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We discuss some aspects of the metric configuration space in quantum gravity in the background field
formalism. We give a necessary and sufficient condition for the parametrization of Euclidean metric
fluctuations such that (i) the signature of the metric is preserved in all configurations that enter the
gravitational path integral, and (ii) the parametrization provides a bijective map between full Euclidean
metrics and metric fluctuations about a fixed background. For the case of foliatable manifolds, we show
how to parametrize fluctuations in order to preserve foliatability of all configurations. Moreover, we
show explicitly that preserving the signature on the configuration space for the Lorentzian quantum
gravitational path integral is most conveniently achieved by inequality constraints. We discuss the
implementation of these inequality constraints in a nonperturbative renormalization group setup.
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I. INTRODUCTION

The arguably most conservative framework to develop a
quantum theory of gravity is to quantize the metric within a
path integral formalism [1–4]. In order to define the
quantum gravitational path integral, a configuration space
must be chosen. For instance, one could restrict the
spacetime dimensionality and topology as well as the
signature of the metric, e.g., summing over Lorentzian
spacetimes with trivial spacetime topology only. One might
further restrict the gravitational path integral, for example,
by summing over globally hyperbolic spacetimes only.
These conditions select a subset of the space of all

metrics, constraining the integration domain in the path
integral. Imposing such constraints is complicated by the
fact that the path integral also requires a regularization.
The unregularized path integral is ill defined, and there-
fore it is crucial to understand how constraints and
regularization can both be implemented in the path
integral at the same time.
Defining a regularization requires to thin out the con-

figuration space appropriately, such that in the limit of
vanishing thinning parameter, the full configuration space
is recovered. The thinning should be implemented in such a

way that at finite thinning parameter, the resulting path
integral is finite. Further, it is desirable that the thinning is
physically meaningful, in that the selected configurations
should be physically relevant. The latter property is
expected to be key to obtain robust approximations.
In the context of a quantum field theory on a flat

background the regularization can be implemented, after
Wick-rotating to Euclidean signature, via an ultraviolet
cutoff in momentum space.1 This is tied to a local notion
of coarse-graining, where locality refers to a background
metric.
Regularizing the quantum gravitational path integral is a

more subtle issue than it is in “standard” quantum field
theories. In continuum, metric2 approaches to quantum
gravity, the thinning procedure comes at considerable extra
cost, as it typically requires the introduction of a background
metric, for potential alternatives see [6,7]. A background
metric is not a natural notion in quantum gravity, unless one
explores only the strictly perturbative regime. Otherwise, all
configurations of spacetime should be treated on the same
footing, thus preserving background independence. In a
manifestly background-independent path integral over
metrics there is no notion of locality, and thus local
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1A cutoff on the eigenmodes of the covariant Laplacian with
respect to the background metric is a natural generaliza-
tion to the case of a nontrivial background metric which admits
a Wick rotation, see, e.g., [5] for a discussion of the latter
requirement.

2Similar arguments may hold in cases where the fundamental
degrees of freedom are not described by the metric, but by other
fields, such as the vielbein, torsion, holonomies, or the affine
connection.
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coarse-graining requires the introduction of a distinguished
metric using background field techniques [8,9].3

Therefore we are led to the challenge of restricting
the configuration space of metric fluctuations, within
the background field formalism in such a way that the
regularization is consistent with imposing the constraints,
e.g., on spacetime signature and topology.
For our discussion it is useful to distinguish two different

types of constraints. The first type are “equality con-
straints” where allowed configurations have to satisfy a
strict equality. These are the standard constraints encoun-
tered in classical mechanics (e.g., the mass of a pendulum is
constrained to be on a circle of a given radius, the string
length). In a quantum field theory setup, such constraints
can be implemented using Dirac delta distributions. To this
end, one can perform a constraint analysis à la Dirac
[19,20], determine the full set of second class constraints,
and implement them at the level of the path integral using
the Senjanovic method [21]. The second type of con-
straints, and the most relevant for the present discussion,
are “inequality constraints” where allowed configurations
have to satisfy an inequality. The equivalent in classical
mechanics would be, e.g., a ball bouncing off a hard surface
(see, e.g., [22] for an implementation in the quantum-
mechanical path integral). A prominent example for an
inequality constraint in gravity is the restriction of metric
fluctuations such that the signature of the full metric stays
fixed. It is a main goal of this article to understand how this
type of constraints can be implemented in the gravitational
path integral, see also [23–27].
This paper is organized as follows: In Sec. II we discuss

some preliminaries on the path integral, illustrate the
problem and introduce our notation. In Sec. III, we first
highlight our strategy to best implement inequality con-
straints on the space of field configurations: finding a
suitable parametrization of the fluctuations such that the
path integral can be taken over the unconstrained fields. We
then discuss the construction of signature-preserving metric
parametrizations in Euclidean quantum gravity. We show
that there are infinitely many possible parametrizations
which define bijective maps from the space of real
symmetric fluctuation fields to Euclidean metrics of a
given topology, given a background metric of the same
topology. As has been emphasized before [28,29], the
linear parametrization is not one of them, while the
exponential one [28–31] is. In Sec. IV, we then explore
how to impose the constraint that a foliation exists in a

consistent and covariant way, extending previous work in
[32].4 In particular, we show that a foliation structure,
where all fluctuations preserve the signature of the full
metric, can be implemented by a suitable choice of para-
metrization, without adding additional constraints to the
path integral. We turn our attention to Lorentzian signature
in Sec. V and discover that beyond the perturbative setting
there are severe obstructions to the construction of a
bijective map between the space of real symmetric fluc-
tuation fields and the space of Lorentzian metrics, general-
izing the discussion of the exponential parametrization in
[33]. In particular, we present an explicit example showing
why the Euclidean strategy is doomed to fail in the
Lorentzian case. This suggests that using the background
field method in the Lorentzian setup requires a direct
implementation of an inequality constraint. We illustrate
how this can be done within the functional renormalization
group (FRG) framework in Sec. VI in the case of a scalar
field theory subject to an inequality constraint, and we
derive a modified version of the FRG equation [9,34–36]
which takes the inequality constraint into account. Finally,
we discuss and summarize our findings in Sec. VII.

