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Abstract. The penalties for configuring VLSI arrays for yield enhancement are assessed. Each dement 
of the fabricated array is assumed to be defective with independent probability p. A fixed fractmn R of 
the elements are to be connected into a prespecified defect-free configuration by means of switched 
interconnections. The probability that this can be done, known as the yield, must be bounded away 
from zero. The additional interconnections required increase the integrated circuit's area by the area 
overhead ratio AOR. Propagation delay is determined by the maximum connection length d. The 
following results are shown. Connection of RN fixed pins to distinct nondefective elements from an N- 
element linear array requires d = O(log N), AOR = O(log N). Connection of RN pairs of elements from 
two N-element linear arrays requires only constant d and AOR. Connection of a chain ofRN 2 dements 
from an N x N array requires only constant d and AOR; this result is closely related to the percolation 
model of statistical physics. Connection of a V'-RN x d'-RN lattice from an N x N array requires d = 
[~( IV]-~ N). Algorithms are presented that connect any fraction R < I - p of the dements with yield 
approaching one as N increases. 

Categories and Subject Descriptors: B.7.1 [Integrated Circuits]: Types and Design StylesDVLSI (very 
large scale integration); B.7.3 [Integrated Circuits]: Reliability and TestingDredundant design; F.2.2 
[Analysis of Algorithms and Problem Complexity]: Nonnumerieal Algorithms and Problems~routmg 
and layout 

General Terms: Algorithms, Design, Reliability, Theory 

Additional Key Words and Phrases: Circuit area, fault tolerance, percolation theory, probabilistic 
analysis, queuing processes, systolic arrays, wafer-scale integration, wire length 

1. Introduct ion 

As the  size a n d  c o m p l e x i t y  o f  very-large-scale  in tegra ted  (VLSI)  circuits  grow, 

e c o n o m i c  yields can  be  m a i n t a i n e d  by  conf igur ing  each  circui t  a r o u n d  fabr ica t ion  

defects.  M e m o r i e s  a n d  processor  a r rays  are  par t icular ly  well  sui ted to  this t echn ique  

because  they  have  regular  l ayouts  a n d  in te rchangeable  e lements .  T h e  t echno logy  

for  conf igurable  circuits  is well  deve loped ,  hav ing  a l ready f o u n d  c o m m e r c i a l  

app l ica t ion  in 6 4 K  R A M s  tha t  inc lude  spare  rows  a n d  c o l u m n s  [25]. In tegra ted  

switches tha t  can  be  p e r m a n e n t l y  o p e n e d  or  d o s e d  b y  a laser [17, 21, 25], a n d  

even  nonvola t i l e  electr ically r e p r o g r a m m a b l e  switches  [14, 23] have  been  fabri-  

cated.  These  t echn iques  are  be ing  used  to  deve lop  m e m o r y  sys tems  tha t  o c c u p y  an  

ent i re  si l icon wafer  [14] and  " re s t ruc tu rab le"  wafer-scale  p rocessor  a r rays  [ 17]. 

T h e  i m p r o v e m e n t  in yield ob t a ined  c o m e s  a t  the expense  o f  ove rhead  area,  

occup ied  by  the  switches a n d  ex t ra  in te rconnec t ions ,  a n d  an  increase  in signal 
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FIG. I. A linear array of N = 12 elements after fabrication and testing. 

A switch node (omitted for clarity) is provided at every point where 
tracks meet. 
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FIG. 2. Connection of a chain of K = 6 elements. The thick lines 

indicate the electrically connected segments of the wiring tracks. 

propagation delay. Also, determining the switch settings may entail a nontrivial 
computation. In this paper, we investigate these penalties for several regular array 
configurations. Bounds on the severity of the penalties as a function of array size 
are derived, and algorithms for configuring the circuit are given. Our approach is 
best iUustrated through the following simple example. 

A linear array of K identical processors, connected in a chain, is to be imple- 
mented on a single integrated circuit. Assume that each processor, or more 
generally, circuit element, has an independent probability p of being defective and 
l - p of being active. Then the yield, or probability that a circuit is functional, is 
(1 - p)r,  approaching zero exponentially as K increases. 

To prevent the yield from approaching zero, the number of elements on the 
circuit is increased to N = K/R for some R < l - p, and switch nodes are provided 
to insert the elements in the chain. (See Figure 1.) After manufacture, the elements 
are tested. If the number of active elements is less than K, the circuit must be 
discarded. Otherwise, K elements can be connected as shown in Figure 2. Since 
R < l - p, the probability that the circuit has sufficient active elements approaches 
l exponentially as N increases. In this example, only one track is required in each 
wiring channel and so the overhead area is a constant times N. 

Unfortunately, signals from one dement  to another can now encounter addi- 
tional propagation delay since the connections between elements are longer than 
before. (The exact relationship between wire length and delay is not important 
here. See [2] for the details of this question.) Suppose that the maximum tolerable 
connection length is fixed at d, where the elements are spaced two units apart (to 
allow space for the vertical tracks). There are fewer than N elements at which to 
start a chain, probability 1 - p that the first element is active, and probability at 
most 1 -- pal~2 that each connection can reach the next active element under the 
length constraint. Thus the probability that a chain can be connected is less than 
N(1 - p)(l - pd/E)K-i < N exp(--Kpd/2). This approaches zero as K increases unless 

the size of the circuit, N, grows exponentially with K- -a  very unsatisfactory 
situation. 

We require here and throughout that the fraction of elements connected, R, 
must be held constant as N grows. Then the only way to maintain good yield is to 
permit d to grow with N. For fixed R < l - p and arbitrarily large N, it is easily 
shown that d = 2 + 4 log N/(- log p) permits connection of the chain with 
probability at least 1 - N-L 
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Our analysis is based on two assumptions: 

(1) The interconnect is defectfree. Since the interconnect requires fewer fabrication 
steps than the active circuitry and is not affected by variations in electrical 

parameters such as threshold voltage or leakage, defects in the interconnect are 
of secondary concern. 

(2) Defects are independent and identically distributed. Though perhaps not 
completely accurate, this assumption does not seem to greatly limit the appli- 
cation of our results. It is unlikely that a single point defect would cause more 
than one element to fail, since the affected area is usually small compared with 
the size of  an element. 

For further discussion of these assumptions, see [9]. 
In the following section, we define four configuration problems for one- and 

two-dimensional arrays and state the main results of  this paper. In Sections 3-6 

we give the proofs of the results, including linear-time algorithms for programming 
the switches. Simulation data are also presented. In Section 7 we discuss some 
previous work, our results, and open problems. 

