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Résumé. — Les distributions spectrales des configurations 4 séniorité fixée sont utilisées pour
analyser quelques propriétés de Ni®? et les résultats obtenus sont comparés & ceux du modéle en
couches. La validité de la symétrie symplectique est discutée a partir des distributions des états

a séniorité fixée dans chaque orbite.

Abstract. — Configuration-seniority spectral distributions are used to analyse some properties
of Ni®2, and the results compared with those of shell model. The goodness of the symplectic symmetry
is discussed by investigating the distributions with fixed seniority in every orbit.

During the last few years significant progress has
been made in the study of the spectra of complex
nuclei involving a large number of configurations, by
the introduction of the spectral distribution
method [1-3]. Applications of this method to the
calculation of low excitation spectra and level densities
and to the study of symmetries have been carried out
in some cases.

In a series of papers we intend to study the symplec-
tic symmetry, connected with the seniority quantum
number, for systems of n identical nucleons distributed
in a finite set of levels with total degeneracy 2 Q. In a
former work [4] we studied fixed generalized seniority
distributions, associated with the chain of groups
(2 2) > Sp (2 Q). In this paper we give preliminary
results for configuration-seniority distributions, con-
nected with the chain of groups
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wherein the averages are taken over subspaces cha-
racterized by

mv] = [n,0,mv,..1, Y n,=n,
a

n, and v, being-the number of particles and the senio-
rity in orbit a respectively. The states belonging to
these d([nv]) dimensional subspaces are denoted by
| [nv] & >, where ¢ stands for all the quantum numbers
necessary to complete the classification. Here we

(*) Chercheur agréé LI.S.N.
(**) Maitre de recherches F.N.R.S.

restrain ourselves to discuss the Ni isotopes where
a shell model exact calculation can be made (%), as a
necessary step on the way of using the method for more
complex nuclei. In particular we analyse Ni®? in a
three level model [2ps,, 1fs;, 2py,,]° using the
Auerbach residual interaction [5].

The centroid energies :

§(nv]) = d~*(Inv]) §< mv]E|H [[mv] &), (D)
as well as the total widths

a([nv]) = o*([nv]) =
= d~'([nv]) §< vl & | [H — &(mvD]? | [v] ¢ )
= Y o*(mv] > [n' v )

']
and the partial ones
(V] ~ [’ v]) = d~*([av]) ¥ x
&

x | < V]E|H [[av]E) P
— S [6(VD]?, 3)

are obtained by generalizing to k levels the propagation
laws of operator averages defined in a single orbit.
General expressions will be published elsewhere,
together with results for Sn and Pb nuclei.

Using the first two moments of the configuration-

(*) The shell model exact calculations reported in this paper
were performed in Orsay with the Oak-Ridge-Rochester shell model
code.
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seniority distributions, we build a two-moment (2M)
approximation [2] :

F(n, E) = [z] R[], E)
= 3 d() @ m) 2 j e Ay,
[av] —w
x = [E — &([nv])]/a([nv]) , “
of the exact distribution function
F(n,E) = i QL +1). )
Ei<E

We call it the 2M configuration-seniority distribution
function.

As the dimensionalities that we have to deal with
in Ni°? are small (1 <. d([nv]) < 140), the 2M approxi-
mation might be a poor one. This drawback always
arises when a fine subdivision of the total space is made.
However it is particularly dramatic for the seniority
representation, as there are always subspaces of
dimension 1, whatever large the total space may be.
For this reason we also use the four-moment (4M)
configuration-seniority distribution function [2]

Fn,E) =Y H[nv], E)=

[nv]

= ¥ d(@v)) (2n)-“2r x

[nv] —o

x {eTV2 o 1 + g yy(v]) (2 = 3 x)
+ 22 p2(v]) (X" — 6 X2 + 3]} dx’, (6)

with values of the skewness y; = p; 52, and the
€xcess y, =iy fi; 2—3 computed from the n particle H
matrix elements. These values are large

(-11<y, <Ll; - L1<y,<18),

showing distributions rather far from the normal
form..