II. THE PATH INTEGRAL OVER METRICS

In this section we motivate the necessity of finding a
bijective map between a background metric and the full
metric on the level of the gravitational path integral.
Our discussion focuses on approaches to quantum

gravity that are based on a path integral over spacetime
metric configurations. One difficulty in this approach is that
the gravitational path integral

Z ¼
Z

DgμνeiS½gμν�; ð1Þ

where S is the gravitational action, is ill-defined, as it
misses a regularization. Lattice methods to evaluate the
path integral of quantum gravity, such as Euclidean or
Causal dynamical triangulations (EDT/ CDT) [37,38],
implement this regularization via a discretization of space-
time. Physical quantities are then extracted in the con-
tinuum limit, if it exists. In continuum metric formulations,
the ill-defined path integral over the metric gμν is replaced
by one over metric fluctuations hμν around a background
metric ḡμν, where a suitable regularization is implemented,
namely:

3Avoiding the introduction of a background metric leads to
pregeometric settings [10–15], where the use of nonmetric
degrees of freedom allows to coarse-grain in a background
independent way, see, e.g., [16–18]. As a drawback, the con-
nection to continuous geometries becomes a highly nontrivial
one. Thus, restrictions on the configuration space of geometries
can become highly challenging to interpret in this pregeometric
context.

4At the level of a classical Lagrangian or Hamiltonian, the
correct implementation of a constraint such as a foliation
structure requires to first identify all constraints via the Dirac
analysis. At the level of an off-shell path integral however, it is
not clear that the Dirac analysis is necessary. In particular, one
could first aim at resumming all quantum fluctuations, and
determine the full set of constraints at the level of the effective
Lagrangian only.
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ZR ¼
Z

DRhμνeiS½ḡμν;hμν�; ð2Þ

where we indicated that the measure also includes a
regularization. A generic difficulty in this formulation of
quantum gravity is how to make sure that quantum
fluctuations hμν of the metric gμν about a background
metric ḡμν extend only over those configurations that one
wants to integrate over. Here, we work under the
assumption that only metrics of a fixed signature (either
Euclidean or Lorentzian) should contribute to the gravita-
tional path integral.5 Our work aims at finding conditions to
construct parametrizations of the metric fluctuations which
realize a one-to-one map between the space of real
symmetric tensors hμν and the spaces of metrics of fixed
(Euclidean or Lorentzian) signature. Our idea is summa-
rized in Fig. 1.
A simpler version of the full path integral (2) is typically

considered in perturbative setups, where the metric fluc-
tuations hμν are assumed to be small perturbations around a
flat background, i.e., gμν ¼ ημν þ hμν. In this effective field
theoretical (EFT) approach to quantum gravity, see, e.g.,
[42,43], the regularization of the path integral is imple-
mented via an explicit UV cutoff, given by the Planck scale.

Below the cutoff, a perturbative treatment of quantum
gravity is viable. The EFT only breaks down above the
cutoff scale where the theory becomes strongly coupled. In
this case a one-to-one map from the space of real and
symmetric tensors hμν to the space of metrics of fixed
signatures indeed exists, since the perturbative nature of
metric fluctuations hμν makes it difficult to flip the
signature of the background metric ḡ≡ η. Thus, no changes
in the signature of gμν ¼ ημν þ hμν are expected to occur.
A different approximation to evaluate the path integral

(2) consists of integrating over symmetry-reduced configu-
rations only. For example, in a minisuperspace setup the
action is reduced to a function of just one variable. The
quantization of the resulting action defines the minisuper-
space approach to quantum gravity—widely used in
quantum cosmology [44–48]—and allows to explore the
impact of quantum gravity in the early evolution of the
universe in a simplified setup with minimal extra assump-
tions [49–60].
Finally, asymptotically safe quantum gravity aims at a

fully nonperturbative evaluationof a path integral overmetric
configurations [61] based on diffeomorphism-invariant
gravitational actions. Practical computations are typically
performed either using FRG [9,62–64] or lattice techniques
[37,38]. In contrast to EDTandCDT, the FRG is a continuum
method implementing a local coarse-graining procedure. It is
based on the scale-dependent effective action Γk, which

FIG. 1. We illustrate the space of Lorentzian metrics and the space of Euclidean metrics. It is the key question of this work whether a
one-to-one map exists from the space of real symmetric tensors hμν to the spaces of metrics of fixed signature. It is known that the linear
parametrization maps to a set that contains both Lorentzian and Euclidean metrics (light gray region), unless one works in perturbation
theory (indicated by dashed lines).