2. Problem Definitions and Results 

Except as noted, we assume the following wiring model. The elements are posi- 
tioned in a linear or rectangular array. The region between two rows or columns 
of elements is known as a channel. Some number t of wiring tracks are positioned 
in each channel. For simplicity, we assume that tracks and elements are spaced at 
unit length intervals. (The model can be modified to accommodate elements of 

constant area more than l without affecting the order of growth of the bounds 
obtained.) Each track represents a physical signal path (or set of  paths). At each 
point where tracks cross, a switch node is provided. After manufacture, the switch 
can be set so as to connect either or both of the crossing tracks in any way, 
including a crossover or two knockknees. (See Figures 3-6.) (Although crossovers 
are permitted, they are not necessary for any of our schemes.) Each resulting 
electrically connected path between elements is called a connection, and its length 
must be no greater than the maximum connection length d. The area overhead 
ratio (AOR) is defined as the total area of the circuit divided by the number of 
elements. It is determined by the number of  tracks per channel and by the layout 
of the array. 

A useful circuit results if the switches can be set to connect a fixed fraction tR 
of the total number of elements into some prespecified configuration, using only 
the tracks provided and without violating the length constraint d. The yield is the 
probability that the defects occur in such a way that this is possible. We are 
interested in finding the minimum order of growth of d and AOR needed to 
prevent the yield from approaching zero as the array size increases. 

Let O(.) denote an upper bound, O(. ) an exact bound, and fl(. ) a lower bound, 
all to within a constant factor. Our results are: 

Section 3. The connection of a linear array of K = RN fixed input/output pins 
(or ports) to distinct, active elements from a parallel N-element array is to be 
accomplished by means of a channel containing t wiring tracks between the pins 

To avoid divisibility problems, we assume that R is rational. This assumption incurs only a minor loss 

of generality since, to the authors' best knowledge, no circuit has ever contained an irrational number 

of components. 
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FIG. 3. A section of a selector. K f f i  (2/3)N and t ffi 3 wiring tracks are 
provided. 
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FIG. 4. Pairwise connection of  

two linear arrays of N = 12 ele- 

ments. 
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FIG. 5. Connection of a chain Flo. 6. Connection ofa  3 x 3 

of K = 11 elements from a square lattice from a 4 x 4 at- 

4 x 4 array, ray. 

and the array. We term this arrangement, shown in Figure 3, a selector. Theorem 
1 states that unless d --- f/(log N) and t = f~(log N), for an AOR -- fl(log N), 

the yield approaches zero. This is due to the fact that the array contains a run of 
O(log N) consecutive defects with probability 1 - O(N-1). The proof of  Theo- 

rem 2 describes a queuing scheme that achieves these bounds for any R < 1 - p 
with yield approaching 1. 

Section 4. The connection of K pairs of  active elements from two parallel N- 

element arrays, shown in Figure 4, is surprisingly easier than the task of  the selector. 

A run of defects does not necessarily cause a problem here because there are no 
fixed pinsqalternate pairs of elements can be connected from other parts of  the 
array. The proof of Theorem 3 describes a scheme with constant d, t, and AOR 
that achieves yield 1 - O(N-~). 
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Section 5. The connection of  a chain of  K = RN ~ elements from an N x N 
array, as shown in Figure 5, can be achieved with no more than two wiring tracks 
between elements, constant AOR and d, and yield 1 - O(N -2) for any R < 1 - p. 

This is demonstrated by Theorem 4, which is based on certain results concerning 
the percolation model of  statistical physics. 

Section 6. The connection of a K x K square lattice from an N x N array of 
elements spaced at unit length, where K 2 = RN 2, is shown in Figure 6. This requires 
d = ft( 1 4 ~  N) owing to the high probability that there is a block of O(log N) 
defects that must be enclosed by a cycle of four connections. This result does not 
rely on the full wiring model above: Connections can be placed anywhere, even on 

top of elements. No lower bound is obtained on the required overhead area. 

We use the following notations. For brevity, 1 - x is denoted by ~. The greatest 
integer less than or equal to x is denoted by LxJ. The least integer greater than or 
equal to x is denoted by Fx]. The cardinality of the set X is denoted by } I XI I. The 
indicator function 1(.) is one if its argument is true, and zero otherwise. Natural 
logarithms are used throughout. 

We also use several terms from graph theory, defined as follows. Two vertices vi 
and v2 are adjacent if they share an edge (vt, v2). A path from Vl to v, is a sequence 
of  distinct vertices and edges v~, (v~, v2), v2 , . . . ,  (vn_t, v,), v~. A cycleis a path with 
v~ -- v~. Two vertices are connected if there is a path from one to the other. A 

component is a maximal connected set of vertices; that is, every pair of  vertices in 
the component is connected, but every proper superset contains a pair of vertices 
that is not connected. Where convenient, we use the terms sites or elements instead 
of vertices, and connections instead of  edges. 

3. Selectors 

We begin by proving a lower bound on the maximum connection length d and 
number of tracks t required. This also gives a lower bound on the area overhead 
ratio since AOR is proportional to t in the selector. 

Given a layout of selector, with pins placed in any way consistent with the wiring 
model, we show that the yield approaches zero unless d and t are fl(log N). For 
simplicity, d is taken to include only the horizontal length along the channel. The 
actual length is greater by the channel width, t + 1. 

THEOREM 1. For any 0 < d < 1, the probability that K = R N  pins, aligned 
parallel to a linear array o f  N elements, can be connected to distinct active elements 

tends to zero as exp(-Nl-ep/p) unless the 
the maximum horizontal connection length 

dR log N 
d , t >  

- 2  log p 

number of  tracks in the channel t and 
d both satisfy 

3 
= n(log N). 

PROOF. For any 0 < d < 1, let m be the largest odd integer less than or equal 
to -dR log(N)/log(p). Divide the array and the pins by vertical cuts into I(NR - 
m - 1)/mJ blocks, each containing at least m pins, and a block at each 'end 
containing at least (m + 1)/2 pins. The total number of blocks is B = L(NR - 
m - 1)~rot + 2 >- NR/m.  Any block containing only one active element must have 
all but one of its pins connected to elements in other blocks. This requires that one 
side or the other of  the block is crossed by at least (m - 1)/2 connections, and that 
at least one of these connections run a horizontal length of (m - 1)/2 before 
reaching an element in another block. 
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Suppose that t < (m - 1)/2 or d < (m - 1)/2. Then the selector can only be 
connected if all blocks have more than one active element. Let ni be the total 
number of elements in block i. Since there must be more than one element in 
every block and a total of  N elements in the array, 

B 

Y. n, = N and n, > 1 for all i. (3.1) 

The yield is bounded by 

B 

1-I ( 1  - n~p'-~p -p",) 

]~rRIm 

< exp(-Np~mm)-'p) 

<exp( ) 

yield _< 

The second inequality follows from constraints (3.1) and the fact that 
log(1 - xpX-lp - pX) is convex N in x for x > 1. (Convexity can be verified by 
finding that the second derivative is negative.) The fourth inequality follows from 
the relation (1 - x) y _< exp(-  xy), and the last from the definition of  m. 

