluding the

changes leading up to its descendants. Lemma 11.18 on page 127 states that Rk is

at least a subset of such a selection.

124 Changes and Revisions

Lemma 11.15 Let C be a constraint representation, as defined in (11.8), and R =
R0t�� �tRn be a union of revisions. For all revisions Rk v Rn with 0� k� n, we

have

Rk vCu∆k u G
k+1�l�m

∇ l ; (11.9)

where Rk+1; : : : ;Rm are the immediate descendants of Rk.

PROOF. According to (8.5), (11.9) holds if and only if U , defined as

U = Rk u�(Cu∆k u ∇ k+1u �� �u ∇ m)

is inconsistent. We apply de Morgan’s laws, obtaining

U = Rk u
�
�Ct�(∆ku ∇ k+1u �� �u ∇ m)

�
:

Because of (11.1), Rk v ∆k u ∇ k+1u �� �u ∇ m holds. Hence, we have

U = Rk u�C

and we see that (11.9) holds if and only if Rk v C holds. We replace C by its

definition (11.8) and obtain

U = Rk u�(C1;2u �� �uCn;n�1)

= Rk u (�C1;2t �� �t�Cn;n�1)

= (Rk u�C1;2)t �� �t (Rk u�Cn;n�1) ;

that is, U is inconsistent if every Rk u�Ci j is inconsistent. For each pair i; j,

using (11.6), we evaluate Rk u�Ci; j to

Rku�Ci; j = Rk u�
�
(∆it∆ j ! ∆i; j)u (∆iu∆ j ! ∆i; j)

�
= Rk u

��
(∆it∆ j)u ∇ i; j

�
t
�
∆iu∆ j u ∇ i; j

��
=

�
Rk u (∆it∆ j)u ∇ i; j

�
t
�
Rk u∆iu∆ j u ∇ i; j

�
Let U 0 = (∆it∆ j)u ∇ i; j and U 00 = (∆iu∆ j)u ∇ i; j such that Rku�Ci; j =U 0tU 00

holds. We distinguish four cases:

1. Rk v∆iu∆ j. Due to (11.1), Rk v∆i; j must hold as well, which implies Rku

U 0 v ∆i; j u ∇ i; j =?. As Rk is the integration of Ri and R j or a descendant,

we have Rk v ∆i; j and thus Rk uU 00 v ∆i; j u ∇ i; j =?.

11.6 An Equivalence Result 125

2. Rk v ∇ iu∆ j. Revision Rk inherits the features of R j and all of its ancestors.

As in case 1, Rk v∆i; j must hold as well; RkuU 0 =? holds. Since Rk v ∇ i,

RkuU 00 v ∇ iu∆i =? holds.

3. Rk v ∆iu ∇ j. Same as case 2, above.

4. Rk v ∇ i u ∇ j . We have Rk uU 0 v (∇ i u ∇ j)u (∆i t∆ j) v ?; as in case 2,

RkuU 00 =? holds.

In all four cases, Rku(U
0tU 00) =Rku�Ci; j =? holds for each pair i; j, resulting

in U = Rk u�C = ?. Since U is inconsistent, (11.9) holds, which was to be

shown. 2

Lemma 11.16 states that Rk is also a superset of the same selection.

Lemma 11.16 Let C and R be defined as in lemma 11.15 on the preceding page.

For all revisions Rk v Rn with 0� k � n, we have

Rk wCu∆ku G
k+1�l�m

∇ l ; (11.10)

where Rk+1; : : : ;Rm are the immediate descendants of Rk.

PROOF. As stated in (8.5), (11.10) holds if and only if U , defined as

U =�Rk uCu∆k u ∇ k+1u �� �u ∇ m

is inconsistent. Rk takes the general form

Rk = (∆1u �� �u∆k)u (∇ k+1u �� �u ∇ m)

u (∇ m+1u �� �u ∇ j)u (∇ j+1u �� �u ∇ n) ;

where all ∆i and ∇ i are defined according to definition 11.5 on page 115. The

inverted form is

�Rk = (∇ 1t �� �t ∇ k)t (∆k+1t �� �t∆m)

t (∆m+1t �� �t∆ j)t (∆ j+1t �� �t∆n) ;

such that U evaluates to

U =
�
(∇ 1t �� �t ∇ k)t (∆k+1t �� �t∆m)

t (∆m+1t �� �t∆ j)t (∆ j+1t �� �t∆n)
�

uCu∆ku ∇ k+1u �� �u ∇ m :

126 Changes and Revisions

We shall now show that none of the alternatives in �Rk can be satisfied. We

begin with the alternatives ∇ k t∆k+1t �� �t∆m. These are explicitly excluded by

the selection term ∆k u ∇ k+1u �� �u ∇ m and we obtain

U =
�
(∇ 1t �� �t ∇ k�1)t (∆m+1t �� �t∆ j)t (∆ j+1t �� �t∆n)

�
uCu∆k u ∇ k+1u �� �u ∇ m :

We continue with eliminating the ancestor alternatives. Since R1; : : : ;Rk�1

are ancestors of Rk, we have ∆i;k = ∆i for 1 � i � k� 1. Consequently, C v

Ci;k = ∆k ! ∆i holds and Cu∆k v ∆i for 1 � i � k� 1. Hence, the alternatives

∇ 1t �� �t ∇ k�1 cannot be satisfied and may be omitted, resulting in

U =
�
(∆m+1t �� �t∆ j)t (∆ j+1t �� �t∆n)

�
uCu∆ku ∇ k+1u �� �u ∇ m :

We continue with the descendant alternatives. The same applies to the indirect

descendants of Rk. Since Rk+1; : : : ;Rm are direct descendants of Rk, we have ∆i;l =
∇ i for k+1� i� m and m+1� l � j. As above, C vCi;l = ∆l ! ∆i = ∇ i ! ∇ l

holds and thus Cu ∇ i v ∇ l for k+1� i�m and m+1� l � j. This removes the

alternatives ∆m+1t �� �t∆ j, resulting in

U = (∆ j+1t �� �t∆n)uCu∆k u ∇ k+1u �� �u ∇ m :

We close with the remaining alternatives. The revisions R j+1; : : : ;Rn are nei-

ther ancestors nor descendants of Rk. For each Ri with j+1� i� n, let us check

if Ri and Rk integrate:

� If Ri and Rk integrate in some revision Rl , we have ∆i;k = ∆l . Then, C v

Ci;k v (∆iu∆k ! ∆l) holds, and we have Cu∆k = ∆i ! ∆l = ∇ l ! ∇ i. But

Rl is a descendant of ∆k. As shown above, this implies that Cu ∇ k+1u�� �u

∇ m v ∇ l and we have Cu∆k u ∇ k+1u �� �u ∇ m v ∇ i.

� If Ri and Rk do not integrate, we have ∆i;k = ?. In this case, C v Ci;k v

(∆iu∆k !?) = ∇ it ∇ k holds, and we have Cu∆k v ∇ i.

In either case, Cu∆k u ∇ k+1u �� �u ∇ m v ∇ i holds for all j+1� i� n—and this

eliminates the remaining ∆i alternatives.

U =?uCu∆k u ∇ k+1u �� �u ∇ m

=? :

Hence, U is inconsistent and (11.10) holds, which was to be shown. 2

11.6 An Equivalence Result 127

Proposition 11.17 combines lemma 11.15 and lemma 11.16. It states that we

can select a revision Rk from C by including the change leading up to Rk and

excluding the changes leading up to its descendants.

Proposition 11.17 Let C and R be defined as in lemma 11.15 on page 124. For

all revisions Rk v Rn with 0 � k � n, we have

Rk =Cu∆ku G
k+1�l�m

∇ l ; (11.11)

where Rk+1; : : : ;Rm are the immediate descendants of Rk.

PROOF. Follows from (11.9) and (11.10) via (8.6). 2

Proposition 11.17 implies that the selection Cu∆i returns Ri and all its de-

scendants.

Lemma 11.18 Let C and R be defined as in lemma 11.15 on page 124. For all

revisions Rk v Rn with 1 � k � n, we have

Cu∆k = Rk tRk+1t �� �tRn ; (11.12)

where Rk+1; : : : ;Rn are the descendants of Rk.

PROOF. We prove (11.12) via structural induction. If Rk has no descendants,

(11.12) holds because of (11.11). Otherwise, let Rk+1; : : : ;Rm be the direct de-

scendants of Rk and let us assume that (11.12) holds for Rk+1; : : : ;Rm. Starting

with (11.11), we obtain

Rk =Cu∆ku G
k+1�l�m

∇ l

This can be expanded to

Rkt

G

k+1�l�m

Cu∆l

!
=

Cu∆ku G

k+1�l�m

∇ l

!
t

G

k+1�l�m

Cu∆l

!

By applying (11.12) for all ∆k+1; : : : ;∆m on the left-hand side, we get

Rk t �� �tRn =

Cu∆ku G

k+1�l�m

∇ l

!
t

G

k+1�l�m

Cu∆l

!

=Cu

∆k u G

k+1�l�m

∇ l

!
t

G

k+1�l�m

∆l

!!
:

128 Changes and Revisions

Applying the absorption rule yields

Rk t �� �tRn =Cu

∆k t

G

k+1�l�m

∆l

!
:

Each Rl in k+ 1 � l � m is a descendant of Rk. Because of (11.7), we have

C v ∆l ! ∆k and thus Cu (∆k t∆l) =Cu∆k, which results in

Rk t �� �tRn =Cu∆k :

We have shown that (11.12) holds for any Rk without descendants, and for

any Rk if it holds for its descendants. Hence, (11.12) holds for all Rk. 2

Lemma 11.18 on the page before also states that the the two revision set rep-

resentations are equivalent.

Theorem 11.19 A revision set R can be represented as union of all revisions Rk,

as defined in (11.1), or as intersection of revision constraints Ci; j , as defined

in (11.6). Both representations are equivalent:

R =
G

0�k�n

Rk = G
1�i�n

1< j<i

Ci; j (11.13)

PROOF. Follows from (11.12): C =Cu∆0 = R0tR1t �� �tRn = R. 2

11.7 Discussion

In section 6.3, the integration of change-oriented models and version-oriented

models turned out as a major SCM research issue. We have seen that feature

logic is descriptive enough to model ordinary revision histories, as in the version-

oriented models; arbitrary change combinations, as in the change-oriented mod-

els are still possible. By submitting changes to revision constraints, the version

set model captures the entire range of temporal versioning—from the rigid revi-

sion graphs of versions-oriented models to the loosely structured change space of

change-oriented models.

Revision constraints are easily constructed from the revision graph. Their in-

tersection is equivalent to the union of all revisions. This equivalence, as stated in

theorem 11.19, again shows the expressive power of feature logic: besides sim-

ple constraints such as stating unique feature values, we can express implications

11.7 Discussion 129

between features that are sufficiently complex to model entire revision graphs. In

chapter 12, we further discuss revision constraints, especially their maintenance

in repositories and their integration with variants and configurations.

There was general agreement
that end-users of applications were not interested in a version model

but were interested in the changes made in previous versions
and, at a more abstract level,

in the features offered by different versions of the system.

— IAN SOMMERVILLE, Sixth International Workshop
on Software Configuration Management

Chapter 12

Constraints and Repositories

Having considered the static aspects of revision graphs, we now turn to some
dynamic aspects, answering questions like: How does a repository representation
change when a new revision is added? How does it change, should an old revision
be removed? As illustrated in this chapter, maintaining the revision constraints is
no more complicated than in “classical” SCM systems. Furthermore, we discuss
the integration of revision constraints with variants and configurations.

12.1 Creating Revisions with a Single Origin

We begin with the problem of adding a single revision to a repository. According

to (9.1) and (11.1), adding a new revision Ri to a repository R results in tagging

the old revisions with ∇ i and adding the new revision Ri, resulting in a new repos-

itory R0:

R0 = (Ru ∇ i)tRi (12.1)

But this straight-forward approach again leads us to an inefficient representation

of R0, since the constraint form of R is lost and the term Ri can be quite long.

The constraint structure of R can be conserved, however, if we know the revisions

R j; : : : ;Rk from which Ri originates; or, in other words, which changes δj; : : : ;δk

are implied by δi.

As a simple example, consider adding a new revision R7 to the revision graph

shown in figure 11.1 on page 114. In our setting, revision R7 is a descendant of

R6; the resulting new revision graph is shown in figure 12.1 on the next page.

131

132 Constraints and Repositories

δ2
δ1

δ3 δ4

δ5
R1

R3 R4

R2
R5

R6
δ6

R0

R7
δ7

Figure 12.1: Adding a revision R7 with a single origin R6

Starting from (12.1), we have

R0 = (Ru ∇ 7)tR7

= (Ru ∇ 7)t (R6u∆7)

= (Ru ∇ 7)t (Ru ∇ 2u∆6u∆7)

= Ru
�
∇ 7t (∇ 2u∆6u∆7)

�
= Ru (∇ 7t ∇ 2)u (∇ 7t∆6)u (∇ 7t∆7)

= Ru (∇ 7t ∇ 2)u (∇ 7t∆6)u>

= Ru (∇ 7t∆6)u (∇ 7t ∇ 2)

= Ru (∆7 ! ∆6)u (∆2u∆7 !?) ;

which is exactly the constraint form we should expect from theorem 11.19 on

page 128.

We conclude that an SCM system adding a new revision Ri with one single

origin R j need do no more than to add one additional constraint (∆i ! ∆ j) to

the representation of the repository term. If the integration of Ri and some other

revision does not exist, the appropriate constraints must be updated as well—as

in our example, where the old constraint (∆2u∆6 !?) is subsumed by the new

constraint (∆2u∆7 !?).

12.2 Adding Revisions with Multiple Origins

Adding a revision Ri with multiple origins R j; : : : ;Rk is more complicated, as it

results in the removal of constraints, namely those constraints which previously

prohibited the integration of the changes δj; : : : ;δk.

As an example, assume revision R7 were based on R5 as well as R6, as il-

lustrated in figure 12.2 on the next page. In this case, the term R0 can no more

contain the constraint (∆2 u∆6 !?). Let R00 hold all other constraints from R

such that R = R00u (∆2u∆6 !?). Adding revision R7 to the repository R would

12.2 Adding Revisions with Multiple Origins 133

δ2
δ1

δ3 δ4

δ5
R0 R1

R3 R4

R2
R5

R6
δ6

δ7
R7

Figure 12.2: Adding a revision R7 with two origins R5 and R6

then result in

R0 = (Ru ∇ 7)tR7

= (Ru ∇ 7)t (R
00u∆5u∆6u∆7)

= (R00u (∇ 2t ∇ 6)u ∇ 7)t (R
00u∆5u∆6u∆7)

= R00u
��
(∇ 2t ∇ 6)u ∇ 7

�
t (∆5u∆6u∆7)

�
= R00u

�
(∇ 2t ∇ 6)t (∆5u∆6)

�
u
�
(∇ 2t ∇ 6)t∆7

�
u
�
∇ 7t (∆5u∆6)

�
= R00u (∇ 2t ∇ 6t∆7)u

�
∇ 7t (∆5u∆6)

�
= R00u (∆2u∆6 ! ∆7)u (∆7 ! ∆5u∆6)

= R00u (∆2u∆6 ! ∆7)u (∆7 ! ∆5)u (∆7 ! ∆6) ;

that is, the old constraint (∆2 u∆6 !?) is replaced by (∆2u∆6 ! ∆7) and two

new constraints (∆7 ! ∆5) and (∆7 ! ∆6) are added.

We deduce a general scheme for the incremental maintenance of revision con-

straints:

Proposition 12.1 (Incremental maintenance of revision constraints)

The general scheme for adding a revision Ri to a repository R is:

1. For each origin R j, add a constraint Ci; j = ∆ j ! ∆i to R.

2. For each pair j;k of ancestor revisions R j;Rk, replace the old constraint

∆ j u∆k !? in R by ∆ j u∆k ! ∆i.

3. For each ancestor R j and any non-integrating revision Rm, replace the con-

straint ∆ j u∆m !? in R by ∆iu∆m !?.

PROOF. Added constraints: The new constraints added are an immediate conse-

quence of theorem 11.19 on page 128: step 1 adds the constraints for Ri and its

origins, step 2 adds constraints for Ri as new descendant, and step 3 adds con-

straints for Ri and non-integrating revisions. All remaining revisions Rk are non-

origin ancestors of Ri; the constraints Ci;k are subsumed by Ci; j added in step 1

and the unchanged constraint C j;k.

134 Constraints and Repositories

Removed constraints: The constraints removed in step 2 are no more ade-

quate, as the descendant of R j and Rk now exists as Ri. The constraints removed

in step 3 are subsumed by their replacement constraint in conjunction with the

implications added in step 1. 2

We see that maintaining the revision constraints is no more difficult than main-

taining a revision graph in “classical” SCM systems.

12.3 Removing Revisions

Although removal of revisions is seldom desirable in an SCM context, it consti-

tutes another example on the usage of revision constraints. The straight-forward

approach to removing a revision Ri from a repository R is to intersect R with the

complement of Ri, resulting in a new repository R0:

R0 = Ru�Ri (12.2)

From (12.2), we can immediately deduce an appropriate constraint representation.

Remember that Ri is selected from R by specifying the change ∆i and excluding

all later changes ∆ j; : : : ;∆k leading up to the immediate descendants of Ri, namely

R j; : : : ;Rk. Hence, we can transform (12.2) to:

R0 = Ru�(Ru∆iu ∇ j u �� �u ∇ k)

= Ru (�Rt ∇ it∆ j t �� �t∆k)

= Ru (∆i ! ∆ j t �� �t∆k) ;

that is, we simply add a new constraint stating that, whenever the change ∆i is to

be included, one of the later changes ∆ j; : : : ;∆k is to be included as well.

As an example, reconsider figure 11.1 on page 114. Removing revision R3

from the repository R would result in a new repository R0 with an additional con-

straint

R0 = Ru (∆3 ! ∆4) ;

ensuring that, whenever the δ3 change is requested, the δ4 change is included as

well—and vice versa, as the old constraint (∆4 ! ∆3) is still part of R.

12.4 Orthogonal Changes

So far, we have only considered “classical” version graphs, where changes imply

each other more or less rigidly. In the Change-Oriented Model, this setting is

12.4 Orthogonal Changes 135

w

w

w

w

w

∆1

∆2

∆3

∆4

∆5

∆2u∆3

∆1u∆2

>

: : :

: : :

: : :

?

Figure 12.3: Orthogonal changes

different: arbitrary combinations of changes are allowed, unless they result in a

conflict. We call these changes orthogonal, since they are independent from each

other.

The versions resulting from the possible change combinations cannot all be

depicted, due to their large number. In figure 12.3, we see five changes δ1; : : : ;δ5,

each resulting in a set ∆1; : : : ;∆5 where this change has been applied. All versions

resulting from change combinations are identified by an enumeration of included

and excluded changes. The only restriction in our example is that the changes δ4

and δ5 cannot be integrated; hence, ∆4 and ∆5 are not orthogonal, but disjoint.

How is such a version set represented? Following (11.6), each constraint Ci; j

with 1� i� 5 and i < j < 5 is

Ci; j = (∆it∆ j ! ∆i; j)u (∆iu∆ j ! ∆i; j) ;

but since ∆i; j = ∆it∆ j and ∆i; j = ∆iu∆ j holds for all i; j in R, we have

Ci; j =>

except for C4;5, which is

C4;5 = (∆4u∆5 !?)

= ∇ 4t ∇ 5

Hence, R = C4;5 = ∇ 4 t ∇ 5 is the only constraint required to represent the set of

all versions as shown in figure 12.3.

Obviously, a repository dealing with orthogonal changes would use dynamic

version creation, as discussed in section 9.4. The repository would create versions

136 Constraints and Repositories

w
∆1

∆2
w

w
[bsd-regex:>]

[sysv-regex:>]

w

w
[object:regex] ?

Figure 12.4: Combining delta features and variant features

as required by integrating the requested changes and applying them to a baseline;

this is also the way RCS repositories are organized internally.

We see that revision constraints can be used to model both the safe, but

rigid version-oriented models as well as the flexible, but unsafe change-oriented

models. The higher the number of specified constraints, the lower the number

of remaining change combinations—from the flexibility of the Change-Oriented

Model with virtually no constraints to the rigidness of the version-oriented mod-

els with a small set of versions easily enumerated and tested. In our model, both

models are just two extremes in a wide range between safety and flexibility.

12.5 Changes and Other Features

So far, our examples have only covered delta features, modeling historical ver-

sioning through changes. How would other features modeling relationships, vari-

ance, or workspaces be integrated? The answer is simple: they are used just like

delta features, with implications expressing constraints—but not only implica-

tions between changes, but between values of arbitrary versioning dimensions.

As an example, consider the GNU REGEX library used for compiling and

searching regular expressions. The initial versions of GNU REGEX came with

a BSD UNIX interface, while the later versions came with a POSIX UNIX inter-

face. Unfortunately, there is no version supporting both interfaces, and both are

maintained individually, as illustrated in figure 12.4—the change δ1 applies to the

BSD version bsd = [object:regex;bsd-regex:>] only, while the change δ2 applies

to the POSIX version posix = [object:regex;posix-regex:>] only.

Obviously, ∆1 and ∆2 are disjoint, as are their respective supersets bsd-regex

and posix-regex. According to theorem 11.19 on page 128, this disjointness can

be expressed through the constraints C with

C = (∆1 ! bsd)u (∆2 ! posix)u (bsduposix!?)

= [object:regex]u
�
∆1 ! [bsd-regex:>]

�
u
�
∆2 ! [posix-regex:>]

�
u
�
[bsd-regex"]t [posix-regex"]

�
= [object:regex;bsd-regex:>;posix-regex"; ∇ 1; ∇ 2]

12.6 Changes and Configurations 137

t [object:regex;bsd-regex:>;posix-regex";∆1; ∇ 2]

t [object:regex;bsd-regex";posix-regex:>; ∇ 1; ∇ 2]

t [object:regex;bsd-regex";posix-regex:>; ∇ 1;∆2] ;

that is, [object:regex] comes in four variants, depending on whether the BSD or

POSIX interface is chosen and whether the respective change has been applied or

not.

We now create a REGEX version supporting both the POSIX and the BSD in-

terface. To do so, we apply a change δ3 to both bsd-regex and posix-regex, inte-

grating both versions. The resulting subsumption lattice is identical to figure 12.4;

only ? is replaced by ∆3. The version set itself is described as

C = (∆1 ! bsd)u (∆2 ! posix)u (bsduposix! ∆3)

u (∆3 ! bsd)u (∆3 ! posix) :

12.6 Changes and Configurations

Just as ordinary variant features can be used instead of delta features in subsump-

tion lattices, delta features can be used instead of ordinary variant features to

express the features of configurations—notably, ambiguity in configurations.

As an example, re-consider the discussion on configurations and ambiguity in

section 10.6, where the libc library came in two variants: the static variant im-

plied that the strerror object be contained in the configuration, while the dynamic

variant implied that strerror not be contained.

Instead of having two libc variants distinguished by different values of the

linkage feature, we might as well have two libc revisions distinguished by a

change application δ1. Then, the strerror component would only be contained

in the configuration if δ1 had not been applied:

C = [object:program] +uI (∇ 1 ! object:strerror)

We may also use both the linkage and delta features to describe the configu-

ration. For instance, if δ1 had changed the linkage of libc from static to dynamic,

we may write

C = [object:program] +uI (linkage:static! object:strerror)

u (∆1 ! linkage:dynamic)

which leaves the linkage feature in the configuration term and makes the nature

of the change δ1 explicit.

138 Constraints and Repositories

To conclude, we see that it makes no difference whether we identify versions

and configurations by the applied changes or by other features. We can thus

generalize revision constraints to configuration constraints, allowing us to express

implications between arbitrary versioning dimensions.

12.7 Maintaining Configuration Constraints

We close this chapter by discussing some useful techniques involving revisions

and changes.

12.7.1 Revision Tagging

Rather than having changes imply features, one may also have features implying

certain changes. In section 2.3.2, for instance, we discussed the CLEARCASE

identification scheme: Users can assign names to edges in the version graph and

select revisions through a disjunction of name patterns. Such naming of changes

is easily expressed through an implication between the name and the respective

delta feature, as discussed in section 9.5.5.

As an example, tagging can be used for classifying versions by their status.
For instance, we may wish to classify versions in three categories experimental,

proposed, and published. An implication like
�
[status:proposed]! (∆5 u ∇ 6)

�
as configuration constraint can then ensure that whenever a proposed version is

required, R5 is returned.

12.7.2 Maintaining Currency

Tagging is also useful for maintaining currency. In our model, we cannot sim-

ply devise some revision as “current”, because currency may differ across vari-

ants; currency constitutes a part of the SCM protocol, expressed through means

of the SCM primitives layer—that is, using features. A simple scheme to denote

the current versions is to use a set [current:>] that contains the current variants

by implying certain revisions. An implication
�
[current:>;os:unix]! [∆2; ∇ 5]

�
ensures that whenever the current unix variant is requested, the revision R2 is

returned. In section 13.1.3, we give an example of using currency in workspaces.

12.7.3 Extrinsic and Intrinsic Changes

Regarding our discussion of extrinsic and intrinsic features in section 10.1, the

question may arise whether delta features are intrinsic or extrinsic features. The

answer is: if the change affects other components, it is extrinsic, and so is the

delta feature; if the change does not, it is intrinsic, and so is the delta feature as

well.

12.8 Conclusion 139

12.8 Conclusion

The maintenance of revision constraints in a repository is no more difficult than

maintaining a “classical” revision graph: for any new revision, a simple constraint

is added just as a new edge is added to the revision graph. Orthogonal changes

impose no special problems.

Revision constraints can be generalized to configuration constraints, express-

ing implications between arbitrary versioning dimensions. The role of configura-

tion constraints in structuring the configuration space cannot be over-emphasized.

Through configuration constraints, we can identify, select, and revise arbitrary

configurations, regardless of their specific versioning dimensions, and ensure their

consistency with respect to the configuration constraints. In chapter 13, we show

how configuration constraints are used to model cooperation techniques.

If a program is useful, it will have to be changed.

— LAWS OF COMPUTER PROGRAMMING, III

Chapter 13

Cooperation Techniques

Having discussed the concepts of logical and historical versioning, as modeled
through feature logic, we now examine the third and last versioning dimension,
which is cooperative versioning. We introduce the notion of a workspace, con-
fining all user operations to a specific configuration and isolating users from each
other’s changes. Through dedicated workspaces, users can publish and propa-
gate their changes. Using two cooperation scenarios, optimistic and conservative,
we demonstrate how changes propagate across workspaces and show how work-
spaces integrate with the versioning concepts discussed so far.

13.1 Working in Workspaces

13.1.1 Context and Confinement

In the context of SCM, the work of an individual developer can be described as a

series of operations—operations like reading, that is, examining components, or

writing, that is, changing components. Each operation affects a specific configu-

ration of component versions. Often, many subsequent operations affect the same

configuration. Hence, it is desirable to specify this common configuration only

once and to confine all subsequent operations to that configuration:

Definition 13.1 (Context, Confinement) An operation is confined to a configu-

ration C (called operation context or simply context) if it only affects a subset

of C. 2

Formally, such a confinement can be enforced as follows: Given a context C,

an operation on a component K is confined to the set K uC. That is, if K v

141

142 Cooperation Techniques

[user: john][user: tom] [user: lisa]

Figure 13.1: Disjoint write contexts

C holds, the operation will succeed; if K v �C holds, the operation will fail;

otherwise, only the subset KuC will be affected by the operation.

In practice, different operations can be confined by different contexts imposed

by the SCM system, realizing access control. For instance, a system-imposed

read context may define the component versions a user can examine, while the

write context defines the component versions a user can change. By assigning

each developer an individual write context disjoint from other write contexts, the

SCM system can ensure that changes made by one developer do not interfere with

changes made by another developer.

The easiest way to realize disjoint write contexts is to use some common fea-

ture with a different value for each user, and to make the write context a subset

of this feature term. For instance, we may use a user feature having the user

identification as value: formally, each write context W of a user U is a context

W v [user:U], where U is some feature term uniquely identifying the user. Since

the user feature may have only one value, all write contexts are disjoint, as illus-

trated in figure 13.1.

Making write contexts disjoint is a necessity for keeping individual changes

apart. In practice, users may also choose to keep their read contexts disjoint

such that they do not see the changes made by others. Likewise, users may wish

to work on a specific configuration only, confining their changes to that config-

uration. We thus introduce the notion of a user-definable working context or

workspace confining all user operations in addition to the read and write contexts

imposed by the SCM system.

Definition 13.2 (Workspace) A workspace is a user-definable context confining

all user operations. 2

13.1 Working in Workspaces 143

>

w

w

w

[user: lisa]

[object: tty]

[user: tom]

w ∆5 w
?

Figure 13.2: Changes and workspaces

For instance, let us assume Lisa has chosen her write context [user: lisa] as

workspace. If Lisa applies a change δ5 to the tty object, this change is confined to

her workspace. That is, ∆5 is subsumed by [user: lisa]; the tty component is iden-

tified by the additional configuration constraint
�
∆5 ! [user: lisa]

�
, as illustrated

in figure 13.2.

Let us assume that Tom also has chosen his write context [user: tom] as work-

space. In this case, Tom cannot access Lisa’s change as his view is subsumed

by [user: tom]; formally, user: tom v �[user: lisa] v ∇ 5 holds. Hence, both Tom

and Lisa can operate without interfering with each other—until their changes are

integrated into some production version.

The confinements imposed by the read and write contexts still apply, regard-

less of the workspace choice. Hence, if each user U has a write context of

[user:U] and a read context of >, Tom can set his workspace to > and thus ex-

amine Lisa’s current work; but his write context keeps him from changing them.

13.1.2 Operations in Workspaces

By adding additional constraints to their workspaces, users can choose to confine

their work to specific configurations only. In figure 13.3 on the following page,

Tom has chosen his workspace as [user: tom;os:mac]. Let us choose this example

to illustrate the effects of operations in his workspace:

Reading versions. Reading a component version K in a workspace W returns
KuW only.

Tom does not see the non-mac versions (like [os:windows] or [os:plan-9])
nor does he see the changes of other users (like [user: lisa]). Components

whose user or os feature is unspecified are included nonetheless in Tom’s

view because the components are the same across all user or os values.

What we have criticized in section 9.2 now comes out as a virtue: overspe-

cialization or orthogonal features in the workspace do not hinder version

selection.

144 Cooperation Techniques

[user: tom;os:mac][user: tom] [os:mac]

Figure 13.3: Workspaces and configurations

Writing versions. Writing a component version K in a workspace W changes
K uW only.

All changes Tom makes in his workspace are automatically confined to the

[user: tom;os:mac] variants of the components. The features of the com-

ponents stay the same, but the [user: tom;os:mac] variant will incorporate

Tom’s changes, while the �[user: tom;os:mac] variant seen by the other

users will not incorporate Tom’s changes.

Creating versions. Creating a component version K in a workspace W creates
K uW only.

Since K must not be visible outside of W , the component version K u�W

does not exist; this is expressed by constraining the features of the compo-

nent to �(K u�W) = �K tW = (K !W), which expresses that K is a

subset of W .

If Tom creates a new component in his workspace, this component must

remain unaccessible to other users. Hence, any such component inherits the

features of Tom’s workspace. If Tom creates an mac-specific component

active-help, it will be identified as

[object:active-help;user: tom;os:mac] :

The additional constraint

�
[object:active-help]! [user: tom;os:mac]

�

13.1 Working in Workspaces 145

ensures that the active-help will not be visible to other users (formally,

�[user: tom] v �[object:active-help] holds) or be included in other oper-

ating systems (�[os:mac]v�[object:active-help]).

Removing versions. Removing a component version K in a workspace W re-
moves KuW only.

If Tom deletes a component in his workspace, this component must remain

accessible to others. Consequently, a deleted components is assigned with

an additional feature, namely the complement �W of Tom’s workspace W .

Let us assume that all users see the same version of the [object:keyboard]
component. If Tom deletes the keyboard component from the mac version,

the keyboard component will be identified as�
object:keyboard;�[user: tom;os:mac]

�
;

such that it will be no more visible in Tom’s workspace. Outside of Tom’s

workspace, the keyboard component will still be visible.

13.1.3 Maintaining Currency

Even when their individual workspace is confined to a specific configuration or

revision, users may find it convenient to distinguish versions in “current” and

“non-current” (i.e. outdated) versions, as discussed in section 12.7. Outdated

versions may be identified by [current"], for instance, and hidden by making the

selection [current:>] part of the workspace. Rather than re-setting the workspace

to the latest version after every change, users could then simply tag outdated

components with [current"] and access only the most recent version.

Definition 13.3 (Outdating) To make the change δi current within the work-

space [user:U], and to outdate all versions that where the change δi has not been

applied, make the set [user:U;current:>] a subset of ∆i. 2

Using the constraint representation to express subsumption relations, this means

replacing any constraint �
[user:U;current:>]! S

�
by �

[user:U;current:>]! ∆i) :

Here is an example, illustrated in figure 13.4 on the next page. In Lisa’s

workspace, revision ∆5 is the current revision, which is expressed by a constraint

146 Cooperation Techniques

)

∆6 [current:>][current:>][user: lisa] [user: lisa]∆5 ∆5

Figure 13.4: Changing currency in a workspace�
([current:>]! ∆5)u (∆5 ! [user: lisa])

�
in all components changed by Lisa.