The exact distribution function is well reproduced
by the 4M approximation defined in eq. (6). However
it turns out that the 4M configuration distribution
function [1], i.e. the analog of eq. (6) for configuration
distributions, [nv] being replaced everywhere by
[n] = [n, n, ...}, can do almost as well, and moreover
is better than the 2M configuration-seniority distri-
bution function given by eq. (4). Therefore, in our case,
the distribution is more improved by using higher
moments than by taking a finer subdivision of the
total space.

The improvement in going from 2M to 4M distri-
bution is especially clear at low energy, as is shown on
the spectra of figure 1, calculated using Ratcliff’s
prescription [2]. The r.m.s. deviation between the
exact absolute energies of the first 12 excited states
and those obtained with the 2M and 4M [nv] approxi-
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mations is 0.48 and 0.16 MeV respectively. In this
comparison we exclude the ground state which is
drastically shifted up in the 4M approximation.
Binding energies referred to the second excited state,
ie. E, — (E5*® — E§®), are — 0.95, — 0.35 and
— 0.29 MeV for the 2M and 4M [nv] approximations,
and the exact calculation respectively.
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Fi1G. 1. — Comparison between the exact shell model and 2M

and 4M configuration-seniority spectra of Ni®2. The experimental

spectrum is also shown. The second excited level is taken as a
reference point.

A finer comparison with the exact shell model
calculation can be made by considering the structure
of the low lying eigenvectors. For this purpose, we
evaluate the summed intensity :

2 TICmIEyO>

of the various [nv] subspaces in the 6 lowest eigenstates
[y@ >, i=0,1,...,5, using the partial distribution
functions F[nv], E) and Ratcliff’s prescription [2].
The r.m.s. deviation between the exact and the 2M
(or 4M) results is found to be 0.79 (or 0.49). The
decrease of this deviation in going from 2M to 4M
is not due to an improvement of the whole structure as
it is for the spectrum, but to that of a few particular
results. For instance the intensity of the [22, 33, 11]
subspace in sharply decreased. As shown in table I,

TABLE 1

Percentage intensities of the most important confi-
guration-seniority subspaces in the 6 lowest lying
eigenstates of Ni®2, '

2M 4M S.M.

[nv] Intensity [nv] Intensity [nv] Intensity
[312211] 1236 [313100] 14.72 [313100] 22.28
[31 31 00] 11.71 [312211] 11.48 [312011] 8.98
[22 33 11] 7.57 [31 20 11] 8.38 [312211] 6.96
[22 31 11] 7.56 [223111] 639 [31 11 20] 6.20
[31 33 00] 6.03 [40 22 00] 5.59 [11 31 20] 5.29
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the ordering of the various subspaces in terms of their
importance in the low lying eigenstates is not repro-
duced very well. It is significant that we have to use the
4M approximation in order to get the three most
important intensities. The reason is that the exact
relative intensities of [nv] subspaces vary too much
from eigenvalue to eigenvalue for their averages over
a few eigenstates to be reproduced with high accuracy
by a continuous approximation.

When compared with Ratcliff’'s results [2], this
behaviour is somewhat disappointing, although not
completely unexpected. Indeed as we are not working
with fixed J distributions, all the subspaces do not
contribute to each one of the 6 eigenstates, and this
greatly perturbs the statistical description of the
summed intensity. On the other hand, our results are
somewhat worse than those obtained for other badly
broken symmetries, such as configurations. This is a
consequence of the selection properties of seniority
with respect to angular momentum (for instance
v = 0 corresponds to J = 0 only). Owing to these,
there are nearby eigenstates with different angular
momenta, which belong almost entirely to orthogonal
sets of [nv] subspaces. This fact again does not favour
a statistical description.

In order to study the goodness of the symplectic
symmetry, we sum over n, 1, ... and get the centroids,
and total and partial widths of fixed seniority distri-
butions. The partial widths

(V1> VD) =d7'([v) Y x

[n, ']
x d([nv]) ¢*(Inv] > (0" v]),

d(v)) = [Z;,d([nV]) , Q)

are listed in table II; for most of the 12 [v] subspaces
the internal widths ¢?([v] — [v]) are larger than the

external ones, Y. o*([v] > [v]).
viZm
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It is in general admitted [6] that the perturbation
parameter

(] - [v]) = o*(¥] - VI/[8@D) — 8(vD]*

provides, when small and the centroids well separated,
a good basis for space truncation. An analysis of the
I*([v] - [v']) table shows only one subspace splitting
out, namely [000] (Z2,, = 0.035); a diagonalization
is made in this 6 dimensional subspace, and the
approximate eigenstates so obtained, | Y. >, are
compared with the exact ones, | Y. > Which have
the largest components in the [000] subspace.