5Other possibilities can be considered, see, e.g., [39–41].
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interpolates between the classical action S and the full
quantum effective action Γk¼0 ¼ Γ1PI. The insertion of a
regulator functional into the path integral implements the
Wilsonian idea of momentum-shell-wise integration of
quantum fluctuations. The definition of momenta requires
the definition of a reference backgroundmetric ḡ. However,
this background in principle never needs to be specified
explicitly. In contrast to the EFT treatment of quantum
gravity, in asymptotically safe quantum gravity, metric
fluctuations hμν can be of arbitrary size. It needs to be
stressed at this point that, for technical reasons, the
local coarse-graining procedure requires the use of
Euclidean signature. The more challenging investigation
of Lorentzian asymptotic safety with the FRG is one of the
open questions outlined in [65]. First steps toward a
Lorentzian formulation have been taken in [32,66–75].

III. PARAMETRIZATIONS OF METRIC
FLUCTUATIONS FOR EUCLIDEAN

QUANTUM GRAVITY

In this section we discuss the Euclidean version of the
path integral (2), assuming a suitable regularization. Our
goal is to construct a bijective map between the full
Euclidean metric gμν of a given topology, and metric
fluctuations hμν around a (fixed but arbitrary) Euclidean
background ḡμν of the same topology, such that the
Euclidean path integral (2) can be replaced by a regularized
path integral over the metric fluctuations hμν. The role of a
fixed topology will be discussed below. This mapping can
in principle be implemented using a linear parametrization,
together with an inequality constraint, which only selects
spacetimes of a given signature. However, if the latter is not
properly implemented, for example due to approximations,
the path integral over metric fluctuations can contain
degenerate or Lorentzian metrics, cf. Sec. III B. By contrast,
in perturbative approaches to quantum gravity, for example
in the context of an EFT description of quantum gravity
[42,43,76,77], as well as quantum gravity in 2þ ϵ dimen-
sions [78–80], the linear parametrization without additional
constraints is under control. As already mentioned, metric
fluctuations are small in the regime of validity of the
perturbative expansion and cannot change the signature of
the background metric. We will discuss the possibility of
employing an inequality constraint beyond the perturbative
regime and its practical implementation in Sec. VI.
In this section we will show that in the Euclidean case

there exist infinitely many bijective maps fð·Þ between the
space of Euclidean metric gμν and the space of symmetric,
real fluctuation fields hμν, which takes the form

gμν ¼ ḡμκfðh··Þκν: ð3Þ

Here indices on h are raised and lowered with the back-
ground metric ḡ, and the full metric g and the background

metric ḡ are defined on the same connected component, i.e.,
they share the same topology. In the following we will
restrict ourselves to ultralocal parametrizations, i.e., those
that do not include derivatives. Furthermore, in order to
make a proper connection to a perturbative expansion, we
will require that for small h

fðh··Þμν ¼ δμν þ hμν þOðh2Þ: ð4Þ

In the next subsection we will study the conditions the
parametrization f has to satisfy in order to preserve the
signature and to map bijectively between Euclidean metrics
and real symmetric matrices. We will find that there
are infinitely many parametrizations f that satisfy these
conditions.
Before we dive into the discussion, let us briefly clarify

the role of the spacetime topology of the metric. As already
mentioned, in this work we aim at finding maps relating
metrics of the same, fixed topology. This is because with
finite fluctuations, the topology cannot be “changed.”6 Let
us stress that restricting the parametrization f to be bijective
ensures that h is finite. In contrast, if one would allow h to
diverge, one would be able to connect metrics of different
topologies, contradicting the notion that geometries having
different topologies cannot be deformed continuously into
each others. One can also illustrate this by considering a
topological invariant, e.g., the Euler characteristic. Its
variation with respect to the metric vanishes exactly, since
it is a total derivative. This directly implies that finite
quantum fluctuations cannot change the topology if we do
not take into account boundary degrees of freedom.7 An
inclusion of such boundary terms would be very interesting
and could potentially yield topology changes, but we leave
this for future work.

A. Existence of bijective, signature-preserving
parametrizations for Euclidean gravity

A necessary condition for bijectivity of the parametriza-
tion (3) is to ensure that g and ḡ have the same signature.
To investigate consequences of this condition, we use
Sylvester’s law of inertia [81]. It states that a symmetric
square matrix gμν and another symmetric square matrix ḡμν
have the same number of positive, negative, and zero
eigenvalues if and only if they are related by

g ¼ STḡS; ð5Þ

6Here we refer to the change of topology of the four-dimen-
sional spacetime metrics induced by their fluctuations h, and not
to the more commonly discussed change of the spatial, three-
dimensional topology as a function of time.

7Strictly speaking, this would still allow fluctuations which
keep the Euler characteristic fixed but nevertheless change the
topology. Here we make the assumption that topology changes
are always tied to a change in an index that in general is contained
in the action, and whose metric variation vanishes exactly.
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where S is a real invertible matrix. At first glance, this
appears to be a noncovariant relation. However, assuming
that S only depends covariantly on the matrix ḡ−1h, we
show in the Appendix that S has the form of a rank-(1,1)
tensor, and that the relation (5) is equivalent to

gμν ¼ ḡμρ½Sðḡ−1hÞ2�ρν: ð6Þ
This is the same as

SμρSρν ¼ ḡμρgρν ¼ fðh··Þμν; ð7Þ

where we suppressed the arguments, and where we have
used (3) for the last equality. This implies that paramet-
rizations f that preserve the signature have to be the square
of an invertible matrix S.
In what follows we discuss the conditions that bijectivity

imposes on the parametrization f. Specifically, we will use
the fact that positive-definite matrices like the Euclidean
metrics g and ḡ possess a unique positive-definite square
root.8 Let us multiply (7) from the left by this unique square
root of ḡ, and from the right by its inverse,