After applying a change δ6, Lisa decides to make the ∆6 components current;

this is done by adding another constraint
�
[current:>]! ∆6

�
to the components

where the δ6 change was applied.

Lisa’s workspace always remains the same, namely (user: lisa;current:>);
rather than changing her workspace, she changes the features of the components

such that she always sees the current versions. None of these constraints is visible

outside of Lisa’s workspace, as they are all subsumed by [user: lisa].

13.1.4 Working in Teams

Just as a user feature is useful to keep user workspaces disjoint, other features can

be appropriate to confine changes within larger entities.

Multiple teams. Besides the user feature, a team feature may be appropriate

to organize several people working on one task. For instance, all users

in the [team:microkids] workspace could work on the soul of a new ma-

chine, allowing each other to access their changes; but users working in the

[team:hardyboys] workspace would not see their changes and vice versa.

Sub- or superteams can be modeled likewise.

Multiple projects. Besides teams, users may work in different projects, which

could be kept disjoint as well by introducing a project feature. For instance,

in the setting illustrated in figure 13.5 on the facing page, user Kidder is

assigned to two projects eclipse and nova, which is expressed by setting

Kidder’s workspace to
�
user:kidder;project:feclipse;novag

�
. Kidder may

refine his workspace to one of these projects and switch workspaces as

needed.

13.2 Conservative Cooperation Techniques 147

[user:kidder]

�
project:feclipse;novag

�[project:eclipse] [project:nova]

Figure 13.5: Users and projects

Multiple sites. In section 5.7, we discussed techniques for realizing development

in multiple sites. If a distributed repository like NUCM is not available, dis-

tribution can be made explicit by assigning each development site a specific

value of a site feature. Just as with teams, users, and projects, users at a par-

ticular site can only change the local components. However, read access to

the changes made at other sites can be realized by regular updates as real-

ized in the MULTISITE tool.

13.2 Conservative Cooperation Techniques

In section 5.5, we have discussed cooperation strategies that prevent against ac-

cidental loss of changes. In this section, we discuss the first group of these

strategies, namely conservative cooperation strategies that prevent against par-

allel changes through a locking mechanism.

13.2.1 Locking Versions

In a conservative cooperation strategy, a user can change a component if and only

if it has not been locked by another user; before changing the component, the user

must explicitly lock it.

Using feature logic, we can distinguish locked from unlocked versions using

an additional locked feature and the tagging technique introduced in section 12.7.

For a component K, each version V v K locked by a user U is expressed through

a locking constraint

K v
��

V u [locked:>]
�
! [user:U]

�
(13.1)

148 Cooperation Techniques

The SCM system must ensure that only locked versions may be changed—for

instance, by setting the write context to a subset of [locked:>].
As a simple example, assume that Tom has locked revision ∆25 of a screen

component. The screen component then has the features

screenv
�
(∆25u [locked:>])! [user: tom]

�
If Lisa wishes to access a locked revision ∆25 of screen for writing, this will fail:

screenu∆25u [locked:>]u [user: lisa] =? ;

since ∆25u [locked:>] implies [user: tom].
Lisa may access an unlocked version for reading, however:

screenu∆25u [user: lisa] = screenu∆25u [user: lisa]u [locked:"]

since (13.1) can also be formulated as

K v
�
�[user:U]!

�
�V t [locked"]

��
;

consequently, [user: lisa]u∆25 implies [locked:"].
We deduce two operations for locking and unlocking component versions:

Definition 13.4 (Locking) To lock a version set V for a user U , make V a subset

of
��

V u [locked:>]
�
! [user:U]

�
. To unlock V , make V a subset of [locked"].

2

The SCM system must ensure that a version set V can only be locked when it

was previously unlocked and vice versa.

13.2.2 Propagating Changes

While the locking mechanism prevents users from making parallel changes to

a version set, we need an additional propagation mechanism that propagates

changes across workspaces.

As an example of propagation, reconsider figure 13.2 on page 143, where

Lisa has applied a change δ5 to the tty object in her workspace. Tom wishes to

propagate this change to his workspace as well. He invokes the SCM system such

that Lisa’s version [object: tty;user: lisa;∆5] is copied into a new version of tty

named [object: tty;user: tom;∆5]. As illustrated in figure 13.6 on the facing page,

13.2 Conservative Cooperation Techniques 149

>

w

w

w

[user: lisa]

[object: tty]

[user: tom]

w

∆5 w

w
[object: tty;user: lisa;∆5]

[object: tty;user: tom;∆5]

Figure 13.6: Propagating changes across workspaces

this makes ∆5 a subset of both Tom’s and Lisa’s workspaces; the features of the

tty component become

ttyv [object: tty]u
�

∆5 !
�
user:ftom; lisag

��
:

Tom may now make the ∆5 version current and thus determine how Lisa’s

change affects his current work. Any changes Tom makes in his workspace are

still invisible to Lisa—unless she propagates them into her workspace.

We conclude with a general definition of a propagate operation that propa-

gates changes across workspaces:

Definition 13.5 (Propagate) Let δi be a change. To propagate δi from a work-

space [user:U] to a workspace [user:U 0], make ∆i a subset of [user:U 0] as well as

of [user:U]. 2

Using the constraint representation to express subsumption relations, this means

replacing the constraint
�
∆i ! [user:U]

�
by

�
∆i ! [user:fU;U 0g]

�
.

13.2.3 Controlling Change Propagation

Propagating changes across workspaces helps individual users to synchronize
their work, that is, to make their workspaces identical (or at least, less divergent).

To keep divergence small is an important issue in SCM, because the more work-

spaces diverge, the more likely changes are to conflict with each other, making

the construction of the final product a difficult task.

For several users, change propagation must be organized in a special way to

ensure that all workspaces are synchronized with each other. A simple way to

ensure synchronization is to establish a notion of a common main development
line, representing the published or end user’s view of a product; workspaces are

temporary variants of this main development line, as discussed in section 5.5.2.

Before publishing changes, users must synchronize their own workspace with the

main development line. Hence, this scheme prohibits excessive divergence of

user workspaces and encourages frequent synchronization.

150 Cooperation Techniques

commit update
[user: tom] [user: lisa][user:production]

[current:>]

Figure 13.7: Propagating changes through a production workspace

In our model, such a main development line can be realized as follows. To

keep the main development line isolated from other’s changes, it must be dis-

joint from all user workspaces. Hence, we can establish the main development

line as a dedicated workspace, called production workspace, which represents the

published view of the product and which is disjoint from all user workspaces.

In this setting, users are discouraged from propagating changes between user

workspaces. Instead, changes are propagated from the production workspace to

user workspaces, and vice versa, using two operations update and commit. As

illustrated in figure 13.7, the update operation propagates the current changes

from the production workspace to the user’s workspace, and the commit opera-

tion propagates the current changes from the user’s workspace to the production

workspace. Both operations also make the propagated changes current in the des-

tination workspace.

Before defining the update and commit operations, we define a more gen-

eral propagate-current operation which propagates the current changes between

workspaces and makes them current in the destination workspace.

Definition 13.6 (Propagate-current) To propagate the current changes from the

workspace [user:U] to the workspace [user:U 0], propagate all changes subsuming

[current:>] in [user:U] to [user:U 0], and make them current in [user:U 0]. 2

In the constraint representation, propagating the current changes means the fol-

lowing: For each change δi such that ∆i w [user:U;current:>] holds, replace the

constraint
�
∆i ! [user:U]

�
by

�
∆i ! [user:fU;U 0g]

�
and add a new constraint�

[user:U 0;current:>]
�
! ∆i.

Both update and commit can now be defined using propagate-current:

Definition 13.7 (Update) To update a user workspace [user:U], propagate the

current changes from [user:production] to [user:U]. 2

13.2 Conservative Cooperation Techniques 151

Definition 13.8 (Commit) To commit the current changes from a user workspace

[user:U], propagate the current changes from [user:U] to [user:production].
2

13.2.4 A Conservative Scenario

As an example of change propagation through a production workspace, we have

illustrated a simple scenario in this section. In figure 13.8, we see a produc-

tion workspace [user:production] containing the end user’s view of some prod-

uct. The product comes in two variants, a demonstration variant [demo:>] and a

full-fledged variant�[demo:>] = [demo"]. The set [current:>] encompasses the

current versions of both variants.

[user:production]

[demo:>] [current:>]

Figure 13.8: A production workspace

Both users Tom and Lisa have established their workspaces [user: tom] and

[user: lisa] as temporary variants of the current production workspace; as illus-

trated in figure 13.9, each of them can access both the demonstration and the

full-fledged variant.

create create

[demo:>] [current:>]

[user: tom]

[demo:>] [current:>]

[user: lisa][user:production]

Figure 13.9: Creating user workspaces

Tom wishes to apply a change to the current version. He locks the current

version, making [current:>] a subset of [locked:>]. Lisa cannot access the locked

versions, since [locked:>]v [user: tom] and thus [user: lisa; locked:>] =? holds,

as shown in figure 13.10 on the following page.

152 Cooperation Techniques

[locked:>] [current:>]

Figure 13.10: Locking the current version

Tom applies his change δ1 to the current version. Both product variants are af-

fected by the change; ∆1 is thus orthogonal to [demo:>]. After testing his change,

Tom makes ∆1 current—that is, [current:>] is now a subset of ∆1, illustrated in

figure 13.11. Still, ∆1 is locked, as it is a subset of [locked:>].

[current:>]∆1

Figure 13.11: Changing a locked version

Tom’s work is done; he releases his lock and commits his change δ1 to the

production workspace, making it current there as well. The workspace state is

shown in figure 13.12.

[current:>]

commit

[current:>]∆1 ∆1

Figure 13.12: Committing changes to the production workspace

Now is the time for Lisa to make her changes. First, Lisa updates her work-

space with Tom’s changes, as shown in figure 13.13 on the next page. Tom’s

change δ1 is now current in Lisa’s workspace as well.

Lisa works on the demonstration variant only; she locks the current version,

making [locked:>] a subset of [demo:>;user: lisa]. Selecting the current demon-

13.2 Conservative Cooperation Techniques 153

update

[current:>]∆1

Figure 13.13: Updating a workspace from the production workspace

stration variant now implies that the locked version be selected, as shown in fig-

ure 13.14.

[current:>][locked:>]

Figure 13.14: Locking a variant

Since the demonstration variant is locked by Lisa, other users can no more

lock and change it. Its complement, the non-demonstration variant, is still un-

locked and may be locked and changed by other users. Just like Tom, Lisa per-

forms a change δ2 on the demonstration variant. The ∆2 set is now current, i.e. a

subset of [current:>], as shown in figure 13.15.

∆2

Figure 13.15: Changing a variant

As final step, Lisa commits her change to the production workspace, releasing

her lock. This final state is illustrated in figure 13.16 on the following page: In

the production workspace, both Tom’s change δ1 and Lisa’s change δ2 have been

applied and are both included in the current version.

154 Cooperation Techniques

commit

∆2 [current:>] [current:>]∆2

Figure 13.16: Committing variant changes

13.3 Optimistic Cooperation Techniques

13.3.1 Synchronizing Workspaces

Conservative cooperation strategies, as illustrated in section 13.2, have both the

advantage and disadvantage that only one developer at a time can work on a par-

ticular version of a component. Using an optimistic cooperation strategy, as dis-

cussed in section 5.5.2, users are allowed to work in parallel, each on a tempo-

rary variant. Here, it is essential that developers synchronize their workspaces

frequently—that is, catch up with other changes such that the individual work-

space is more similar to other workspaces. For this purpose, the changes of other

users must first be made visible in the workspace, and then be merged with the

individual changes.

As an example of merging, consider figure 13.17, where Tom has applied

a change δ1 in his workspace [user: tom]. Before committing that change back

to the production workspace, he updates his workspace by making the parallel

change δ2 available. The change δ2 is then merged into his current version, creat-

ing a merged version ∆1u∆2. This combined change may now be committed to

the production workspace.

The versions to be merged can easily be determined automatically. As dis-

cussed in section 5.6, automated merging of two versions relies on knowing their

common base version. Using version sets, the common base version V0 of two

versions V1 and V2 is the lowest common ancestor in the subsumption lattice, ex-

w

w ∆2

∆1[user: tom]

[user:production]

>

w

w w ∆1u∆2

?
w

Figure 13.17: Merging changes from the production workspace

13.3 Optimistic Cooperation Techniques 155

cluding any changes leading up to V1 or V2. In our example, V1 = ∆1 and V2 = ∆2

hold; the common base version V0 is determined as V0 = ∇ 1 u ∇ 2; that is, the

version excluding both changes.

Definition 13.9 (Synchronize) To synchronize a user workspace [user:U] with

the production workspace [user:production], perform the following two steps:

1. Update [user:U] from [user:production], making the versions ∆1; : : : ;∆n

accessible in [user:U] (but not yet current).

2. In [user:U], merge the versions ∆1; : : : ;∆n with [current:>], where the

base version is the lowest common ancestor in the subsumption lattice, ex-

cluding any later changes. The resulting merged version is identified as

[user:U;current:>]u∆1u �� �u∆n. 2

In a third step, the merged version may now be committed to the production

workspace, making the individual changes available to other users. As in the

conservative scenario, no changes get lost—provided that the merged version is

carefully checked.

13.3.2 Identifying Merged Versions

When the versions to be merged are identified by features other than delta fea-

tures, special care must be taken when identifying the merged version: As merg-

ing has no semantics in terms of feature logic, the features of the merged version

cannot be determined automatically.

To illustrate this problem, consider the merge of two versions identified by

[os:dos] and [os:windows]. The features of the merged version are dependent

on the nature of the merge: if the merged version is system-independent, its os

feature will be unspecified; if the merged version runs on DOS as well as on

WINDOWS, its features are
�
os:fdos;windowsg

�
, if it does not run on UNIX, its

features are [os:�unix], and so on.

Here are some guidelines in identifying merged versions:

Delta features accumulate. As shown in chapter 11, each revision Ri inherits

the delta features of its ancestor revisions R j; : : : ;Rk. Hence, the merge

of Ri v ∆i and R j v ∆ j will result in a revision Rd v ∆d v ∆i u ∆ j. In

figure 13.17 on the facing page, the merged version inherits both the ∆1

and ∆2 delta features.

156 Cooperation Techniques

Workspace features are ignored. Workspace features are volatile; they should

not be considered while merging. Rather, the merged version should in-

herit the features of the workspace it is created in, like any other new ver-

sion created. In figure 13.17 on page 154, the merged version is created in

[user: tom] and thus a subset thereof.

Other features must be determined again. Features identifying neither work-

spaces nor changes cannot be inferred from the originating features.

We see that there are few differences between assigning features to a merged

version and between specifying the features of a newly created version. Parts that

can be automated are the accumulation of delta features and the assignment of

workspace features.

13.3.3 An Optimistic Scenario

To conclude, we give another example of using production workspaces, but this

time mimicking the optimistic cooperation strategy of the CVS system.

The initial setting of our scenario is shown in figure 13.18. It is the same initial

setting as in the conservative scenario from section 13.2.4. Users Lisa and Tom

have established their workspaces as temporary variants of the current production

workspace; they can access both the demonstration and the full-fledged product

variant.

[user: tom] [user:production] [user: lisa]

create create

[demo:>] [current:>]

Figure 13.18: A production workspace and two user workspaces

The optimistic scenario does not prevent parallel changes. Hence, both Tom

and Lisa can apply changes to the product. Tom’s change δ1 affects both variants

at once, while Lisa’s change δ2 affects the demonstration variant only. Neither

change is visible outside the respective user workspace, as shown in figure 13.19.1

In figure 13.20 on the next page, Lisa commits her change to the production

workspace. The merge of her workspace and the production workspace is trivial,

1For clarity, we show the current versions [current:>] in the production workspace only.

13.3 Optimistic Cooperation Techniques 157

∆2∆1

Figure 13.19: Changes in user workspaces

because the base version is identical to the production workspace; hence, Lisa’s

changed version is simply copied to the production workspace. This makes the

current version of the demonstration variant imply the δ2 change, or formally,�
[current:>]! [demo"]t∆2

�
.

∆2 [current:>]

commit

Figure 13.20: Simple synchronization of the production workspace

Tom now wishes to commit his change δ2. Before doing so, he synchronizes

his workspace. The first step is to update his workspace with the current change δ1

from the production workspace. As shown in figure 13.21, the changes δ2 and δ1

are still disjoint.

∆2 ∆1

update

Figure 13.21: Updating a user’s workspace

In the second synchronizing step, shown in figure 13.22 on the next page, Tom

integrates the two changes δ1 and δ2, resulting in the merged version set ∆1u∆2.

158 Cooperation Techniques

∆1u∆2 ∆1∆2

Figure 13.22: Merging in a user’s workspace

After removing any conflicts between the changes δ1 and δ2, Tom commits

his versions back to the production workspace. As shown in figure 13.23, this

makes both ∆1 and ∆2 current versions in the respective variant.

[current:>] ∆1

commit

Figure 13.23: Synchronization of the production workspace after merge

In both scenarios, the optimistic scenario presented here and the conservative

scenario presented in section 13.2.4, the final current production version includes

both Lisa’s δ1 and Tom’s δ2 change; none of their changes is lost. The difference

in optimistic cooperation is that changes can be made in parallel and stay orthog-

onal to each other. In our example, the change δ2 is orthogonal to the change δ1;

in the conservative scenario, δ2 implied δ1, since parallel changes are inhibited.

13.4 Discussion

In this chapter, we have presented some techniques that help organizing the work

of several users working on a product by controlling the propagation of changes.

We keep changes disjoint by confining them into disjoint user, team, project, and

site workspaces. By refining their workspaces, users can decide which versions

to work upon without conflicting with other’s work. Through a dedicated work-

space, users can publish and propagate their changes, using either conservative or

optimistic cooperation techniques.

Both the conservative and optimistic scenario presented in this chapter show

how the concepts introduced so far integrate—notably, how version sets uni-

13.4 Discussion 159

formly represent revisions, variants, and workspaces. But the scenarios also show

up a deficiency of feature logic. We can easily capture some versioning state by

means of feature terms and set diagrams. But we cannot express the transitions
between these states using feature logic—there is no way to express the semantics

of an update operation in feature logic, for example. This is different from con-

sistency checking and version selection, where we could express all operations

in terms of feature logic. The properties of a formalism that allows us to express

these transitions, that is, to treat feature terms as first-class objects, remain yet to

be discovered.

Der Mensch ist ein zeitliches Wesen,
das nur lebt, indem es seine Welt um sich wandelt.

— KARL JASPERS, Einführung in die Philosophie

Plus ça change, plus c’est la même chose.

— ALPHONSE KARR

Chapter 14

Taming Complexity

For practical systems, a logic foundation alone does not suffice. We also must
know whether the central problems are decidable, and if so, at which cost. If these
costs are too high, we must identify the circumstances under which the costs can
be cut down.

The central problems in feature logic are deciding inconsistency, subsump-
tion, and equivalence. As shown in proposition 8.32 on page 86, all these prob-
lems can be reduced to deciding inconsistency. We present Smolka’s feature uni-
fication algorithm, which decides inconsistency for general quantifier-free feature
terms. As deciding inconsistency in general is co-N P-complete, Smolka’s algo-
rithm is of exponential time complexity. This makes practical applications unable
to scale up beyond a certain problem size. As a solution, we present some special-
ized procedures that break down complex SCM problems into manageable pieces
and discuss the conditions for efficient realization of SCM operations.

14.1 Deciding Inconsistency for Simple Feature Terms

We begin with a discussion of the basic mechanisms to deduce consistency of fea-

ture terms—that is, feature unification. In [Smo92], Smolka presents a constraint
system that can be used to decide about the inconsistency of feature terms. The

basic idea is to convert a simple feature term into a set of feature constraints, The

inconsistency of the constraint set can be decided in quadratic time.

Proposition 14.1 Deciding inconsistency of simple feature terms is of quadratic

time complexity.

161

162 Taming Complexity

PROOF. Smolka’s algorithm for solving feature clauses decides inconsistency of

simple feature terms in quadratic time [Smo92]. 2

Under certain circumstances, subsumption can also be decided in quadratic

time.

Corollary 14.2 Deciding the subsumption Sv T is of quadratic time complexity,

if the basic forms of S and �T are simple.

PROOF. Deciding whether Sv T holds is equivalent to deciding whether Su�T is

inconsistent (proposition 8.32 on page 86). Both S and �T can be converted in

linear time into basic form (proposition 8.22 on page 84). If the basic forms of S

and�T are simple, proposition 14.1 on the preceding page applies. 2

As term equivalence S= T is reducible to mutual subsumption (8.6), a similar

shortcut exists only if the basic forms of S, �S, T , and �T are simple, which is

only true for trivial feature terms.

14.2 Deciding Inconsistency for General Feature Terms

For general feature terms including quantifiers and unions, inconsistency, sub-

sumption, or equivalence are undecidable problems.

Proposition 14.3 Inconsistency, subsumption, and equivalence of general feature

terms are undecidable problems.

PROOF. In [Smo92]; the proof follows from the word problem of Thue systems

being undecidable. 2

The problems are decidable, however, for quantifier-free terms.

Proposition 14.4 Deciding inconsistency, subsumption, and the equivalence of

quantifier-free feature terms are co-N P-complete problems.

PROOF. In [Smo92]; the proof follows from the satisfiability problem of proposi-

tional logic being N P-complete. 2

Inconsistency, subsumption, and equivalence being co-N P-complete problems

implies that time complexity of decision is exponential.

For arbitrary quantifier-free feature terms, Smolka has presented an algorithm

called feature unification to decide inconsistency [Smo92]. The basic idea is to

convert the feature term into basic form and then into DNF. Since each conjunct

of the DNF is simple, inconsistency of each conjunct can be decided in quadratic

time, as discussed in proposition 14.1 on the page before. Transformation into

14.3 A Unification Example 163

DNF, however, is of exponential time complexity, resulting in exponential time

complexity of feature unification.

14.3 A Unification Example

We do not give a complete description of Smolka’s algorithm here—the inter-

ested reader may refer to [Smo92] for details. Instead, we illustrate feature

unification through an example. Let S and T denote the features of two com-

ponents, where S = [host-arch:fpentium;power-pcg;host-arch# target-arch] and

T = [target-arch:�power-pc] holds. We use feature unification to determine

whether S and T are consistent with each other, or whether SuT =? holds.

1. We determine

U = SuT =

2
4 host-arch:fpentium;power-pcg;

host-arch# target-arch;

target-arch:�pentium

3
5

2. U is already in basic form. The transformation to disjunctive normal form

yields U =U 0tU 00 with

U 0 =

2
4 host-arch:pentium;

host-arch# target-arch;

target-arch:�pentium

3
5

U 00 =

2
4 host-arch:power-pc;

host-arch# target-arch;

target-arch:�pentium

3
5

3. Smolka’s algorithm processes each conjunct separately. It first transforms

U 0 into a basic set of constraints, introducing temporary variables x and y

to express agreement.

host-arch
:
= pentium

host-arch
:
= x

target-arch
:
= y

x
:
= y

target-arch
:
= :pentium

164 Taming Complexity

4. The basic set of constraints is solved by instantiating the variables x and y:

host-arch
:
= pentium

target-arch
:
= pentium

x
:
= pentium

y
:
= pentium

target-arch
:
= :pentium

As target-arch is both pentium and :pentium, unification fails: U 0 =?.

5. Now comes the time for the second conjunct. U 00 is also transformed into a

set of constraints. After instantiation, we have:

host-arch
:
= power-pc

target-arch
:
= power-pc

x
:
= power-pc

y
:
= power-pc

resulting in the term U 00 = [host-arch:power-pc; target-arch:power-pc].

6. The result of the unification problem is SuT =U 0tU 00 =?tU 00 =U 00 =
[host-arch:power-pc; target-arch:power-pc] .

14.4 Reduction of Feature Terms

As a consequence of feature unification being of exponential complexity, we de-

termine possible optimizations that reduce complexity in practical applications.

The field of automated theorem proving (ATP) has determined several reduction
mechanisms that can be applied before the general decision algorithm. Generally,

a reduction satisfies the following properties [Bib92]:

� A reduction truly reduces the size of an ATP problem.

� Validity of the reduced problem implies validity of the original problem

(and possibly vice versa).

� Whether the reduction mechanism is applicable can be decided in polyno-

mial time.

� The reduction mechanism itself requires polynomial time.

14.4 Reduction of Feature Terms 165

Since reduction is much more efficient than feature unification, it is worth

exploring whether the reduction techniques established in ATP can be applied to

feature terms as well. In [Bib92], Bibel gives an overview of existing reduction

mechanisms in the context of propositional logic. At least three of these mecha-

nisms, whose validity is shown in [Bib87], can also be applied to general feature

terms.

Reduction of Multiple Occurrences (MULT) If a feature term S occurs multiple

times in a union or intersection, the term can be reduced to one occurrence

only:

SuS = S (14.1)

StS = S (14.2)

MULT reduction is easily implemented by sorting the subterms in each

union or intersection and removing duplicates. Sorting has a time com-

plexity of O(n � logn); MULT reduction is thus of linear-logarithmic time

complexity.

Reduction of Tautologies (TAUT) If both a feature term S and its complement

�S occur in a union or intersection, they can be replaced by > and ?,

respectively:

Su�S =? (14.3)

St�S => (14.4)

Just as MULT reduction, TAUT reduction is implemented by sorting the sub-

terms in each union or intersection, but ignoring outer-level complement

signs in the sort comparison. TAUT reduction is also of linear-logarithmic

time complexity and can be combined with MULT reduction.

Reduction of Subsumed Terms (SUBS) Let S be a feature term and S0 v S be

a subset of S. If both S and S0 occur in a intersection or union, only one

occurrence remains:

SuS0 = S0 (14.5)

StS0 = S (14.6)

Simple subsumption can often be determined on the syntactic level—for

instance, if S0 = SuT holds for some feature term T . Again, such a condi-

tion can be decided in linear-logarithmic time, by comparing the subterms

of S and S0.

166 Taming Complexity

14.5 A Divide-and-Conquer Approach

By imposing certain conditions upon feature terms, time complexity of feature

unification can be dramatically reduced. The most important condition is orthog-
onality: If deciding inconsistency of a feature term U = SuT can be divided into

deciding inconsistency of S and T separately, the terms S and T are orthogonal.

Definition 14.5 (Orthogonality) Two feature terms S and T are called orthogo-
nal if

SuT inconsistent) S inconsistent _T inconsistent (14.7)

holds. 2

An efficient procedure that determines orthogonality would be most useful,

because definition 14.5 implies the following corollary:

Corollary 14.6 Let U = SuT be the intersection of two consistent and orthogo-

nal feature terms S and T . Then, U is consistent.

PROOF. Follows from S consistent ^T consistent) SuT consistent holds, which

is the negated form of definition 14.5. 2

Fortunately, there is a simple sufficient condition for orthogonality: if S and T

have no common features or variables, they are orthogonal.

Proposition 14.7 Two consistent, non-atom feature terms S and T are orthogonal

if they have no common features or variables.

PROOF. We show that S consistent ^T consistent) SuT consistent holds, which

is the negated form of definition 14.5.

S is consistent. According to definition 8.29 on page 86, there is a feature

algebra IS = (DIS ; �IS) and an IS-assignment αS such that S
IS
αS
6= /0 holds. Like-

wise, since T is consistent, there is a feature algebra IT = (DIT ; �IT) and an IT -

assignment αT such that T
IT
αT
6= /0 holds.

Let DI = DIS �DIT be a domain. Let α be a mapping from the set of all

variables to DI , defined as

α(x) =

(
αS(x) if x occurs in S

αT (x) if x occurs in T

14.6 Fast Consistency Checking for Simple Terms 167

and let �I � DI �DI be an interpretation function defined for all features f as

f I =

(
f IS �T

IT
αT

if f occurs in S

S
IS
αS
� f IT if f occurs in T

and for all atoms a as

aI = aIS �aIT :

Both mappings are unambiguous since S and T have disjoint sets of variables and

features.

Let I = (DI ; �I) be a pair of DI and �I . I is a feature algebra—all features are

functional, all names are unique, and atoms are still primitive.

Let us now consider the term SuT . Its interpretation results in (SuT)I
α = SI

α\
T I

α . I interprets all features and variables in S like IS; consequently, we have SI
α =

(S
IS
αS
�T

IT
αT
). Likewise, I interprets all features and variables in T like IT , resulting

in T I
α =(S

IS
αS
�T

IT
αT
). From the equivalence SI

α = T I
α =(S

IS
αS
�T

IT
αT
), we deduce SI

α\

T I
α = (S

IS
αS
�T

IT
αT
). Since S and T are consistent, both S

IS
αS

and T
IT
αT

are nonempty;

(S
IS
αS
�T

IT
αT
) 6= /0 follows. Consistency of SuT results from definition 8.29. 2

Comparing the sets of features and variables occurring in S and T can be done

in linear time, such that the conditions for proposition 14.7 on the facing page are

easily verified. Consequently, a term T = T1 u T2 u �� � u Tn can be divided into

m orthogonal subterms in quadratic time, simply by checking orthogonality for

each pair Ti and Tj out of T . Each subterm can then be checked individually for

consistency—for example, by using Smolka’s feature unification.

14.6 Fast Consistency Checking for Simple Terms

Even if S and T are not orthogonal, their consistency can be checked in quasi-

linear time if both are simple, consistent, and variable-free.

Proposition 14.8 Let S and T be simple, consistent, and variable-free feature

terms; let neither S nor T contain agreements or disagreements. Consistency of

SuT can then be decided in quasi-linear time.

PROOF. Since T is simple, T can be decomposed into n subterms T = T1 u �� � u

Tn, each of the form f �:T 0, where f � is a feature path of zero or more features

f1: f2: : : : fm:T 0, and where T 0 is either > or an atom a or a negated atom �a or a

divergence f".

For each pair Ti;Tj of subterms, Ti uTj is consistent because T is consistent.

Moreover, Ti and Tj are orthogonal in any case:

168 Taming Complexity

1. Ti and Tj are equal. Hence, Ti and Tj are orthogonal according to defini-

tion 14.5 on page 166.

2. Ti and Tj have different feature paths or are different divergences. Then, Ti

and Tj are orthogonal according to proposition 14.7 on page 166.

3. Both Ti;Tj, have the same feature path f �—that is, Ti = f �:T 0
i and Tj =

f �:T 0
j holds. Then, we have three cases:

(a) T 0
i = a and T 0

j =>,

(b) T 0
i = a and T 0

j =�b,

(c) T 0
i =�b and T 0

j =>,

where a and b are some atoms. In all cases, T 0
i v T 0

j holds and defini-

tion 14.5 on page 166 applies. The symmetric cases lead to T 0
i w T 0

j and

thus to orthogonality as well.

Since every pair of subterms Ti, Tj is orthogonal, deciding whether SuT is con-

sistent can be broken down in n subproblems:

SuT consistent , SuT1 consistent ^ �� �^SuTn consistent (14.8)

Since S is simple as well, the same decomposition applies to the subterms Si

of S = S1u�� �uSm. Like the subterms Ti of T , above, each pair Si, S j of subterms

of S is orthogonal. Hence, we can determine consistency of Su T simply by

determining consistency of each subterm Si of S and each subterm Ti of T :

SuT consistent , S1uT consistent ^ �� �^SnuT consistent (14.9)

The combination of (14.8) and (14.9) leads to

SuT consistent ,
^

1�i�n

i< j�m

(SiuTj consistent) (14.10)

The subterms Si and Tj are simple enough such that consistency of any SiuTj

can be decided in constant time. To determine the consistency of a single Si

with all Tj, it suffices to consider the term Tj with identical feature path. For a

given feature path, it is possible to determine Tj in quasi-constant time using an

appropriate data structure—for instance, using a hash table with an entry for each

feature path. This is reasonable, since the number of features is small in practice,

and so is the data structure. The remaining traversal of S requires linear time

again. Overall complexity is thus of quasi-linear time, which was to be shown.

2

14.7 Integrating Reduction and Fast Consistency Checking 169

14.7 Integrating Reduction and Fast Consistency Checking

The proof of proposition 14.8 on page 167 leads to the construction of an al-

gorithm that integrates consistency checking for simple feature terms with term

reduction for arbitrary feature terms.

The basic idea is the principle of partial evaluation. In the domain of arith-

metic expressions, partial evaluation means to replace known variables by their

values and to evaluate resulting constant sub-expressions. This procedure is also

applicable to feature terms: In a term Su T , every occurrence of T in S can be

replaced by >, since T must be satisfied anyway. Likewise, any subterm in S that

is inconsistent with T can be replaced by?, since it cannot be satisfied.