Substituting the definition of m into the assumptions on d and t yields the 
result. [] 

It is easily shown that d, t = O(log N) suffices to connect the selector wiy.h 
probability approaching 1. Simply divide the selector into N/c log N blocks of 
c log N elements and Rc log N pins for some properly chosen constant c. 
The Chernoff bound 2 can be applied to show that the probability that a given block 
has fewer than Rc log N active elements approaches zero exponentially in c log N. 
Even when multiplied by the number of blocks, this value still approaches 0. Thus 
with probability approaching one, all blocks have at least enough active ele- 
ments to connect their pins. Each block can then be connected separately using 
t = Rc log N tracks and maximum connection length d = c log N. 

Not surprisingly, the constant c is fairly large for this simple scheme. In the proof 
of the next theorem, we give a better scheme that is as easy to implement, though 
more difficult to analyze. The selector is constructed by distributing the pins nearly 
uniformly along the array. The scheme forms a queue of unconnected pins waiting 
for elements. The maximum queue size determines d and t. 

THEOREM 2. For any R < p, let z > 0 be any constant such that 

• (z) & p exp(zR) + p exp ( - zR)  < 1. 

Then for any ½ <_ 6 < 1 and arbitrarily large N it is possible to connect K--- R N  pins 
to distinct active elements o f  a linear array with yield I - O(NH/~), using maximum 
horizontal connection length d = f log(N)/2zrR ] = O( log N) and a number of  tracks 
t = tRdJ = O(log N). 

2 The Chernoffbound states that for a random variable X and any z > O, p(X>_ a) <- ¢xp(-za)E(exp(zX)) 
181. 
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PROOF. We first describe the placement of the pins above the array. For i E 
I1, 2 , . . . ,  .AT}, letPi = I(/RiJ > IR(i - 1)J). A pin is placed above element i if P, = 
1. Note that for any 0 < i < j <_ N, 

J 

I R ( j -  i)/_< ~ ek <-- [ R ( j -  i)l. (3.2) 

Let d and t be defined as in the statement of the theorem. 
The connection procedure is phrased in terms of (+)-wires propagating from a 

pin rightward to an active element and (-)-wires propagating from an active 
element rightward to a pin. The procedure moves along the array from left to right, 
element by element. If an active dement  is encountered, the longest (+)-wire is 
terminated at it or else a new (-)-wire is started. I fa  pin is encountered, the longest 
(-)-wire is terminated at it or else a new (+)-wire is started. If more than t (-)-  
wires are stacked up, the longest one is removed and its element remains unused. 
Note that at any point along the array all wires must be of the same type. 

For 1 ___ i _< N, let W~ E {0, 1 , . . .  } equal t plus the number of (+)-wires less the 
number of (-)-wires passing to the right of dement  i. Define Wo = t. Under the 
above procedure, 

IV, --- max{P, - A, + W,-l, 0}, (3.3) 

where A, = 1 (dement i is active). We can interpret IV, as the size of a queue. 
The procedure can fail only in one of the following four circumstances: 

(1) There are more than t (+)-wires at some point in the array. 
(2) There are any (+)-wires left at the end of the array. 
(3) A (+)-wire propagates from an as yet unconnected pin past d elements. Then, 

by (3.2), the wire passes at least lRdl pins connected to subsequent (+)-wires, 
implying that at least I.RdJ + 1 (+)-wires are stacked up (e.g., in Figure 3 the 
(+)-wire leaving pin (b) passes three elements, so there are at least l(~). 31 + 
1 = 3 (+)-wires at (d)). Since IRdl + 1 > t, this implies the occurrence of case 
(1) above. 

(4) A (-)-wire propagates past d elements. Then, by (3.2), the wire passes at 
least IRdJ pins connected to previous (-)-wires, implying that there are at least 
tRdl + 1 (-)-wires at the element where the wire began (e.g., in Figure 3 
the (-)-wire terminating at pin (a) passes three elements, so there are at least 
l(]). 3 / +  1 = 3 (-)-wires at (c)). But the procedure never stacks up more than 
t < lRdJ + 1 (-)-wires, so this cannot occur. 

Thus the array is connected if the number of (+)-wires stacked up never exceeds t 
and no (+)-wires are left after the last element; that is, IV/< 2t + 1 for 1 <_ i < 
N -  1 and W N < t +  1. 

We now show that this happens with probability approaching 1. Let Xj = 
R - Aj. By (3.2), 

j - k +  1 j - k +  ! j - k +  1 

Using a standard trick of queuing theory [5], we apply (3.3) recursively to obtain 

IV,= max{0, (P, - A,), J-,-,~ (P~-  Aj), . . . ,  j-2 ~ (PJ- A j ) , t+  J-,~ (P~- .4:)} 

< 1 + max{0, X,, J-,-,~ X j , . . . ,  j-2~ Xj, t + J-,~X~}" (3.4) 
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Since the {X,I are independent and identically distributed, one can show by 
interchanging them that (3.4) has the same probability distribution as 

1 + max{0, St, $2, . . . ,  S,-,, t + S,}, (3.5) 

where S, = ]~j-i Xj. Applying the Chernoffbound, for any z > 0, 

P(S, >_ u) <_ exp(-zu)E(exp(zS,)) 
= exp(-zu)O'(z), (3.6) 

where ~,(z) is as defined above. This bound is useful only if ~,(z) < I. Fortunately, 

for R < p there are always z > 0 such that this is the case. (In particular, z = 
log(pl~/pR) minimizes cI,(z).) 

Applying (3.4)-(3.6), we can bound the probability that the procedure fails: 

N - I  

l-yield _ Y~ P(W, _ 2t + 1) + P(Wu >_ t + 1) 
tffil 

N - !  

_< Y~ P(max{0, S,, . . . ,  S,_,, t + S,] - 2t) 

+ P(max{0, St, . . . ,  Su-,, t + SNI Z t) 

_< Y, e(s~ e 2t) + P(S, _> t) + 2 P(S, e t) + P(SN ~ 0) 
t=i  L j~ i  j = l  

<-- • e-Z2t~'(z) + e-=O'(z) + • e-=¢~(z) + ,I,U(z) 
t~l  L]=I  j ~ l  

= e_Z2 t ,I,(z) [ 1 - ,I, lv-'(z)] 

+ 2e_ZtO(z) 1 - CN-~(z)+ ¢~V(z) 
1 - ¢(z) 

= O(Nt-t/b) + O(N -tins)) + O(¢N(z)) 

since t > Rd - 1 __ log (N)/2z~ - 1 and O(z) < 1 is constant. For 6 >_ 1/2, 
O(N l-I/b) is the dominant term. [2 

We have now demonstrated that the maximum connection length and number 
of tracks must grow asymptotically as O(log N). For example, let p = 0.5 and R = 

~ 0.4286, so that about 85 percent of the expected number of  active elements 
must be connected. Theorem I indicates that t > (0.309)1og Nis  required to bound 
the yield away from zero. On the other hand, choosing z as large as possible in 
Theorem 2 shows that t ~. (0.865)1og N achieves yield approaching 1. 