ffiffiffiffiffiffiffi
ḡ−1

q
g
ffiffiffiffiffiffiffi
ḡ−1

q
¼ ffiffiffī

g
p

fðḡ−1hÞ
ffiffiffiffiffiffiffi
ḡ−1

q
: ð8Þ

We now assume that f and S have the following property:

ffiffiffī
g

p
fðḡ−1hÞ

ffiffiffiffiffiffiffi
ḡ−1

q
¼ f

� ffiffiffiffiffiffiffi
ḡ−1

q
h
ffiffiffiffiffiffiffi
ḡ−1

q �
; ð9Þ

ffiffiffī
g

p
Sðḡ−1hÞ

ffiffiffiffiffiffiffi
ḡ−1

q
¼ S

� ffiffiffiffiffiffiffi
ḡ−1

q
h
ffiffiffiffiffiffiffi
ḡ−1

q �
: ð10Þ

This property is satisfied if f and S have a convergent
Taylor expansion, or if they have a representation in terms
of an integral transform with exponential kernel (e.g., a
Laplace or Fourier transform).9

Under the assumption that (9) holds, it follows thatffiffiffiffiffiffiffi
ḡ−1

q
g
ffiffiffiffiffiffiffi
ḡ−1

q
¼ f

� ffiffiffiffiffiffiffi
ḡ−1

q
h
ffiffiffiffiffiffiffi
ḡ−1

q �
≡ S

� ffiffiffiffiffiffiffi
ḡ−1

q
h
ffiffiffiffiffiffiffi
ḡ−1

q �
2
;

ð11Þ
where the last equality follows from (7). Furthermore, we
observe that the left-hand side of (11) is a positive-definite
matrix, since g is positive-definite and for any vector x,

xT
ffiffiffiffiffiffiffi
ḡ−1

q
g
ffiffiffiffiffiffiffi
ḡ−1

q
x ¼

� ffiffiffiffiffiffiffi
ḡ−1

q
x
�T

g
� ffiffiffiffiffiffiffi

ḡ−1
q

x
�
> 0: ð12Þ

Hence, the argument of both f and S is a real symmetric
matrix. We conclude that f is a bijective map from real
symmetric matrices to the space of positive-definite matri-
ces. Therefore, we can also take its positive-definite square
root to uniquely define S. This then ensures that g and ḡ
have the same signature.
Since f is bijective, we can solve (11) for h and get

h ¼ ffiffiffī
g

p
f−1
� ffiffiffiffiffiffiffi

ḡ−1
q

g
ffiffiffiffiffiffiffi
ḡ−1

q � ffiffiffī
g

p
: ð13Þ

It is obvious that the h defined by this equation is
symmetric and real. It is also a tensor, which can be seen
by expanding f−1 in a power series. This exists at least
locally due to the inverse function theorem and the
perturbative constraint (4), which allows us to write

f−1
� ffiffiffiffiffiffiffi

ḡ−1
q

g
ffiffiffiffiffiffiffi
ḡ−1

q �
¼

ffiffiffiffiffiffiffi
ḡ−1

q
ðg − ḡÞ

ffiffiffiffiffiffiffi
ḡ−1

q
þOððg − ḡÞ2Þ;

ð14Þ

so that

h ¼ g − ḡþOððg − ḡÞ2Þ: ð15Þ

This expansion moreover proves that the specific choice of
square root is inessential, so that the relation between g and
h is indeed unique. We can also write

g ¼ ffiffiffī
g

p
f
� ffiffiffiffiffiffiffi

ḡ−1
q

h
ffiffiffiffiffiffiffi
ḡ−1

q � ffiffiffī
g

p
: ð16Þ

This form makes it clear that g is positive-definite, cf. (12),
and indeed a Euclidean metric. With the condition stated
above that f is a bijection between real symmetric matrices
and positive-definite matrices, Eqs. (13) and (16) conclude
the discussion on bijectivity.

B. Examples, discussion and implications

In this section we explicitly show that the linear para-
metrization violates the previously derived conditions.
Furthermore, we derive an entire family of bijective para-
metrizations and discuss the importance of using a bijective
parametrization to avoid inequality constraints. Finally, we
discuss some caveats on the practical implementation of
our construction.
Summarizing the findings of the previous subsection,

requiring a bijective map between Euclidean metrics g and
real symmetric tensors h restricts the allowed parametriza-
tions f, defined in (3), in the following way:

(i) f maps real symmetric matrices bijectively to
positive-definite real and symmetric matrices, and

8Note that the root is, in general, not a rank-(0,2) tensor, since
the matrix product of two rank-(0,2) tensors is not a tensor. This is
in contrast to the root of a rank-(1,1) tensor, which can be a rank-
(1,1) tensor again. For that reason, we will suppress the indices
in the following. Since final expressions are covariant, all
potential different choices for the branch of the square root lead
to the same result.