Here is a simple example of partial evaluation. Consider the term

U = SuT

= [os:�unix;user:ftom; lisag]u [os:dos;user:�tom] :

We have T v [os:dos]. Consequently, we can replace [os:�unix] in S by >, since

[os:�unix]uT = >uT = T holds. Likewise, we can replace [user: tom] by ?,

since [user: tom]uT =?uT =? holds. We obtain

U = SuT

= [>;user: lisa]u [os:dos;user:�tom]

which feature unification simplifies to

= [os:dos;user: lisa] :

As stated in proposition 14.8 on page 167, partial evaluation replacement al-

ways leads to a full consistency check in quasi-linear time if both S and T are

simple; for all other cases, the term S can be reduced in size, simplifying a later

consistency check through feature unification (as in our example).

We now present the formal definition of reduce, a function integrating partial

evaluation and fast consistency checking. First, we define a simplify function

required by reduce to propagate new > and ? values.

Definition 14.9 (Simplify) Let simplify(S) be a function mapping a feature term

to a feature term such that the following holds:

simplify(>uS) = S simplify(>tS) => simplify(�>) =?

simplify(Su>) = S simplify(St>) => simplify(�?) =>

simplify(?uS) =? simplify(?tS) = S

simplify(Su?) =? simplify(St?) = S

(14.11)

170 Taming Complexity

and, for all other cases,

simplify(S) = S : (14.12)

2

The reduce function performs the actual replacement, following the proof of

proposition 14.8 on page 167.

Definition 14.10 (Reduce) Let reduce(S;T) be a function mapping two feature

terms S and T to another feature term such that the following holds:

reduce(S;T1uT2) = reduce
�
reduce(S;T1);T2

�
(14.13)

reduce(S1uS2;T) = simplify
�
reduce(S1;T)u reduce(S2;T)

�
(14.14)

reduce(S1tS2;T) = simplify
�
reduce(S1;T)t reduce(S2;T)

�
(14.15)

reduce(�S;T) = simplify
�
�reduce(S;T)

�
(14.16)

reduce(f :S; f :T) = f :simplify
�
reduce(S;T)

�
(14.17)

as well as

reduce(S;S) => reduce(f";a) => reduce(f :S;a) =?

reduce(a; f :T) =? reduce(f"; f :T) =? reduce(f :S; f") =?

reduce(a;b) =? reduce(a;�a) =?

(14.18)

and, for all other cases,

reduce(S;T) = S : (14.19)

2

In definition 14.10, (14.13) and (14.14) reflect the recursive descent of (14.8) and

(14.9), respectively. Equations (14.15), (14.16) and (14.17) descend along unions,

complements and (common) feature paths. The remaining equations in (14.18)

either determine inconsistencies for non-composed cases, resulting in ?, or sim-

plify subterms of S by replacing them with >.

Obviously, the term computed by reduce(S;T) is not larger than S. reduce

may thus be used as general reduction step before using feature unification. In an

intersection SuT , we can replace S by reduce(S;T) while preserving validity:

14.7 Integrating Reduction and Fast Consistency Checking 171

Proposition 14.11 For any two feature terms S and T , the equation

SuT = reduce(S;T)uT (14.20)

holds.

PROOF. We show that (14.20) holds via structural induction. We begin with the

non-composed cases in (14.18) and (14.19); assuming that these hold, we con-

tinue with the composed cases. Without loss of generality, we use a simpler

definition of simplify, namely simplify(S) = S.

1. We show that (14.20) holds for the non-composed cases by showing that

both SuT v reduce(S;T)uT and SuT w reduce(S;T)uT hold.

(a) We begin with SuT v reduce(S;T)uT . Due to (8.4), this is equiv-

alent to (Su T)u�
�
reduce(S;T)u T

�
= ?. Now let U be defined

as U = (Su T)u�
�
reduce(S;T)u T

�
= Su T u

�
�reduce(S;T)t

�T
�
= SuT u�reduce(S;T): For the cases in (14.18) and (14.19),

showing that U =? holds is trivial.

(b) The next step is to show that Su T w reduce(S;T)u T holds. Due

to (8.4), this is equivalent to �(SuT)u reduce(S;T)uT = ?. This

time, let U be defined as U = �(SuT)u reduce(S;T)uT = (�St

�T)ureduce(S;T)uT =�Sureduce(S;T)uT: Again, U =? holds

for all cases in (14.18) and (14.19).

2. We continue with the composed cases. Assume that (14.20) holds for some

feature terms S, T1, and T2. Let T = T1 u T2. Then, using (14.13), we

obtain SuT = Su (T1uT2) = (SuT1)uT2 =
�
reduce(S;T1)uT1

�
uT2 =�

reduce(S;T1)uT2

�
uT1 = reduce

�
reduce(S;T1);T2

�
uT2uT1 = reduce(S;

T1uT2)uT1uT2 = reduce(S;T)uT: It follows that (14.20) holds for T =
T1uT2 as well.

3. Assume that (14.20) holds for some feature terms S1, S2, and T . Let

S = S1uS2. Then, using (14.14), we have SuT = S1uS2uT = (S1uT)u
(S2 u T) =

�
reduce(S1;T)u T

�
u
�
reduce(S2;T)u T

�
=

�
reduce(S1;T)u

reduce(S2;T)
�
u T = reduce(S1 u S2;T) u T = reduce(S;T) u T: Conse-

quently, (14.20) holds for S = S1uS2 as well.

4. Assume that (14.20) holds for some feature terms S1, S2, and T . Let

S= S1tS2. Then, using (14.15), we have SuT =(S1tS2)uT =(S1tT)u
(S2 t T) =

�
reduce(S1;T)u T

�
t
�
reduce(S2;T)u T

�
=

�
reduce(S1;T)t

reduce(S2;T)
�
u T = reduce(S1 t S2;T) u T = reduce(S;T) u T: Conse-

quently, (14.20) holds for S = S1tS2 as well.

172 Taming Complexity

5. Assume that (14.20) holds for some feature terms S0 and T . Let S =
�S0. Then, using (14.16), we have SuT = �S0uT = (�S0t�T)uT =
�(S0uT)uT =�

�
reduce(S0;T)uT

�
uT =

�
�reduce(S0;T)t�T

�
uT =

�reduce(S0;T) u T = reduce(�S0;T) u T = reduce(S;T) u T: It follows

that (14.20) holds for S =�S0 as well.

6. Assume that (14.20) holds for some feature terms S0 and T 0. Let f be some

feature and let S= f :S0 and T = f :T 0. Then, using (14.17), we have SuT =
f :S0u f :T 0 = f :(S0uT 0) = f :

�
reduce(S0;T 0)uT 0

�
=

�
f :reduce(S0;T 0)

�
u

(f :T 0) = reduce(f :S0; f :T 0) u (f :T 0) = reduce(S;T) u T: Consequently,

(14.20) holds for S = f :S0 and T = f :T 0 as well.

Since (14.20) holds for all non-composed feature terms as well as for all com-

posed feature terms, it holds for all feature terms, which was to be shown. 2

As a result of proposition 14.11, we can apply reduce as a reduction step

before any feature unification. Moreover, if the conditions of proposition 14.8 on

page 167 are met, reduce determines consistency of SuT in quasi-linear time:

Corollary 14.12 Let S and T be simple, consistent, and variable-free feature

terms; let neither S nor T contain agreements or disagreements. Then,

1. SuT is consistent iff reduce(S;T) is consistent; and

2. reduce(S;T) requires quasi-linear time.

PROOF. The terms S and T meet the conditions of proposition 14.8 on page 167.

Hence, consistency of S and T can be decided in quasi-linear time. Applying

reduce compares each pair of subterms Si and Tj, as specified in (14.10); through

the propagation of? values in simplify, the result of reduce is consistent iff SuT

is consistent. No further time complexity is added by reduce. 2

14.8 Two Reduction Examples

All of the strategies presented in this chapter can be combined into one single

procedure, choosing the least cost method wherever appropriate. As an example,

reconsider the editor example from figure 10.1 on page 104. The features of the

entire configuration are described as

editor = osu screen-typeu screen-device ;

14.8 Two Reduction Examples 173

where os, screen-type, and screen-device are defined as

os =
�
os:dos;screen-type:fega; ttyg;concurrent: false

�
t
�
os:unix;screen-type:fx11;news; ttyg

�

screen-type =
�
screen-type:ega;screen-data:bitmap

�
t
�
screen-type: tty;screen-data:ascii

�
t
�
screen-type:x11;screen-data:bitmap

�
t
�
screen-type:news;screen-data:fpostscript;bitmapg

�

screen-device =
�
screen-device:dumb;data:D;screen-data:D

�
t
�
screen-device:ghostscript;data:postscript;

screen-data:bitmap;concurrent: true
�

:

Let us identify the configurations in T = [os:unix;screen-type:x11]. For this

purpose, we create a subset of editor, namely editor u T . Applying Smolka’s

feature unification alone, as discussed in section 14.1, requires editor to be trans-

formed into DNF form. Since os comes in five variants, screen-type in four vari-

ants, and screen-device in two variants, this means a term with 5� 4� 2 = 40

conjuncts, which would again be multiplied with each alternative in T . Due

to the procedures discussed in the previous sections, much fewer steps are re-

quired. First, we decompose the problem editor u T into three subproblems

editoruT = (osuT)u (screen-typeuT)u (screen-deviceuT).

1. The selection osuT can be done by reduction:

osuT = reduce(os;T)uT

= reduce
�
reduce

�
os; [os:unix]

�
; [screen-type:x11]

�
uT

Evaluating reduce
�
os; [os:unix

�
yields

reduce
�
os; [os:unix]

�
= reduce

�
[os:dos;screen-type:fega; ttyg;

concurrent: false]; [os:unix]
�

t reduce
�
[os:unix;

screen-type:fx11;news; ttyg];

174 Taming Complexity

[os:unix]
�

=?t
�
screen-type:fx11;news; ttyg

�
=

�
screen-type:fx11;news; ttyg

�
Reducing each of the remaining alternatives yields

osuT = (>t?t?)uT

= [os:unix;screen-type:x11] :

2. The selection screen-typeuT is also done by reduction. Since the os fea-

ture does not occur in screen-type, it suffices to perform the reduction

reduce
�
screen-type; [screen-type:x11]

�
. Reducing each of the four alter-

natives leaves only

screen-typeuT = (?t?t [screen-data:bitmap]t?)uT

= [os:unix;screen-type:x11;screen-data:bitmap] :

3. The selection screen-deviceu T is trivial, since screen-device and T have

no common features and are thus orthogonal:

screen-deviceuT = screen-deviceuT

4. We now compute osuT , screen-typeuT , and screen-deviceuT . The inter-

section of osuT and screen-typeuT can be trivially computed by reduc-

tion: reduce(osuT;screen-typeuT) => holds and thus

(osuT)u (screen-typeuT) =>u (screen-typeuT)

= (screen-typeuT) :

5. The final step is the intersection of (screen-typeuT) and (screen-deviceu

T). Since one of the alternatives of screen-type contains variables, we can-

not use reduction for this alternative: full-fledged feature unification is re-

quired, instantiating the variable D to bitmap.

(screen-typeuT)u (screen-deviceuT)

= [os:unix;screen-type:x11;screen-device:dumb;

data:bitmap;screen-data:bitmap]

t [os:unix;screen-type:x11;screen-device:ghostscript;

data:postscript;screen-data:bitmap;concurrent: true]

14.9 Conclusion 175

This final term also identifies the entire configuration editor u T . Rather than

invoking feature unification for 40 conjuncts, it sufficed to invoke it for one single

conjunct. The entire selection, including the consistency check of the resulting

configuration, required only one reduction call for each component version, as

well as two reduction calls for determining consistency.

As another example, consider the revision graph in figure 11.1 on page 114.

As stated in (11.3), the revision graph is expressed by

R = (∇ 2t∆1)u (∇ 3t∆1)u (∇ 4t∆3)u (∇ 5t∆2)u (∇ 5t∆4)

u (∇ 6t∆4)u (∇ 2t ∇ 3t∆5)u (∇ 2t ∇ 6) ;

where we use t instead of! to express implications.

Let us assume we wish to retrieve the revision R3, identified by a selection

term S = ∆3u ∇ 4. We determine the selection R3 = RuS. Invoking reduce(R;S)
yields

reduce(R;S) = (∇ 2t∆1)u∆1u>u ∇ 5u ∇ 6u (∇ 2t∆5)u (∇ 2t ∇ 6) :

which is already a lot smaller than R. Resolving the intersections in reduce(R;S)
by calling reduce with ∆1, ∇ 5, and ∇ 6, respectively, yields

reduce(R;S) = ∆1u ∇ 5u ∇ 6u ∇ 2

which completes the term R3 to

R3 = RuS = reduce(R;S)uS

= ∆1u ∇ 2u∆3u ∇ 4u ∇ 5u ∇ 6

Again, had we used feature unification alone, converting R into DNF would have

given us a term with 27�3 = 384 conjuncts. Instead, four applications of reduce,

each with quasi-linear time complexity, sufficed to determine R3.

14.9 Conclusion

Deciding inconsistency of feature terms is N P-complete. This implies that the

following problems are N P-complete, too:

� Is a version part of a specific selection set?

� Is a configuration consistent with respect to the features of its components?

176 Taming Complexity

In this chapter, we have presented specialized deductive shortcuts exist that show

much better complexity for special cases. The problem of deciding consistency

can be broken down in smaller subproblems if the feature term breaks down into

orthogonal parts, that is, parts without common features or variables. The tech-

nique of partial evaluation leads to efficient decision of consistency for simple

feature terms.

While orthogonality is an important property for the separation of concerns,

partial evaluation is an important shortcut for version selection. In fact, the com-

mon SCM version selection schemes discussed in section 7.3 can all be imple-

mented in quasi-linear time complexity:

Simple selection terms. If the version selection term is simple, consistent, and

variable-free, consistency checking and thus version selection has quasi-

linear time complexity. This is the “strong identification, weak selection”

scheme, as realized in CPP.

Simple version identification terms. If the version identification terms are sim-

ple, consistent, and variable-free, consistency checking and thus version

selection also has quasi-linear time complexity. This is the “strong selec-

tion, weak identification” scheme, as realized in JASON and other attribute-

oriented SCM systems.

We see that despite the generality of version sets and feature unification, common

SCM versioning schemes can still be realized efficiently. But to be absolutely con-

vincing, this claim requires more than a proof—it requires a working prototype.

This is what we have built, and this is what we present in part four.

We remark that certain worst-case complexity results
are not considered to be a problem,

because the examples are pathological
and do not arise in practice.

— ALEX BORGIDA, Description Logics are not just
for the Flightless-Birds

Part Four

Applications

177

Chapter 15

A SCM Environment

In software engineering, proposing a new design alone does not suffice. As
Lukowicz et al. state in [LHPT95],

Such designs must be judged by whether they increase our knowl-
edge about what are useful and cost-effective problem solutions. In
most cases, objective judgement can only be achieved on the basis of
reproducible experiments.

For this purpose, we have implemented the version set model in an experimental
SCM system, called ICE for Incremental Configuration Environment. This chapter
gives a general overview about the architecture and components of ICE.

15.1 The Properties of ICE

The basic properties of ICE are those of the version set model; notably, ICE sup-

ports the integration of versioning dimensions, consistency checking in abstract

configurations, and tolerates ambiguities at all SCM levels. Other features of ICE

include:

Version sets as first-class objects. In ICE, every component and every configu-

ration is treated as set of possible versions, where an unambiguous item

is just the special case of a singleton set. Version sets are represented as

individual entities and can be examined and manipulated as a whole, using

the well-known CPP representation as discussed in section 2.6.1; likewise,

all version specifications are given as CPP expressions—that is, boolean C

expressions.

179

180 A SCM Environment

Transparent version set access. For integration into common software develop-

ment environments, ICE makes version sets accessible through a virtual file

system called FFS for featured file system. Version sets are accessed ex-

plicitly by appending a version specification to file and directory names.

Implicit version set access is realized by changing the current directory

version.

Incremental version selection. Many software development tools require that

items be unambiguous. ICE provides incremental and interactive disam-

biguating facilities, allowing users to explore the version space. For each

configuration, ICE lists possible features and values that constrain the ver-

sion space while keeping consistency. Users can select these feature values

and refine their selection incrementally until the selection is unambiguous.

Intensional system construction. ICE realizes a MAKE tool that acts like an or-

dinary MAKE, but with built-in version set support. ICE MAKE deduces

the features of derived components and tolerates ambiguity in dependency

descriptions, such that entire systems can be built and configured just by

stating a few target features. As described in section 4.6, ICE MAKE deter-

mines whether required components have been built identically in another

configuration and reuses them across versions wherever possible. A full

description of ICE MAKE can be found in [Bra96].

Revision and workspace management. At the protocol layer, ICE provides fa-

cilities to create revisions and to propagate changes, realizing the optimistic

cooperation strategy as discussed in section 13.3.3. A textual merging al-

gorithm enhanced for version sets realizes change integration for arbitrary

version sets. The resulting TWICE tool is specified in [Men96].

ICE is part of the inference-based software development environment NORA1.

NORA aims at utilizing inference technology in software tools; concepts and pre-

liminary results can be found in [FKS95, KS94, Lin95, Sne96].

15.2 Using Industry Standards

In section 15.1, we have seen that ICE relies on existing industry standards wher-

ever possible: component versions are accessed as files, multiple versions are

represented in CPP format, the system model comes as an ordinary MAKE file.

The choice to use existing representations instead of designing own, maybe bet-

ter, representations, were made for three reasons.

1NORA is a figure in Henrik Ibsen’s play “A Dollhouse”. Hence, NORA is NO Real Acronym.

15.3 A Layered Architecture 181

Economy in use. Using industry standards allows for smooth integration of ICE

into real-world software development environments. Existing documents,

such as MAKE files or CPP-maintained source files, can be reused. End

users familiar with MAKE and CPP need not learn new paradigms or repre-

sentations, just some bits of additional functionality. Users can switch back

to their original tools if ICE does not satisfy them.

Economy in development. Using industry standards facilitates the development

of ICE. Syntax and semantics of MAKE, CPP, or file systems are well-

documented and well-understood among developers. Rather than to coordi-

nate, document, implement, and debug basic SCM functionality as realized

in these tools, developers can focus upon the new functionality. More even,

mature implementations are available that can be reused and extended.

Economy in concepts. As an SCM foundation, the version set model should in-

tegrate and unify existing SCM concepts, rather than introducing new ones.

Hence, ICE need not rely on new representations for new concepts, but

rather demonstrate how existing representations are interpreted and reused

under the version set model.

15.3 A Layered Architecture

As discussed in section 6.6, future SCM systems should be decomposed into three

layers—primitives, protocol, and policy—, each providing a specific set of SCM

services. The architecture of ICE can be divided into these three layers; an addi-

tional foundation layer realizes primitives for handling version sets, as discussed

in part three.

Foundation layer. The foundation layer is not accessible to end users. It pro-

vides the basic functionality useful for realizing user-level SCM services.

This includes support for maintaining feature terms, access to the inference

engine, and facilities for reading, writing, and manipulating simple version

sets.

Primitives layer. The primitives layer embeds ICE into software development

environments. The FFS is part of the primitives layer, allowing users and

user tools to access and refine version sets. Versions are identified by ar-

bitrary feature terms; feature names have no specific meaning. The FFS

realizes access control by maintaining access rights for individual file ver-

sions.

182 A SCM Environment

ICE Policy
Quality assurance, CM Process, etc.

ICE Protocol
Transactions, Workspaces, Revisions, etc.

ICE Primitives
Version set access, Environment integration, etc.

ICE Foundations
Version set representation, Inference engine, etc.

Figure 15.1: The ICE service layers

Protocol layer. The protocol layer gives meaning to specific features and pro-

vides support for specific SCM tasks and procedures. Revisions and work-

spaces are handled at this layer, accessing version sets through the FFS.

Locking is also handled here, in contrast to [BDFW91], where locking is a

service of the primitives layer. Other SCM tools working on version sets can

be located at this layer, such as software construction or interactive version

selection.

Policy layer. The policy layer uses the services provided at the SCM protocol

layer to encode procedures specific to an organization. ICE does not yet

provide facilities at this layer.

In the following chapters, we discuss the individual components of ICE, start-

ing with the ICE foundations.

By three methods we may learn wisdom:
First, by reflection, which is noblest;

Second, by imitation, which is easiest;
and third by experience, which is the bitterest.

— CONFUCIUS

Chapter 16

Representing Version Sets

Upon designing ICE, the first problem that arose was the representation and ef-
ficient storage of version sets at the SCM primitives layer. As it was our aim to
make ambiguity transparent to developers, we wanted to represent version sets in
a format suitable for human readers. Our choice fell on the well-established CPP

format, discussed in section 2.6.1. We show how to represent feature terms as
CPP expressions, providing users with a familiar syntax to denote version sets.

16.1 A Multi-Version Representation

Upon designing ICE, it was our aim to make version sets transparently accessi-

ble to developers, such that they could manipulate several versions at once. We

consider a document as a set of related items, where each item is versioned sep-

arately. For ordinary text documents, organized as a list of lines, this results in

each line being tagged with a feature term S indicating the document version(s) it

belongs to.

In figure 16.1 on the following page, we have illustrated such a versioned

text. The lines tagged with > occur in every version of the text. The lines tagged

with [author: tichy] belong to the tichy version only, while the lines tagged with

[author:dart] are part of the dart version. Upon selecting a version S of the doc-

ument, only those lines are included whose feature term T is consistent with S—

that is, where T uS is consistent.

Since ICE was designed to work with ordinary files, we had to design some

representation for tagging lines with feature terms. The most frequently used

multi-version representation for ordinary files is the CPP format, as discussed in

section 2.6.1. Using CPP-like directives, but with feature terms, we could have

183

184 Representing Version Sets

Line Features

Configuration >

management is the [author: tichy]

management is a [author:dart]

discipline >

of organizing and [author: tichy]

controlling evolving [author: tichy]

for controlling [author:dart]

the evolution of [author:dart]

systems. >

Figure 16.1: Tagging lines with feature terms

used feature directives like #if : : : #endif to specify the feature term applying

to the enclosed lines. An example is shown in figure 16.2 on the next page on the

left side.

But, since we’re already using a CPP-like representation, why not use CPP

expressions as well? Feature terms and CPP expressions are quite similar: Both

support boolean equations and equality, and features in feature term can easily

be expressed by CPP variables, which also can have only one value. Also, allow-

ing ICE to read and write CPP files offers the possibility to re-use existing CPP

representations and to interact with tools requiring CPP representation.

Consequently, we chose the CPP representation as standard representation for

version sets in ICE. The resulting file is shown on the right side of figure 16.2 on

the facing page.

16.2 Representing Feature Terms

ICE allows users that know feature logic to enter feature terms directly, using a

straight-forward ASCII representation. But usually, users are expected to use the

more familiar, well-understood CPP representation. In the following, we discuss

the mapping of CPP expressions to feature terms and vice versa, as summarized

in table 16.1 on page 186.

Set Operations. ICE uses CPP boolean operators for the set operations of fea-

ture logic—that is, && for the intersection (u), || for union (t), and ! for

complement (�).

16.2 Representing Feature Terms 185

Lines with feature directives

Configuration

#if [author: tichy]

management is the

#endif

#if [author: dart]

management is a

#endif

discipline

#if [author: tichy]

of organizing and

controlling evolving

#endif

#if [author: dart]

for controlling

the evolution of

#endif

systems.

Lines with CPP directives

Configuration

#if author == tichy

management is the

#endif

#if author == dart

management is a

#endif

discipline

#if author == tichy

of organizing and

controlling evolving

#endif

#if author == dart

for controlling

the evolution of

#endif

systems.

Figure 16.2: Multiple versions in one file with feature and CPP directives

Selection. A selection is represented by the CPP operator ==; that is, the feature

term f :S becomes, as CPP expression, f == S. The CPP operator != is

used for negated feature values; author != lisa stands for the feature

term author:�lisa.

Atoms. Besides identifiers like lisa, ICE allows arbitrary C literals as atoms—

that is, strings ("lisa"), characters (’l’), integers (42) and floating point

numbers (4.711e+3), following the C standard [ISO90].

Agreement. Disagreement. The == and != operators can also be used for agree-

ments and disagreements. This introduces an ambiguity in CPP expressions,

because identifiers may be interpreted as features or atoms. To distinguish

between selection and agreement or disagreement, and arithmetic expres-

sions involving equality, the following rules are used. In an expression

S == T (S != T),

1. the expression is an agreement (disagreement) if

186 Representing Version Sets

Abstract syntax ASCII representation CPP representation

> (also []) [] !0
? (also fg) fg 0
a a a
x X (see section 16.2)

f :S f: S f == S

f :�S f: ˜S f != S

f :�0 f: ˜0 f

f :> f: [] defined f

f" f ˆ !defined f

f #g f = g f == g

f "g f ˆ g f != g

�S ˜S !S

SuT (also [S;T]) [S, T] S && T

StT (also fS;Tg) fS, Tg S || T

S! T (see section 16.2) (see section 16.2)

S$ T (see section 16.2) (see section 16.2)

9x(S) (see section 16.2) (see section 16.2)

Table 16.1: Representing feature terms in ASCII and as CPP expressions

(a) S and T are identifiers,

(b) T begins with an upper-case letter.

2. Otherwise, the expression is a selection with T (�T) as value if S is

an identifier.

3. Otherwise, the expression is an arithmetic expression.

Multiple Selections. Variables. To avoid further ambiguities, feature terms with

multiple selections like f :g:S and variables like X cannot be mapped to CPP

expressions. Such feature terms can be embedded in the CPP representation

by enclosing their ASCII representation in square brackets. For example,

the term [f :a;g:h:X ; i:X] becomes, in CPP representation,

f == a && [g: h: X] && i == [X]

Embedding of CPP expressions in the ASCII representation is not supported.

16.3 Syntax and Semantics of CPP Directives 187

Top and Bottom. CPP expressions, like C expressions, are arithmetic by nature:

the boolean values of true and false are expressed by zero and non-zero

values, respectively. Consequently, we use 0 to express the feature term ?

and !0 to express �? or >.

To avoid ambiguities between representing > and the negated atom 0, we

use the CPP expression defined f for the feature term f :>. When> does

not occur as feature value, it can usually be eliminated from set expressions.

Divergence f" becomes !defined f .

In CPP expressions, a single identifier x occurring in a boolean formula is

interpreted like (x != 0); ICE reflects this interpretation by mapping the

feature term f :�0 to the CPP expression f .

Implications. Implications S! T do not have an equivalent in the ASCII or the

CPP representation of feature terms. They can be represented using the

alternate forms �StT—that is, f˜S, Tg in the ASCII representation and

!S || T in the CPP representation.

Equivalences. Like implications, equivalences S$ T must be represented using

an alternate form. Since S $ T = (Su T)t (�Su�T) holds, the form

f[S, T], [˜S, ˜T]g is a possible ASCII representation; the CPP repre-

sentation becomes (S && T) || (!S && !T).

Quantifiers. Quantifiers 9x(S) are not supported by ICE. They have neither an

ASCII representation nor a CPP representation.

ISO keywords. In compliance with the forthcoming C++ standard [Str94], ICE

recognizes the keywords and, or, not, and not eq instead of &&, ||, !,

and !=. ICE may also be instructed to generate these keywords.

Other CPP expressions. All CPP expressions that cannot be converted into a fea-

ture term using the rules above, are treated by ICE as a single atom. We call

these expressions arithmetic expressions.

16.3 Syntax and Semantics of CPP Directives

16.3.1 Specifying Line Features

Besides the simple #if : : : #endif construct, ICE handles all CPP directives re-

lated to conditional inclusion, improving the readability of multi-version files.

188 Representing Version Sets

Each block of the text is read within a certain context, a feature term that deter-

mines the features of the line; one also says that the context governs the line. CPP

directives like #if may be used to narrow this context for the enclosed lines.

#if : : : #elif : : : #else : : : #endif. The #if directive occurs in the general

form

#if S0

t0
#elif S1

t1
#elif S2

t2
...
#elif Sn

tn
#else
tn+1

#endif

where the #elif and #else directives and the following text blocks ti are

optional. Let C be the context of the entire #if : : : #endif form. Each text

block ti is then interpreted with the context Ti defined as

Ti =Cu�S0u�S1u �� �u�Si�1uSi

=Cu G
0� j<i

�S juSi ; (16.1)

where Sn+1 is defined as Sn+1 =>.

Figure 16.3 on the facing page gives an example of using #if : : : #endif.

#ifdef. A control line of the form

#ifdef f

is equivalent to

#if defined f

#ifndef. A control line of the form

#ifndef f

16.3 Syntax and Semantics of CPP Directives 189

Line Features

// Init random seed >

#if HAVE SRAND

// srand() available [have-srand:�0]

#if defined USE SRAND

srand(time); [have-srand:�0;use-srand:>]

#else

// No srand() [have-srand:�0;use-srand"]

#endif

#elif HAVE SRANDOM

srandom(time); [�have-srand:�0;have-srandom:�0]

#else

// No random seed [�have-srand:�0;�have-srandom:�0]

#endif

Figure 16.3: Interpretation of #if directives

is equivalent to

#if !defined f

16.3.2 Specifying File Features

CPP directives may also be used to specify non-existent versions, and thus to

define the features of the entire file. For instance, by stating that the version subset

[tested:>] does not exist, the features of the entire file become �[tested:>] =
[tested"].

#error. A control line of the form

#error token-string

in a context C expresses that the file does not exist in the context C; in other

words, the features of the file are a subset of �C.

#error directives are useful for specifying the features of a file explicitly.

As an example, the CPP directives

#if !(SCREEN_TYPE == ega) n
|| !(SCREEN_DATA == bitmap)

190 Representing Version Sets

#error
#endif

specify the features of the file as [screen-type:ega;screen-data:bitmap]. No

subset of�[screen-type:ega]t�[screen-data:bitmap] exists.

#define. Using C encoding, #define may be used to specify the features of a

file. ICE can be instructed to interpret a control line of the form

#define f

as

#if !defined f

#error
#endif

and to interpret a control line of the form

#define f T

as

#if !(f == T)
#error
#endif

By default, ICE ignores #define directives.

#undef. Using C encoding, #undef may be used to specify the features of a file.

ICE can be instructed to interpret a control line of the form

#undef f

as

#if defined f

#error
#endif

By default, ICE ignores #undef directives.

16.3 Syntax and Semantics of CPP Directives 191

16.3.3 Miscellaneous Directives

ICE also recognizes the CPP #line directive, which is useful for diagnostics.

The #pragma directive, followed by the keyword ice, is used by ICE-specific

extensions to the CPP representation.

#line. A #line directive in the form

#line constant

or

#line constant "filename"

sets the current line number to constant, for the purpose of error diagnos-

tics. If present, the name of the current file is set to filename.

#pragma. A #pragma directive followed by the token ice is recognized as ICE-

specific directive. Any #pragma directives not followed by ice are ig-

nored.

ICE recognizes the following #pragma ice directives:

#pragma ice config. A control line of the form

#pragma ice config S

is equivalent to

#if !S

#error
#endif

#pragma ice config is obsolete; #error should be used instead.

#pragma ice encoding. A control line of the form

#pragma ice encoding e

sets the subsequent encoding of the file to the encoding specified by e

(see section 16.4 for details on file encodings). Possible values of e

and the resulting encodings are shown in table 16.2 on the next page.

192 Representing Version Sets

Token Encoding Token Encoding

asis As-is text Text

c or C C binary Binary

Table 16.2: Encoding tokens

16.4 File Encodings

The CPP format, as defined in [ISO90], was designed for C and C++ programs.

Using the CPP format for arbitrary files requires some slight changes to the CPP

encoding, depending on the file to be processed. ICE knows four file encodings:

C encoding, Text encoding, Binary encoding, and “As-is” encoding.

C Encoding. In C encoding, CPP directives are read and interpreted according to

the ISO C standard [ISO90]. There may be arbitrary white space before and

after the # character; and the # character may also be replaced by the ISO

C trigraph sequence ??= or by the digraph sequence %: from the proposed

C++ standard [Str94]. CPP directives enclosed by C comments /* : : : */
are ignored. CPP directives may extend across multiple lines: the character

n followed by a newline is ignored, allowing for continuation lines. C and

C++ comments (// to the end of a line) are recognized.

C encoding is useful for processing CPP-managed source files. Figure 16.4

gives an example of a file in C encoding.

#if HAVE_ATHENA_WIDGETS
#if HAVE_X11_XAW_FORM_H

#include <X11/Xaw/Form.h>
#endif

#endif

Figure 16.4: A program file in C encoding

The second line in figure 16.4 is interpreted as CPP directive although pre-

ceded by white space.

Text Encoding. Text encoding is a restricted form of C encoding. The # charac-

ter must be the first in the line; no white space before or after the # character

is allowed. The # character may not be replaced by a trigraph or digraph;

C comments around directives are ignored. Continuation lines are still al-

lowed; C and C++ comments may be used within a CPP directive.

16.4 File Encodings 193

Text encoding is useful for general text files. In figure 16.5, we see an

example of a multi-version Makefile in text encoding.