Empirical results for the algorithm of Theorem 2, using the above values of p 
and R and four fixed values of N, appear in Figure 7. Note that each time Ntriples, 
an additional track is required to maintain about the same yield. 

4. Pairing of Two Parallel Arrays 

As in Section 3, simplicity leads us to consider only horizontal distance along the 
channel when measuring connection length. 

It is easily shown that parallel connection of two linear arrays requires only 
constant d and t, independent of N. Construct the arrays of blocks that are b 
elements wide, as shown in Figure 8. Within each block it is possible to connect a 
number of pairs equal to the minimum of the number of active elements from the 
upper array and the number of active elements from the lower array. Connections 
of length d = b - 1 or less and t = tb/2l tracks suffice. As long as b is chosen so 
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FIG. 7. Yield over 500 trials for an N element  selector with p = 0.5, R = 3/7, t as 

indicated on the horizontal axis, and d ffi 2t. N ffi 21 ( ), 63 ( - -  -), 189 ( . . . .  ), 

567 ( -  - - ) ,  and 1701 ( - -  - - ) .  
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FIG. 8. A simple pairing scheme. In this example, the two linear 

arrays o f  N = 12 elements are divided into blocks that are b = 4 

elements wide. The number  o f  tracks is t ffi Lb/2J = 2. 

THEOREM 3 .  

t > 0 such that 

that the expected value of this minimum is greater than Rb, the law of 
large numbers ensures that the total number of pairs connected is at least RN as 
N ~  co. Only constant b is needed. However, the constant depends on the fraction 
of active elements that are connected: As R approaches p, the constant becomes 
larger. 

This simple scheme does not achieve a very good constant since it connects 
blocks independently. Fortunately, if we attempt to improve the constant by 
removing this restriction, the dependence between distant parts of  the array remains 
negligible. This is exploited in the following theorem. 

For arbitrarily large N, and any R < p, ~ > O, c < p and integer 

p p  p 3 p 2 c 2  

R <_ p 2t + 1 ( p _  c)4( t -  1) 2 - 26, 

K --- R N  pairs o f  active elements can be connected from two N-element arrays with 
t = O( 1 ) tracks, max imum horizontal connection length d = [t/cl = O(l)  and yield 
1 - O ( N - ' ) .  

PROOF. We use a Markov queuing model similar to that used for the selector 
in Theorem 2, but with two differences: 



Configuration o f  VLSI  Arrays in Presence o f  Defects 703 

(1) In the selector, all pins must be connected. Here, some small fraction p - R of  
the active elements in each array need not be connected. Therefore an excess 
of (+)-wires from elements in the top array can be treated in the same way as 
an excess of (-)-wires: If t + 1 wires stack up, the oldest is dropped and its 
element left unused. 

(2) Without the regularly spaced pins, adherence to the track constraint does not 
guarantee adherence to a length constraint. We therefore analyze the subopti- 
mal scheme that first connects the array without regard to connection length 
and then removes any connections that exceed the length constraint. 

The proof is in two steps. First, we show that with probability 1 - O ( N  -~) the 
scheme makes at least [i0 - pp[(2t + 1) - 6]N connections. Then we show that 
with probability 1 - O ( N  -~) at most [p3p2c2/(p - c)a(t - 1) 2 + ~]N of these 

connections need be removed. 

Step 1. For 1 ___ i --- N, let IV, E I - t  . . . .  ,0 ,  1 . . . . .  t} equal the number of (+)- 
wires less the number of (-)-wires passing to the fight of the ith elements in the 
arrays. Define Wo = 0. Let 7', = l(element i in the top array is active). Define B, 
similarly for the bottom array. Under the above procedure, 

? t  IV,_, + T, - B, <- - t ,  

W, = W~_t + T~ - B, >_ t, 

W,-z + T, - B, otherwise. 

It is easily shown that the Markov process [IV,} has symmetric transition 
probabilities; that is, P(W, = y ] W,_~ = x)  = P(W, = x I W~-l = y). The process, 
therefore, has a uniform stationary distribution P ( W  = x) -- l /(2t  + 1) 
[4, p. 182]. The convergence to the stationary distribution is rapid. In fact, there 
exist a > 0 and 0 < ~ < l such that for any j  > i [4, p. 173], 

I 1 [ <al3s-i. (4.1) 
P(Wj = Y l IV, = x) 2t +------~ - 

(This is a precise statement of the assertion above that the dependence between 
distant parts of the array is negligible.) 

Let Cj denote the event that a connection is completed during the transition to 
Wj. (Clearly, only one connection can be completed per transition.) Then Cj = 
{W~_~ < 0, T~ = 1} 13 {W~_, > 0, B, = 1} 13 {Wj_, = 0, Tj -- B, -- 1]. Since P(B, = 1) 
= P(Tj = 1) = 19, independent of Wj_t, 

P(Cj) = #P(Wj-I  < 0 I Wo = O) + #P(W~_, > 0 1 Wo = O) 

+ p~e(w~_~ = 0 1 Wo = O) 

= p - ppe (w~_~  = 0 1 Wo = O) 

_ > , 0 - p #  ( ~ - ~  -1- abe- ' ). (4.2) 

The last line follows from (4.1). Thus the expectation of the number of connections 
made, Sc & Y.~t I(Cj), satisfies 

,v ( PP ) - 0 ( 1 ) .  
E(Sc)  = ~ P(Cj) >_ N p 2i¥ l 

J=i 
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For j  > i + 1, (7,' and Wo affect Wj_~ only through W~, so we can apply (4. l) and 

(4.2) to show that 

P(C~ I C,) = # - ppP(Wj-I  -- 0 1 Ci, Wo -- O) 

___ P(C ) + + 

This permits us to upper bound the variance: 

var(Sc) = E(Sc) 2 - E2(Sc) 

= • Y, P ( C , C )  - P ( C , ) P ( C )  
t J 

= Y~ Y~ P(C,)[P(CI C,) - P(C)] 
t j 

IJ-O":l 

+ 2 p ( c , ) t P ( C I  c ,)  - P(C)] 
t j 

j>~+l 

<- Y, X 1 + 2 X Y, PPa(B J-l-' + B j- ' )  
i J ~ J 

IJ-z I<l j>t+l 

= O ( N ) .  

We apply Chebyshev's inequality [8] to bound the probability that fewer than 

the stated number of pairs are connected: 

P S c <  # 2 t + l  - 

var(Sc) 

- ( 6 N -  O(1)) 2 

= O ( N - l ) .  