9Note that strictly speaking f and S also depend on the
background metric ḡ individually, since f ¼ ḡ for h ¼ 0. We will
suppress this additional dependence in the following to avoid
cluttered notation.
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(ii) for small arguments,

fðḡ−1hÞ ¼ 1þ ḡ−1hþOðh2Þ; ð17Þ

to abide with the perturbative expansion (4).
The first condition, together with (10), implies that S, the
unique positive-definite square root of f, is invertible as a
matrix, such that via Sylvester’s law of inertia, ḡ and g have
the same signature under such a parametrization.
Let us discuss some concrete examples. First, the linear

parametrization

gμν ¼ ḡμν þ hμν; ð18Þ

fails the first criterion, since for the particular matrix
h ¼ −ḡ, the metric g vanishes. For this parametrization,
one would need to implement an inequality constraint
directly. The explicit form of such a constraint is rather
involved. As a first necessary (but not sufficient) step, one
needs to ensure that the determinants of the full metric g
and the background metric ḡ have the same sign. In d ¼ 4
dimensions, this condition reads [82]�

ð1þ hTrÞ4 − 1

2
ð1þ hTrÞ2trð½hTL�2Þ

þ 1

3
ð1þ hTrÞtrð½hTL�3Þ þ detðhTLÞ

�
≥ 0; ð19Þ

with hTL and hTr being the traceless and trace parts of the
metric, respectively,

h ¼ hTL þ 1

d
ḡhTr; trðḡ−1hTLÞ ¼ 0: ð20Þ

The condition (19) is clearly not sufficient, since it would
not exclude the mixed signature (þþ −−) from the path
integral.
Second, as has been established before [28], the expo-

nential parametrization

fexpðḡ−1hÞ ¼ exp ðḡ−1hÞ ð21Þ

fulfills all requirements.
One can construct an entire family of viable paramet-

rizations inspired by the exponential one. In particular,

fexp−bðḡ−1hÞ ¼ exp ðḡ−1hTLÞbðhTrÞ ð22Þ

is a family of viable bijections whenever b is a bijection
from R to Rþ. To show that this indeed provides a viable
parametrization and to derive the form of b, we insert the
ansatz given by (22) into the definition of the parametriza-
tion (3), which gives

gμν ¼ ḡμρ expðḡ−1hTLÞρνbðhTrÞ: ð23Þ

Multiplying by ḡ−1 from the left and taking the determi-
nant, we get

det ḡ−1g ¼ bðhTrÞd: ð24Þ

Since by assumption both ḡ and g are positive-definite, the
left-hand side is positive and we can take the unique real
positive dth root, which determines bðhTrÞ. Using this, we
can also solve for the traceless component,

expðḡ−1hTLÞ ¼ ðdet ḡ−1gÞ−1=dḡ−1g: ð25Þ

The proof of bijectivity then follows as above.
Let us briefly address the question of practical impor-

tance for studies of the quantum gravitational path integral.
Our starting point is the transition from a path integral over
the metric g to a path integral over metric fluctuations h on
a background metric ḡ. We have argued that choosing a
parametrization fulfilling the above conditions is necessary
to avoid an inequality constraint in the path integral. This
inequality constraint would, for an arbitrary parametriza-
tion, fix the signature of the metric and avoid overcounting
metric configurations. In general, the direct implementation
of such an inequality constraint would give rise to a
Heaviside distribution in the path integral measure.
Besides the difficulties of the practical implementation
(e.g., making sure that the inequality constraint is imple-
mented exactly even in settings which require approxima-
tions), it is in general nontrivial to provide the explicit form
of the constraint. In addition to the inequality constraint,
one must make sure that no physical configuration is left
out by any parametrization, be it of the above form or not.
As we will show in Sec. V, signature-preserving para-

metrizations of the metric that can be straightforwardly
used for Euclidean signature fail for Lorentzian spacetimes.
One therefore must either use inequality constraints (or
other more exotic techniques) or accept a path integral
which takes both Euclidean and Lorentzian metrics into
account. We will come back to this construction in Sec. V,
with the concrete implementation of the inequality con-
straint in Sec. VI.
Finally, parametrizations as those discussed above only

provide a bijective mapping if fluctuations of arbitrary
order are taken into account (assuming that f is not a
polynomial). For instance, if one only works to first order in
h in the exponential parametrization, one recovers the
linear parametrization, such that the signature preservation
is no longer guaranteed. More generally, once the series
expansion for a given f is truncated at some finite order, a
finite hμν can, e.g., still flip the signature. On a practical
level however, the inclusion of higher and higher powers
will eventually converge to the true bijective parametriza-
tion, whereas for, e.g., the linear parametrization, we expect
at best a finite radius of convergence in h. Indeed, such
results were found in explicit studies: A nonperturbative
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renormalization group study of quantum gravity that
included an arbitrary power of metric fluctuations in the
exponential parametrization [82] found an infinite radius of
convergence. An analogous calculation in the linear para-
metrization reveals a singularity in the RG equation at
h ¼ −ḡ, as expected from the discussion above.

IV. CONSTRAINTS FOR FOLIATED SPACETIMES

In a path integral formulation of quantum gravity,
globally hyperbolic spacetimes play a special role, since
they possess a well-defined causal structure. This causal
structure ensures the existence of a well-defined Wick
rotation to Euclidean spacetimes. Therefore, if the
Lorentzian path integral is restricted to a sum over globally
hyperbolic spacetimes, only these configurations contribute
to physical scattering amplitudes. This is indeed the
philosophy at the basis of the CDT program [83].
In the context of CDT, the foliation structure is imple-

mented by means of the Arnowitt-Deser-Misner (ADM)
formalism [84], as this guarantees that only “foliatable”
spacetimes are included in the sum over paths. A similar
implementation in the context of the FRG approach to
asymptotically safe quantum gravity [67,68,70,85] would
however either break diffeomorphism invariance down to
foliation-preserving diffeomorphism [67], or break the one-
loop structure of the FRG equation [32].
Motivated by these considerations, in this section wewill

discuss the implementation of a foliation structure in a
manifestly covariant way and within the background field
formalism, extending previous work [32] to general sig-
nature-preserving parametrizations. We will review some
basic properties of the foliation structure and the split of the
full fields into background and fluctuations. In this analy-
sis, we will focus on Euclidean signature, using the results
of the previous section. Our goal is to formulate a path
integral over foliatable manifolds in terms of hμν only.
There are two important aspects to be kept in mind when