Sample Makefile
if we’re using GCC, use the -O2 flag
#if CC == gcc
CFLAGS = -O2
#else
CFLAGS = -O
#endif

Figure 16.5: A Makefile in text encoding

Using text encoding, the second line is treated as ordinary text as intended.

With C encoding, the second line would flag an error, since it would be

interpreted as an #if directive followed by an invalid CPP expression.

Binary Encoding. In binary encoding, CPP directives are enclosed in square

brackets. They may occur anywhere in a file, making this encoding suitable

for arbitrary files. Continuation lines and C++ comments are not allowed;

C comments may be used.

Figure 16.6 gives an example of a multi-version C++ program in binary

encoding.

// Initialize [#if d1]PTY[#else]TTY[#endif]
#if USE_[#if d1]PTY[#else]TTY[#endif]
int open_[#if d1]pty[#else]tty[#endif]();
#endif // USE_[#if d1]PTY[#else]TTY[#endif]

Figure 16.6: A C++ program file in binary encoding

Obviously, the change δ1 in figure 16.6 consisted in changing all occur-

rences of tty to pty. Note that the CPP directive on the second line is

treated as ordinary text, since it is not preceded by a [character.

As illustrated in figure 16.6, binary encoding can be used for fine-grained

differences in files. The placement of directives influences both size and

readability of the text. Instead of placing directives on word boundaries, as

in the example, we could also have placed directives on letter boundaries,

resulting in the representation shown in figure 16.7 on the next page; the

file is smaller, but even less legible.

194 Representing Version Sets

// Initialize [#if d1]P[#else]T[#endif]TY
#if USE_[#if d1]P[#else]T[#endif]TY
int open_[#if d1]p[#else]t[#endif]ty();
#endif // USE_[#if d1]P[#else]T[#endif]TY

Figure 16.7: Binary encoding with character boundaries

Placing directives on line boundaries, makes the file larger, but improves

readability, as illustrated in figure 16.8.

[#if d1]// Initialize PTY
#if USE_PTY
int open_pty();
#endif // USE_PTY
[#else]// Initialize TTY
#if USE_TTY
int open_tty();
#endif // USE_TTY[#endif]

Figure 16.8: Binary encoding with line boundaries

Since the character sequence [# starts a directive, the special sequence [##
is used to encode the sequence [# itself.

As-is Encoding. This is a simple one: The entire file is read “as is” as one single

version, without any encoding.

ICE can also be instructed to determine the encoding of a file dynamically,

using a simple heuristic:

1. If the file begins with the character sequence [#, binary encoding is used.

2. If the file ends in a newline character and does not contain control charac-

ters besides newline and tab characters, text encoding is used.

3. Otherwise, as-is encoding is used.

Using the first alternative, the encoding can be specified explicitly at the beginning

of the file, using a #pragma encoding directive. For instance, the sequence

[#pragma encoding text] at the beginning of the file enforces text encoding

in the remainder of the file.

If any syntax errors occur during the interpretation of CPP directives, ICE gives

a diagnostic and reads the file again, using as-is encoding.

16.5 Implementation Notes 195

16.5 Implementation Notes

Feature terms are implemented as abstract syntax trees using the composite pat-

tern [GHJV94]; each operator in the abstract syntax is represented by a separate

class. To minimize the effort for copying feature terms, subtrees are shared wher-

ever possible. Feature terms are accessed through smart references, an instance of

the proxy pattern [GHJV94] implementing a simple reference-count mechanism

deleting unreferenced feature trees.

The scanner for CPP files, distinguishing CPP directives from ordinary text,

was written directly in C++. CPP expressions are processed by a scanner/parser

automatically generated from a LEX token specification and a YACC grammar

specification. The 145 rules of the YACC grammar handle both feature terms and

CPP expressions.

A processed CPP file is represented internally as a list of text blocks, where

each block contains a sequence of characters and the associated feature term.

Each block is also associated with lexical details about the indentation, any com-

ments found on CPP directives, whether ISO keywords are used, etc., such that

subsequent writing does not change these details. The internal CPP file represen-

tation was realized by Lars Düning [Dün94].

16.6 Conclusion

ICE uses CPP expressions to represent feature terms and files enriched with CPP

directives to represent version sets. The intent is to give users a familiar, well-

understood representation of multiple items in one representation. By supporting

various encodings, ICE can interpret existing CPP-managed files (especially C and

C++ program files) and represent binary files using a CPP-like encoding.

The primary advantage of the CPP format is that only the differences between

versions are specified. An increasing number of differences between versions

also implies a larger number of directives. While this is no problem for ICE, it

makes the resulting files hard to read for humans. In the following chapter, we

discuss techniques to select and change arbitrary version subsets out of a CPP

representation, such that users can work upon singleton version sets without any

CPP directives.

I didn’t like CPP at all, and I still don’t like it.

— BJARNE STROUSTRUP, The Design and Evolution of C++

Chapter 17

Handling Version Sets

Having discussed the CPP representation of version sets, we demonstrate how
version subsets are selected from CPP files, realizing reading of arbitrary version
sets. These subsets can also be changed and merged back into the original file,
using a DIFF algorithm to determine a compact representation. Through selection
and changing, we can define the effects of usual file operations (read, write, create,
remove) on version sets in CPP representation.

17.1 Selecting Version Sets

We show how arbitrary version subsets can be accessed from a version set in CPP

file representation. Let F be a CPP file representing all source code versions. To

select a subset of F using a selection term S, that is, the set F u S, we proceed

as follows. For each code piece, its governing feature term C is intersected with

the selection term S. If C u S is inconsistent, the code piece is removed from

the selection. If Cu S = S, the #if directive is removed, because S v C holds.

Otherwise, C is simplified respective to S, using partial evaluation as discussed in

section 14.7. The new (smaller) CPP representation can be characterized by S and

is written F [S] = F uS (obviously, F = F[>] holds).

17.1.1 A Variant Example

Figure 17.1 on the next page shows three subset selections from the source code

of xload, a tool to display the current system load. xload is available for several

architectures, each with a different method to determine the system load. Conse-

quently, each architecture is identified by an individual CPP variable.

From top to bottom, figure 17.1 shows

197

198 Handling Version Sets

xload[os:unix]

InitLoadPoint()
{

extern void nlist();
#if defined(AIXV3) && !defined(hcx)

knlist(namelist, 1, sizeof(struct nlist));
#else

nlist(KERNEL_FILE, namelist);
#endif
#ifdef hcx

if (namelist[LOADAV].n_type == 0 &&
#else

if (namelist[LOADAV].n_type == 0 ||
#endif

namelist[LOADAV].n_value == 0) {
xload_error("cannot get name list from", KERNEL_FILE);
exit(-1);
}

xload[os:unix;hcx"]

InitLoadPoint()
{

extern void nlist();
#ifdef AIXV3

knlist(namelist, 1, sizeof(struct nlist));
#else

nlist(KERNEL_FILE, namelist);
#endif

if (namelist[LOADAV].n_type == 0 ||
namelist[LOADAV].n_value == 0) {
xload_error("cannot get name list from", KERNEL_FILE);
exit(-1);
}

xload[os:unix;hcx:>]

InitLoadPoint()
{

extern void nlist();
nlist(KERNEL_FILE, namelist);
if (namelist[LOADAV].n_type == 0 &&

namelist[LOADAV].n_value == 0) {
xload_error("cannot get name list from", KERNEL_FILE);
exit(-1);
}

Figure 17.1: Three version selections from a CPP file

17.1 Selecting Version Sets 199

� the original selection xload[os:unix];

� a hcx version xload[os:unix][hcx:>] = xload[os:unix;hcx:>];

� a non-hcx version xload[os:unix][hcx"] = xload[os:unix;hcx"].

Each selection reduces the number of governing CPP expressions and simplifies

the remaining ones. In the case of xload[os:unix;hcx:>], no CPP expressions are

left—the version set is unambiguous.

17.1.2 A Revision Example

Another example is shown in figure 17.2. We use delta features to identify revi-

sions, as discussed in chapter 11. The CPP expression di stands for the feature

terms ∆i; likewise, !di stands for ∇ i =�∆i.

The file Text comes in three revisions identified by R0 = ∇ 1u ∇ 2, R1 =∆1u ∇ 2,

and R2 =∆1u∆2. According to (11.6), the features of Text are ∆2!∆1 = ∇ 2t∆1.

These features are encoded in the CPP representation of Text, using an #error
directive with the feature complement�∇ 2t∆1 = ∆2u ∇ 1 as context.

The overall structure of the Text file is as follows: The word explain occurs

in R0 only. In R1, it was changed to demonstrate, and again changed in R2 to

show. Note how the feature implications and the #elif directive keep the actual

Text

#if d2 && !d1
#error
#endif
We
#if d2
show
#elif d1
demonstrate
#else
explain
#endif
the encoding
of revisions.

Text[∆2]

#if !d1
#error
#endif
We
show
the encoding
of revisions.

Text[∇ 2]

We
#if d1
demonstrate
#else
explain
#endif
the encoding
of revisions.

Figure 17.2: Selecting revisions from a CPP file

200 Handling Version Sets

expressions small—instead of d2 && d1, only d2 is required, since d2 implies

d1, and instead of !d2 && d1, only d1 is required, due to usage of the #elif
directive.

On the right-hand side of figure 17.2, we see two subset selections of Text.

The selection Text[∆2] has the δ2 change applied; the #error directive states

that the ∇ 1 subset does not exist. In the selection Text[∇ 2], no #error directive

is required, because all its subsets exist; the word demonstrate is part of the

subset Text[∇ 2u∆1], and the word explain belongs to the subset Text[∇ 2u ∇ 1].
We see how the complexity of CPP directives decreases as we narrow the version

set by specifying more features.

If the selection term S is simple, like in our examples, subset selection is

very efficient, since nearly all consistency checking can be done via reduction

and orthogonality checking. Unless non-simple terms are used, subset selection

in ICE takes no more time than a SCCS checkout or a CPP run without macro

expansion.

17.2 Changing Version Sets

Having shown how version subsets are selected, we show how the original CPP file

can be reconstructed after a change in a subset. Let us assume we want to change a

version subset F [S] in a file F to F 0[S]. What we need now is a mechanism to con-

struct the file F 0 from F and F 0[S]—or, more specifically, from F [�S]andF0[S],
since F [S] is to be overwritten by F 0[S]. This is the general problem of unit-
ing two version sets represented as CPP files; in our case, we want to construct

F 0 = F 0[S]tF[�S].
A trivial mechanism to generate F 0 from F 0[S] and F [�S] is to concatenate

F 0[S] and F [�S], each in its specific context. The file F 0 would then have the

structure:

#if S

: : : contents of F 0[S] : : :

#else
: : : contents of F[� S] : : :

#endif

The advantage of this mechanism is its simplicity. Its disadvantage is that each

version is stored separately, wasting space. What we would prefer is a representa-

tion where only the differences between F 0[S] and F[�S] are enclosed by #if S
: : : #endif. For this purpose, we need a mechanism that generates a compact

representation by determining the differences between versions, respecting CPP

directives.

17.2 Changing Version Sets 201

In this section, we present an algorithm that generates the union of two version

sets F[S] and F[T], where S and T are disjoint—that is, Su T = ?, S v �T ,

and T v �S hold. The basic idea is to compare the two files textually, using

a DIFF algorithm ignoring all CPP directives. In the resulting union F [St T],
text parts occurring only in F [S] or F [T] are governed by S or T , respectively;

common parts are governed by St T . The more similar F [S] and F [T] are, the

more commonalities will be detected by DIFF, and the smaller the representation

of F [StT] will be.

As an example of how this works, consider the Text example from figure 17.2

on page 199. Let us assume we change the word encoding in Text[∆2] to usage,

giving Text0[∆2] as shown in figure 17.3.

Text0[∆2]

#if !d1
#error
#endif
We
show
the usage
of revisions.

Text[∇ 2]

We
#if d1
demonstrate
#else
explain
#endif
the encoding
of revisions.

Figure 17.3: Changing a version subset

For the DIFF run, we use the internal representation without CPP directives,

where each line is tagged with its features, shown in figure 17.4.

Text0[∆2]

Line Features

We ∆2u∆1

show ∆2u∆1

the usage ∆2u∆1

of revisions. ∆2u∆1

Text[∇ 2]

Line Features

We ∇ 2

demonstrate ∇ 2u∆1

explain ∇ 2u ∇ 1

the encoding ∇ 2

of revisions. ∇ 2

Figure 17.4: Version subsets in internal representation

The DIFF algorithm runs on the lines of F [S] and F[T] alone, ignoring the

respective features. For each line, DIFF determines whether it occurs in F[S], in

202 Handling Version Sets

F[T], or in both. The line features are obtained according to definition 17.1:

Definition 17.1 (DIFF line features) In a representation of F [St T] generated

from F [S] and F[T], where S and T are disjoint, the features of each line are

determined as follows.

1. Let S0 v S be the features of the line in F [S]. If the line does not occur

in F[S], let S0 =?.

2. Likewise, let T 0 v T be the features of the line in F[T]. If the line does not

occur in F[T], let T 0 =?.

3. The new features of the line are determined as S0tT 0.

2

All lines originally contained in F[S] only are thus governed with S0 v S;

likewise, lines originally contained in F[S] only are governed by T 0 v T . The

following proposition ensures that the representation given by definition 17.1 is

correct.

Proposition 17.2 Let F 0 = F[StT] be a representation for the union of two ver-

sion sets F [S] and F [T], as described above, and where S and T are disjoint. Then,

F 0[S] = F[S] F 0[�S] = F [T] F 0[T] = F[T] F 0[�T] = F [S]

hold.

PROOF. Without loss of generality, we show that F 0[S] = F 0[�T] = F[S] holds. Let

U = S0 t T 0 be the features of a line contained in F 0. Both S0 v S v �T and

T 0 v T v�S are formed according to definition 17.1. The term S0 represents the

original features of the line in F[S]; if the line did not occur in F [S], we have

S0 =?.

1. The selection F 0[S] determines the new features of this line as U u S =
(S0uS)t (T 0uS) = S0t?= S0.

2. The selection F 0[�T] returns the new features U u�T = (S0u�T)t (T 0u

�T) = S0t?= S0.

We see that the original line features S0 remain unchanged; the line is contained in

either all of F [S], F 0[S], and F 0[�T] (if S0 6=? holds) or in none of them (if S0 =?
holds). Hence, F [S] = F 0[S] = F 0[�T] holds, which was to be shown. 2

17.3 Creating a CPP Representation 203

Text0[∆2]tText[∇ 2]

Line Features

Original Reduced

We ∇ 2t (∆2u∆1) >

show ∆2u∆1 ∆2

the usage ∆2u∆1 ∆2

demonstrate ∇ 2u∆1 ∇ 2u∆1

explain ∇ 2u ∇ 1 ∇ 1

the encoding ∇ 2 ∇ 2

of revisions. ∇ 2t (∆2u∆1) >

Figure 17.5: Determining new line features

In our example, running DIFF and applying definition 17.1 on the facing page

yields the output shown in figure 17.5. The central column shows the features

determined according to the rules above.

The feature terms of the individual lines can be simplified with respect to the

features of the entire file. In our case, the features of the file are (∆2u∆1)t ∇ 2 =
(∆2t ∇ 2)u(∆1t ∇ 2) =>u(∆1t ∇ 2) = ∆2 ! ∆1. The simplifications for the line

features follow the general scheme

(SuT)u (S! T) = Su (S! T) (17.1)

(StT)u (S! T) = T u (S! T) ; (17.2)

leading to the simplified feature terms shown in the right column of figure 17.5.

The resulting CPP representation of Text0 = Text0[∆2]t Text[∇ 2] is shown in

figure 17.6 on the following page, together with its two sources Text0[∆2] and

Text[∇ 2].

17.3 Creating a CPP Representation

The CPP representation of the re-united version set, as shown in figure 17.6 on the

next page, is not the only possible one. By interchanging text blocks and using

other CPP directives, a multitude of representations is possible. This is illustrated

in figure 17.7 on page 205: we see three alternate CPP representations for the

version set in figure 17.6.

Since the text blocks can be rearranged in an arbitrary manner, there is no

canonical CPP representation. Moreover, determining the smallest possible CPP

representation is probably N P-complete, as it is closely related to finding the

smallest possible representation of a formula in first-order logic.

204 Handling Version Sets

Text0[∆2]

#if !d1
#error
#endif
We
show
the usage
of revisions.

Text[∇ 2]

We
#if d1
demonstrate
#else
explain
#endif
the encoding
of revisions.

Text0

#if d2 && !d1
#error
#endif
We
#if d2
show
the usage
#elif d1
demonstrate
#else
explain
#endif
#if !d2
the encoding
#endif
of revisions.

Figure 17.6: CPP representation after a subset change

For generating the CPP representation in ICE, we have chosen not to determine

the smallest possible representation. Instead, ICE attempts to generate appropriate

CPP directives by comparing the feature terms of subsequent text blocks.

17.3.1 An Algorithm to Create Nested CPP Directives

The easiest algorithm to create a CPP representation is to enclose each text block

governed by a feature term T in #if T : : : #endif. The first refinement of this

representation is to generating nested CPP directives by maintaining a stack of

feature terms where we save the current contexts—that is, the currently governing

feature terms. Here is a simple algorithm realizing this approach.

Algorithm 17.3 (Creating nested CPP directives) To write a version set in CPP

format, using CPP #if directives, use the following algorithm.

The algorithm consists of three pieces. The used variables are declared in

hDeclarationsi and initialized in hInitializationi. The CPP representation is written

in hWrite bodyi.

hAlgorithm 17.3i �

hDeclarationsi

17.3 Creating a CPP Representation 205

Text0

#if d2 && !d1
#error
#endif
We
#if d2
show
the usage
#elif d1
demonstrate
#else
explain
#endif
#if !d2
the encoding
#endif
of revisions.

Text0

#if d2 && !d1
#error
#endif
We
#if d2
show
the usage
#else
#if d1
demonstrate
#else
explain
#endif
the encoding
#endif
of revisions.

Text0

#if d2 && !d1
#error
#endif
We
#if !d2
#if !d1
explain
#else
demonstrate
#endif
the encoding
#else
show
the usage
#endif
of revisions.

Figure 17.7: Alternate CPP representations

hInitializationi

hWrite bodyi

The algorithm requires two variables.

hDeclarationsi �

Let the feature term C be the current context.

Let CC be a stack of contexts.

These variables are initialized as follows.

hInitializationi �

Initialize C:=>.

Initialize CC with the empty stack.

The file body is written via a loop across all text blocks.

hWrite bodyi �

for all text blocks do

hWrite blocki

od

hClose bodyi

206 Handling Version Sets

For each text block to be written, let T be its governing feature term. We must

now generate CPP directives that change the context from C to T .

� If T =C holds, the text is simply written.

� Otherwise, if T vC holds, save the current context on the stack, and write

an #if S directive such that T =CuS holds.

� Otherwise (T 6vC), write an #endif directive, restore the context C from

CC, and retry writing the text block with the new context.

In a more structured way, this is expressed as follows:

hWrite blocki �

Let T be the governing feature term of the current text block.

while T 6vC do

hWrite #endifi

od

if T 6=C^T vC then

hWrite #ifi

fi

hWrite texti

If T =C holds, write no CPP directive at all.

hWrite texti �

Write the text block without any directive.

Otherwise, if T vC holds, we write an #if directive. The old context is saved on

the stack CC.

hWrite #ifi �

Let S w T be a feature term such that T =CuS holds.

Write #if S.

Save C on CC.

Set the context to C:=CuS.

Otherwise, we must use an #endif directive to exit the current context. This is

done until we reach a suitable context. Since the outermost context is >, such a

context is always reached.

hWrite #endifi �

Write #endif.

Restore C from CC, discarding it.

Eventually, an #endif is written for each stacked context.

17.3 Creating a CPP Representation 207

hClose bodyi �

while CC is non-empty do

hWrite #endifi

2

17.3.2 Generating #else and #elif Directives

The actual algorithm used in ICE is somewhat more complex: it also generates

#else and #elif directives. For this purpose, the algorithm maintains a current

else-expression E as well as a stack EE of else-expressions. Another refinement

found in this algorithm is the handling of overall file features F .

Algorithm 17.4 (Creating full CPP directives) To create a CPP representation

of a version set, using the full set of CPP directives, use the following algorithm.

The algorithm consists of four pieces. The used variables are declared in

hDeclarationsi and initialized in hInitializationi. The CPP representation is written

in hWrite headeri and hWrite bodyi.

hAlgorithm 17.4i �

hDeclarationsi

hInitializationi

hWrite headeri

hWrite bodyi

The algorithm requires five variables.

hDeclarationsi �

Let the feature term F be the features of the file.

Let the feature term C be the current context.

Let the feature term E be the current else-expression.

Let CC be a stack of contexts.

Let EE be a stack of else-expressions.

These variables are initialized as follows.

hInitializationi �

Initialize F with the features of the file.

Initialize C:= F .

Initialize E:=?.

Initialize CC and EE with the empty stack.

The file version is identified using an #error directive.

208 Handling Version Sets

hWrite headeri �

if F 6=> then

Write #if �F .

Write #error.

Write #endif.

fi

The file body is written via a loop across all text blocks.

hWrite bodyi �

for all text blocks do

hWrite blocki

od

hClose bodyi

The variable T holds the feature term of the current block; the variable C holds

the current context. Before writing the block, we insert appropriate CPP directives

such that the new context becomes T .

hWrite blocki �

Let T 0 be the governing feature term of the current text block.

Let T = T 0uF .

Let C0 be the top element of CC, or ? if CC is empty.

while T 6vC^T 6vC0uE do

hWrite #endifi

od

if T 6=C then

if T vC then

hWrite #ifi

elsif T =C0uE then

hWrite #elsei

elsif T vC0uE then

hWrite #elifi

fi

fi

hWrite texti

If T =C holds, we do not need any CPP directive.

hWrite texti �

Write the text block without any directive.

17.3 Creating a CPP Representation 209

Otherwise, if T vC holds, we write an #if directive. The old context and else-

expressions are saved on the stack; the else-expression is the complement of the

#if-expression.

hWrite #ifi �

Let Sw T be a feature term such that T =CuS holds.

Write #if S.

Save C on CC.

Save E on EE.

Set the context to C:=CuS.

Set the else-expression to E:=�S.

Otherwise, if T = C0 uE holds, we can write an #else directive. we prohibit

multiple #else directives by setting E to ?,

hWrite #elsei �

Write #else.

Set the context to C:=C0uE .

Set the else-expression to E:=?.

Otherwise, if T vC0uE holds, we write an #elif directive.

hWrite #elifi �

Let Sw T be a feature term such that T =C0uE uS holds.

Write #elif S.

Set the context to C:=C0uE uS.

Set the else-expression to E:= E u�S.

Otherwise, we must use an #endif directive to exit the current context. This is

done until we reach a suitable context.

hWrite #endifi �

Write #endif.

Restore E from EE, discarding it.

Restore C from CC, discarding it.

When the last text block is processed, we must write an #endif for each remain-

ing #if.

hClose bodyi �

while CC is non-empty do

hWrite #endifi

2

210 Handling Version Sets

17.3.3 An Example Run

We illustrate the use of algorithm 17.4 by applying it to the version set shown in

figure 17.5 on page 203.

1. (Initialization) The features of the file
are F = ∆2 ! ∆1.

� The context is initialized to
C:= F = ∆2 ! ∆1.

� The else-expression is initialized
to E:=?.

� CC and EE are initialized with the
empty stack.

2. (Write header) F 6=> holds. The
complement of F is
�F =�(∇ 2 t∆1) = ∆2u ∇ 1 .

� #if d2 && !d1 is written.

� #error is written.

� #endif is written.

3. (Write block) The text is We;
T =>uF = ∆2 ! ∆1 holds.

4. (Try equality) T =C holds.

� We is written.

5. (Write block) The text is show;
T = ∆2uF = ∆2u∆1 holds.

6. (Try equality) T =C does not hold.

7. (Try #if) T vC holds; S = ∆2.

� #if d2 is written.

� show is written.

� The context C = ∆2 ! ∆1 is saved
on CC.

� The else-expression E =? is
saved on EE.

� The context becomes
C:= CuS = ∆2u∆1 .

� The else-expression becomes
E:=�S = ∇ 2 .

8. (Write block) The text is the usage;
T = ∆2uF = ∆2u∆1 holds.

9. (Try #endif) T 6vC does not hold.

10. (Try equality) T =C holds.

� the usage is written.

11. (Write block) The text is demonstrate;
T = ∇ 2 u∆1uF = ∇ 2 u∆1 holds. The
outer context is C0

= ∆2 ! ∆1.

12. (Try #endif) T 6vC0uE does not hold.

13. (Try #if) T vC does not hold.

14. (Try #else) T =C0 uE does not hold.

15. (Try #elif) T vC0uE = ∇ 2 holds;
S = ∆1.

� #elif d1 is written.

� demonstrate is written.

� The context becomes
C:= C0uE uS = ∇ 2 u∆1.

� The else-expression becomes
E:= E u�S = ∇ 2 u ∇ 1 .

16. (Write block) The text is explain;
T = ∇ 1 uF = ∇ 1 u ∇ 2 holds. The outer
context is C0

= ∆2 ! ∆1.

17. (Try #endif) T 6vC0uE does not hold.

18. (Try equality) T =C does not hold.

19. (Try #if) T vC does not hold.

20. (Try #else) T =C0 uE = ∇ 2 u ∇ 1 holds.

� #else is written.

� explain is written.

� The context becomes
C = ∇ 2 u ∇ 1 .

� The else-expression becomes
E:=?.

21. (Write block) The text is
the encoding; T = ∇ 2 uF = ∇ 2 holds.

17.3 Creating a CPP Representation 211

22. (Try #endif) T 6vC holds and T 6vC0uE

holds.

� #endif is written.

� E is restored to E:=?.

� C is restored to C:= ∆2 ! ∆1.

� CC and EE become the empty
stack again.

23. (Try #if) T vC holds; S = ∇ 2 .

� #if !d2 is written.

� the encoding is written.

� The context C = ∆2 ! ∆1 is saved
on CC.

� The else-expression E =? is
saved on EE.

� The context becomes
C:=CuS = ∇ 2 .

� The else-expression becomes
E:=�S= ∆2.

24. (Write block) The text is
of revisions.; T =>uF = ∆2 ! ∆1

holds. The outer context is
C0
= ∆2 ! ∆1.

25. (Try #endif) T 6vC holds and T 6vC0uE

holds.

� #endif is written.

� E is restored to E:=?.

� C is restored to C:= ∆2 ! ∆1.

� CC and EE become the empty
stack again.

26. (Try equality) T =C holds.

� of revisions. is written.

27. (Close body) The stack CC is empty; no
more #endif directives need to be
written.

The complete output is shown on the right side of figure 17.6 on page 204.

17.3.4 Efficiency

Algorithm 17.4 requires some deduction steps, notably the decision of subsump-

tion. This can be done efficiently using reduce. Using (8.4), (14.20) and (14.16),

we have:

T vU , �U uT =?

, reduce(�U;T)uT =?

, �reduce(U;T)uT =? (17.3)

If U and T are simple, this problem is equivalent to

T vU , reduce(U;T) => ; (17.4)

which requires quasi-linear time, according to corollary 14.12 on page 172.

The feature term S w T required in hWrite #ifi and hWrite #elifi can also be

obtained via reduce. In hWrite #ifi, we have T vC, and S must satisfy T =CuS.

(Note that S= T is a trivial choice for S). Since T vC holds, we have T =CuT =
Cu reduce(T;C), following (14.20). Hence, S = reduce(T;C) is a valid choice

for S. The same applies to hWrite #elifi, where we obtain S = reduce(T;C0uE).

212 Handling Version Sets

Even better performance is achieved by saving the values of S across selec-

tions and unions. In ICE, each text block is associated with a set of CPP direc-

tives and possible values for S. Upon parsing, this set is initialized to contain

the CPP directive separating this text block from its predecessor. Uniting version

sets unites the two sets of CPP directives for each text block; upon selection, the

terms S are reduced according to the selection term.

When writing a version set in CPP representation, ICE first determines whether

using one of the saved CPP directives leads to the desired governing expression;

if yes, the CPP directive is written and the remaining set members are discarded.

Besides a maximum of performance, notably with orthogonal selection terms, this

helps maintaining the structure of the original CPP file as much as possible.

The CPP directives generated by ICE are to be read and understood by humans.

Beyond a certain term complexity, the effort for deducing an easily readable rep-

resentation is wasted. Hence, ICE can be instructed to disable the generation of

special CPP directives as soon as the terms exceed a specific length. Instead, ICE

uses #if : : : #endif directives only, without #else, #elif, and further nested

directives. Writing this format does not require any deduction steps, and is easily

processed again by ICE.

17.4 File Operations on Version Sets

Based on the selection and changing of version sets, we can now summarize the

effects of file operations on version sets.

Read. Read access to F [S] is accomplished by selecting S from F , as discussed

in section 17.1.

Write. Write access to F[S]—that is, changing F [S] to F 0[S]—is implemented by

generating F 0 = F[�S]tF 0[S], as shown in section 17.2.

Create. Creating F[S], where F was non-existent before, creates F containing an

#error directive governed by �S, such that F [�S] is non-accessible.

Remove. Removing F [S] augments F with an #error directive governed by S,

such that only F [�S] is accessible.

We see that the CPP file representation of version sets allows users to create,

read, change, and remove version sets just like ordinary files (that is, singleton

version sets), while still only the differences between versions are stored.

17.5 Implementation Notes 213

17.5 Implementation Notes

The creation of compact CPP representations, as discussed in section 17.2, was

realized by Lars Düning [Dün94], using the freely available GNU DIFF imple-

mentation. For maximum performance, the DIFF program is not invoked as a

separate process, but directly linked within ICE.

Writing of version sets is based on algorithm 17.4 on page 207, extended with

some additional optimizations not discussed here. ICE provides an interface for

developers wishing to control the CPP output format.

The inference engine used in ICE implements Smolka’s feature unification

algorithm. It realizes all of the optimization methods discussed in chapter 14, as

well as the implication reductions (17.1) and (17.2).

The inference engine provides two entry points. reduce(S;T) realizes the

reduce function from definition 14.10 on page 170; this assumes that S and T

are already consistent. solve(T) determines consistency of T , using Smolka’s

feature unification. Both rely on each other: solve uses reduce to reduce the size

of subproblems; reduce calls solve to determine the consistency of non-simple

subexpressions. For best performance, the inference engine caches deduction

results such that frequent problems are solved only once.

Smolka’s feature unification, as described in [Smo92], was implemented by

Marc Ziehmann [Zie93].

17.6 Conclusion

ICE provides mechanisms to select and change arbitrary version subsets, using the

CPP representation. Version sets can be accessed and manipulated like ordinary

files, making version sets first-class objects in an SCM-aware environment, while

still only the differences between versions are computed and stored.

Whoever shouted the loudest about their particular feature would usually get it in.
If the feature was some new 3-D chart or some very ‘cool’ thing, that would get in.

And if it wasn’t cool but certainly was important, nobody would rally behind it : : :

So it was working out not to be a process we felt very comfortable about
for designing our new versions.

So we decided, “Well, let’s kind of invert the process a little bit.
Let’s not even think about features.”

— MIKE CONTE
in: MICHAEL A. CUSUMANO and RICHARD W. SELBY, Microsoft Secrets

Chapter 18

A Shell for Version Set Access

Based on the file operations, as discussed in section 17.4, we have implemented
a library called LIBICE that realizes file operations on version sets in CPP repre-
sentation; arbitrary version sets can be created, read, written, and removed. To
experiment with these mechanisms, we have realized a simple command shell on
top of LIBICE that simulates transparent version set access for arbitrary files. The
name of the shell is ICICLE (for ICE integrated command line engine).

18.1 Reading Version Sets

Basically, ICICLE is a command shell roughly complying to the POSIX shell stan-

dard. Users can invoke programs by entering the program name, possibly fol-

lowed by program arguments:

(icicle) more sample.txt
#if SAMPLE
This is a sample text.
#else
This is a simple text.
#endif

Here, (icicle) is the ICICLE prompt, more sample.txt is the user input, and

#ifdef : : : #endif is the output of the more command. The more command

was invoked with sample.txt as argument; it simply prints the file given as

argument on standard output.

The special feature of ICICLE is that it allows transparent version set access.

To access a file F in the version S, users write F [S], using the CPP representation

for feature terms. Hence, users can access the SAMPLE version of sample.txt:

215

216 A Shell for Version Set Access

(icicle) more sample.txt[SAMPLE]
This is a sample text.

as well as its complement:

(icicle) more sample.txt[!SAMPLE]
This is a simple text.

This transparent access is realized as follows:

1. For each word F[S], where F is a file name and S is a valid CPP expression,

create a file named F[S] containing the selection S of the file F .

2. Run the specified command.

3. Remove all files F [S].

Hence, in our example, two temporary files named sample.txt[SAMPLE]
and sample.txt[!SAMPLE] are created before more is invoked. After more
has finished, they are removed.