Step 2. A connection of length exceeding d is completed during the transition 
to W~ only if: j > d + 1, the j th element in the proper array (top or bottom) is 
active, Y.,=j-d~-t T~ -< t - 1 and ~,=j-dJ-~ B, _< t -  1. (E.g., the wire terminating at 
element a in Figure 4 could not run length 6 if element a were not active, if there 
were t = 2 active elements among those five marked b, or if there were t = 2 active 
elements among those marked c.) Denote the conjunction of these events by 
Dj. Then the number of connections that must be removed is at most 

So & X~l I(D,). 
Fo r j  _< d + 1, P(Dj) = 0. F o r j  > d + 1, 

P(D,) = # P  ~' T, < t -  1 P 2 B, <_ t -  1 
\ i - j - d  \ i - j - d  

p3ff2c2  

- -  (/~ - -  C)4(t - -  1)2"  

(The last line follows from Chebyshev's inequality.) Thus we have 

p3p2c2 
E(So) < N 

(# - c)4(t - 1 ) 2 "  

(4.3) 
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For j > i + d, no Tk or Bk, 1 _< k _< N, is involved in both Di and Dj. Then 
P(DjID,) = P(Dj). Using techniques similar to those of Step 1, we can show that 
var(SD) = O(N), and so the probability that more than a fraction P(Dj) + ~ of the 
connections must be removed is O(N-~). This completes Step 2 and the proof. [] 

As an example, for the values p = 0.5 and R --- 9, Theorem 3 indicates that t -~ 
2 and d = 5 suffice to achieve yield approaching one as N ~ oo. (Here we bound 
the fraction of connections removed by (4.3), which can be evaluated using the 
tabulated cumulative binomial distribution.) This can be compared to the empirical 
results shown in Figure 9. These were obtained using an optimal scheme that 

proceeds fi'om left to right along the array connecting each active element whenever 
the constraints permit. 

5. Chains Connected from a Two-Dimensional Array 

The problem of connecting a chain of active elements from a two-dimensional 
array is closely related to percolation theory. Percolation processes have been 

studied extensively since they were first defined by Broadbent and Hammersley 
[3]. A recent survey appears in [28]. 

The site percolation problem concerns an infinite lattice of sites and edges. Each 
site is independently vacant with some probability q or occupied with probability 
0. We define a cluster to be a connected set of  occupied sites, together with all 
adjacent (vacant) sites. A site is said to percolate if it is a member of an infinite 

cluster? The probability that a site percolates is the same for any site and so can 
be expressed as a percolation probability function R(0), which is monotonic 
increasing and attains the value 1 at 0 = 1. Broadbent and Hammersley demon- 
strated that R(q) = 0 for ~/less than some critical value characteristic of  the lattice. 
Little else of an analytical nature is known about R(#), although Monte Carlo 
estimates have established empirical curves for various lattices [6]. The curve for a 

square lattice is reproduced in Figure 10. 
Our scheme for connecting a chain from an array can be analyzed using some 

results in percolation theory, contained in Lemmas 1-4 below. We restrict consid- 
eration to a square lattice, though the results readily generalize to other planar 
lattices. 

Although in practice we can read R(0) from Figure 10, an analytical lower bound 

is required for the task at hand. We obtain a weak bound using techniques similar 
to those of Hammersley [ 11 ]. A site percolates unless it is enclosed by a set of  
vacant sites. The set is minimal if it does not contain a proper subset that also 
encloses the given site. We call such a set an enclosing walk because it forms a 
closed self-avoiding walk, stepping from one vacant site to another; diagonal as 
well as horizontal and vertical steps are permitted since such a walk can enclose a 
site. Lemma 1 upper bounds the probability that a given site is inside an enclosing 
walk and thus lower bounds the percolation probability. 

LEMMA 1. For any 6 > O, i f  q <_ ~ - 6, then R(#) ~ 1 - c~q4 for some constant 
Cl dependent only on 6. 

PROOF. Every enclosing walk of length L surrounding a given site a must 
contain at least one of the first IL/2J sites directly above site a. Without loss of 

a This defimtion o f  percolation as similar to that o f  [6]. It differs slightly from the more  c o m m o n  one in 

[28] but  is more  suitable here. 
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FIo. 10. The percolation function R(~) for the square lattice as determined by Monte 
Carlo estimates. (Data taken from Figure 6 of [6].) 

generality, consider some such site as the start o f  the walk. The enclosing walk 

makes a first step in one o f  eight directions to the second site. At each subsequent 

step, there are at most  five choices for the next site that could not  have been 

reached directly f rom the previous site. Thus there are no more  than (L/2)8(5) L-2 

distinct enclosing walks o f  length L. Furthermore,  each of  the L sites in an enclosing 

walk must  be vacant, which happens with probability qL. 

The probability that site a is inside an enclosing walk of  length at least Lo is, by 

the above arguments, at most  

X 8(5)L--2q L ~--- (5q) LOil  q) [" (l q ) 2  
L-Lo 
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Since an enclosing walk must contain at least 4 sites, we substitute L0 = 4 and 
obtain the result. [7 

We now prove that within large finite regions of the infinite lattice, the fraction 
of sites that percolate converges to R(q). 

L~MMA 2. Let X be the number of  sites in an N x N section of  the infinite square 
lattice that percolate. I f  q < ~, then for any r < R(O), P(X <. rN 2) <_ O(N-2). 

PROOF. Let A and B denote, respectively, the events that sites a and b percolate. 
Let d(a, b) be the Manhattan (rectilinear) distance between a and b. Let Wdenote 
the event that there is an enclosing walk surrounding a or b of  length at least 

d(a, b)/2, and W c its complement. Note that there can be no overlap between a 
walk of length less than d(a, b)/2 enclosing a and a walk of length less than 
d(a, b)/2 enclosing b. Thus A and B are conditionally independent given W ~, so 
that 

P(A, B) = P(A, B, WO 

..~ P(A I WOP(B I WOP(WO 

P(A)P(B) 

P( W ~) 

= P(A)P(B) [1 + P(W)]  
P(WOJ" 

In the proof of Lemma 1 it was demonstrated that if q < !/5, the probability that 
a given site is enclosed by a walk of length L _> Lo is at most c2Lo(Sq) zo, for some 
constant c2 independent of Lo. We can therefore choose constants do and c3 > 0 
such that, if d(a, b) > do, then P(W) <_ 2c2(d(a, b)/2)(Sq) a('b)/2 _~ 1 - c3 and 

P( W ~) > c3. 
Finally, note that the number of sites at distance d > 0 from a given site on a 

square lattice is 4d. We can now upper bound the variance of X as follows: 

var(X) -- E(X 2) - E2(X) 

= Y, E [P(A, B) - P(A)P(B)I 
a b 

[ ] <- 2. 2b 1 + Y.a ~'b P(A)P(B) 1 + p - ~ - ~ j -  P(A)P(B) 

d(a,b)<d 0 d(a,b)>do 

_<• 1 + (4d) + 2  2 4d 
a a d=d 0 C3 

= O(NZ)O(I) + O(N2)O(I) 

= O ( N 2 ) .  