interpreting the results in the following in a broader
context. First, demanding the existence of a foliation in
Euclidean signature is different from requiring the exist-
ence of a consistent causal structure. As a matter of fact, a
foliation in Euclidean signature is always associated to a
spatial direction, but not necessarily to the spatial direction
along which an analytical continuation to Minkowski space
is performed. Therefore, restricting the configuration space
in Euclidean signature to foliatable configurations only
does not automatically result in the configuration space of
Wick-rotated Lorentzian spacetimes (assuming that an
analytical continuation can be performed at all, see [5]),
unless additional conditions are suitably implemented.
Second, since locally any Riemannian manifold is R4,
one can always foliate it locally. Therefore, any difference
between the configuration spaces of foliatable and non-
foliatable Riemannian manifolds must be a global one.

A. Basics

In this section we lay out the basics to implement a
foliation on a Euclidean spacetime in a covariant way, and
discuss fluctuations in terms of “foliation variables”—a
vector nμ, defining the foliation, and the induced metric on
the spatial slices, σμν. Furthermore, we discuss the impor-
tance of a linear relation between the metric fluctuations hμν
and the fluctuations of the foliation variables in the context
of the FRG. We will come to the conclusion that, in
Euclidean signature, the existence of a foliation does not
impact the path integral.
We start by assuming that there exists a foliation of the

spacetime metric gμν in terms of the orthogonal normalized
vector nμ and the spatial metric σμν according to [32]

gμν ¼ σμν þ nμnν; ð26Þ

with the conditions that

nμgμνσνρ ¼ 0; nμgμνnν ¼ 1: ð27Þ

The first equation states that nμ and σμν are orthogonal,
whereas the second equation provides a normalization for
nμ. We stress that in this covariant framework, both nμ and
σμν are four-dimensional covariant objects, which distin-
guishes this setup from the ADM-framework [84,86],
where the spatial metric and the shift vector are typically
introduced with spatial indices only. The decomposition of
the full metric g in terms of foliation variables σ and n
according to (26) increases the number of dynamical
degrees of freedom. The role of the two conditions (27)
is to ensure that the same number of dynamical degrees of
freedom exists. We will comment on this point more
extensively in Sec. IV B.
We split the metric into a fixed but arbitrary background

ḡμν and a fluctuation hμν. The corresponding fluctuations of
nμ will be called n̂μ, those of σμν will be called σ̂μν. Within a
background field formalism, n̂ and σ̂ are the integration
variables in the path integral. Given that n and σ are not
independent, one cannot simply assume a linear relation-
ship between n and n̂, or σ and σ̂. In fact, the dependence of
the full fields on the fluctuations can be nonlinear, and even
mixed, so that we write

nμ ¼ n̄μ þ δnμðn̂; σ̂Þ; σμν ¼ σ̄μν þ δσμνðn̂; σ̂Þ; ð28Þ

where δnμ and δσμν are the parametrizations of foliation
fluctuations. They play the same role as the parametrization
f introduced in the previous section does for the metric
fluctuation. We will assume in the following that the
background quantities satisfy the background version
of (27).
With the decomposition (28), the full metric as a function

of parametrized foliation fluctuations reads
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gμν ¼ ḡμν þ δσμν þ n̄μδnν þ δnμn̄ν þ δnμδnν: ð29Þ

We now want to relate the foliation fluctuations n̂ and σ̂ to
the metric fluctuation h in a way that, at variance with the
ADM formalism, preserves general covariance explicitly.
Demanding a linear relationship between these two types

of fluctuations, the unique relation between metric fluctua-
tions h and foliation fluctuations n̂ and σ̂ is

hμν ¼ σ̂μν þ n̄μn̂ν þ n̂μn̄ν: ð30Þ

Let us stress that in a general setting, a linear relation might
not be strictly necessary. One specific framework where the
linearity is critical is the FRG. In this context, the path
integral is regularized by means of a mode-suppression
term that is quadratic in the field fluctuations. It thus acts as
a scale-dependent mass term h · Rðp2=k2Þ · h, where k is a
RG scale. Starting from a path integral where the gravi-
tational action is written and regularized in terms of h, and
performing the transformation to foliation variables in a
second step, only a linear relation can preserve the
quadratic nature of the mode-suppression term. This
quadratic structure is key in order for the exact FRG
equation derived in [34–36], and adapted for gravity in [9],
to be of one-loop form.
Alternatively, one might take the point of view that

irrespective of the relationship between h and ðn̂; σ̂Þ, one
can simply introduce a mode-suppression term that is
quadratic in the foliation fluctuations n̂ and σ̂. Yet, this
comes at the cost of broken background diffeomorphism
invariance, unless the relationship between h and n̂, σ̂ is
linear, and the regulators of the individual sectors are tuned
in the right way. This is because both the background
metric ḡ as well as the fluctuation field h transform under a
background diffeomorphism, such that this auxiliary sym-
metry becomes the full gauge symmetry once ḡ and h are
combined to the metric g again. Therefore, n̂ and σ̂
transform under background diffeomorphisms. Unless
the relation between h and n̂, σ̂ is linear, they transform
in a nonlinear fashion under the auxiliary symmetry.
Accordingly, a regulator that is quadratic in these fields
and is introduced in an ad hoc manner in the case of a
nonlinearly realized symmetry, breaks background diffeo-
morphism symmetry. The latter is critical to recover a
diffeomorphism invariant effective action from the FRG
formalism. Therefore, the linearity of the relation (30) is
critical in this setup.