18.2 Writing Version Sets

Besides reading of version sets, ICICLE also allows to change version sets, as

discussed in section 17.2. Here is an example:

(icicle) cat > sample.txt[SAMPLE]
This is a text sample.
ˆD
(icicle) more sample.txt[SAMPLE]
This is a text sample.
(icicle) more sample.txt
#if SAMPLE
This is a text sample.
#else
This is a simple text.
#endif

The cat command copies the standard input to standard output; the > character

redirects this output to the given file. The standard input is typed in by the user

and finished using an end-of-input character (ˆD, Control-D). The contents of

sample.txt[SAMPLE] become This is a text sample.

Writing version sets is realized by extending transparent access as follows:

18.3 Removing Version Sets 217

1. For each word F [S], where F is a file name and S is a valid CPP expression,

create a file named F [S] containing the selection S of the file F .

2. Run the specified command.

3. If one of the files F [S] has changed to F 0[S], change F to F 0 =F [�S]tF 0[S].

4. Remove all files F[S].

18.3 Removing Version Sets

ICICLE also allows to remove version sets. Here is another example:

(icicle) more sample.txt
#if SAMPLE
This is a text sample.
#else
This is a simple text.
#endif
(icicle) rm sample.txt[SAMPLE]
(icicle) more sample.txt[SAMPLE]
sample.txt[SAMPLE]: No such file or directory
(icicle) more sample.txt
#if !SAMPLE
#error
#else
This is a text sample.
#endif

The rm command removes the file given as its argument. Consequently, the more
command cannot find the file and issues an error message. We see that issu-

ing the rm command in ICICLE causes an #error directive to be inserted into

sample.txt, identifying the non-existent versions.

Removing version sets is realized by extending transparent access as follows:

1. For each word F [S], where F is a file name and S is a valid CPP expression,

create a file named F [S] containing the selection S of the file F .

2. If the selection S does not exist, do not create the file.

3. Run the specified command.

4. If one of the files F [S] has changed to F 0[S], change F to F 0 =F [�S]tF 0[S].

218 A Shell for Version Set Access

5. If one of the files F [S] has been removed, change F to F 0 = F [�S].

6. Remove all files F [S].

18.4 Multi-Version Merging

The CPP representation used in ICE also inspired a simple textual merging algo-

rithm that merges an arbitrary number of versions. Let T be a version set with

T1 v T;T2 v T; : : : ;Tn v T being n version subsets to be merged. Let us assume

that all Ti were created independently from T such that all Ti are pairwise disjoint,

i.e. 8i; j 2 f1; : : : ;ng(TiuTj =?) holds.1

To generate a merged version from the CPP representation of T , we proceed

as follows. The merged version T 0, denoted as T 0 = T1 1 T2 1 � � � 1 Tn, must

include code pieces that were added in any Ti and exclude code pieces that were

deleted in any Ti. Each code piece governed by a CPP expression C is included if

Cv T1tT2t�� �tTn holds; in T 0, the governing expression is simplified (partially

evaluated) respective to all Ti. Otherwise, if 9i(C v �Ti) holds, the code piece

governed by C was deleted in at least one Ti (and unchanged in all Tj with j 6= i)

and thus is not included in T 0. Everything else stays unchanged.

A minimum distance between parallel changes must be preserved in order to

identify merging conflicts. Between any two code pieces governed by C0 and C00

both being a subset of different Ti sets, a separating code piece governed by D

must reside such that the following holds. Formally, let Ti0 be the unique element

from fT1; : : : ;Tng such that C0 v Ti0 ; similarly, Ti00 is the unique element from

fT1; : : : ;Tng such that C00 v Ti00 . Then, D 6v Ti0 ^D 6v Ti00 must hold. If such a D

does not exist, or if the length of D is below a certain minimal distance, C0 and C00

are in conflict with each other.

As an example, consider the tty.c file in figure 18.1, where the version sub-

sets T1 = [user: lisa] and T2 = [user: tom] are merged. Code piece A0 is included,

because its governing expression [user: lisa] is equal to T1; code piece A is ex-

cluded because its governing expression is equal to �T1. Code piece C0 would be

included, as it is in T1; but as it is immediately followed by C00, whose governing

expression is equal to the different T2 subset, the two changes are in conflict with

each other.

For convenience, ICE flags this section still being a subset of a Ti with a

“// >< CONFLICT” comment; only the code piece C can safely be removed as

it is a subset of both �T1 and �T2. At the end, the code piece E is included, since

1Otherwise, replace the non-disjoint pair Ti, Tj by Tk = TiuTj .

18.5 Handling Arithmetic Constraints 219

tty.c[]

#if user == lisa
A0

#else
A

#endif
B

#if user == lisa
C0

#elif user == tom
C00

#else
C

#endif
D

#if user == tom && os == unix
E

#endif

tty.c[user: lisa1 user: tom]

A0

B

#if user == lisa // >< CONFLICT
C0

#else
C00

#endif

D

#if os == unix
E

#endif

Figure 18.1: Merging of version sets

it is separated from the conflict by code piece D; the expression governing code

piece E is simplified respective to T2.

The ICICLE shell provides transparent access to merged version sets; the 1

operator is represented by the special CPP operator ><. As an example, the ICICLE

command

(icicle) more tty.c[user == lisa >< user == tom]

displays the merge of tty.c[user == lisa] and tty.c[user == tom] on

standard output.

18.5 Handling Arithmetic Constraints

To provide some basic support for arithmetic CPP expressions, ICE realizes partial
evaluation of CPP expressions.

Using arithmetic constraints for both selection and identification leads to un-

decidability, as discussed in section 7.3. Some special cases may be recognized,

though:

Partial evaluation of arithmetic expressions. Constant CPP arithmetic expres-

sions are evaluated according to their C semantics [ISO90] and replaced

by the resulting value. Arithmetic expressions involving identifiers are re-

placed by feature values, if applicable. For instance, a CPP expression like

220 A Shell for Version Set Access

T == 200 && (T >= 100) || C == T)

evaluates to

T == 200

since T >= 100 evaluates to non-zero—that is, >.

Solving inequalities. The ICE inference engine contains an arithmetic constraint

checker using the Simplex Method. The simplex method allows the ICE

inference engine to recognize inconsistencies in a conjunction of simple

inequalities. For instance, the arithmetic expression

T < 200 && T - 1 > 199

can be recognized as inconsistent by the ICE inference engine.

Partial evaluation of arithmetic expressions as well as arithmetic constraint

solving allow ICE to handle an important subset of arithmetic constraints. Both

mechanisms are implemented within the solving of feature clauses in Smolka’s

feature unification; all three methods are applied in turn on the constraint set until

the constraint set is unchanged.

18.6 More ICICLE Features

Besides basic shell functions and transparent version access, ICICLE supports

more than 250 commands to control ICE functionality. ICICLE also contains fa-

cilities to define new commands as scripts of other commands. All common shell

mechanisms like variables and control structures are available, including an inter-

active line editor with completion of file names and CPP expressions. However,

by far most of these facilities are used for testing and debugging, and are not

intended for end users.

18.7 Implementation Notes

Multi-version merging was implemented by Andreas Mende [Men96]. Arith-

metic constraint solving was realized by Christina Trenkner [Tre96].

18.8 Conclusion

On version sets represented as CPP files, all elementary file operations like read-

ing, writing, creation, or removal are defined. These basic access methods are

18.8 Conclusion 221

available in LIBICE, the ICE library; the ICICLE command shell simulates trans-

parent version set access through temporary files. Version sets can be merged

using a simple textual algorithm, integrating changes in multi-version representa-

tions. These elementary file operations, as realized in LIBICE and ICICLE, consti-

tute the base of an entire virtual file system, as discussed in chapter 19.

Feature: n. 1. A good property or behavior.
2. An intended property or behavior.
3. A surprising property or behavior.

4. A property or behavior that is gratuitous or unnecessary.
5. A property or behavior that was put in to help someone else

but that happens to be in your way.
6. A bug that has been documented.

— ERIC RAYMOND, The Jargon File

Chapter 19

The Featured File System

The featured file system (FFS) realizes transparent version set access in arbitrary
environments. In addition to versioned file access, as demonstrated in chapter 17,
it supports versioned directories and thus versioning of entire file systems. Di-
rectory versions confine the versions of the contained files and subdirectories.
Directory versions can thus be used as workspaces; users can change workspaces
like they change directories. Additional facilities like virtual subdirectories fa-
cilitate the interactive and incremental exploration of the configuration space, as
implemented in the SKATE configuration browser.

19.1 A SCM Primitives Layer

The featured file system (FFS) is a virtual file system that realizes the ICE primi-

tives layer—that is, access to version sets and integration into software develop-

ment environments. Compared to ICICLE and LIBICE, the FFS has the following

advantages:

Version set access. Besides versioned file access, as realized in ICICLE and LIB-

ICE, the FFS provides versioned access to directories. Directory versions

confine the versions of all contained files, and may thus be used to real-

ize workspaces; users can change their workspace just like changing di-

rectories. All file system operations, including the creation of directories,

permission changes, and file mode changes, are versioned.

Exploration of the configuration space. The FFS represents non-singleton ver-

sion sets as directories containing the individual versions. This provides

accidental access to non-singleton version sets. By adding or removing

223

224 The Featured File System

more version specifications, users can explore the configuration space in-

teractively.

Environment integration. The FFS is realized as a true file system, accessed

through the operating system interface. Existing programs need neither be

changed, nor must they be invoked in a special manner, nor must they be

linked with a special library.

19.2 Versioned Directories

Versioned files and versioned directories, as supported by the FFS, cover the state

and changes of the entire file system—that is, the whole configuration universe.

Basically, a versioned directory is stored and accessed like ordinary versioned

files are, using the CPP representation. As an example, figure 19.1 shows a user-

readable representation of a versioned directory. (The FFS itself uses a more

efficient binary format.) We see that the icicle and libice directories were

added in a change δ1, which also removed the lib directory.

-rw-r--r-- 1 zeller 1462 Jun 22 1995 host.h.in
#if d1
drwxr-sr-x 4 zeller 4096 Jun 10 15:15 icicle
#endif
drwxr-sr-x 3 zeller 1536 Apr 16 15:19 info
-rwxr-xr-x 1 zeller 4771 Feb 9 1995 install
#if d2
drwxrwsr-x 3 zeller 7168 Jun 10 15:15 libice
#elif d1
drwxr-sr-x 3 zeller 7168 Jun 10 15:15 libice
#else
drwxr-sr-x 4 zeller 512 Mar 3 11:35 lib
#endif

Figure 19.1: A versioned directory

The later change δ2 is more subtle: the access mode of the libice directory

was changed from rwxr-sr-x to rwxrwsr-x, making it writable by a group.

Users may now access individual versions of this directory, by appending a

version specification [S] to the directory name, just as with ordinary files. A typ-

ical interaction is shown in figure 19.2 on the next page. The $ character is the

UNIX shell prompt. The UNIX command ls -l lists the contents of the direc-

tories given as its arguments. The single dot “.” stands for the current direc-

tory; the directory name .[d2] is the current directory in version ∆2. To avoid

shell-specific interpretation of brackets, we enclose the directory name in quotes.

19.2 Versioned Directories 225

We see that ls ".[d2]" shows the ∆2 version of the current directory, while

ls ".[!d1]" shows the ∇ 1 version.

$ ls -l ".[d2]"
-rw-r--r-- 1 zeller 1462 Jun 22 1995 host.h.in
drwxr-sr-x 4 zeller 4096 Jun 10 15:15 icicle
drwxr-sr-x 3 zeller 1536 Apr 16 15:19 info
-rwxr-xr-x 1 zeller 4771 Feb 9 1995 install
drwxrwsr-x 3 zeller 7168 Jun 10 15:15 libice

$ ls -l ".[!d1]"
-rw-r--r-- 1 zeller 1462 Jun 22 1995 host.h.in
drwxr-sr-x 3 zeller 1536 Apr 16 15:19 info
-rwxr-xr-x 1 zeller 4771 Feb 9 1995 install
drwxr-sr-x 4 zeller 512 Mar 3 11:35 lib

$ ls -l .
-rw-r--r-- 1 zeller 1462 Jun 22 1995 host.h.in
drwxr-sr-x 4 zeller 4096 Jun 10 15:15 icicle
drwxr-sr-x 3 zeller 1536 Apr 16 15:19 info
-rwxr-xr-x 1 zeller 4771 Feb 9 1995 install
drwxr-sr-x 3 zeller 7168 Jun 10 15:15 libice
drwxr-sr-x 4 zeller 512 Mar 3 11:35 lib

Figure 19.2: Three views of a versioned directory

The final view, ls ., shows all versions of the current directory. Since the

ls command is not aware of multi-version directories, every existing directory

is listed, regardless of its specific version; file modes, sizes, and times are set up

appropriately.1

Instead of explicit version access, as illustrated in figure 19.2, FFS also sup-

ports implicit version access through the current directory. Since .[d2] is a di-

rectory version as well, users can make it their current directory, using the UNIX

cd command. Hence, cd ".[d2]" followed by ls . has the same effect as

ls ".[d2]", with the difference that all following commands reference the ∆2

version of the current directory as well—until the directory is changed again.

1Here are the details. The access mode of a version set is the logical AND of the modes of all
its individual versions—that is, the least permissive mode. The size of a version set is the maximum
size of its individual versions. The owner of a version set is the owner of the individual versions, or

nobody, if ambiguous. The access time of a version set is the most recent access time of the individual
versions.

226 The Featured File System

19.3 Version Confinements

Having a versioned directory in the current path not only affects this particular

directory version. A directory version also confines the versions of all files and

directories contained within that directory. Formally, if a versioned directory D[T]
is part of the current path, the directory version T affects all contents of the direc-

tory, including subdirectories and all files contained therein; any file version F [S]
in D[T] will be implicitly read as F[SuT]. Hence, after changing to the directory

version ∆2, all files and directories are visible in their ∆2 version only.

This property is useful for setting up workspaces, as discussed in section 13.1.

For instance, entering the UNIX command

$ cd ".[user == lisa && current]"

confines the versions of all files and directories in the current directory and below

to [user: lisa;current:�0]—that is, the current version of Lisa’s workspace. All

changes made in this workspace affect only Lisa’s current version.

As in ordinary file systems, the directory name “..” refers to the enclosing

directory—the second last component from the current path. For example, the

path testdir/.[user != tom]/.. is equivalent to testdir. Hence, Lisa

may issue the UNIX command

$ cd ..

to exit her workspace again and to see all versions at once.

As illustrated in figure 19.3 on the facing page, such directory changes may be

also be performed incrementally, subsequently narrowing the configuration space

as more and more features are specified.

For user convenience, the FFS interprets a version specification “[S]” like

“.[S]”. Hence, entering

$ ls -l "[user == lisa]/[tested]"

has the same effect as

$ ls -l ".[user == lisa]/.[tested]"

which in turn is equivalent to

$ ls -l ".[user == lisa && tested]"

Whenever a change is made within a versioned directory, all rules for opera-

tions in workspaces, as defined in section 13.1.2, apply. Hence, no change made

within a directory version is visible in the complement of this version.

19.4 Version Shortcuts 227

:

w
����!

:=[os:�dos]

w
����!

:=[os:unix]

w

??y w

??y w

??y
:=[user: tom]

w
����!

:=[user: tom]=[os:�dos]

w
����!

:=[user: tom]=[os:unix]

Figure 19.3: Narrowing the configuration space in the FFS

19.4 Version Shortcuts

Specifying the current version as part of the path name has the advantage of sup-

porting both implicit and explicit version access. Arbitrary version sets can be

accessed from any program; by changing the directory version, entire file systems

can be accessed in a specific version without any additional version specifications.

This is superior to approaches where the current version is specified as part of the

process environment (since the environment must be interpreted by special run-

time libraries) or as part of the user’s file system (since this implies a state which

must be changed explictly).

The drawback is that the file names used by the FFS are quite uncommon—for

operating systems and programs. Users must be aware of possible problems.

Operating system caveats. In the UNIX operating system, the slash / is reserved

as path separator—one cannot use arithemtic expressions involving integer

division. In MacOS, the Macintosh operating system, colons : are used

instead—one cannot enter feature terms in the ASCII representation. In the

DOS operating system, all is lost, as it supports only eleven characters as

file names.

Program caveats. In the UNIX command shell, characters like &, |, *, ?, !, or [
have a special interpretation and must be quoted. Many shell scripts are not

228 The Featured File System

protected against file names containing space and quote characters. Users

are frequently unfamiliar with the shell quoting mechanisms.

There are three issues addressing these problems. First, characters like / and

: can easily be avoided. Second, as graphical user interfaces become more and

more common, so are the possibilities to specify arbitrary file names. Macintosh

users, for instance, have no concept of a command shell and of characters with

a specific interpretation. Existing shells can be easily adapted for FFS usage by

leaving characters within square brackets uninterpreted, like ICICLE does. Third,

the FFS supports symbolic links that allow users to specify ordinary directory

names for version sets—so-called version shortcuts. As an example, consider the

setting in figure 19.4:

$ ls -l workspaces
drwxr-sr-x 1 lisa 1024 Jun 8 1996

lisa -> .[user == lisa && current]
drwxr-sr-x 4 tom 1024 Jun 10 15:15

tom -> .[user == tom && current]
drwxr-sr-x 3 john 1024 May 6 15:19

john -> .[user == john && current]

Figure 19.4: Symbolic links to workspaces

A symbolic link F1 ! F2 makes F1 an alias for F2; whenever F1 is part of a

path name, F2 is substituted. In our case, Lisa can simply enter

$ cd workspaces/lisa

which is a convenient replacement for

$ cd "workspaces[user == lisa && current]" .

The directory name workspaces/lisa may even be defined as Lisa’s home di-

rectory, such that Lisa automatically enters her current workspace upon logging

in. No special file names are ever required, unless someone wants to access vari-

ants or determine the differences between versions by examining the entire ver-

sion set. Of course, symbolic links are versioned just like other parts of the file

system, such that each user may maintain a set of individual links for frequently

accessed versions.

19.5 Exploring the Version Space 229

19.5 Exploring the Version Space

19.5.1 Virtual Directories

Since few tools can interpret version sets in CPP representation, the FFS takes pre-

cautions against multiple file versions being accessed as single items. The basic

idea is to represent non-singleton version sets as virtual directories containing the

individual versions. These versions are listed as possible version specifications,

narrowing the version space. As an example, the file tasks.txt, occurring in

multiple versions, is listed as

$ ls -l .
drwxr-sr-x 12 zeller 1024 Jun 10 14:20 tasks.txt
$ ls tasks.txt
[user == john] [!(user == john)]
[user == lisa] [!(user == lisa)]
[user == tom] [!(user == tom)]

where the files

tasks.txt/[user == john]
tasks.txt/[user == lisa]
tasks.txt/[user == tom]

are the individual versions of tasks.txt.

Each complement like tasks.txt/[!(user == john)] is again a direc-

tory, since two choices remain. For instance, listing the entries of the subdirectory

tasks.txt/[!(user == john)] yields:

$ ls "tasks.txt/[!(user == john)]"
[user == lisa] [!(user == lisa)]
[user == tom] [!(user == tom)]

where all entries are files, since they are singleton. Note that the file

tasks.txt/[!(user == john)]/[user == lisa]

is identical to

tasks.txt/[!(user == john)]/[!(user == tom)] ,

and could also be accessed as

tasks.txt[user == lisa] .

230 The Featured File System

Figure 19.5: Using virtual subdirectories to select configurations

How do we obtain these subdirectories? Let F be a version set in CPP rep-

resentation to be processed by the FFS server. The CPP server scans F for CPP

directives; if none are found, F is singleton and thus presented as file. Otherwise,

F is presented as a directory.

Each feature/value combination T = f :S or T = f" found in governing CPP

expressions results in two entries T and �T in the directory F . These entries are

again files, if singleton, and virtual directories, otherwise.

In figure 19.5, we see the DDD debugger accessing the versions of the xload
file discussed in section 17.1.1. The central window is a file system browser

allowing the user to choose files and directories. In the upper field, the user has

entered a file filter specifying the files to be shown; the current pattern xload/*
shows all files in the xload directory. In our case, xload is a multi-version

19.5 Exploring the Version Space 231

file; the FFS represents it as a virtual directory with possible CPP expressions as

entries shown in the list below. Although neither DDD nor its file selection dialog

are aware of versions, the user can select an individual version from the virtual

file system just by including and excluding options.

The example also illustrates a problem when reusing existing CPP files like

xload: the knowledge about inconsistencies is not explicitly expressed. For in-

stance, there is no machine in the real world where both apollo and att are

defined. But this mutual exclusion is not specified in xload, such that Lisa must

specify both explicitly. Having a manufacturer feature with values apollo and

att would make version selections much faster; limiting the choice to configura-

tions with syntactically correct programs would also help here.

19.5.2 Feature Completion

A special problem comes up when the workspace is narrowed such that a version

set becomes singleton before all its features have been specified. When a file F

has the features S, it exists as F[S] only. Let us assume we have narrowed our

workspace down to F[S0], such that F [S0] becomes singleton. In principle, we may

list F [S0] as an ordinary file, since there is no difference between reading F [S0]
and reading F[S]. With writing, this is different—writing F [S0] assigns F the

features S0; the features S are lost. For this reason, the FFS displays F [S0] as a

symbolic link completing the features of F by pointing to F[S].
As an example, consider the screen-device component from the editor

example in figure 10.1 on page 104. Listing the dumb version yields

$ ls screen-device
[Concurrent == true] [ScreenData == bitmap]
[Data == postscript] [ScreenDevice == dumb]
[Data == ScreenData] [ScreenDevice == ghostscript]

as well as the respective complements.

The screen-device:ghostscript version is already singleton. The remaining

features are explicitly completed by the symbolic link:

$ ls "screen-device[ScreenDevice == ghostscript]"
screen-device[ScreenDevice == ghostscript] ->

screen-device[ScreenDevice == ghostscript
&& Data == postscript
&& ScreenData == bitmap
&& Concurrent == true]

The user can specify any unambiguous superset of screen-device and still

access the single existing version for reading and writing; file names need be no

longer than required for disambiguation.

232 The Featured File System

The drawback of this FFS feature is that once a version set F [S] has been

created, it is impossible to create a superset F [S0] with S0 w S except by remov-

ing F[S] first. But as the redirection from F[S0] to F[S] is shown explicitly, few

problems should arise in practice.

19.5.3 Accessing the CPP Representation

Listing possible refinements as version subdirectories not only allows the user

to explore the configuration space, but also prohibits accidental processing of

version sets in CPP representation. In fact, users need never see the CPP repre-

sentation, unless maybe to examine differences between versions. In some cases,

however, it is desirable to access all versions at once.

The CPP representation of a file F as a whole may be accessed using the

special form F [], meaning “all versions”. Instead of exploring the configuration

space of tasks.txt, we may as well open

tasks.txt[user == lisa || user == tom][]

and thus view and edit both Lisa’s and Tom’s versions at once; likewise, opening

xload[] gives us the CPP representation of xload. Besides being convenient

for developers, this feature is a must for programs that recursively descend the

directory tree; such programs would otherwise suffer from the combinatorical

explosion of possible configurations if they traversed all possible configurations

through virtual directories. The ability to access version sets in the CPP represen-

tation is also required for higher-level SCM tools discussed in the next chapters.

Finally, it should be noted that all this version selection is not necessary when

working in a sufficently narrow workspace, making every version singleton and

unambiguous.

19.6 A Configuration Browser

While the FFS provides some basic facilities to explore the version space, existing

applications can be enhanced by making them aware of versions. One such ex-

ample is the SKATE browser, shown in figure 19.6 on the facing page. The SKATE

browser enhances a usual file system browser with the ability to visualize and

explore the configuration space. For each possible feature, we generate a menu

listing the possible feature values. The subsumption lattice formed by the ver-

sion sets is shown as a graph, visualizing revision graphs and variant/workspace

hierarchies. Through these menus, the user can specify a (possibly incomplete)

configuration.

19.7 Implementation Notes 233

Figure 19.6: Browsing through files and configurations with SKATE

SKATE ensures consistency by making menu items insensitive that would re-

sult in an inconsistent or non-existent configuration. In the OS menu, for instance,

all items are sensitive; there is no choice for USER == zeller that makes the

selection inconsistent. Now let us assume that user Lisa works on all versions

except the Windows operating system. This means that the version

USER == lisa && OS == Windows

does not exist; the directory “.[USER == lisa && OS == Windows]” is in-

accessible in the FFS. If we set the value of the USER feature to, say, lisa, the

Windows value of the OS feature would be grayed out, indicating that this selec-

tion would lead to an inconsistent configuration. Likewise, selecting Windows
for OS would make the lisa entry in the USER menu insensitive. As the global

effects of choice refining and revoking are immediately visualized in the config-

uration panels, the user can interactively explore the configuration universe while

ICE checks for consistency.

19.7 Implementation Notes

The FFS is realized on top of the popular network file system (NFS) [SGK+85].

As discussed in section 5.4.3, this allows arbitrary programs to access the file

234 The Featured File System

NFS

NFS

NFS

NFS

ICE Deduction Engine

Volatile Cache

Featured File System

IC
E

 L
ib

ra
ry

F
F

S
 S

er
v
er

User
Process

User
Process

ICE
SCM
Tools

...

User
Process

User
Process

Persistent Cache

Figure 19.7: Processes accessing the featured file system

system transparently. The FFS server was designed and implemented by Olaf

Pfohl [Pfo96], by extending a freely available NFS server (originally designed for

the LINUX operating system). The overall architecture is shown in figure 19.7.

To maximize performance, the FFS server maintains a persistent cache, where

all version sets once read are stored. Whenever a file F [S] is requested, the FFS

server first looks up F [S] in the persistent cache, and scans the CPP representation

F only if F [S] was not found in the cache. Hence, F is scanned only at the first

access; second and later version set accesses are served in constant time.

When F [S] is written, it is also stored in the persistent cache; the originating

version set F is only updated when a superset of S is requested. In practice, this

means that once a workspace is entered, the FFS server has the same performance

as an ordinary NFS server. But still, all files common to several workspace are

cached only once, showing the space-saving effects of the viewpathing techniques

19.8 Discussion 235

used in n-DFS.

To minimize problems with existing multi-version representations, the FFS

server uses “as-is” encoding for reading ordinary files; hence, CPP directives in

maintained files are left uninterpreted. However, if a multi-version representation

is read by the FFS server, using the F [] form, the FFS server uses the dynamic

encoding as discussed in section 16.4. Hence, ordinary files sample.c are left

unprocessed; but renaming the CPP file sample.c to sample.c[] makes FFS

interpret the CPP directives and create the appropriate versions.

The SKATE configuration browser was realized by Dirk Babel [Bab96], using

the freely available Tcl/Tk graphical user interface. SKATE runs in two modes.

In remote mode, the question whether a specific configuration exists is answered

by attempting to access this configuration from the FFS server. Since this places

a heavy load on the FFS server, an alternative is provided. In local mode, SKATE

gets the possible configurations from the file directly and uses a local ICE deduc-

tion engine to deduce whether a configuration leads to inconsistency.

19.8 Discussion

A virtual file system, as realized in the FFS, is certainly the most convenient way

to integrate version access in today’s software development environments. There

can be no doubt that virtual file systems will constitute the standard for version

access in future integrated SCM systems.

Basic read and write access to version sets can only constitute the primitives

layer of SCM access. Based on these primitives, specialized SCM tools must ex-

ist that organize the SCM protocol and process layers—for instance, workspace

management and change propagation as discussed in chapter 13. Such tools are

currently in development for ICE, and the problems encountered during their de-

velopment show that there is still much to do for future SCM researchers.

I would give the spec to marketing and say,
“Please give me your feedback. Is this the right set of features to do?”

And marketing would either read it or not read it,
because it was way too long.

Or, if they did read it, they would get lost in it,
because it’s a super-technical thing.

And if they did comment on it, : : : they would say,
“Well, we think this dialog box is laid out wrong.

You should really have the check boxes on the left,” or something.
It’s not the feedback you want as a program manager.

— MIKE CONTE
in: MICHAEL A. CUSUMANO and RICHARD W. SELBY, Microsoft Secrets

Chapter 20

Performance Studies

We present the results of some experiments performed to determine the feasibility
of the version set model. We show how ICE can be used to select and change
version subsets, how “classical” revision graphs are represented and how the FFS

performs in practice. It turns out that all these “classical” tasks can be handled
efficiently.

20.1 Working On Variants

As a first case study, we shall use ICICLE to extract and modify version subsets

out of an existing CPP representation. The example file we have chosen is the

xload file discussed in section 17.1.1.1

20.1.1 Retrieving Single Variants

We shall retrieve a single xload variant using ICICLE and compare it with CPP in

terms of performance and flexibility.

Table 20.1 on the following page shows the 26 CPP symbols governing the

xload source code. Each CPP symbol represents a specific machine architecture

(like sun, macII, or CRAY) or feature (like X NOT POSIX or STDC). To retrieve

a single variant, each of these CPP symbols must either be defined or undefined.

Using CPP, this is rather simple, since all symbols not explicitly defined are left

undefined; moreover, CPP pre-defines appropriate symbols for the machine it is

running on. On a SUN machine, for instance, CPP defines the sun symbol and

1All data required for repeating these ICICLE experiments is contained in the ICE test suite, which
is part of the ICE distribution. See appendix B for details on getting the ICE distribution.

237

238 Performance Studies

AIXV3 CRAY KERNEL FILE
KERNEL LOAD VARIABLE KMEM FILE KVM ROUTINES
LOADSTUB MOTOROLA SVR4
SYSV UTEK X NOT POSIX
STDC alliant apollo

att hcx hpux
i386 macII mips
sequent sgi sony
sun umips

Table 20.1: CPP symbols in xload

nothing else; it thus suffices to invoke CPP on the xload file to get the SUN

variant. To measure the efficiency of CPP, we have commented out all #define
and #include directives in xload and used CPP to select a version from #ifdef
directives only. The command

$ /lib/cpp xload > /dev/null

requires an average running time of 0.08 seconds.2

Using ICICLE, we must specify for each single CPP symbol whether it is de-

fined or undefined. This results in the ICICLE command

(icicle) system cat xload[sun n
&& !defined(AIXV3) && !defined(CRAY) n
&& defined(KERNEL_FILE) n
&& defined(KERNEL_LOAD_VARIABLE) n
&& defined(KMEM_FILE) && defined(KVM_ROUTINES) n
&& !defined(LOADSTUB) && !defined(MOTOROLA) n
&& !defined(SVR4) && !defined(SYSV) n
&& !defined(UTEK) && !defined(X_NOT_POSIX) n
&& !defined(__STDC__) && !defined(alliant) n
&& !defined(apollo) && !defined(att) n
&& !defined(hcx) && !defined(hpux) && !defined(i386) n
&& !defined(macII) && !defined(mips) n
&& !defined(sequent) && !defined(sgi) n
&& !defined(sony) && !defined(umips)] > /dev/null

which requires an average running time of 0.79 seconds—that is, one order of

magnitude slower than CPP. Of these 0.79 seconds, 0.37 seconds are spent in

2All times measured are times spent in the execution of the command (“user time”) on a 75 MHz
SUN SPARCstation 20 running SunOS 4.1.4.

20.1 Working On Variants 239

reading xload into memory; the next 0.37 seconds are required for creating a

temporary working file, and running the cat command on the working file re-

quires another 0.05 seconds.

Why is ICICLE ten times slower than CPP? This is not the fault of the deduc-

tion engine. In the selection xload[S] with

S = [sun:>;aixv3";cray";kernel file:>; : : : ;umips"] ; (20.1)

ICE represents S as a hash table indexed through the feature name, as discussed in

section 14.6. Following the proof of 14.8 on page 167, this leads to quasi-linear

time for determining the consistency of T uS for each governing expression T in

xload—just like CPP, and this is just what is implemented in ICE. So, the lower

performance of ICE does not stem from overall complexity, but rather from the

general overhead required for generalized solutions.

20.1.2 Using Configuration Constraints

In practice, the long ICICLE command as shown in section 20.1.1 is quite re-

dundant, since only few of the possible CPP symbol combinations actually make

sense—there simply is no configuration with both sun and hpux defined. Such

knowledge can be expressed by configuration constraints like (sun:>! hpux"),
meaning that if sun is defined, than hpux is not. We extend xload with some

constraints applying to the sun architecture; these constraints in CPP notation are

shown in figure 20.1 on the following page.

With these constraints embedded in xload, we can now simply say

(icicle) system cat xload[sun]

to get the SUN configuration; having sun defined implies all other features being

either explicitly defined or explicitly undefined. The average running time of this

command is 0.81 seconds—that is, slightly larger than the first command. This

overhead is due to the processing of #error directives.

Again, the deduction engine is as efficient as possible. The xload configura-

tion constraints are represented as one single implication

C = (sun:>! [cray";motorola";utek";alliant"; : : : ;x not posix"])

in an efficient form using hash tables for the left-hand sides and right-hand sides

of an implication. Hence, Cu [sun:>] evaluates to S from (20.1) in quasi-constant

time, and the remaining selection is done as in section 20.1.1.