The expectation of X is EX = N2R(0). We now apply the Chebyshev inequality: 

P(X <_ rlg 2) <_ P ( I X -  EXI >- E X -  rN 2) 
var(X) 

- ( E X -  rN2) 2 
= O(N-2) .  [ ]  

LEMMA 3. Suppose q < ~. Consider those sites within an N x N section of the 
infinite lattice that belong to infinite clusters. Except for a negligible fraction 
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O(N-'log N), these sites form a single cluster within the N x N section, with 
probability I - O(N-2) .  

PROOF. When the N x N section is removed from the infinite lattice, the parts 

of  the infinite cluster(s) that lie within the section may be disconnected into several 
components. Each component must be separated from the others by a self-avoiding 
walk on vacant sites starting and ending at the boundary of  the section. By 
arguments similar, to those in the proof of Lemma 1, it is easily shown that the 
probability of a self-avoiding walk on vacant sites starting on the boundary of  the 
N x N section and having length at least Lmax = - 3  log(N)/log(Sq) is O(N-2) .  Thus 

with high probability, only sites within Lma~ of  the boundary are cut off from the 
largest duster. These sites account for a fraction O(N-~log N) of the N 2 sites. [] 

The following intuitive lemma, known as the correlation inequality, is proved in 
[12, I.emma 4.1]. 

LEMMA 4. For each i E Il . . . . .  nl, let A, be the event that every site in some 
finite nonempty set S, is occupied. For each j E I l , . . . ,  ml, let B~ be the event that 
every site in some finite nonempty set Tj is occupied. No assumption about the 
exclusivity of  the sets is made. Let A = U A, and B = U Bj. Then P(A I B) >_ P(A). 

We are now ready for the main result of  this section. 

THEOREM 4. For arbitrarily large N and any R < p, a chain of length K = R N  2 
can be connected from an N x N array with yield l - O(N -2) and maximum 
connection length 

d = [ ( 9  log((p- R)/c)~ '/2] 

for some constant c > 1. No more than two tracks are required in any channel. 

PROOF. The general idea is as follows. Construct the array of N2/b square 
blocks of b dements each. Choose the constant b so that each block has high 
probability of  containing at least four active dements. 

Each block can be considered as corresponding to a site on a square lattice, and 
if the block has at least four active elements, consider the site occupied. Using 
Lemmas 1-3, we show that nearly all sites belong to a single large cluster. A tree 
of maximum degree 4 that spans the cluster, with all nonleaf sites occupied, can 
be constructed. This can also be considered as a spanning tree on the blocks. All 
the active elements in the duster can be connected into a chain by looping around 
the tree, as shown in Figure 11. Since all "nonleaf" blocks have at least four active 
dements, it is never necessary to connect two elements from nonadjacent blocks. 
The construction of the spanning tree takes only O(K) time. The connection of 
subehains in the blocks also takes O(K) time since there are only a constant number 
of dements in each block. 

Only two tracks are needed between adjacent blocks since only two connections 
are made between the blocks. The connection of  all active elements within a block 
to the tracks between blocks requires only one track between elements. This is 
straightforward to prove by double induction from an i a j block to an (i + 1) x j 
or i x (j  + 1) block. The maximum Manhattan connection distance required is 

d - -  6x/b - 3. (5.1) 
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BLOCK 

FIG. 11. A section of an array connected into a chain. Each block contains 
b = 9 elements. One track is provided between elements within a block, and 
two between blocks. 

Now for the details. For any choice of  b > 4, let q be the probability that a 
particular block contains fewer than four active elements. Then 

q = y. #,pb--,<_ (5.2) 
i=0 

Thus q can be made arbitrarily small by choice of  b. As long as q < I, we can apply 

Lemmas 1-3 to percolation on an N/~/-b x N/,/'b lattice of sites corresponding to 

blocks, as described above. 

By Lemmas 2 and 3, for any 

r < R(•), (5.3) 

at least rN2/b blocks form a single cluster, with probability 1 - O(N-2). 
We proceed to bound the number  of  active elements in any such rN2/b blocks. 

Choose any 

R < rp. (5.4) 

By a simple application of Lemma 4, the probability that the number  of  active 

elements in the blocks is at least RN 2, given that all the blocks are in a cluster, is 

at least as great as the unconditional probability, where the elements o f  the blocks 

are considered independent. Since R < rp, application of  the Chebyshev inequality 
proves that the unconditional probability is 1 - O(N-2). 

By L e m m a  1 and (5.2), 

R(~I)P >- [1 - clq4]p 

> [1 - C,((~)b3pb-3)*]p 

p -- cp d2/9 ( 5 . 5 )  

for some constant c > 1 by (5.1). 
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Combining (5.3)-(5.5), we have shown that for any R such that R <_ p - cp d~/9, 
or equivalently for any 

d > [9 log((#--R) /c) ]  '/2, 

- log(n) ] 

a chain o f R N  2 elements can be connected with probability 1 - O(N-2). [] 

The following example illustrates how this scheme can be used in practice. 
Suppose each element is defective with probability p --- 0.5. Choose b = 9 and d = 
6,]9 - 3 = 15. The probability that a block of nine elements has at least four active 
elements is ~ ~ 0.7461. From Figure 10 we see that for an infinite square lattice 
and this value of 4, any block is practically certain to belong to an infinite cluster. 
Even for finite arrays, d - 15 should suffice to achieve reasonable yields. This 
estimate is confirmed by the empirical results shown in Figure 12. These were 
obtained using the scheme of Theorem 4 with p = 0.5, R = ~, and d = 9, 15, and 
21, corresponding to b = 4, 9, and 16. 

6. Lattices Connected from Two-Dimensional Arrays 

Now we examine the connection of a square lattice from a two-dimensional array. 
Before proving a lower bound on the maximum connection length, we state the 

following lemma concerning the separability of the square lattice. 

LEMMA 5. Consider the graph corresponding to a K x K square lattice. Any 
partition o f  the K 2 vertices into three sets A, B, and C, such that II AII -< II B II and 

no vertex in A is adjacent to a vertex in B, must satisfy I I A I I - (I I C II 2 _ I I CII)/2. 
The set C in such a partition is called a (vertex) cutset. 

In essence, the lemma bounds the size of the largest set that can be disconnected 
from the remaining, larger, part of  the lattice by removing only a given number of 
vertices. It is readily apparent that choosing C, the cutset of  removed vertices, to 
lie along a diagonal achieves the bound. The lemma follows from [27, Theorem 1 ]. 

The next theorem gives a lower bound on the required maximum connection 
length. Recall that the full wiring model need not be assumed. Only the Euclidean 
distance between the elements to be connected is considered, as a lower bound to 
connection length. 
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ThEOReM 5. Consider an N x N array with elements spaced unit distance apart. 
Let K 2 --- R N  2. Then for any 0 < 6 < 1, the probability that a K x K lattice can be 
connected tends to zero as 

2RNm/3 ] ]  
O ( N  exp [ -  (_6 l-~gg N-'N/'~og p)3/2j] 

unless the maximum connection length satisfies 

-( 6 log N] = ~ ( / 4 ~  N).  (6.1) d >  

PROOV. The general idea is as follows. With high probability, there is a com- 
pletely defective block ofO( 14~g N) x O(41og N) elements somewhere in the array. 
In fact, there are so many of these blocks distributed throughout the array that the 

lattice connections must enclose at least one of them. This is only possible if d = 
f l (14~ N) and, in particular, only if (6.1) is obeyed. 