B. Constraints on foliation fluctuations

In this section we investigate the implications of the
constraints (27), which ensure orthogonality of n and σ, as
well as the normalization of n, on the foliation fluctuations.
Demanding that the parametrization of fluctuations of
the normal vector δn is completely determined by the
metric fluctuation h, there are parametrizations of foliation

variables that satisfy the foliation constraints (27) and at the
same provide a bijective map between background and full
metric.
We start with the second constraint, which reads

F 2 ¼ nμgμνσνρ ¼ 0: ð31Þ

Using the decomposition (26), we see that the two con-
straints (27) are not independent,

F 2 ¼ nμgμνσνρ ¼ nμgμνðgνρ − nνnρÞ
¼ ð1 − nμgμνnνÞnρ ¼ −F 1nρ: ð32Þ

In particular, it is just a single scalar constraint that is
effectively imposed. The orthogonality and normalization
conditions (27) are thus not enough to remove all unphys-
ical fluctuations. By counting the modes, the set of foliation
fluctuations ðn̂μ; σ̂μνÞ has 14 independent components,
while the metric fluctuation hμν only carries 10 (before
gauge fixing). It follows that the constraints have to remove
four unphysical modes that have been introduced by the
decomposition (26). However, as we have seen, the
vectorial constraint and the scalar constraint collapse to
one single scalar constraint. This is in fact a consequence of
the invariance of the metric gμν in (29) under the shift of the
parametrization of foliation fluctuations δnμ and δσμν by
some vector field ωμ,

δnμ → δnμþωμ;

δσμν→ δσμν− ðn̄μþδnμÞων−ωμðn̄νþδnνÞ−ωμων: ð33Þ

This corresponds to a change of the foliation at fixed total
metric g. Accordingly, it is enough to satisfy the scalar
normalization constraint in order to implement a foliation
structure.
At this point,we are leftwith the task of removing the three

remaining unphysical modes introduced by the foliation
variables. To this end, it is actually preferable to replace the
fluctuation of the spatialmetric by themetric fluctuationhvia
(29). Using h has the virtue that for a diffeomorphism
invariant theory, all information is carried by h only, while
n cannot appear in any equation. In fact, n can only appear
explicitly in the dynamics if the symmetry is explicitly
broken to foliation-preserving diffeomorphisms.
To fix the mismatch in the number of fluctuating fields,

we require that the parametrization of fluctuations of the
normal vector n is completely determined by the metric
fluctuation (and background quantities),10

10This requirement is not unique, and one could replace it by
other conditions to fix the mismatch in the number of degrees of
freedom. We employ this choice as the simplest and most
convenient one.
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δnμ ¼ n̄ρXðh··Þρμ ≡ ḡμρXðh··Þρκḡκαn̄α; ð34Þ

and we fix the matrix X by requiring that the constraint

nμgμνnν ¼ n̄μḡμνn̄ν ¼ 1; ð35Þ
is satisfied. Inserting the ansatz for the parametrization of
fluctuations of the normal vector n, (34), on the left-hand
side yields

nμgμνnν ¼ n̄μðδμα þXμ
αÞgαρḡρκðδκλ þXκ

λÞḡλσn̄σ; ð36Þ
from which we conclude by comparison with the right-
hand side that

δμλ ¼ ðδμα þXμ
αÞgαρḡρκðδκλ þXκ

λÞ
⇒ ðδμρ þXμ

ρÞðδρν þXρ
νÞ ¼ ḡμκgκν ≡ SμκSκν: ð37Þ

In the last step, we have used the condition that ḡ and g have
the same signature as discussed in the previous section,
cf. (7). We can now immediately fix the parametrization of
fluctuations of the normal vector in terms of the para-
metrization of metric fluctuations:

X ¼ S − 1: ð38Þ

In this way, the tensor σμν and the vector nμ satisfy the
constraints (27), and at the same time the parametrization of
foliation fluctuations δnμ and δσμν are expressed entirely in
terms of background quantities and hμν. This means that the
metric fluctuations hμν remain completely unconstrained,
so that no inequality constraints on hμν are necessary on the
level of the path integral.

C. Discussion and interpretation

As discussed in Sec. III, the use of suitable parametriza-
tions for the metrics fluctuations h which preserve the
signature of the full metric g makes it possible to avoid a
direct implementation of an inequality constraint. Again,
this property is automatically ensured by using a map
satisfying (5), as this leaves the signature of the full metric,
and therefore also the signature of the spatial metric,
unchanged. Examples of these maps are the exponential
parametrization, (21), and the family of maps in (22).
We might therefore interpret the results of this section as

an indication that the use of a suitable parametrization for
the metric fluctuations combined with the choice of a
foliatable background already implement the foliation
structure for the full metric.
We emphasize that the conditions we have derived only

ensure the existence of some foliation for the fullmetric. This
does not ensure that some appropriate analytical continuation
of a set of Lorentzian spacetimes is included. It only ensures
that there is a “time direction” that can be identified in the
Euclidean setting, such that an analytical continuation would

result in a Lorentzianmanifold. Additionally, aWick rotation
is not straightforwardly implemented in quantum field
theories on a curved spacetime, see [5].