Though the energies are found to lie close to the
exact ones (E .. — £, = — 0.04, — 0.06, — 0.22,

trunc

— 0.35, — 0.08 and 0.25 MeV for the 6 eigenstates

oF
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F1G. 2. — Centroid energies of the fixed seniority subspaces. The

internal (solid line) and external widths (dashed line) are also

plotted. The subspaces which mix with the [000] subspace are

underlined. Under each subspace is written its dimension. The

position of the eigenvalues resulting from a diagonalization in
the [000] subspace is indicated by crosses.

TABLE 11

Partial widths 6*([v] > [v']). The ordering of [v] subspaces is according to increasing centroid energy

[v] [000] [200] [l01] [110] [011]
[v]

[000]  3.647 0 0 0 0
[200] 0 0442 0.689 0014 0.037
[101] 0 0431 1845 0064 0.045
[110] 0 0002 0011 1436 0.026
[o11] 0 0010 0.020 0069 1.939
[020] 0 0019 0.020 0032 0.026
[211]  0.009 0.001 0.033 0.730 0.009
[031] 0 0 0.00 0.080 0
[2200  0.010 0 0015 0045 0.022
[121]  0.007 0.009 0010 0.047 0.044
[130]  0.000 0.000 0 0054 0.027
[231] 0 0 0000 0.080 0.043

[020] [211] [031] [220] [121] [130] [231]

0 0.09 0 0224 0263 0.003 0
0.109  0.005 0 0 0209 0.003 0
0.068 0.125 0001 0.131 0.146 0 0.004
0.019 0456 0.023 0.066 0.109 0.063 0.117
0.040 0.014 0 0.087 0275 0.083 0.168
2310 0.034 0043 0.096 0.150 0.094 0.102
0.032 1905 0075 0.043 0.178 0.127 0
0.086 0.161 0588 0.071 0261 0.045 0
0.038 0019 0014 1.056 0820 0.070 0.090
0.037 0048 0.033 0.512 2.183 0.086 0.172
0.047 0068 0011 0.087 0172 1722 00918
0.041 0 0 0.09 0276 0.734 2.869
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in increasing energy order), some of the overlaps are
very poor. We obtain indeed

| < W exact | Yirune > |2 = 0.99, 0.97, 0.52, 0.40, 0.48

and 0.52 respectively, and the results are similar when
the Argonne interaction [7] is used instead of the
Auerbach one.

The explanation of this situation can be seen on
figure 2. The centroid energy of [000] is well separated
from those of the other 4 subspaces which can mix
with it. But the third eigenvalue is located at a distance
less than 2 g,,([211]) from the centroid of the [211]
subspace and in this range of energy the J = 0 states
belonging to [211] do not allow a good overlap between
the exact and [000] eigenstates. As the truncation
parameter I*([v] - [v']) takes no account of the
importance of the internal widths, its interpretation
should be examined very carefully in each case. For

Ne 1

the [000] subspace, it is clear that it can be used as a
valuable criterium only in the very low part of the
spectrum.

From the study of Ni®? that we have carried out in
this work, we see that the configuration-seniority
and seniority distributions are not so useful from the
point of view of low-energy spectra and level densities
as is might appear at first sight. Although the results
could be better in heavier nuclei, we think that the
main interest in computing such distributions in those
nuclei lies in the determination of partial widths,
and especially in the prediction of the admixing of
other subspaces into the total seniority zero subspace.

One of us (S.S.) is indebted to Drs. Duchemin and
Lorazo for discussions and help in solving some
computational problems, and to the Division de
Physique Théorique of the Institut de Physique
Nucléaire, Orsay, for making available to him its
computational facilities.
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