The configuration constraints we introduced for xload are still incomplete.

A full solution would not only express implications for the sun architecture, but

240 Performance Studies

#if defined(sun)
// ‘sun’ excludes all other architectures.
// This should be done for all architectures!
#if defined(CRAY) || defined(MOTOROLA) n
|| defined(UTEK) || defined(alliant) n
|| defined(apollo) || defined(att) n
|| defined(hcx) || defined(hpux) || defined(i386) n
|| defined(macII) || defined(mips) n
|| defined(sequent) || defined(sgi) n
|| defined(sony) || defined(umips)
#error
#endif
// ‘sun’ also implies SunOS (in our example)
#if defined(AIXV3) || defined(SVR4) || defined(SYSV)
#error
#endif
// Other features implied by the ‘sun’ architecture.
#if !defined(KERNEL_FILE) || !defined(KVM_ROUTINES) n
|| !defined(KERNEL_LOAD_VARIABLE) n
|| !defined(KMEM_FILE) n
|| defined(LOADSTUB) || defined(X_NOT_POSIX)
#error
#endif
#endif // defined(sun)

Figure 20.1: xload configuration constraints

for all other architectures as well. For n architectures, we have n2=2 mutual

exclusions—and thus n2=2 configuration constraints. This number can be dra-

matically reduced by expressing architectures through feature values rather than

features. A single feature architecture:sun would automatically exclude all other

possible values for architecture, reducing the need for explicit configuration con-

straints. Hence, xload also demonstrates the benefits of functional features, and

consequently the advantages of feature logic.

20.1.3 Modifying Variants

Of course, the strength of ICE is not to simulate CPP behavior, but rather to go

beyond. As an example, we shall use ICICLE to create a user-specific copy of the

SUN xload variant. The ICICLE command

(icicle) vi xload[sun && USER == lisa]

20.2 A Revision History 241

requires 0.87 seconds to create a temporary working file containing the selected

variant and to invoke the vi text editor on it. Lisa may now perform arbitrary

changes on the working file.

After having made some changes and leaving the editor, ICICLE opens the

version set xload[sun && USER == lisa] for writing. Writing the version

set is more expensive that reading: ICICLE requires 1.42 seconds to perform the

write operation. This time is spent in determining the textual difference between

the original and the changed version set, in determining the new features, and in

writing an efficient representation.

Why is writing more expensive than reading? The vast majority of time is

spent in algorithm 17.4 on page 207, which re-creates the CPP representation even

for trivial changes. Storing the original CPP directives and re-using them if ap-

plicable, as discussed in section 17.3.4, already shows significant improvements

here; but further speed improvements like disabling nested directives would result

in files that are barely readable by humans.

20.2 A Revision History

In a second experiment, we have determined how ICE handles configuration con-

straints in revision histories. As case study, we have chosen the GNU MAKE pro-

gram, which is publicly available in 17 revisions named 3.55 to 3.74.3 From the

GNU MAKE distribution, we have considered a single file named commands.c;

this file happened to be modified in each revision.4

We wanted to know how ICE performs in creating a repository from the 17

revisions of commands.c, compared to well-known tools like RCS and SCCS . In

the FFS, a new revision new is created as a subset of an existing revision set old,

using the command sequence

$ cd old
$ cat revision > commands.c[new]

such that commands.c[new] becomes a subset of commands.c[old]. Here,

revision is the specific revision of commands.c. The ICICLE shell does not

support versioned directories, but provides an equivalent short-hand notation:

(icicle) cat revision > commands.c[old, new]

This ICICLE command was repeated once for each new revision, where the indi-

vidual changes were identified by d355 (for the initial revision 3.55) to d374 (for

3The recent GNU MAKE distribution as well as differences to earlier revisions are available from
the GNU FTP server ftp://prep.ai.mit.edu/pub/gnu/.

4The revision history of commands.c is also part of the ICE distribution.

242 Performance Studies

Revision ICE RCS SCCS

1 (3.55) 0.13s 0.03s 0.08s

2 (3.56) 0.28s 0.02s 0.06s

3 (3.60) 0.35s 0.03s 0.06s

4 (3.62) 0.42s 0.05s 0.06s

5 (3.63) 0.39s 0.05s 0.12s

6 (3.64) 0.46s 0.03s 0.11s

7 (3.65) 0.57s 0.02s 0.16s

8 (3.66) 0.79s 0.05s 0.09s

9 (3.67) 0.87s 0.06s 0.11s

Revision ICE RCS SCCS

10 (3.68) 1.05s 0.06s 0.15s

11 (3.69) 1.15s 0.06s 0.16s

12 (3.70) 1.60s 0.07s 0.16s

13 (3.71) 2.44s 0.07s 0.16s

14 (3.72) 3.15s 0.04s 0.14s

15 (3.72.1) 4.01s 0.03s 0.12s

16 (3.73) 3.75s 0.07s 0.15s

17 (3.74) 4.40s 0.08s 0.18s

Table 20.2: Revision checkin times for ICICLE, RCS, and SCCS

the final revision 3.74). The resulting execution times for each checkin process in

ICICLE, as well as the checkin times for RCS and SCCS, are shown in table 20.2.

We see that the ICE checkin time grows with the revision number, while the

RCS and SCCS checkin times remain fairly constant. Could this a negative effect

of N P-complete feature unification? The answer is no, because the exponential

effect of feature unification looks different. In table 20.3, we have repeated the

same experiment with a specially prepared ICE variant that relies on N P-complete

feature unification alone—that is, all speed-ups discussed in chapter 14 have been

disabled. Already with the 4th revision, execution time grows beyond all limits;

we had to abort the operation after five minutes. Table 20.3 thus illustrates the

necessity of specific deduction shortcuts for common SCM operations.

Careful analysis of the deduction process shows that only trivial reductions are

required in this linear revision history—all that is needed is to add a new revision

constraint upon each checkin, as discussed in section 12.1, and to reduce the

new governing feature terms according to the revision constraints. Each of these

reduction processes takes at most quasi-linear time proportional to the length of

the governing feature terms; full-fledged feature unification is never required.

Revision ICE with reduction ICE without reduction

1 (3.55) 0.13s 0.12s

2 (3.56) 0.28s 0.77s

3 (3.60) 0.35s 3.87s

4 (3.62) 0.42s >300.00s

Table 20.3: ICICLE checkin times with and without reduction

20.2 A Revision History 243

0

1

2

3

4

5

2 4 6 8 10 12 14 16

ICE with reduction
ICE without reduction

RCS
SCCS

Figure 20.2: Revision checkin times for ICICLE, RCS, and SCCS

So why does the ICE checkin time grow? As discussed in section 17.2, ICE

compares entire version sets when determining a new compact representation.

In our example, this implies that the new revision is compared with the entire

repository; code removed in some earlier revision and re-inserted in some later

revision is stored only once. This is in contrast to RCS and SCCS, which compare

the new revision with the previous revision only, and where the same code may

be stored in multiple places. In ICE, as the repository grows with the number of

revisions, so does the time for comparing it with the new revision, as shown in

figure 20.2.

In our example, the checkin problem could easily be solved by comparing

the latest revisions only; the data above shows that ICE is quite efficient when

comparing small revision sets. But if we have multiple variants in multiple revi-

sions, all sharing some common code, which are the “latest” revisions ICE should

compare? And to which extent should variants be compared? A possible practi-

cal solution might be to flag revisions as “old” and to exclude old revisions from

comparison. However, the shortened check-in time might be compensated by a

244 Performance Studies

for (d = enter_file (".SUFFIXES")->deps; d != 0; d = d->next)
{

#if d370
unsigned int slen = strlen (dep_name (d));

#else
unsigned int len = strlen (file->name);

#endif
#if d374

if (len > slen && !strncmp (dep_name (d),
name + (len - slen), slen))

#elif d370
if (len > slen && !strncmp (dep_name (d),

name + len - slen, slen))
#else

if (len > slen && streq (dep_name (d),
file->name + len - slen))

#endif
{

#if d370
file->stem = savestring (name, len - slen);

#else
file->stem = savestring (file->name, len - slen);

#endif
break;

}
}

if (d == 0)
file->stem = "";

Figure 20.3: A multi-revision file

larger version set representation.

Speaking of version sets, what does the version set commands.c actually

look like? An excerpt in ordinary CPP representation is shown in figure 20.3.

We see that the change d370 replaced file->name by dep name(d) and that

change d374 introduced a parenthesized subexpression. In this excerpt, there is

a maximum number of two features that govern code pieces, making the excerpt

quite readable. But commands.c also contains code pieces governed by four

features, which is a little harder to understand—but still an alternative to a set of

mutual DIFF runs.

Just like the example in section 20.1, individual revision sets can be retrieved

in linear time; the whole revision set can be subject to versioning, even if this

requires some time for creating an appropriate CPP representation. However, if

only a single revision is subjected to versioning (for instance, if a user works on

an individual revision in a workspace), this is equivalent to the creation of a new

20.3 Caching Effects 245

Operation FFS NFS CVS

uncached cached

Read (check out) file 11.2s 1.6s 1.5s 5.8s

Write (check in) file 122.0s 57.0s 12.5s 58.8s

Read (check out) project 173.0s 32.4s 28.7s 108.0s

Write (check in) project not available5

Table 20.4: FFS performance sample

revision—except that it would be identified differently, using [USER == lisa]
instead of d375, for instance. Again, a “classical” SCM task like branching in a

revision tree is handled efficiently.

20.3 Caching Effects

While the times shown in sections 20.1 and 20.2 could be acceptable for stand-

alone SCM tools, they are totally unacceptable for a virtual file system like the

FFS—a read or write operation on a file should not take more than a few millisec-

onds to complete. In section 19.7, we have discussed the caching mechanisms

used by the FFS server; in this experiment, we shall see whether these caching

mechanisms bring satisfying performance.

Table 20.4 gives typical performance times of FFS access. We have chosen

the following operations: reading and writing a 4.5 MB file (a 40-page article in

PostScript format) as well as reading and writing the ICE distribution, release 0.5

(8.5 MB in 1115 files). For CVS, “reading” means checking out each file from

its RCS repository, and “writing” means checking in each file back again after a

change.

We see that in writing files, the FFS server is four times slower than the

vendor NFS server. We assume this is due to deficiencies in the FFS server

implementation—for instance, the vendor NFS server is multi-threaded, while our

FFS server is (yet) single-threaded. The difference between uncached and cached

writing of version sets, however, is the time spent in actual work, rather than file

transmission. We see that this time (122s � 57s = 65s) is similar to the time

required by the RCS check in. This does not surprise, as both do the same work:

both run DIFF to determine the differences between origin and new revision; af-

terwards, both create a new version set representation.

5Due to a bug in the current implementation of the FFS directory cache, significant times for
writing projects were not available at the time of writing.

246 Performance Studies

Reading version sets shows much better performance. The execution times

show that reading uncached version sets is comparable with RCS repository ac-

cess, while reading cached version sets can compete with the original NFS server.

Stil, even better performance is possible. A real-world implementation of the

FFS server would probably be multi-threaded, avoiding delays in the deduction

engine, and sharing a common version set and deduction caches. Even better, it

would be based on a operating system interface for virtual file systems, bypassing

the NFS bottleneck for local disk access.

20.4 Conclusion

Using the ICE implementation, we have shown three simple case studies that sup-

port the efficiency claims raised in chapter 14. We see that retrieving individual

versions from a ICE version set need not be more expensive than a simple CPP

run. Since ICE compares entire version sets rather than only the latest revisions,

adding revisions to a repository requires more time than RCS or SCCS, but yields a

potentially more compact and user-readable representation. Remaining read/write

delays can be compensated through caching of version sets. As soon as a version

set is cached, the FFS server behaves as fast as an ordinary NFS server.

Our case studies have avoided the use of full-fledged feature unification and

relied on trivial reduction schemes that have been optimized for handling stan-

dard SCM tasks. But as we know that arbitrary SCM tasks will result in arbitrary

complexity, some questions must remain open:

� Which new SCM protocols are feasible on top of version sets?

� Can we find deduction shortcuts that make these SCM protocols efficient?

� If we cannot find such shortcuts, is this due to the problem or due to our-

selves?

In chapter 21, we close this work with some general observations on these topics,

discussing the conditions for efficient SCM tasks.

On the other hand,
a generalized solution may be more costly,

in terms of speed of execution,
memory requirements, or development time,

than the specialized solution
that is tailored to the original problem.

— CARLO GHEZZI, MEHDI JAZAYERI, DINO MANDRIOLI,
Fundamentals of Software Engineering

Chapter 21

Efficient SCM

The proofs in chapter 14, substantiated by the studies in chapter 20, show that
classical SCM tasks such as version selection can be realized efficiently on top
of feature logic, by exploiting orthogonality and reduction of feature terms. In
this final chapter, we present some strong arguments that wherever there is an
efficient implementation of a specific SCM task, there is also an efficient shortcut
bypassing the complexity of feature unification; but as soon as deduction facil-
ities are required, complexity becomes exponential. We discuss the conditions
under which SCM tasks remain efficient; it turns out that a good software design
according to the principles of software engineering principles is a key factor for
efficient SCM.

21.1 Version Selection

The version selection mechanisms, as discussed in section 3.3, all rely on a finite

set of versions, all identified by the equivalent of a simple feature terms; the

selection term can also be expressed as a simple feature term.

According to proposition 14.8 on page 167, the time required for selecting

versions using feature logic is proportional to the number of stored versions—

just as the time required by existing implementations. As soon as variables,

agreements, or disagreements are used in selection terms, checking consistency

requires quadratic time for each version—again, just as in existing implementa-

tions.

When versions are identified by general feature terms, and the selection is a

simple feature term, orthogonality checking and feature term reduction will often

reduce the problem size considerably. Every remaining possible version must be

247

248 Efficient SCM

checked for consistency with the selection term. The same applies for identifica-

tion with simple feature terms and selection with general feature terms. If general

non-orthogonal feature terms are used for both identification and selection, every

possible alternative must be checked, resulting in exponential complexity.

21.2 Versioning Dimensions

When multiple versioning dimensions can be selected independent from each

other, as changes in the Change-Oriented Model, for example, this has no im-

pact on complexity—as should be expected from proposition 14.7 on page 166,

since every versioning dimension is represented through another feature.

Complexity becomes an issue as soon as versioning dimensions are no more

orthogonal. For instance, maintaining configuration constraints, as discussed in

chapter 11, has a serious impact on determining consistency of configurations,

since every constraint must be satisfied. In practice, this means that users must

first select a small subset of configurations in order to keep the problem size small.

On the other hand, a large number of constraints, such as the constraints used for

modeling revision graphs, implies a small number of possible versions, reducing

the problem size as well.

21.3 Configuration Consistency

Existing SCM systems can only determine consistency of bound configurations—

that is, a configuration described by a simple feature term. Even with agreements,

disagreements, and variables, consistency checking can be done in quadratic time,

as stated in proposition 14.1 on page 161.

When introducing ambiguities in consistency checking, such as allowing mul-

tiple versions for each component, the number of possible configurations grows

exponentially and so grows the effort for consistency checking—unless orthogo-

nality again reduces the problem size.

21.4 The Benefits of Low Coupling

Having considered these complexity problems, how can we keep SCM efficient

and our software maintainable? From the previous sections, we see that orthogo-

nality of feature terms is a major issue in keeping the size of SCM problems small.

If the feature terms describing two components A and B are orthogonal, we can

select arbitrary versions of A and B without affecting the consistency of their re-

spective configuration. In software engineering, this property is also known as

low coupling of modules. Coupling is a measure of strength of interconnections

21.5 The Benefits of High Cohesion 249

between components; low coupling is a desirable property because it keeps evolv-

ing programs manageable—notably, we can make a change (create a new ver-

sion) of A or B without affecting the other component. Low coupling is obtained

through basic software engineering principles such as abstraction, parameteriza-

tion, generalization, localization, and, most of all, anticipation of change. Since

low coupling implies orthogonality and vice versa, low coupling between com-

ponents has immediate benefits in simplifying SCM problems and thus keeping

evolving software manageable.

21.5 The Benefits of High Cohesion

Another desirable property in software engineering is high cohesion within a

component. Cohesion is a measure of how well a component fits together; high

cohesion expresses that all parts of a component should contribute to its imple-

mentation, which also means that a change in a component part implies changes

in other parts of the component. In our model, high cohesion between compo-

nents leads to many configuration constraints between these components, such

that the actual number of possible configurations is kept small and thus becomes

manageable as well.

21.6 Maintaining Unstructured Software

The problematic cases for automated deduction are exactly those cases that make

software difficult to maintain: a number of unstructured constraints involving

components all over the system, expressing chaotic interconnections between

components. In such cases, the only remedy may be to restructure the system

such that variance is kept as local as possible, eliminating version dependencies

between components and thus reducing complexity. This can be done by ex-

amining the configuration space [KS94] and to reengineer it [Sne96] such that

dependencies between configuration threads are significantly reduced—as is the

complexity of SCM tasks.

Where such a restructuring is not possible, automated deduction like feature

unification can help to keep SCM tasks manageable. It may especially be helpful

to manage a temporary situation, such as lots of developers creating lots of tem-

porary variants, whose consistency must be checked and expressed. But due to its

complexity, automated deduction does not scale up beyond a certain problem size.

In the long term, applying the principles of software engineering to avoid perma-

nent, non-orthogonal variance, is the only way to keep SCM tasks manageable and

the product maintainable.

250 Efficient SCM

21.7 Conclusion

Feature unification is the standard technique for deciding consistency of general

feature terms. Feature unification is N P-complete and thus applicable to small

problems only. The problem of deciding consistency can be broken down in

smaller subproblems if the feature term breaks down into orthogonal parts, that is,

parts without common features or variables. The technique of partial evaluation

leads to efficient decision of consistency for simple feature terms. Both determin-

ing orthogonality and partial evaluation already suffice to realize standard SCM

tasks efficiently on top of feature logic.

The most difficult SCM problem is to determine the consistency of abstract

configurations, where the feature terms describing the individual components are

non-orthogonal. A well-structured configuration space, as obtained through the

principles of software engineering, ensures orthogonality of feature terms and

thus keeps SCM problems manageable. A small amount of non-orthogonal am-

biguity can be tolerated using feature unification—for instance, temporary, non-

orthogonal variance as it occurs during parallel development.

Today, the field of ATP has produced several deduction techniques for propo-

sitional logic that might turn out useful for feature logic as well. The application

of these deduction techniques may raise the amount of ambiguity tolerance in

practical SCM systems, maybe even beyond any ambiguity as found in today’s

software systems. This should allow SCM systems to manage several parallel de-

velopment paths at once and ensure consistency across all ambiguities. But still,

a good software design is the key factor to keep evolving software maintainable.

In skating over thin ice our safety is in our speed.

— RALPH WALDO EMERSON

Part Five

Odds and Ends

251

Chapter 22

Conclusion

The future of automated SCM lies in a clear separation of primitives, protocol, and

policy layers, based on a well-defined semantic foundation. As such a foundation,

we propose version sets, expressed through feature logic. Version sets integrate

and unify current SCM versioning models and provide a well-defined semantics

for defining higher SCM layers. Feature logic is powerful enough not to endanger

flexibility at higher SCM layers, and yet sufficiently specialized to describe how

features propagate in the SCM process.

In part three, we have shown how version sets capture and integrate the SCM

concepts introduced in part one. The covered SCM concepts range from versions

to components, from configurations to revisions, from changes to constraints, and

from relationships to system modeling. The principal results fulfill the require-

ments raised in chapter 6:

Unified versioning. Version sets provide one single formalism to express all ver-

sioning dimensions as well as constraints on them, integrating SCM con-

cepts like revisions, variants, workspaces, and configurations in one single

model. The SCM policy is not constrained by decisions made in lower SCM

layers.

Integration of changes and revisions. Configuration constraints, expressed in

feature logic, allow us to capture the entire range of temporal versioning—

from the rigidness of versions-oriented models to the flexibility of change-

oriented models.

Consistency checking under ambiguity. Through feature logic, we deduce the

features and the consistency of configurations as well as derived compo-

253

254 Conclusion

nents and thus describe how features propagate in the SCM process. In-

consistencies are detected even when the configuration description is in-

complete or ambiguous. Ambiguity is not only tolerated in consistency

checking; at all SCM layers, sets rather than single items are the primary

objects of SCM tasks and procedures.

Our implementation of the version set model in ICE has shown that this foun-

dation has several user-visible benefits. Through the FFS, users can access ver-

sion sets consisting of arbitrary combinations of revisions, changes, variants, and

workspaces. Individual versions are accessed as files; version sets as a whole can

be accessed via version directories or through the CPP representation. On top of

the FFS, specific SCM protocols are realized efficiently through simple file opera-

tions on version sets. These features make ICE a universal platform for individual

SCM policies and demonstrate the flexible and unifying nature of the version set

model.

Besides refining, extending, and evaluating the ICE implementation, espe-

cially at the protocol and policy levels, our future work will focus on four subjects.

Beyond feature logic. Feature logic, as defined by Smolka, is not appropriate

for all SCM aspects. As discussed in section 10.8, an extension to specify

set values would be most helpful to overcome the difficulties in specifying

aggregations (section 10.4). Also, feature logic does not distinguish be-

tween provided and required features. There is no notion of cardinality and

ambiguity; hence, preference and default operators (section 9.3) cannot be

defined in feature logic. On the other hand, one must be careful that ad
hoc extensions for SCM purposes do not endanger the generality of feature

logic.

Versioned Relationships. In chapter 3, we have introduced relationships as a

means to represent the structure of a system; typical relationships included

is-instance-of to represent the dependency between source components and

derived components, or is-a-part-of to model the aggregation of compo-

nents into systems. Such relationships are subject to versioning just as the

individual components are—that is, a system model may occur in several

variants or may be revised frequently. We want to model such relationships

as features and roles, providing a natural link between object versioning

and relation versioning.

Efficient integration of SCM concepts. We have seen that all SCM concepts in-

troduced in part one can be realized on top of the version set model, and

255

the ICE system already shows how these concepts can be integrated into a

single SCM system. We also have identified possible complexity problems

with non-orthogonal SCM concepts, especially variance. Based on further

experience with the FFS and the underlying deduction engine, we want to

investigate how far integration of SCM concepts can go without endanger-

ing efficiency. Furthermore, we want to see which other SCM protocols are

feasible, how they can be realized on top of the FFS, and how far the SCM

process is determined by these protocols.

Support of the SCM process. Our long-term goal is to establish a layered SCM

model where each layer is defined in concepts of the next lower layer. In

this task, we pursue a bottom-up approach. Having supplied feature logic

as an SCM foundation and proposed version sets as SCM primitives, our

next step would be to specify the SCM protocol in terms of transitions be-

tween version sets, and to specify the SCM process in terms of transitions

between SCM protocols. We imagine organizing the SCM process entirely

by manipulating component features—changing their state from proposed

via tested to released. Eventually, we hope to map the entire SCM process

to operations on version sets denoted by feature logic, providing a uniform

semantic foundation for all SCM layers.

Although we would have liked to present
the ultimate version management model,

such a model is not likely to exist for some time.

— RANDY H. KATZ, Version Modeling in Engineering Databases

Appendix A

Frequently Asked Questions

In this appendix, we have summarized the most frequently answered questions
about the version set model and ICE.

Note: Questions A.3.1 to A.3.9 are taken from [Est95, p. 80], reproduced in
section 6.4 on page 57.

A.1 General Questions

A.1.1 What are the main achievements of your work?

There are three of them, as discussed in chapter 22:

� The unification of SCM versioning concepts in one single formalism.

� The integration of change-oriented and version-oriented versioning through

configuration constraints.

� The ability to check and propagate consistency even for incomplete or am-

biguous configurations.

A.1.2 Why do you neglect SCM process issues?

We believe in the importance of separating SCM issues, such as policy, protocol,

and primitives. We also believe that you cannot define a layer without first defin-

ing its foundation. In this work, we have provided such a foundation covering the

SCM primitives layer, extending a little into the SCM protocol layer. As soon as

the SCM protocol layer will be fully understood, we can turn to the policy layer,

covering the SCM process.

257

258 Frequently Asked Questions

A.1.3 Why don’t you compare the version set model to other integrated

SCM models?

To the best of our knowledge, there aren’t any.

A.2 Topic: Feature Logic

A.2.1 Why do you use feature logic?

Because it allows us to combine attribute descriptions with boolean operations.

Both play a central role in SCM, notably for identification and retrieval.

A.2.2 But you could also use first-order logic, could you?

In principle, yes—there are few domains, if any, where first-order logic would

not suffice. Unfortunately, first-order logic is not attribute-oriented. Modeling

the functional nature of attributes or features in first-order logic leads to a large

number of explicit constraints, which are difficult to read and to maintain. Feature

logic is much more appropriate here.

A.2.3 Why didn’t you use some more general description logic?

A description logic more general than feature logic would probably also do the

job. However, several intrinsic properties of feature logic would have to be mod-

eled explicitly, such as feature propagation and the functional nature of features.

On the other hand, such an explicit modeling allows for alternate feature propa-

gation schemes that may be appropriate in several domains. Try it out.

A.2.4 Why didn’t you use an existing theorem prover?

First, existing theorem provers are batch-oriented. This is not appropriate for our

model, where thousands of comparatively small problems must be solved in a

minimum amount of time. Second, building a theorem prover ourselves allowed

us to adapt it to the specific needs of SCM and to develop appropriate deduction

techniques.

A.2.5 Is the formalization of SCM concepts necessary at all?

Yes. The SCM community has been inventing and implementing for years, realiz-

ing great SCM tools and systems. Now is the time to look back and evaluate what

has actually happened, to provide a foundation for yet smarter SCM support.

A.3 Topic: The Version Set Model 259

A.2.6 Do I really have to learn feature logic to solve SCM problems?

No, not at all. A system like ICE shows that all this logic can be hidden behind a

set of familiar and well-understood representations.

A.3 Topic: The Version Set Model

A.3.1 Is the versioning model linked to the data model, the product model

(schema), the transaction model (uni-version subdatabases), or is it

independent?

The version set model is orthogonal to any other software models and independent

from a specific representation.

A.3.2 At what granularity are deltas expressed, computed and merged—on

the base of whole files, text lines, or syntactical entities?

The model is independent from a specific representation of version sets. Our

implementation expresses, computes, and merges deltas on the base of arbitrary

sequences of characters, notably text lines.

A.3.3 And how is versioning combined with e.g. inheritance and parame-

terization?

Inheritance is realized through the subsumption relation; that is, a version set is a

subset of another version set, inheriting its features. Parameterization is realized

through incremental version selection, constraining version sets through further

feature values (or parameters).

A.3.4 Does basic versioning only apply to atomic and textual objects, and

not to composites or to the entire database?

Versioning applies to primitives (chapter 9) as well as to arbitrary composites

(chapter 10).

A.3.5 How to version relationships, and thus configurations?

Relationships may be modeled as features of the originating version sets. Con-

figurations are independent from relationships, and independently versioned, al-

though an SCM system may enforce the specification of configurations through

relationships.

260 Frequently Asked Questions

A.3.6 How to express intentional version selection, and how to express con-

straints, defaults and preferences for such selections?

Defaults and preferences are realized through preference operators (section 3.3.3)

The version set model handles ambiguities at all levels; defaults and preferences

are thus needed only if an application requires unambiguous configurations in

order to proceed.

A.3.7 Is the selection based on symbolic attribute values, that together con-

stitute a version space?

Yes. That’s what feature logic is for.

A.3.8 Can the constraints and attribute domains evolve over time?

Yes. Constraints and attributions are subject to versioning as well.

A.3.9 Given a system model with objects and relationships: is the product

selection (AND-closure) done before the version selection within each

group (OR-choices), or vice versa, or intertwined?

Selection is unconstrained, i.e. intertwined.

A.4 Topic: Complexity

A.4.1 I saw feature unification is N P-complete! How dare you suggest an

N P-complete method for practical usage?

Feature unification is N P-complete, yes, leading to exponential complexity in the

worst case. The emphasis here is on “worst case”—nearly all examples in this

book run very efficiently in practice. The rule of thumb is: if an SCM concept

has been implemented efficiently somewhere else, then there is an appropriate

deductive shortcut.

A.4.2 And what about the integration of SCM concepts? Can I really com-

bine revisions, variants, and workspaces just as I like?

In principle, yes. But you will probably run into complexity problems—arbitrary

combinations means arbitrary feature terms, which leads to arbitrary complexity.

A.5 Topic: Applications 261

A.4.3 Can I something do to avoid complexity problems?

The general rule is to keep versioning dimensions either very orthogonal or very

non-orthogonal, as discussed in sections 21.4 and 21.5. In short: follow a well-

established SCM model, like the ones realized in current SCM tools and systems.

None of these models imposes any severe complexity problems (otherwise, they

would not work efficiently). Follow the principles of software engineering, no-

tably abstraction, generalization and localization.

A.5 Topic: Applications

A.5.1 What are the new features of your application?

Again, there are three of them:

� Handling of multiple versions through a CPP-like representation.

� Incremental configuration refinement through a virtual file system.

� Workspace management through versioned directories.

A.5.2 I saw you use #ifdef to represent versions. Isn’t #ifdef bad SCM

practice?

One should be careful not to confound message and messager. It is the CPP tool

that causes the problem, since it forces you to maintain all versions at once. Also,

#ifdef is commonly used for permanent variance, which should also be avoided.

In the ICE context, #ifdef is just a representation for multiple versions, as is an

SCCS repository or an ordinary data base.

A.5.3 Do you really want us to read and write #ifdef’ed code?

You don’t have to. If you don’t see #ifdef today, you don’t need to see it with

ICE either. You see (and possibly write) #ifdef as soon as you want to work

on several versions at once, or if you want to determine the differences between

some versions. You never have to read or write all versions at once, as CPP forces

you to.

A.5.4 Wouldn’t defining CPP variables like d1 break my code?

No. ICE does not perform macro expansions or alter the code in any way.

262 Frequently Asked Questions

A.5.5 My SCM vendor says we should use databases instead of file systems.

So, why do you use a file system instead of a database?

Your vendor is right. Databases are much more secure than file systems. On the

other hand, other vendors will tell you that a file system is much better suited for

integration into a software development environment. The probably best thing to

do is to use a database for version storage and a file system for version access.

For ICE, this means future work.

A.5.6 What is the performance of ICE on large-scale projects?

Unfortunately, the current ICE implementation leaves too much to be desired for

large-scale projects. Open issues include transaction safety and general robust-

ness, as well as efficient usage of ressources, notably memory requirements. The

biggest problem of all is the lack of a higher-level interface. However, there is

no reason why the results of chapter 20 should not be applicable to large-scale

projects.

A.5.7 Will ICE improve my productivity?

This is a question which should be verified empirically, and thus requires a fully

usable ICE system; see question A.5.6. Generally, we think that the best way to

improve productivity is a well-understood and well-supported software process.

An adaptive environment like ICE can help you implement a process according

to your needs, rather than a process enforced by some SCM vendor. Other ICE

features such as transparent version set access or the ability to view and change

version sets may also improve the individual productivity.

A.5.8 I want to use ICE. Is there anything I can do?

Support this work. Help us designing and building a foundation for better SCM

environments.

Alles Wissen und alle Vermehrung unseres Wissens
endet nicht mit einem Schlußpunkt,

sondern mit einem Fragezeichen.

— HERMANN HESSE, Lektüre für Minuten

Some say the world will end in fire,
Some say in ice.

— ROBERT FROST, Poems

Appendix B

Obtaining ICE

A free ICE distribution is available for UNIX systems under the conditions of the

GNU general public license. The ICE distribution contains the source code and

the documentation of the ICICLE shell as well as the FFS server and the SKATE

configuration browser as described in this work.

The ICE distribution and related technical reports are available through the

ICE WWW page,

http://www.cs.tu-bs.de/softech/ice/

and through the ICE FTP site,

ftp://ftp.ips.cs.tu-bs.de/pub/local/softech/ice/ .

Building ICE requires a C++ compiler such as GNU C++. Running SKATE re-

quires a Tcl/Tk interpreter. Both GNU C++ and Tcl/Tk are freely available from

several sources.

The ICE maintainers can also be reached by electronic mail. Send mail to:

ice-bugs@ips.cs.tu-bs.de — for bug reports and suggestions

ice@ips.cs.tu-bs.de — everything else.

Be aware that the ICE maintainers cannot provide full-time technical support,

although they will try to help as much as they can.

A drawback of attempting to impose a standard
is that it will quickly become outmoded.

— DAVID LEBLANG, The CM Challenge

263

Acknowledgements

This research owes to the suggestions and assistance of several people, who de-

serve all my thanks and acknowledgments. First of all comes the software tech-

nology department at Braunschweig. Many thanks go to Jens Krinke for careful

proofreading. Bernd Fischer, Franz-Josef Grosch, and Christian Lindig were a

persevering and helpful audience for any new ideas.

The implementation of ICE was possible only through the contributions of

several student workers. Dirk Babel realized the SKATE configuration browser.