The proof proceeds in three steps. First we define sets of  array elements called 
grids. Then we show that, with probability approaching one, there is a grid with all 

its elements defective. Finally, we assume the existence of a defective grid and use 
Lemma 5 to show that, if (6.1) is violated, it is not possible to connect a lattice. 

Step 1. For any given N, K, p and 6, choose integer L such that 

6 < L < 6  

Since d must clearly be at least 1, we need only consider the case when 

m a > 1. (6.2) 
t \ -  log p/ ] - 

A grid is defined as follows. (See Figure 13.) For eachj  E {1 . . . .  , LI, we define 
the j th band to be rows jLN/LI - m + 1 through jLN/LJ of the array. Consider a 
set of several m x m blocks of elements, positioned along the bands. In each band, 
the regions between the left side of the array and the leftmost block, between each 
pair of  consecutive blocks, and between the rightmost block and the right side of 
the array are called gaps. If there is no gap wider than 2RN/(3m 2) elements in any 

band, the set of  elements in the blocks is called a grid. 
More formally, the m x m block at (x, y) is the set of  elements 

b(x, y) a= {e(i, j)  : x - m + 1 <_ i <_ x, y - m + 1 <_ j <_ y], 

where e(i, j)  is the element in column i and row j of  the array. A grid is a set of  
elements 

G ~ U U b x,.j,j 
)~,! z--I 

where the {x,,A are integers satisfying 

2RN 
m _< x~ a __. ~ + m, 

2RN 
Xz,j + 1 < X~+la < Xzj + m + 3m 2 , 

2RN 
N - 3m----- 2 _< x,,a _< N. 
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ROW 

R O W  . 

FIG. 13. The structure of a grid. The dark squares represent m x m blocks of 

dements arranged within the L bands. A typical gap is indicated. The Nob 

represents the set of active elements connected around the grid. 

Step 2. Consider the completely defective m x rn blocks lying within the bands. 

The set of  elements in these blocks constitutes a defective grid unless there is a gap 
at least [2RN/(3m2)] + 1 elements wide in any band. If there is such a gap, there 

must be a run of 

([2RN/(3m2)]m + 1) + (m - 1) > 3m ----3 

adjacent nonoverlapping m x rn blocks, none of which is completely defective. The 
probability that such a run exists, starting at any of  the N columns in any of  the L 

bands, is less than 

r-2PJvpmq 
LN(I - pml) 2RN](3m3) ~ L N  exp[. ~ "J 

[ -2RN'-~/3  ] 
<_ L N  expLi_  1-- g N/----ioog 

2RN'-'/3 
: o(. ox _ <_..o< 

The first inequality follows from the relation (1 - x) y _~ exp(-xy),  and the 
second from definition (6.2). 

Step 3. We are given an arbitrarily large N x N array with a subset of its active 

elements connected into a K x K lattice. Suppose that the array contains a defective 
grid and that the maximum connection length d satisfies 

m + l  
d < ~ (6.3) 

We demonstrate a contradiction. 

Note that a connection of length d < m + 1 is insufficient to cross a gap or a 
defective block. Furthermore, because the elements are connected in a square 
lattice, if any cycle of  connections encloses a block of defective elements, there 
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l_ FIG. 14. The shortest connections enclos- 
ing an m x m block of defective elements. At 
least one connection must be of length d - 
(m + 1)/4~. 

I--rn ELEMENTS ~'! 

must be a cycle of four connections that encloses the block. 4 However, as shown 

in Figure 14, enclosing a block with a cycle of four connections requires length 
greater than permitted by (6.3). Therefore the lattice connections cannot enclose a 
block but must instead extend around the blocks, as shown in Figure 13. 

Since the bands are spaced at I.N/Ll-row intervals, there must be a band such 
that at least K2/2 - MN/LJ >_ K2/3 of the K 2 connected elements lie above it and 

at least this many lie below it, too. (See, e.g., band I in Figure 13.) 
If all the elements below this band are removed, the set of  remaining connected 

dements in and above the band is disconnected into some number na of compo- 
nents. For i ~ { 1 , . . . ,  na }, we partition the ith component into a set Ai of elements 
that lie strictly outside the band and a set Ca! of dements within the band. Let nn, 
{B,} and {CB,} be defined similarly when the elements above the band are removed. 
(An example is shown in Figure 13, in which na =nB = 2.) Note that the [Cai} are 
disjoint, the {Cm} are disjoint, and 

g 2 

Y, IIA, II > 
iml ~ T 

One of three cases applies. 

C a s e  1. F o r  al l  i ~ { 1 . . . .  , na}, 

. .  K 2 
and Y. II B, II > (6.4) 

i - I  ~ T " 

(2RN/(3m)) 2 
IIA, I I -  2 (6.5) 

Since no connection is long enough to cross the band, CA, constitutes a outset 
disconnecting A, from the remaining larger part of  the lattice. By Lemma 5, I ]Ai [] 

< I I CA, II 2/2. Then 

2 IIc ,ll > 2 24 A,11 
! I 

K2/3 2RN 
>- (2RN/(3m))2/2 (3m) under constraints (6.4), (6.5) 

= N m .  

4 Note added in proof: This can be shown rigorously using the concept of winding numbers [22]. Any 
directed cycle on the square lattice can be decomposed into directed cycles of four connections. The 
winding number of the original cycle or the number of times it wraps around the center of a Mock is 
the sum of the winding numbers of its constituent four-connection cycles. Thus the original cycle has a 
nonzero winding number only ff at least one of its constituent cycles does. (This argument was suggested 
in [16].) 
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But since the {CA~I are disjoint and all lie within the band, Y,~ I I CAill -< Nm. This 
is a contradiction. 

Case 2. For all i E { 1 . . . .  , ns}, 

IIB~II-< 
(2RN/(3m)) 2 

2 

By symmetry with Case 1, this also implies a contradiction. 

Case 3. For some i and j, 

(2RN/(3m)) 2 (2RN/(3m)) 2 
IIA, II > 2 and IIBjII > 2 (6.6) 

Since no connection is long enough to cross the band, every path connecting A, to 
Bj includes an element in the band. Furthermore, the fact that defective blocks 
cannot be enclosed implies that there is a single gap in the band through which all 
such paths pass. Otherwise for some pair of gaps g~ and g2 there would be a path 
from Ai to Bj through gap g~ but not g:, and another path through gap g2 but not 
g~; connecting these paths through A,, Ca,, B~, and CB~ would form a cycle enclosing 
a defective block. Let C be the set of connected elements in this single gap. Since 
no gap is more than 2RN/(3m 2) elements wide, II CII -< 2RN/(3m). C is a cutset 
disconnecting A, from B,  and so, by I .emma 5, either II A, II or II B~ II must be less 
than II C II 2/2 -< (2RN/(3m))2/2. This contradicts (6.6). 