Michael Brandes conceived ICE MAKE. Lars Düning implemented the CPP rep-

resentation of version sets. Andreas Mende extended ICICLE with multi-version

merging. Olaf Pfohl built the FFS server. Christina Trenkner integrated arithmetic

constraint solving in Smolka’s feature unification, which was originally coded

by Marc Ziehmann. Other parts of ICE were contributed by Ahmad Alsaadi,

Thorsten Sommer, Ragnar Stahl, and Rolf Watermann.

ICE itself relies on free software such as GNU DIFF, GNU MAKE, READ-

LINE, AUTOCONF, and the GNU C++ compiler. Many thanks go to the people of

the Free Software Foundation for developing and maintaining these bullet-proof

products. Free software was also used in typesetting this book, using the great

and free TEX/LATEX system from Donald Knuth, Leslie Lamport and others.

Finally, I owe a great deal to my teachers. Wolfgang Bibel taught me the

techniques of automated deduction. Gregor Snelting set me on the right track by

proposing feature unification as a means to determine configuration consistency.

And special thanks go to Petra Funk, for all the moral and technical support she

gave me.

Parts of this work have been supported by the Deutsche Forschungsgemein-

schaft, grants Sn11/1-1 and Sn11/1-2.

265

About the Author

Curriculum Vitae

28 October 1965 Born in Hanau, Germany

1970–1973 Elementary school, Großauheim, Germany

1973–1978 Collège André Malraux, Bangui, Central Africa

1978–1984 Karl-Rehbein-Gymnasium, Hanau, Germany

1984 Final examination (Abitur)

1984–1991 Computer science studies,

Technical University of Darmstadt, Germany

1991 Computer science diploma (Dipl.-Inform.)

1991–today Research assistant,

Technical University of Braunschweig, Germany

Lebenslauf

28. Oktober 1965 Geboren in Hanau/Main

1970–1973 Grundschule, Großauheim/Main

1973–1978 Collège André Malraux, Bangui, Zentralafrika

1978–1984 Karl-Rehbein-Gymnasium, Hanau

1984 Abitur

1984–1991 Studium der Informatik,

Technische Hochschule Darmstadt

1991 Diplom (Dipl.-Inform.)

1991–heute Wissenschaftlicher Mitarbeiter,

Technische Universität Braunschweig

267

268 About the Author

Publications

[1] Gregor Snelting and Andreas Zeller. Inferenzbasierte Werkzeuge in NORA.

In Proc. Softwaretechnik 93, volume 13(3) of Softwaretechnik-Trends, pages

25–32, Dortmund, Germany, November 1993. GI. In German.

[2] Gregor Snelting, Bernd Fischer, Franz-Josef Grosch, Matthias Kievernagel,

and Andreas Zeller. Die inferenzbasierte Softwareentwicklungsumgebung

NORA. Informatik—Forschung und Entwicklung, 9(3):116–131, August

1994. In German.

[3] Andreas Zeller and Gregor Snelting. Handling version sets through feature

logic. In Wilhelm Schäfer and Pere Botella, editors, Proc. 5th European Soft-
ware Engineering Conference, volume 989 of Lecture Notes in Computer
Science, pages 191–204, Sitges, Spain, September 1995. Springer-Verlag.

[4] Andreas Zeller. A unified version model for configuration management. In

Gail Kaiser, editor, Proc. 3rd ACM SIGSOFT Symposium on the Founda-
tions of Software Engineering, volume 20 (4) of ACM Software Engineering
Notes, pages 151–160, Washington, DC, October 1995. ACM Press.

[5] Andreas Zeller and Dorothea Lütkehaus. DDD—A free graphical front-end

for UNIX debuggers. ACM SIGPLAN Notices, 31(1):22–27, January 1996.

[6] Andreas Zeller. Smooth operations with square operators—The version set

model in ICE. In Ian Sommerville, editor, Proc. 6th International Work-
shop on Software Configuration Management, volume 1167 of Lecture Notes
in Computer Science, pages 8–30, Berlin, Germany, March 1996. Springer-

Verlag.

[7] Andreas Zeller. Software configuration with feature logic. In Franz Baader,

Hans-Jürgen Bürckert, Andreas Günter, and Werner Nutt, editors, Proc. of
the Workshop on Knowledge Representation and Configuration (WRKP’96),
volume 96-04 of DFKI-Dokumente, pages 79–83, Dresden, Germany, Sep-

tember 1996. DFKI, Saarbrücken, Germany.

[8] Andreas Zeller. Versioning software systems through concept descriptions.

Computer Science Report 97-01, Technical University of Braunschweig, Ger-

many, January 1997. Submitted for publication.

[9] Andreas Zeller and Gregor Snelting. Unified versioning through feature logic.

ACM Transactions on Software Engineering and Methodology, 6(3), July

1997. To appear.

Bibliography

[Abr95] Per Abrahamsen. The CPP-parse-edit mode for EMACS. Part of

the EMACS distribution, 1995.

[AFK+95] Larry Allen, Gary Fernandez, Kenneth Kane, David Leblang, De-

bra Minard, and John Posner. ClearCase MultiSite: Support-

ing geographically-distributed software development. In Estublier

[Est95], pages 194–214.

[AK86] Hassan Aı̈t-Kaci. An algebraic semantics approach to the effec-

tive resolution of type equations. Theoretical Computer Science,

45:293–351, 1986.

[AKN86] Hassan Aı̈t-Kaci and Roger Nasr. Login: A logic programming

language with built-in inheritance. Journal of Logic Programming,

1986(3):186–215, 1986.

[AKP91] Hassan Aı̈t-Kaci and Andreas Podelski. Towards a meaning of

LIFE. In J. Maluszyński and M. Wirsing, editors, Proc. 3rd Inter-
national Symposium on Programming Language Implementation
and Logic Programming, volume 528 of Lecture Notes in Com-
puter Science, pages 255–274, Passau, Germany, August 1991.

Springer-Verlag.

[AS95] Paul Adams and Marvin Solomon. An overview of the CAPITL

software development environment. In Estublier [Est95], pages

1–34.

[Bab96] Dirk Babel. Ein deduktiver Konfigurationsbrowser für ICE.

Master’s thesis, Technical University of Braunschweig, Germany,

1996.

269

270 Bibliography

[BDFW91] A. Brown, S. Dart, P. Feiler, and K. Wallnau. The state of au-

tomated configuration management. Technical Report CMU/SEI-

ATR-91, Software Engineering Institute, Carnegie Mellon Univer-

sity, Pittsburgh, PA, September 1991.

[Ber90] Brian Berliner. CVS II: Parallelizing software development. In

Proc. of the 1990 Winter USENIX Conference, Washington, D.C.,

1990.

[Ber94] Valdis Berzins. Software merge: Semantics of combining changes

to programs. ACM Transactions on Software Engineering and
Methodology, 16(6):1875–1903, November 1994.

[BESS96] Naser S. Barghouti, Wolfgang Emmerich, Wilhelm Schäfer, and

Andrea Skarra. Information management in process-centered soft-

ware engineering environments. In Alfonso Fuggetta and Alexan-

der Wolf, editors, Software Process, volume 4 of Trends in Soft-
ware, chapter 3, pages 53–87. John Wiley & Sons, Chichester, UK,

1996.

[BFH+94] F. Baader, E. Franconi, B. Hollunder, B. Nebel, and H.-J. Prof-

itlich. An empirical analysis of optimization techniques for termi-

nological systems, or making KRIS a move on. Journal of Applied
Intelligence, 4:109–132, 1994.

[BH91] Franz Baader and Bernhard Hollunder. KRIS: Knowledge repre-

sentation and inference system. ACM SIGART Bulletin, 2(3):8–

14, 1991.

[BHR95] David Binkley, Susan Horwitz, and Thomas Reps. Program inte-

gration for languages with procedure calls. ACM Transactions on
Software Engineering and Methodology, 4(1):3–35, January 1995.

[Bib87] Wolfgang Bibel. Automated Theorem Proving. Vieweg, Braun-

schweig, Wiesbaden, second edition, 1987.

[Bib92] Wolfgang Bibel. Deduktion: Automatisierung der Logik, volume

6.2 of Handbuch der Informatik. Oldenbourg, München, Wien,

1992. In German.

[BJSS90] Alexandre Boudet, Jean-Pierre Jouannaud, and Manfred Schmidt-

Schauß. Unification in boolean rings and abelian groups. In Kirch-

ner [Kir90], pages 267–295.

Bibliography 271

[BL84] Ronald. J. Brachman and H. J. Levesque. The tractability of sub-

sumption in frame-based description languages. In Proc. of the
4th National Conference of the American Association for Artifi-
cial Intelligence, pages 34–37, Austin, Texas, August 1984.

[BMPS+91a] R. J. Brachman, D. L. McGuinness, P. F. Patel-Schneider, L. A.

Resnick, and A. Borgida. The CLASSIC knowledge representation

system. ACM SIGART Bulletin, 2(3):108–113, 1991.

[BMPS+91b] R. J. Brachman, D. L. McGuinness, P. F. Patel-Schneider, L. A.

Resnick, and A. Borgida. Living with CLASSIC: When and how

to use a KL-ONE-like language. In J. Sowa, editor, Principles
of Semantic Networks, pages 401–456. Morgan Kaufmann, San

Mateo, California, 1991.

[Boo47] George Boole. The Mathematical Analysis of Logic, Being an
Essay Towards a Calculus of Deductive Reasoning. Macmillan,

Cambridge, 1847. Reprints 1948, 1951 (Blackwell, Oxford).

[Bra96] Michael Brandes. Deduktive Programmkonstruktion auf Basis von

MAKE. Master’s thesis, Technical University of Braunschweig,

Germany, December 1996. In German.

[BS86] Rolf Bahlke and Gregor Snelting. The PSG system: From formal

language definitions to interactive programming environments.

ACM TOPLAS, 8(4):547–576, October 1986.

[Buf95] Jim Buffenbarger. Syntactic software merging. In Estublier

[Est95], pages 153–172.

[CGS91] R. Cunis, A. Günter, and H. Strecker. Das PLAKON-Buch. Num-

ber 266 in Informatik-Fachberichte. Springer-Verlag, Berlin, Hei-

delberg, New York, 1991. In German.

[Cle88] Geoffrey M. Clemm. The Odin specification language. In Winkler

[Win88], pages 145–158.

[Cle93] Geoffrey M. Clemm. The Odin System Reference Manual. Uni-

versity of Colorado at Boulder, 1993.

[Cou89] William Courington. The Network Software Environment. Tech-

nical Report FE 197-0, Sun Microsystems, Inc., February 1989.

[CW96a] Reidar Conradi and Bernhard Westfechtel. Configuring versioned

software products. In Sommerville [Som96], pages 88–109.

272 Bibliography

[CW96b] Reidar Conradi and Bernhard Westfechtel. Version models for

software configuration management. Technical Report AIB 96-10,

RWTH Aachen, Germany, October 1996.

[Dar91] Susan Dart. Concepts in configuration management systems. In

Feiler [Fei91b], pages 1–18.

[Dit89] K. R. Dittrich. The DAMOKLES database system for design ap-

plications: its past, its present, and its future. In K. H. Bennett, ed-

itor, Software Engineering Environments: Research and Practice,

pages 151–171. Ellis Horwood Books, Durhan, UK, 1989.

[Dün94] Lars Düning. Variantenmanagement mit Feature-Termen und dem

C-Präprozessor. Project report, Technical University of Braun-

schweig, Germany, April 1994. In German.

[EC94] Jacky Estublier and Rubby Casallas. The Adele configuration

manager. In Tichy [Tic94], chapter 4, pages 99–133.

[EC95] Jacky Estublier and Rubby Casallas. Three dimensional version-

ing. In Estublier [Est95], pages 118–135.

[EGLT76] K. Eswaran, J. Gray, P. Lorie, and I. Traiger. On the notions of

consistency and predicate locks in a database system. Communi-
cations of the ACM, 9(11):624–633, November 1976.

[ELN+92] G. Engels, C. Lewerentz, M. Nagl, W. Schäfer, and A. Schürr.

Building integrated software development environments—Part 1:

Tool specification. ACM Transactions on Software Engineering
and Methodology, 1(2):135–167, 1992.

[Est85] Jacky Estublier. A configuration manager: The Adele data base

of programs. In Proc. of the Workshop on Software Engineer-
ing Environments for Programming-in-the-Large, pages 140–147,

Harwichport, Ma., June 1985.

[Est88] Jacky Estublier. Configuration management: The notion and the

tools. In Winkler [Win88], pages 38–61.

[Est95] Jacky Estublier, editor. Software Configuration Management: se-
lected papers / ICSE SCM-4 and SCM-5 workshops, volume 1005

of Lecture Notes in Computer Science, Seattle, Washington, Octo-

ber 1995. Springer-Verlag.

Bibliography 273

[ESW93] Wolfgang Emmerich, Wilhelm Schäfer, and Jim Welsh. Databases

for software engineering environments—the goal has not yet been

attained. In Ian Sommerville and Manfred Paul, editors, Proc.
4th European Software Engineering Conference, volume 717 of

Lecture Notes in Computer Science, pages 145–162, Garmisch-

Partenkirchen, Germany, September 1993. Springer-Verlag.

[FDD88] Peter H. Feiler, Susan Dart, and G. Downey. Evaluation of the

Rational environment. Technical Report CMU/SEI-88-TR-15,

Software Engineering Institute, Carnegie Mellon University, Pitts-

burgh, PA, July 1988.

[Fei91a] Peter H. Feiler. Configuration management models in commer-

cial environments. Technical Report CMU/SEI-91-TR-7, Software

Engineering Institute, Carnegie Mellon University, Pittsburgh, PA,

March 1991.

[Fei91b] Peter H. Feiler, editor. Proc. 3rd International Workshop on Soft-
ware Configuration Management, Trondheim, Norway, June 1991.

ACM Press.

[Fel79] Stuart I. Feldman. Make—A program for maintaining computer

programs. Software—Practice and Experience, 9:255–265, April

1979.

[Fel93] Stuart Feldman, editor. Proc. 4th International Workshop on Soft-
ware Configuration Management (Preprint), Baltimore, Maryland,

May 1993.

[Fis93] Bernd Fischer. A new feature unification algorithm. Computer Sci-

ence Report 93-01, Technical University of Braunschweig, Ger-

many, December 1993. Submitted for publication.

[FKR94] Glenn Fowler, David Korn, and Herman Rao. n-DFS: The multiple

dimensional file system. In Tichy [Tic94], chapter 5, pages 135–

154.

[FKS95] Bernd Fischer, Matthias Kievernagel, and Gregor Snelting. De-

duction-based software component retrieval. In Köhler et al.

[KGGW95], pages 1–5.

[Gad95] Christophe Gadonna. MISTRAL User Manual V1. Laboratoire de

Génie Informatique, Grenoble, May 1995.

274 Bibliography

[GHJV94] Erich Gamma, Richard Helm, Ralph Johnson, and John Vlissides.

Design Patterns: Elements of Reusable Object-Oriented Software.

Addison-Wesley, Reading, Massachussetts, 1994.

[GJM91] Carlo Ghezzi, Mehdi Jazayeri, and Dino Mandrioli. Fundamentals
of Software Engineering. Prentice Hall, Inc., 1991.

[GMSW89] W. Morven Gentleman, Steven A. MacKay, Darlene A. Stewart,

and Marceli Wein. Commercial realtime software needs different

configuration management. In Tichy [Tic89], pages 152–161.

[Gra81] J. Gray. The transaction concept: Virtues and limitations. In Proc.
of the International Conference on Very Large Data Bases, 1981.

[Gul93] Bjørn Gulla. The constraint diagram: An approach to visualizing

the version space. In Feldman [Fel93], pages 112–122.

[Gun96] Carl A. Gunter. Abstracting dependencies between software con-

figuration items. In David Garlan, editor, Proc. 4th ACM SIG-
SOFT Symposium on the Foundations of Software Engineering,

volume 21 (6) of ACM Software Engineering Notes, pages 167–

178, San Francisco, October 1996. ACM Press.

[Har89] Richard Harter. Version management and change control; system-

atic approaches to keeping track of source code and support files.

Unix World, 6(6), June 1989.

[HK92] T. Hung and P. F. Kunz. Unix code management and distribution.

Technical Report SLAC-PUB-5923, Stanford Linear Accelerator

Center, Stanford, California, September 1992.

[HPR89] Susan Horwitz, Jan Prins, and Thomas Reps. Integrating noninter-

fering versions of programs. ACM Transactions on Programming
Languages and Systems, 11(3):345–387, July 1989.

[HVT96] James J. Hunt, Kiem-Phong Vo, and Walter F. Tichy. An empirical

study of delta algorithms. In Sommerville [Som96], pages 49–66.

[IEE88] The Institute of Electrical and Electronics Engineers, Inc., New

York. IEEE Guide to Software Configuration Management, 1988.

ANSI/IEEE Standard 1042-1987.

[IEE90] The Institute of Electrical and Electronics Engineers, Inc., New

York. IEEE Guide to Software Configuration Management Plans,

1990. ANSI/IEEE Standard 828-1990.

Bibliography 275

[ISO90] The International Organization for Standardization and The

International Electrotechnical Commission. Programming
Languages—C, December 1990. ISO/IEC International Standard

9899:1990 (E).

[Joh88] M. Johnson. Attribute-value logic and the theory of grammar.

Technical Report CSLI Lecture Notes 16, Stanford University,

Center for the Study of Language and Information, 1988.

[Kat90] Randy H. Katz. Toward a unified framework for version modeling

in engineering databases. ACM Computing Surveys, 22(4):375–

408, December 1990.

[Kay79] M. Kay. Functional grammar. In Proceedings of the Fifth Annual
Meeting of the Berkeley Linguistics Society, 1979.

[Kay84] M. Kay. Functional unification grammar: A formalism for ma-

chine translation. In Proc. 10th International Joint Conference on
Artificial Intelligence, pages 75–78, Stanford, 1984.

[KB82] R. M. Kaplan and J. Bresnan. Lexical-functional grammar: A for-

mal system for grammatical representation. In J. Bresnan, editor,

The Mental Representation of Grammatical Relations, pages 173–

381. MIT Press, Cambridge, Mass., 1982.

[KGGW95] Jana Köhler, Fausto Giunchiglia, Cordell Green, and Christoph

Walther, editors. Working Notes of the IJCAI-95 Workshop: For-
mal Approaches to the Reuse of Plans, Proofs, and Programs,

Montréal, August 1995.

[Kie92] Thilo Kielmann. Using PROLOG for software system mainte-

nance. In Proc. of the First International Conference on the Prac-
tical Application of PROLOG, London, UK, April 1992.

[Kir90] Claude Kirchner, editor. Unification. Academic Press, London,

1990.

[KR86] R. T. Kasper and W. C. Rounds. A logical semantics for feature

structures. In Proc. of the 24th Annual Meeting of the ACL, pages

257–265, Columbia University, New York, 1986.

[KR89] Brian W. Kernighan and Dennis M. Ritchie. Programmieren in C.

Carl Hanser, Prentice–Hall International, 2. edition, 1989.

276 Bibliography

[KS94] Maren Krone and Gregor Snelting. On the inference of configura-

tion structures from source code. In Proc. 16th International Con-
ference on Software Engineering, pages 49–57, Sorrento, Italy,

May 1994. IEEE Computer Society Press.

[LCD+89] Anund Lie, Reidar Conradi, Tor M. Didriksen, Even-André Karls-

son, Svein O. Hallsteinsen, and Per Holager. Change oriented ver-

sioning in a software engineering database. In Tichy [Tic89], pages

56–65.

[LCS88] David B. Leblang, Robert P. Chase, and Howard Spilke. Increas-

ing productivity with a parallel configuration manager. In Winkler

[Win88], pages 21–37.

[LDC+89] Anund Lie, Tor M. Didriksen, Reidar Conradi, Even-André Karls-

son, Svein O. Hallsteinsen, and Per Holager. Change-oriented ver-

sioning. In C. Ghezzi and J. A. McDermid, editors, Proc. 2nd Eu-
ropean Software Engineering Conference, volume 387 of Lecture
Notes in Computer Science, pages 191–202, Coventry, September

1989. Springer-Verlag.

[Leb94] David B. Leblang. The CM challenge: Configuration management

that works. In Tichy [Tic94], chapter 1, pages 1–37.

[LHPT95] Paul Lukowicz, Ernst A. Heinz, Lutz Prechelt, and Walter F. Tichy.

Experimental evaluation in computer science: A quantitative study.

Journal of Systems and Software, 18(1):9–18, January 1995.

[Lin95] Christian Lindig. Concept-based component retrieval. In Köhler

et al. [KGGW95], pages 21–25.

[LL87] M. Lacroix and P. Lavency. Preferences: Putting more knowledge

into queries. In Peter M. Stocker and William Kent, editors, Proc.
of the 13th International Conference on Very Large Data Bases,

pages 217–225, Brighton, 1987.

[LM88] Andreas Lampen and Axel Mahler. An object base for attributed

software objects. In Proc. of the Fall ’88 EUUG Conference, pages

95–105, Cascais, October 1988.

[MA96] Boris Magnusson and Ulf Asklund. Fine grained version control

of configurations in COOP/Orm. In Sommerville [Som96], pages

31–48.

Bibliography 277

[Mac91] Robert MacGregor. Inside the LOOM classifier. ACM SIGART
Bulletin, 2(3):88–92, 1991.

[Mac94] David MacKenzie. Autoconf—Creating Automatic Configuration
Scripts. Free Software Foundation, Inc., 59 Temple Place - Suite

330, Boston, MA 02111-1307, USA, November 1994. Distributed

with Autoconf.

[Mah94] Axel Mahler. Variants: Keeping things together and telling them

apart. In Tichy [Tic94], chapter 3, pages 39–69.

[MAM93] Boris Magnusson, Ulf Asklund, and Sten Minör. Fine-grained re-

vision control for collaborative software development. In David

Notkin, editor, Proc. of the first ACM SIGSOFT Symposium on
the Foundations of Software Engineering, pages 33–41, Los An-

geles, December 1993. ACM Press.

[Man94] Suresh Manandhar. An attributive logic of set descriptions and set

operations. In Proc. of the 32nd Annual Meeting of the Associ-
ation for Computational Linguistics (ACL ’94), Las Cruces, New

Mexico, June 1994.

[MC96] Josephine Micallef and Geoffrey M. Clemm. The Asgard sys-

tem: Activity-based configuration management. In Sommerville

[Som96], pages 175–186.

[McD82] J. McDermott. R1: A rule-based configurer of computer systems.

Artificial Intelligence, 19(1):39–88, 1982.

[McD84] J. McDermott. R1 revisited: Four years in the trenches. AI Maga-
zine, 5(Fall):21–32, 1984.

[MDW91] E. Mays, R. Dionne, and R. Weida. K-Rep system overview. ACM
SIGART Bulletin, 2(3):93–97, 1991.

[Men96] Andreas Mende. Verwaltung von Revisionen und Arbeitsbere-

ichen in ICE. Master’s thesis, Technical University of Braun-

schweig, Germany, December 1996. In German.

[MLG+93] Bjørn P. Munch, Jens-Otto Larsen, Bjørn Gulla, Reidar Conradi,

and Even Andre Karlsson. Uniform versioning: The change-

oriented model. In Feldman [Fel93], pages 188–196.

[MM85] W. Miller and Eugene Myers. A file comparison program.

Software—Practice and Experience, 15(11):1025, 1985.

278 Bibliography

[MNR83] D. McLeod, K. Narayanaswamy, and Bapa Rao. An approach to

information management for CAD/VLSI applications. In Proceed-
ings of the SIGMOD Conference on Databases for Engineering
Applications, pages 39–50, San Jose, California, May 1983.

[Mor88] Thomas M. Morgan. Configuration management and version con-

trol in the Rational programming environment. In Proceedings
of the Ada-Europe International Conference, pages 18–28. Cam-

bridge University Press, June 1988.

[MR87] M. Drew Moshier and William C. Rounds. A logic for partially

specified data structures. In Steve Muchnik and Mark Wegman,

editors, Proc. 14th Annual ACM Symposium on Principles of
Programming Languages, pages 156–167, Munich, January 21-23

1987. ACM Press.

[Mun96] Bjørn P. Munch. HiCoV: Managing the version space. In Som-

merville [Som96], pages 110–126.

[Nar89] K. Narayanaswamy. A text-based representation for program vari-

ants. In Tichy [Tic89], pages 30–33.

[Neb90] B. Nebel. Reasoning and Revision in Hybrid Representation
Systems, volume 422 of Lecture Notes in Artificial Intelligence.

Springer-Verlag, 1990.

[Nic91] Peter Nicklin. Managing multi-variant software configurations. In

Feiler [Fei91b], pages 53–57.

[NS89] B. Nebel and G. Smolka. Representation and reasoning with at-

tributive descriptions. In K. H. Bläsius, U. Hedstück, and C.-R.

Rollinger, editors, Sorts and Types in Artificial Intelligence, vol-

ume 256 of Lecture Notes in Artificial Intelligence, pages 112–

139, Eringerfeld, April 1989. Springer-Verlag.

[OG90] B. O’Donovan and J. B. Grimson. A distributed version control

system for wide area networks. Software Engineering Journal,
September 1990.

[OHPDB92] Eduardo Ostertag, James Hendler, Rubén Prieto-Dı́az, and Chris-

tine Braun. Computing similarity in a reuse library system: An AI-

based approach. ACM Transactions on Programming Languages
and Systems, 1(3):205–228, July 1992.

Bibliography 279

[PD87] Rubén Prieto-Dı́az. Classifying software for reusability. IEEE
Software, 4(1), January 1987.

[Pel91] Christof Peltason. The BACK system—an overview. ACM
SIGART Bulletin, 2(3):114–119, 1991.

[PF89] Erhard Ploedereder and Adel Fergany. The data model of the con-

figuration management assistant. In Tichy [Tic89], pages 5–13.

[Pfo96] Olaf Pfohl. FFS – ein versioniertes Dateisystem auf Basis von

Feature-Logik. Master’s thesis, Technical University of Braun-

schweig, Germany, 1996.

[Rei89] Christoph Reichenberger. Orthogonal version management. In

Tichy [Tic89], pages 137–140.

[Rei95] Christoph Reichenberger. VOODOO: A tool for orthogonal ver-

sion management. In Estublier [Est95], pages 61–79.

[Roc75] Marc J. Rochkind. The source code control system. IEEE Transac-
tions on Software Engineering, SE-1(4):364–370,December 1975.

[RS91] Anthony Rich and Marvin Solomon. A logic-based approach to

system modelling. In Feiler [Fei91b], pages 84–93.

[SAK90] Gerd Smolka and Hassan Aı̈t-Kaci. Inheritance hierarchies: Se-

mantics and unification. In Kirchner [Kir90], pages 489–516.

[SB95] Wilhelm Schäfer and Pere Botella, editors. Proc. 5th European
Software Engineering Conference, volume 989 of Lecture Notes
in Computer Science, Sitges, Spain, September 1995. Springer-

Verlag.

[SBK88] N. Sarnak, R. Bernstein, and V. Kruskal. Creation and maintenance

of multiple versions. In Winkler [Win88], pages 264–275.

[Sch95] Ulrik Schroeder. Inkrementelle, syntaxbasierte Revisions- und
Variantenkontrolle mit interaktiver Konfigurationsunterstützung.

PhD thesis, Technical University of Darmstadt, Germany, 1995.

In German.

[SGK+85] R. Sandberg, D. Goldberg, S. Kleiman, D. Walsh, and B. Lyon.

Design and implementation of the Sun Network filesystem. In

Proc. of the Summer 1985 USENIX conference, pages 119–130,

Portland, Oregon, June 1985.

280 Bibliography

[SGS91] Gregor Snelting, Franz-Josef Grosch, and Ulrik Schroeder. Infe-

rence-based support for programming in the large. In A. van Lam-

sweerde and A. Fugetta, editors, Proc. 3rd European Software En-
gineering Conference, volume 550 of Lecture Notes in Computer
Science, pages 396–408, Milano, Italy, October 1991. Springer-

Verlag.

[SM95a] Bradley D. Schmerl and Chris D. Marlin. Consistency issues in

partially bound dynamically composed systems. Technical report,

Department of Computer Science, Flinders University of South

Australia, 1995.

[SM95b] Bradley D. Schmerl and Chris D. Marlin. Designing configuration

management facilities for dynamically bound systems. In Estublier

[Est95], pages 88–100.

[Smo92] Gert Smolka. Feature-constrained logics for unification grammars.

Journal of Logic Programming, 12:51–87, 1992.

[Sne91] Gregor Snelting. The calculus of context relations. Acta Informat-
ica, 28:411–445, May 1991.

[Sne96] Gregor Snelting. Reengineering of configurations based on math-

ematical concept analysis. ACM Transactions on Software Engi-
neering and Methodology, 5(2):146–189, April 1996.

[Som96] Ian Sommerville, editor. Proc. 6th International Workshop on Soft-
ware Configuration Management, volume 1167 of Lecture Notes
in Computer Science, Berlin, Germany, March 1996. Springer-

Verlag.

[SS95] Sabine Sachweh and Wilhelm Schäfer. Version management for

tightly integrated software engineering environments. In Proc. of
the 7th international Conference on Software Engineering Envi-
ronments, Noordwijkerhout, Netherlands, April 1995. IEEE Com-

puter Society Press.

[Str94] Bjarne Stroustrup. The Design and Evolution of C++. Addison-

Wesley, Reading, Massachusetts, 1994.

[SUP+83] S. Shieber, H. Uszkorzeit, F. Pereira, J. Robinson, and M. Tyson.

The formalism and implementation of PATR-II. In J. Bresnan,

editor, Research on Interactive Acquisition and Use of Knowledge.

SRI International, 1983.

Bibliography 281

[TGC95] Eirik Tryggeseth, Bjørn Gulla, and Reidar Conradi. Modelling sys-

tems with variability using the PROTEUS configuration language.

In Estublier [Est95], pages 216–240.

[Tic81] Walter F. Tichy. A data model for programming support environ-

ments. In Proceedings of the IFIP WG 8.1 Working Conference
on Automated Tools for Information System Design and Develop-
ment, October 1981.

[Tic84] Walter F. Tichy. The string-to-string correction problem with block

moves. ACM Transactions on Computer Systems, 2(4):309–321,

November 1984.

[Tic85] Walter F. Tichy. RCS—A system for version control. Software—
Practice and Experience, 15(7):637–654, July 1985.

[Tic88] Walter F. Tichy. Tools for software configuration management. In

Winkler [Win88], pages 1–20.

[Tic89] Walter F. Tichy, editor. Proc. 2nd International Workshop on Soft-
ware Configuration Management, Princeton, New Jersey, October

1989. ACM Press.

[Tic94] Walter F. Tichy, editor. Configuration Management, volume 2 of

Trends in Software. John Wiley & Sons, Chichester, UK, 1994.

[Tic95] Walter F. Tichy. Software-Konfigurationsmanagement: Wie,

wann, was, warum? In Proc. Softwaretechnik 95, volume 15(3) of

Softwaretechnik-Trends, pages 17–23, Braunschweig, Germany,

October 1995. GI. In German.

[Tre96] Christina Trenkner. PUCK – Einbettung von arithmetischen Con-

straints in die Feature-Unifikation. Master’s thesis, Technical Uni-

versity of Braunschweig, Germany, 1996.

[vdHHW95] André van der Hoek, Dennis Heimbigner, and Alexander L. Wolf.

Does configuration management research have a future? In Es-

tublier [Est95], pages 305–310.

[vdHHW96] André van der Hoek, Dennis Heimbigner, and Alexander L. Wolf.

A generic, peer-to-peer repository for distributed configuration

management. In Proc. 18th International Conference on Software
Engineering, pages 308–317, Berlin, Germany, March 1996. IEEE

Computer Society Press.

282 Bibliography

[Wes91] Bernhard Westfechtel. Structure-oriented merging of revisions of

software documents. In Feiler [Fei91b], pages 86–79.

[WG95] Tim A. Wagner and Susan L. Graham. Dynamic configuration

abstraction. In Schäfer and Botella [SB95], pages 205–218.

[Whi91] David Whitgift. Methods and Tools for Software Configuration
Management. John Wiley & Sons, Chichester, UK, 1991.

[Wie93] Douglas Wiebe. Object-oriented software configuration manage-

ment. In Feldman [Fel93], pages 241–252.

[Wil95] Andrew Wiles. Modular elliptic curves and Fermat’s last theorem.

Annals of Mathematics, 141(3):443–551, 1995.

[Win87] Jürgen F. H. Winkler. Version control in families of large pro-

grams. In E. Riddle, editor, Proc. 9th International Conference on
Software Engineering, pages 91–105, Monterey, California, March

1987. IEEE Computer Society Press.

[Win88] Jürgen F. H. Winkler, editor. Proc. of the International Workshop
on Software Version and Configuration Control, Grassau, January

1988. Teubner Verlag, Stuttgart.

[WS95] Ian Warren and Ian Sommerville. Dynamic configuration abstrac-

tion. In Schäfer and Botella [SB95], pages 173–190.