Thus in every case a contradiction occurs. This completes Step 3. We conclude 
that the probability that the lattice can be connected goes to zero unless (6.3) is 
false', that is 

d > _ m +  1 ~ / / ~  log N 

> - 2  log p '  

which yields (6.1) and completes the proof. [] 

If the restriction that elements be spaced at unit distance is relaxed, the following 
Corollary can be demonstrated. 

COROLLARY. Consider an N x N array of  rectangular elements o f  area Ae. Let 
K 2 -~ R N  2. Then for any 0 < ~ < I, the probability that a K x K lattice can be 

connected tends to zero as 

2RN l -~/3 

unless the maximum connection length satisfies 

 (4" ee log N). 
log N 

d >  Iog p "- 

PROOF. The proof is basically the same as that of Theorem 5. One difference is 
that the m-row by m-column defective blocks must be replaced by m,-row by me- 
column blocks so that each block is still approximately square in terms of physical 
distance. The denominator in the yield bound exponent changes because, if m r  = 

O(log N) and mc = O(1), we have m~mc = O(log 2 N) instead of m 3 = O(log 3/2 N). 

The theorem and corollary readily extend to rectangular (Nr x N~) rather than 
square (N x N) arrays, and to the connection of triangular and hexagonal lattices. 
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It is easily demonstrated that if no Q_~ace is needed between elements to accom- 
modate the connections, d = O(~/log N) is indeed all that is required. To connect 
a lattice, we simply divide the N x N array into square blocks containing e log N 
elements for some constant c. The Chernoffbound can be applied to show that for 
any R < p the probability that any particular block contains fewer than Rc log N 
active elements tends to zero exponentially in c log N. Since there are only 
N2/c log N blocks, the probability that any of them has fewer than Rc log N 
elements also tends to zero if c is properly chosen. We therefore suppose that a 
4Rc log N x 4Rc log N sublattice can be connected in each block with maximum 
connection length O(lv~-@-N). Each sublattice is then connected to those in the 
adjacent blocks to form the desired ,/R N x ~ N lattice. 

Unfortunately, wiring area is a consideration. Leighton and Leiserson [ 16] have 

shown that no more than t = O(log log N) tracks are needed to connect the 
sublattices in the above scheme. Under the full wiring model, their method achieves 
d = O(v~i-og N log log iV) and AOR" = O((log log N)2). In a forthcoming paper 

[10], we present a different scheme which achieves d = O ( 1 o ~  and AOR = 
O(1). This shows that Theorem 5 gives the best possible lower bound, to within a 
constant. 

We conclude by noting that the bounds are increased if one assumes that the 
area of an element must increase linearly with the length of the longest wire it 
drives. Since the capacitance of a wire increases linearly with its length, the drive 

current needed to charge or discharge the wire in a given time, and hence the area 
of the driving transistor, must increase linearly as well [26]. We therefore suppose 
that the elements can be rectangular but must occupy area Ae = t2(d). By the 
Corollary, d = f~(~/Ae log N). Therefore Ae = fl(log N), AOR = f~(Iog N) and d = 
~(log N). 

These bounds can be achieved using selectors in the following way. We make 
the elements of width O(1) and height O(log N), and arrange them in K rows of N 
elements. Between each pair of adjacent rows, we place two selectors, one connected 
to the upper row of elements and the other connected to the lower row. The 
selectors share a common row of K ports positioned between them. The lattice can 
be connected if a chain can be formed in each of the rows of elements and if every 
row can be connected to the ports above and below it by the adjacent selectors. 
The yield can easily be shown to approach one using the arguments in Section 1 
and Theorem 2. 

7. Discussion 

Previous schemes for connecting various configurations in faulty arrays include 
those of Manning [20], Aubusson and Catt [1], Koren [15], Fussell and Varman 
[7], Hedlund and Snyder [13], Lincoln Laboratory [17], and Lowry and Miller 
[18]. In most cases the schemes are studied empirically, but little analysis is 
provided. Rosenberg [24] gives a method for embedding chains, trees, pyramids, 
and lattices in linear arrays of faulty dements. Mangir and Avizienis [ 19] provide 
a detailed model for the variation of yield with interconnection complexity in fault 
tolerant circuits composed of interchangeable modules. 

In this paper, we have given bounds on the maximum connection length d and 
the area overhead ratio AOR as a function of the array dimension N. Table I 
summarizes the order of growth of the bounds. Each upper bound has been 
demonstrated by presenting an algorithm for programming the switches to connect 
any fraction R < 1 - p of the total number of elements. The algorithms all have 
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TABLE I. ORDER OF GROWTH OF BOUNDS 

Problem d AOR Reference 

Chain in ID array O(log N) O(1) - -  
Selector O(log ?7) O(log N) Theorems 1, 2 
Pairing O(1 ) (9( 1 ) Theorem 3 
Chain in 2D array O(1) O(1) Theorem 4 
Lattice in 2D array fI(I~Vi'~-N) - -  Theorem 5 

O(~ / l o~  log log N) O((log log N) 2) [16] 
O(~dlog N) 0(1) ll0] 

running times linear in the number of array dements. A different algorithm 
achieving results similar to our Theorem 4 has been found independently by 
Leighton and Leiserson [ 16]. 

The table also lists the achievability results for the connection of a lattice obtained 
by Leighton and Leiserson and by the authors. The latter scheme, described in a 
forthcoming paper [10], attains the lower bounds for this problem and runs in 
linear time. 

We conclude by mentioning several directions for future research. 
Although experimental evidence shows that the laser-programmed interconnect 

is fairly reliable, it is not completely so [ 17]. It would therefore be useful to extend 
our results to accommodate defects in the switches and interconnect as well as the 
elements. 

It is readily apparent that our algorithm for connecting a chain from a two- 
dimensional array can be distributed among several processorsmperhaps even the 
elements themselves. Distributed algorithms might be found for other configura- 
tions. 

The problem of dynamic fault tolerance, in which elements fail during use, is 
closely related to the static problem examined in this paper. Clearly, our lower 
bounds for static fault tolerance apply directly to the dynamic case. Our upper 
bounds are likely to be of interest in the dynamic case, too. The reprogrammable 
integrated switches mentioned in Section 1 could be used in this setting. 

Finally, an alternate approach to configurable processor arrays is suggested by 
Fussell and Varman [7]. They propose making the task in question more accom- 
modating as to the processor configuration on which it is run. For example, a 
priority queue can be implemented on an arbitrarily branched tree, which is usually 
more readily configured than a chain. A simplified version of the scheme in 
Theorem 4 can be used to connect such a tree. 
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