[Xcc95] Xcc Software Technology Transfer GmbH, Karlsruhe, Germany.

RCE—Revision Control Engine: Introduction and Reference Man-
ual, 1995.

[Zie93] Marc Ziehmann. Unification of feature terms. Project report

CS680, University of Albany, New York, December 1993.

Abbreviations

API Application programming

interface.

AtFS Attributed file system.

ATP Automated theorem proving.

BCT Bound configuration thread.

CAD Computer-aided design.

CASE Computer-aided software

engineering.

CCB Configuration control board.

CD-ROM Compact disk read only

memory.

CM Configuration management.

CMA Configuration management

assistant.

CPP C preprocessor.

CR Change request.

CVS Concurrent versions system.

CoV Change-oriented versioning.

DBMS Database management system.

DCVS Distributed concurrent

versions system.

DCS Dynamically composed system.

DFG Deutsche

Forschungsgemeinschaft.

DNF Distributive normal form.

DOS Disk operating system.

DRCS Distributed revision control

system.

DVI Device-independent file.

EPOS Expert system for program and

(“og”) system development.

EFS Extensible file system.

EGA Enhanced graphics adapter.

FFS Featured file system.

FTP File transfer protocol.

GCC GNU C compiler.

GNU GNU’s not unix.

GUI Graphical user interface.

HICOV High-level extensions to

change-oriented versioning.

IBM International business machines.

283

284 Abbreviations

ICE Incremental configuration

environment.

ICICLE ICE integrated command line

engine.

IPSEN Integrated project support

environment.

LEX Lexical scanner.

MacOS Macintosh operating system.

n-DFS n-dimensional file system.

NUCM Network for unified

configuration management.

NFS Network file system.

NORA No real acronym.

NSE Network software environment.

PCL PROTEUS configuration

language.

PDG Program dependency graph.

PROLOG Programming in logic.

PSG Programming system generator.

RCE Revision control engine.

RCS Revision control system.

REGEX Regular expression.

SCCS Source code control system.

SCM Software configuration

management.

Tcl/Tk Tool command language

toolkit.

TTY Teletype terminal.

TWICE Tasks within ICE.

VOODOO Versions of outdated

documents organized

orthogonally.

VoV Version-oriented versioning.

WWW World wide web.

YACC Yet another compiler compiler.

Index

Symbols
+u (Aggregation), 105

(Agreement), 76

&& (AND), 184

n (Backslash), 192

? (Bottom), 74

f� � � g (Braces), 79

[� � �] (Brackets), 78

j: : :j (Cardinality), 87

� (Complement), 77

DI (Domain), 74

∆i (Delta), 115

δi (delta), 115

" (Disagreement), 76

" (Divergence), 76

== (Equal to), 184, 185

= (Equivalence), 85

$ (Equivalence), 80

9 (Existential quantification), 81

(Hash), 192

I (Interpretation), 74

! (Implication), 80

w (Inclusion), 85

�I (Interpretation function), 74

u (Intersection), 77

1 (Merge), 218

>< (Merge), 219

∇ i (Nabla), 115

! (NOT), 184, 187

!= (Not equal to), 184, 185

|| (OR), 184

%: (Percent), 192, see also #

??= (Question), 192, see also #

" (Quote), 185

’ (Quote), 185

: (Selection), 75

v (Subsumption), 85

> (Top), 74

t (Union), 78

ψ-term, 71

A
Abbreviations, 283–284
Abrahamsen, Per, 16
Absorption

of u and t, 79
of !, 80

Abstract syntax tree, 14, 17

merging changes in �s, 50
of feature terms, 195

Abstraction, 56, 249

Access control, 53, 59, 142
access feature, 107
Accounting

CM functionality area, 6, 53

Acronyms, 283–284
no real, 180

Activity, 19

ADA, 39
address feature, 96
ADELE, 59, 60

configuration rule, 26, 56
distributed CM, 52
variant identification, 13

age feature, 78
agent feature, 72
Aggregate, 22

Aggregation, 105

Agreement, 76, see also #
AIDE-DE-CAMP, 17

Aı̈t-Kaci, Hassan, 69, 71
Algebra

boolean �, 85

Alsaadi, Ahmad, 265

285

286 Ambiguity — CCB Index

Ambiguity, 56, 65
Ambition, 18, 25, 65
Ancestor, 117

and, 187, see also &&

and-then operator, 95
AND/OR graph, 22, 109
Anticipation of change, 249
Applications

of the version set model, 179–250
Arbiter, Petronius, 70
Architecture, 6

federated �, 59, 60
of SCM systems, 59–60

architecture feature, 240
Arithmetic

constraints, 96
in CPP, 185, 187

in version identification, 67, 68
solving � constraints, 219–220

implementation, 220
ASGARD, 19
Assignment, 74
Associativity

of u, 78
of t, 79

AtFS, 13

realization, 47
Atom, 75

ATP, see automated theorem proving
Attribute, 13, 28, 58, 260

�-value logic, 71
�s in a unified SCM model, 66
and relationship, 41
in ADELE, 26
in CAPITL, 40
in CMA, 34
in CPP, 15
in JASON, 29, 33
methodology

general rules, 97–99
in CAPITL, 40

propagation, 40–41, 66, 73
queries, 26

Attributed file system, see AtFS

Attribution scheme, 13

Audit and review
CM procedure, 5

Audit trail, 53
Auditing

CM functionality area, 6, 53
author feature, 77, 107, 108, 110, 183–185

AUTOCONF, 15, 265
Automated theorem proving, 164

B
Babel, Dirk, 235, 265
BACK, 68

Base version, 49
determining �, 154

Baseline, 113

component �, 17

configuration �, 25

BCT, see configuration thread, bound

Behavior differences in merging, 51
Bibel, Wolfgang, 165, 265

Bibliography, 269–283
Bill of material, 39

Binary pool, 41, see also Cache for derived
components

Binding, 29, 51

Binkley, David, 52
Borgida, Alex, 176

Bottom, 74, see also ?
Branch, 10, 48, 49

in CLEARCASE rule, 29

Brandes, Michael, 265
Bresnan, J., 71

bsd-regex feature, 136, 137
Build

software �, see construction
Build command file, 37

C
C, 15, 39

preprocessor, see CPP

C++, 15, 39

GNU �, 265
Cache

for derived components, 41

CAD, see computer-aided design
CAPITL, 66, 97

versioned software build, 40–41
virtual file access, 46

Cardinality, 87
Casallas, Rubby, 11, 54

Case studies, 237–246

Index Change — Concurrency control 287

CCB, see configuration control board
Change

�s vs. revisions, 113–139
and configuration, 137–138
and other features, 136–137
anticipation of �, 249
committing �s, 151

control, 10, 53, 60
extrinsic, 138
history, 53
intrinsic, 138
log, see change history
orthogonal �, 134–136
propagation, 5, 18, 19, 25, 53, 56

across sites, 52
across workspaces, 43, 149

bypassing the SCM system, 45
in abstract syntax trees, 50

request, 18, 53, 60
set, 5, 17, 60

change-41 feature, 97
change-42 feature, 97
Change-Oriented Model, 5, 9, 17–20, 36,

136, 248
configuration rules, 26
in distributed SCM, 52
version identification, 12
vs. version-oriented models, 56–57

Checkin, 5, 9, 44, 60
Checkin/Checkout Model, 5, 9, 20, 44
Checkout, 5, 9, 44, 60

CLASSIC, 68
Classification

faceted �, 97
CLEARCASE, 55, 138

change impact analysis, 39
configuration rule, 28
cooperation strategy, 48
revision numbering, 12
variant identification, 12
versioned software build, 39
virtual file access, 46

realization, 47

CLEARMAKE, 39
CM, see configuration management
CMA, 33
Code

as component attribute, 40
Coherence, see consistency

Cohesion, 249
color feature, 86
colors feature, 94, 95, 99
Colton, Charles Caleb, 20
Command shell, see shell
Comment

around CPP directives, 192
in CPP directives, 192, 193

commit operation, 151

Committing changes, 151

Commutativity
of u, 78
of t, 79

Comparison
of text files, 13

Compilation
conditional �, 15

Complement, 72, 77, see also �
Completeness, 3, 5
Complexity, 161–176

and consistency, 248
and versioning dimensions, 248
of version selection, 247–248

Component, 4, 9, 21, 91

abstract �, 92

as union of its versions, 93
bound �, 92

dependency, 37

derived �, 23
derived �, 34, 37, 37, 45, 66

caching, 41
features, 110–111

features of derived �, 110–111
generic �, 22, 92, see also component,

abstract
optional �, 109
relationship, 21–24
status, see status
unambiguous �, 92, see also

component, bound
version, 92

Components
CM functionality area, 6, 9–20

Composite pattern, 195
Composition Model, 5, 21, 35–36, 44
Computer-aided design, 15
Concept description, 68, 71, 111
Concurrency control, see cooperation

strategy

288 concurrent feature — Consistency Index

concurrent feature, 110, 173, 174
Concurrent Versions System, see CVS

Conditional compilation, 15

Configuration, 5, 24–32, 101–112
abstract �, 25, 29, 55–56, 73, 108

ambiguity in �, 108–109
and revision, 137–138
as first-class object, 109
baseline, 25

bound �, 25, 108

consistent �, 108

constraint, 138

complexity, 248
in EPOS, 31
in JASON, 33

context, see context
control board, 18, 53
current �, see currency
dynamic �, 25, see also abstract �
family, 25, see also abstract �
features, 103
file, 15

formal �, 108

generic �, 25, 56, 108

item, 4, see also component
language, 29

management, see below
object, 4, see also component
partially bound �, 25, see also

generic �
rule, 21, 25, 33, 95
set, 65–66
source �, 110

tagging �, 25–26, 138, 147–148
template, 25, see also abstract �
thread

bound �, 39

types, 25
visualizing �, 31–32, 58

Configuration management, 3–61

architecture of � systems, 59–60
distributed �, 52–53, 147
functionality areas, 6, 9–54

accounting, 6, 53
auditing, 6, 53
components, 6, 9–20
construction, 6, 37–42
controlling, 6, 53–54
process, 6, 54

process-centered, 6, 53
structure, 6, 21–36
team, 6, 43–53
team-centered, 6

future requirements, 55–61
model, 9, 58

unified �, 58, 60–61
models, 5–6

change-oriented, 5, see also
Change-Oriented Model

checkin/checkout, 5, see also
Checkin/Checkout Model

composition, 5, see also
Composition Model

long transaction, 6, see also Long
Transaction Model

network for unified �, see NUCM

object-oriented �, 29

policy layer, see policy layer
primitives layer, see primitives layer
procedure, 4

procedures, 4–5
audit and review, 5
control, 4
identification, 4
manufacture, 5
process management, 5
status accounting, 4
team work, 5

protocol layer, see protocol layer
software �, 4

Configuration Management Assistant, 24,
see CMA

Confinement, 141

Conflict, 19, 49
in abstract syntax trees, 50

Conflict resolution, 43, 49–52
in ICE, 218–219

Confucius, 182
CONGRESS, 69
Conradi, Reidar, 57
Consistency, 3, 5, 24, 32–35, 65, 72

and complexity, 248
constraint, 33
external �, 33

in configurations, 108

in feature logic, 86

in structure editors, 17
internal �, 34, 51

Index Consistency (continued) — DFG 289

of abstract configurations, 56
Constant, 72

Constraint, 161
consistency �, 33
locking �, 147
revision �, see revision constraint

Construction, 5, 182
CM functionality area, 6, 37–42
management, 3

Conte, Mike, 213, 235
Contents

as component attribute, 40
Context, 141

Context model, 26

Context relation, 51
Continuation line, 192
Control

CM procedure, 4

Controlling
CM functionality area, 6, 53–54

Cooperation strategy, 43, 48, 48–49
conservative �, 48, 147–153
optimistic �, 48–49, 154–158, 180

Cooperative versioning, 10, see also
workspace

Copying
to-and-fro, 44

Correctness
static �, 32, 34

syntactic �, 32, 35

Coupling, 248
CPP, 10, 15–16, 20, 55, 56, 65, 67, 176, 179

as standard for ICE, 180–181
directives, 187–191

creating �, 203–212
#define, 190

#elif, 188

#else, 188

#endif, 188

#error, 189

#if, 188

#ifdef, 188

#ifndef, 188

#line, 191

#pragma, 191

#undef, 190

expressions, 184–187
parse-edit-mode, 16
variant identification, 13

vs. ICE, 200
CR, see change request
Create

operation on version sets, 212
Currency, 46, 145–146

maintenance, 138, 145

current feature, 96, 138, 145, 146, 150–158,
226

Cusumano, Michael A., 213, 235

CVS, 156, 245
configuration, 26
cooperation strategy, 48

distributed �, 52
workspace, 44

Cyclic terms, 40

D
Dart, Susan, 6, 53
data feature, 110, 173, 174

Database
graph �, 15
query, 27–28

relationship, 22–24
repository, 15

DCS, see dynamically composed system
DCVS, 52

De Morgan’s laws, 79
Default, 27, 96

operator, 95

#define directive, 190

Delta, 14, see also Difference, 57, 259
reverse �, 14

Delta feature, 115

Delta set, 115

demo feature, 151, 152, 156
Dependency

component �, 37

depth feature, 97, 98
Derivation, 23, 110, see also component,

derived, 110, see also
construction

history, 39, 40
Descendant, 117

Description logic, 40, 68
Deutsche Forschungsgemeinschaft, 265
Device driver, 47
device feature, 112

DFG, 265

290 DIFF — Feature Index

DIFF, 13, 17, 20, 245
GNU �, 213, 265
in ICE, 200–203

DIFF3, 49
Difference, 14, 41

behavior �, 51
between non-text files, 13–14

between text files, 13

in ICE, 200–203
tree �, 51
version �, 13–14

Dijkstra, Edsger W., 20
Dimension, see versioning dimension
Directory

versioned �, 223–225

virtual �, 229
Disagreement, 76, see also "
Disjointness, 86

Disjunctive normal form, 85, 162
Distribution

of u and t, 79
Divergence, 76, see also "
Divide-and-conquer, see orthogonality
DNF, see disjunctive normal form
DRCS, 52
drive-speed feature, 102, 103

Düning, Lars, 195, 213, 265
Dynamic

version creation, 96–97, 135
Dynamically composed system, 25, 56

E
Eaton, David W., 54
Economy

in ICE, 180–181

Editor
multi-variant �, 16–17, 20, 56

EFS, 46
realization, 47

#elif directive, 188

#else directive, 188

EMACS, 17
Emerson, Ralph Waldo, 250

Encoding
as-is �, 194
binary �, 193–194
C �, 192

dynamic �, 194, 235

of CPP files, 191–194
text �, 192–193

#endif directive, 15, 188

Ends
odds and �, 251–284

Entity-relationship

model, 15
Environment aspect, 39
Epicurus, 87

EPOS, 17, 59

Equivalence
feature �, 80, see also $
term �, 85, see also =

#error directive, 189

Estublier, Jacky, 11, 54, 58
Evaluation

partial �, 169, see also Feature term,
partial evaluation

Existence, 75

Existential quantification, 81, see also 9
Extensible file system, see EFS

External consistency, 33

F
Faceted classification, 97
Family

of products, 6

FAQ, see frequently asked questions
Fault, 18, 53
Favre, Jean-Marie, 7

Feature, 69, 72, 74

algebra, 74

assignment, 74

completion, 231–232
constraint, see constraint
delta �, 115

dependent, 102, see also feature,
extrinsic

directives, 184
extrinsic �, 102, 102–105
independent, 102, see also feature,

intrinsic
interpretation, 74

intrinsic �, 102, 105–108
logic, v, 65–87

evolution, 71
overview, 72–73

of component, 91–93

Index Feature (continued) — History 291

in ICE, 189
of configuration, 101–112
of derived component, 110–111
of version, 91–93, 97–99

in ICE, 189
path, 167
provided �, 102
required �, 102
rules for assigning �, 97–99
set-valued �, see role
term, see below
unification, 101, 161–175

example, 163–164
speeding up �, 164–175

Feature logic, 69
Feature term, 71, 72, 74

basic �, 84

closed �, 84

coherent �, see consistent
consistent �, 86

disjoint �, 86

equivalent �, 85

implementation, 195
in DNF, 85

orthogonal �, see orthogonality
partial evaluation, 167–175
primitive �, 84

quantifier-free �, 84

reduction �, 164–165
representation, 183–195

ASCII �, 184
CPP �, 184–187

simple �, 85

Featured file system, see FFS

Federated architecture, 59, 60
Feiler, Peter H., 5, 58
Feldman, Stuart, 38
Fergany, Adel, 33
Fermat’s last theorem, 67

FFS, 180, 223–235, 265
File

encoding, see encoding
filter, 230

File system
attributed �, see AtFS

extensible �, see EFS

featured �, see FFS

virtual �, 45–48, 223
operating system interface, 246

realization, 47–48
First-order logic, 68, 71

Fischer, Bernd, 73, 265

fixed feature, 96
Form

as component attribute, 40
Foundation layer

ICE �, 181
Fowler, Glenn, 46

Frame, 68

Free Software Foundation, 265
Frequently asked questions, 257–262

Frost, Robert, 262
fruit feature, 86, 92

Functionality

as component attribute, 40
Funk, Petra, 265

G
Geneen, Harold, 99

Generalization, 56, 249

Gentleman, W. Morven, 55
Ghezzi, Carlo, 246

GNU

C++, 263, 265

DIFF, 213, 265
EMACS, 17

MAKE, 38, 241, 265

REGEX, 136
Government, 188

Graph
database, 15

revision �, see revision graph

version �, see version graph
Grosch, Franz-Josef, 265

Gulla, Bjørn, 31, 58
Gunter, Carl, 41

H
have-srand feature, 189
have-srandom feature, 189

hcx feature, 198, 199
Heimbigner, Dennis, 60

Hesse, Hermann, 262

HICOV, 19, 57
Historical versioning, 9

History

292 Horwitz, Susan — Lattice Index

derivation, see derivation history
Horwitz, Susan, 51

host-arch feature, 163, 164

I
Ibsen, Henrik, 180
ICE, vi, 179–250

architecture, 181–182

case studies, 237–246
conflict resolution, 218–219
distribution, 263

foundation layer, 181
inference engine, 213
layers, 181–182

library, see LIBICE

MAKE, 180, 265
merging, 218–219

implementation, 220
obtaining �, 263
performance, 237–246

policy layer, 182
primitives layer, 181, 223–224, 235
properties, 179–180

protocol layer, 182
specifying file features, 189
standards, 180–181

version set access
using ICICLE, 215–220
using the FFS, 223–235

version set operations, 197–221
version set representation, 183–195
virtual file system, see FFS

ICICLE, 215–220
vs. FFS, 223

Idempotency

of u, 78
of t, 79

Identification, 3, 66

CM procedure, 4

of merged versions, 155–156
revision �, 11–12

variant �, 12–13
version �, 11–13
vs. selection, 67

#if directive, 15, 188

#ifdef directive, 188

#ifndef directive, 188

Implication, 80, see also !

Inclusion, 85, see also w
Incremental configuration environment, see

ICE

Infimum, see lattice
Inheritance, 29, 57, 65, 259
Instantiation, 81
Integration, 58

change �, 49, see also merging
of SCM system, 43
program �, see merging,

semantics-based
Internal consistency, 34, 51
Interpretation function, 74

Intersection, 72, 77, see also u
IPSEN, 50

consistency check, 35
database, 15
interactive variant selection, 17

is-a-part-of feature, 22
Isbell, Charles, 112
Item

configuration �, 4, see also component

J
JASON, 26, 29, 33, 67, 176
Jaspers, Karl, 159
Jazayeri, Mehdi, 246
Johnson, M., 71

K
Kaplan, R. M., 71
Karr, Alphonse, 159
Kasper, R. T., 71
Katz, Randy H., 22, 255
Kay, M., 71
kernel file feature, 239
Kidder, Tracy, 146
Kielmann, Thilo, 40
knowledge representation, 68
Knuth, Donald, 265

K-REP, 68
Krinke, Jens, 265

L
Lacroix, Maurice, 27
Lamport, Leslie, 265
LATEX, 265

Index Lattice (continued) — Network 293

Lattice
revision �, 121

subsumption �, 86, 121
Lavency, P., 27
Laws

of assembly, 112
of computer programming, 139

Leblang, David, 263

Level number, 12

LEX, 195
Lexical-functional grammar, 71

LIBICE, 215
vs. FFS, 223

Library

system �, 47
LIFE, 69
Lindig, Christian, 265

#line directive, 191

Linguistics, 71
Link

symbolic �, 228
linkage feature, 109, 137
LINUX, 234

Localization, 56, 249
locked feature, 147, 148, 151–153
Locking, 44, 48, 59, 148, 147–148, 182

constraint, 147
Logic

description �, see description logic

feature �, see feature logic
first-order �, see first-order logic
predicate �, see predicate logic

propositional, 162
terminological �, see description logic

Logical versioning, 10

LOGIN, 69
Long transaction, 43, see also workspace
Long Transaction Model, 6, 47

LOOM, 68
Lukowicz, Paul, 179

M
Machine

virtual �, 61

MacOS, 227
Mahler, Axel, 36, 61
Maintainability, 248–249

MAKE, 38–39

as standard for ICE, 180–181
GNU �, 241, 265

ICE �, see ICE MAKE

Makefile, 38

versioned �, 193

Management issues
in CM, 53

Manandhar, Suresh, 111

Mandrioli, Dino, 246
Manufacture

CM procedure, 5, see also
construction

Marlin, Chris D., 56
Matrix notation, 77
McGuinness, Deborah L., 112

Mende, Andreas, 220, 265
Merge rule, 50
Merged version, 49

Merging, 49–52, 57, 259
identification, 155–156
in ICE, 218–219

implementation, 220
semantics-based �, 51–52
syntax-based �, 50–51

textual �, 49, 180
Microsoft, 213, 235
MISTRAL, 52

MJØLNER, 51
Modularity

in system modeling, 22
mood feature, 78
MULT reduction, 165

Multi-site development, 52–53, 147
Multi-variant editor, 16–17, 20, 56
Multiple dimensional file system, see n-DFS

MULTISITE, 52, 147
Munch, Bjørn, 19

MVPE, 16

N
n-DFS, 46, 49, 235

realization, 47
Nabla set, 115

Narayanaswamy, K., 17
Network

file system, see NFS

for Unified Configuration
Management, see NUCM

294 Network (continued) — Program Index

software environment, see NSE

Neutral element

respective to u, 78
respective to t, 79

NFS, 47, 233

Nicklin, Peter, 26

NORA, 180
not, 187, see also !

not eq, 187, see also !=

NSE, 47
cooperation strategy, 49

realization, 47

NUCM, 53, 147
num feature, 72

O
Object

configuration �, 4, see also component
pool, 11, 41, see also Cache for

derived components
object, 91

object feature, 72, 91–98, 101, 102,
105–112, 118, 136, 137,
143–145, 148, 149

Object-oriented

SCM, 29

system design, 25

system modeling, 22
unified SCM model, 66

Odds

and ends, 251–284
ODIN, 39
operating-system feature, 77, 79, 98

Operation context, see context
Option, 26

space, 26

or, 187, see also ||

or-else operator, 95

Origin, 117

Orthogonal
changes, 135

version management, 11

Orthogonality, 166

deciding �, 166–167

os feature, 72, 96, 101, 104, 138, 143–145,
155, 169, 173, 174, 198, 199,
227

Outdating, 145, see also currency

P
Parameterization, 56, 249

passengers feature, 82, 83

PATCH, 17

Patch, 17, see also change set, 17, see also
change

PATR-II, 71

PCL, 29–30

PDG, see program dependency graph

P-EDIT, 16

Performance, 237–246

Permanent variant, 10

person feature, 72

Pfohl, Olaf, 234, 265

PLAKON, 68

planes feature, 99

Ploedereder, Erhard, 33

POL, 40

Policy layer

CM �, 60, 97

ICE �, 182

posix-regex feature, 136, 137

#pragma directive, 191

predicate feature, 72

Predicate logic, see first-order logic

Preference, 27, 96

in SHAPE, 27

in database queries, 27–28

operator, 95

Primitives layer

CM �, 59, 138

ICE �, 181, 223–224, 235

Prins, Jan, 51

print-language feature, 92–95, 98

Problem report, 53

Procedure

CM �, see configuration management
procedure

Process, 5, 58–60

�-related CM functionality areas,
53–54

CM functionality area, 6, 54

management, 3

CM procedure, 5

Product, 21, see also system, 91

Production

workspace, 150

Program

Index Program (continued) — Revision set 295

dependency graph, 51
integration, see merging,

semantics-based

slice, 51
Project, 146

project feature, 146, 147
Projection

object pool �, 11
PROLOG

�-like configuration rules in SHAPE,
27

ancestor of LOGIN and LIFE, 69

using � for software construction, 40
propagate operation, 149

Propagation

attribute �, see attribute propagation
change �, see change propagation

PROTEUS, 29–30
Protocol layer

CM �, 60, 97, 138
ICE �, 182

Provenance
as component attribute, 40

Proxy pattern, 195
PSG, 51

consistency check, 35
interactive variant selection, 17

ψ-term, 69
Publications, 268–269

Q
Quality assurance, 60
Query

database �, 27–28
version graph �, 28

Questions
frequently asked �, 257–262

R
RATIONAL, 39

virtual file access, 46

Raymond, Eric, 221

RCE, 31, 47
RCS, 9, 10, 60, 241

configuration, 25
cooperation strategy, 48

distributed �, 52

internal organization, 136
repository, 14
revision numbering, 12

Read
operation on version sets, 212

READLINE, 265
Record structures, 69
reduce function, 169–170
Reduction, 164, see also feature term

reduction
References, 269–283

as component attribute, 40
Refinement, 118

Regular expression, 136
Reichenberger, Christoph, 11
Relationship, 66

and revision, 136–137
version �, 15, 21–24, 58, 259
vs. attribution, 41

Release, 4
number, 12

Remove
operation on version sets, 212

Repository, 5, 9, 14–15

distributed �, 52
evolution, 131–134

Reps, Thomas, 51
Resnick, Lori Alperin, 112
resolution feature, 102, 103
Restructuring, 249
Reverse delta, 14

Revision, 9, 118

�s vs. changes, 113–139
adding �, 131–134
and configuration, 137–138
and relationship, 136–137
and variant, 136–137
constraint, 119–128, 136

maintenance, 131–134
date, 12

graph, 113–115
history, 10
identification, 11–12
lattice, 121
number, 11

removing �, 134
Revision control engine, see RCS

Revision Control System, see RCS

Revision set, 118

296 Rochkind, Marc — System Index

Rochkind, Marc, 9
Role, 68, 111
Rounds, William C., 71

S
Satisfiability problem, 162
SCCS, 9, 10, 241

configuration, 25
cooperation strategy, 48
repository, 14

revision numbering, 12
vs. ICE, 200

Schmerl, Bradley R., 56

Schroeder, Ulrik, 51

SCM, see software configuration
management

screen-data feature, 110, 173, 174, 190

screen-device feature, 110, 173, 174, 231
screen-type feature, 104, 110, 173, 174, 190
Search path

in the version graph, 28–29

Selby, Richard W., 213, 235
Selection, 75, see also :

version �, see version selection

vs. identification, 67
Service

in multiple dimensional file system, 46

SHAPE, 47
preferences, 27
variant identification, 13

versioned software build, 39
virtual file access, 45, 46

Shell, 215–220

Shieber, Stuart, 71
Simplex method, 96, 220
simplify function, 169–170

site, 147

SKATE, 232–233, 265
Slice

program �, 51
Slot, 72
Smolka, Gerd, 70, 71, 111

Snelting, Gregor, i, 265
Software

builds, see construction
component, see component

configuration management, see
configuration management

engineering
environment, 15, 45
principle, 56, 249

item, 21
process, see process
product, see product
subsystem, 21

system, 21

Sommer, Thorsten, 265
Sommerville, Ian, 129
Soul of a new machine, 146
Source Code Control System, see SCCS

Stahl, Ragnar, 265
Standard

company �, 60
industry � in ICE, 180–181
SCM �, 4

Static correctness, 32, 34

Statistics, 4, 6
Status, 4, 28, 53, 77, 79, 105

accounting
CM procedure, 4

in ADELE, 26
in SHAPE, 27
maintenance, 138
product �, 3

status feature, 77, 79, 138
Stroustrup, Bjarne, 15, 195
Structure, 4

CM functionality area, 6, 21–36
subject feature, 72

SUBS reduction, 165
Subsumption, 85, see also v

lattice, 86, 121
Subsystem

software �, 21

Successor, 117

sun feature, 239

SunOS, 109
Super-technical thing, 235
Supremum, see lattice
synchronize operation, 155

Synchronizing workspaces, 149, 155

Syntactic correctness, 32, 35

Syntax tree
abstract �, see abstract syntax tree

System
dynamically composed �, 25, 56
software �, 21

Index System library — Version 297

System library, 47
System model, 5, 18, 21, 109

SCM-specific �, 21–24

sysv-regex feature, 136

T
Tag

configuration �, see configuration
tagging

Tagging

configurations, see configuration
tagging

target-arch feature, 163, 164

TAUT reduction, 165
Team

�-related functionality areas, 9–53
CM functionality area, 6, 43–53

modeling �s, 146
team feature, 146

Team work, 3

CM procedure, 5

tense feature, 72

Terminological logic, see description logic
tested feature, 75, 118, 189

TEX, 265
Text difference, see Difference

Thread
version �, 31

Thue system, 162

Tichy, Walter, i, 9
To-and-fro copying, 44

Top, 74, see also >
Transaction

long �, 43, see also workspace
Trenker, Christina, 265

Trenkner, Christina, 220

Tryggeseth, Eirik, 57

TWICE, 180

U
#undef directive, 190

Unification, 67
boolean �, 68

feature �, see feature unification

Unified configuration management
model, 60–61

network for �, see NUCM

Union, 72, 78, see also t
unix-flavour feature, 96

Unlocking, 148

update operation, 150

Updating user workspaces, 150

use-srand feature, 189
user feature, 142–152, 154–156, 169, 218,

219, 226, 227

V
van der Hoek, André, 60

Variable, 72, 75

free �, 75
Variance, 10

managing �, 15–17
Variant, 10, 118

and revision, 136–137
dimension, 10, 13, 98
heuristic to find best-fitting �, 56

identification, 12–13
interactive � selection, 17
managing several similar �s, 15–17,

20, 55–56

permanent �, 10, 56
identification, 12
using conditional compilation, 16

temporary �, 10, 48, 49, 56, 149, 154
for concurrent development, 48
for cooperation, 48

for multi-site development, 52
identification, 13

Variant set, 118

Venn diagram, 93
verb feature, 72

Version, 5, 9, 92

access
explicit �, 45–46, 225

implicit �, 46–47, 225
in virtual file system, 45–47

base �, 49

component �, 92

current �, see currency
default �, see default

differences, 13–14
dynamic � creation, 96–97, 135
graph, 10, 10, 12, 19, 31, 57, 113, see

also Revision graph

query, 28

298 Version (continued) — Ziehmann, Marc Index

search path, 28–29

history, see revision history
identification, 11–13, 91–93

in ICE, 189
kinds, 10
merged �, 49
planned �, 56, 113
preferred �, see preference
relationship, 15, 21–24, 58, 259
selection, 72, 93–96

caveats, 94
complexity, 247–248
in ICE, 197–200
incremental �, 95, 229–233
interactive �, 182

set, see below
shortcut, 227–228
space, 31, 58, 260
specification, 45
thread, 31
unplanned �, 56, 113

Version set, v, 65–66, 92

accessing �
using ICICLE, 215–220
using the FFS, 223–235

changing �, 200–212
creating � as file, 212
file operations, 212
model, 91–159

applications, 179–250
operations on CPP files, 197–221
reading � as file, 212
removing � as file, 212
representation as CPP file, 183–195
selection, 197–200
writing � as file, 200–212

Versioning
cooperative �, 10, see also workspace,

141
dimensions, 9–11

complexity, 248
implications between �, 136

historical �, 9, see also revision
logical �, 10, see also variant
models, 10–11, 57–58
orthogonal �, 11

View
repository �, 47

Viewpathing, 49, 234

Visualization
of configurations, 31–32, 58

VOODOO, 11

W
Watermann, Rolf, 265
Westfechtel, Bernhard, 50
what feature, 72
wheels feature, 82, 83
Whitgift, David, 56
Wildcard

in CLEARCASE configuration rules,
28

Wolf, Alexander L., 60
Word problem, 162
Working context, 142, see also Workspace
Workspace, 6, 43–48, 60, 142, 141–159

as private directory, 44
in the FFS, 223, 226–228
production �, 150

realizing �

through application interface, 45
through virtual file system, 45–48

synchronizing �, 149, 155

updating �, 150

wormy feature, 86
Write

operation on version sets, 212

X
x-resolution feature, 97, 98
XCON, 68

Y
y-resolution feature, 97, 98
YACC, 195

Z
Zeller, Andreas, 77, 267–269
Zero element

respective to u, 78
respective to t, 79

Ziehmann, Marc, 213, 265