V. PARAMETRIZATIONS OF METRIC
FLUCTUATIONS FOR LORENTZIAN

QUANTUM GRAVITY

Wehave shown that it is possible to define the path integral
over all foliatable Euclidean metrics in the background field
formalism without introducing inequality constraints. This
allows us towrite awell-defined path integral which contains
both a gauge fixing as well as a local regularization term. The
setup enables studies of Euclidean Asymptotic Safety in a
foliatable, covariant setting, where full background diffeo-
morphism symmetry is preserved.
The real Universe is Lorentzian. It is thus key to under-

stand whether it is possible to use the background field
method in Lorentzian quantum gravity without the need for
inequality constraints. In fact, in the case of quantum gravity
(or even “standard” quantum field theory on a curved
background) it is not clear whether it is always possible to
“connect” Euclidean and Lorentzian setups via an analytic
continuation. In particular, there are metrics which exist in
Euclidean, but do not exist in Lorentzian signature, and vice
versa. Additionally, even for simple examples like a de Sitter
space, the analytical continuation is much more subtle than
onemight naively expect [5]. It is therefore crucial to explore
the case of Lorentzian quantum gravity directly.
In this section we will show that in the Lorentzian case,

no “simple” bijective parametrizations can be found, and in
particular, all parametrizations that work in the Euclidean
case cannot work in the Lorentzian case. We cannot prove
however that no bijective parametrizations exist—their
construction is nevertheless much more involved than in
Euclidean signature.
Our starting point is the same as for Euclidean signature,

namely that the (Lorentzian) metrics g and ḡ have the same
signature if and only if there is a real invertible matrix S
such that

g ¼ STḡS: ð39Þ

We will prove that for Lorentzian signature, S in general
cannot be a tensor. The proof proceeds by contradiction,
thus assume that S is a rank-(1,1) tensor. This is the only
index structure such that the above equation makes sense.
In the Appendix we showed that if S is a tensor, we can
write the equivalent condition11

11More specifically, we have shown this under the assumption
that S only depends on ḡ−1h and the identity. In principle, S could
depend on noncovariant objects that combine in such way that S
in the end is a tensor. We will not comment on this possibility and
instead work under the reasonable assumptions that S depends on
ḡ−1h and the identity only.
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ḡμαgαν ¼ SμαSαν: ð40Þ

This implies that if S is a tensor, then the combination ḡ−1g
has to admit at least one real invertible square root. We will
now construct an example where a specific choice of
metrics does not give rise to such a root. For this, consider
the Kerr-Newman black hole of mass M in ingoing Kerr
coordinates,

ds2 ¼ −
ðΔ − a2sin2θÞ

Σ
dv2 þ 2dvdr

− 2
asin2θ
Σ

ðr2 þ a2 − ΔÞdvdχ − 2asin2θdχdr

þ ðr2 þ a2Þ2 − Δa2sin2θ
Σ

sin2θdχ2 þ Σdθ2; ð41Þ

whereΔ ¼ r2 − 2Mrþ a2 þQ2 and Σ ¼ r2 þ a2 cos2 θ, a
denotes the spin and Q the charge of the black hole. In the
choice of the specific parameters ðM;Q; aÞ for the full
metric g and for the background metric ḡ, one has to make
sure that both belong to the same topological class, since
otherwise they might not be connected by a continuous
parametrization fðhÞ. Since all four-dimensional nonex-
tremal black holes are characterized by an Euler character-
istic χ ¼ 2 [87–90], it suffices to choose ðM;Q; aÞ such
that both g and ḡ have two nondegenerate horizons.
Specifically, choosing the background metric ḡ with
parameters

M̄ ¼ 1; Q̄ ¼ 3

4
; ā ¼ −

1

2
; ð42Þ

and the full metric g with parameters

M ¼ 1; Q ¼ 0; a ¼ 1

2
; ð43Þ

and considering the point

r ¼ 1

10
; θ ¼ π

2
; ð44Þ

which in both cases is located between the two horizons,
we get for the product

ḡ−1g ¼

0
BBB@

1001 50 −526 0

4225
4

51 − 4433
8

0

−2000 −100 1051 0

0 0 0 1

1
CCCA: ð45Þ

Since the eigenvalues of this matrix are all distinct, it has
exactly 16 distinct square roots. It is straightforward to
show that none of the roots are real.
Nevertheless, since the two matrices have the same

signature, there must be at least one real S such that

(39) is fulfilled. The conclusion that we have to draw from
the above observation is that (40) is not equivalent to this
condition. This means that the S relating Lorentzian metrics
in general cannot be a tensor. From this statement we can
draw an immediate conclusion: any parametrization that
works in the Euclidean, where we have shown that S is a
tensor, cannot work in the Lorentzian.
More generally, one finds that those combinations of

metrics g and ḡ do not admit a tensorial S whose product
ḡ−1g admits distinct negative eigenvalues. To see this, first
note that, since both metrics have the same signature by
assumption,

det ḡ−1g > 0: ð46Þ

This implies that in four dimensions, the eigenvalues of this
product can have the following form:

(i) four positive eigenvalues,
(ii) two positive, and two negative eigenvalues,
(iii) four negative eigenvalues,
(iv) two positive, and one pair of complex conjugate

eigenvalues,
(v) two negative, and one pair of complex conjugate

eigenvalues,
(vi) two pairs of complex conjugate eigenvalues.

Now assume that we can diagonalize the product over the
reals, so that

P−1ḡ−1gP ¼ P−1S2P ¼ ðP−1SPÞ2; ð47Þ

are both diagonal matrices. Now it is clear that if there are
distinct negative eigenvalues, taking the square root will
yield complex entries, so that S is not real. The qualifier for
distinct negative eigenvalues is necessary since, e.g., the
matrix

�
0 −1
1 0

�
; ð48Þ

is a real square root of minus the identity.
From this discussion we conclude that avoiding an

inequality constraint by a suitable choice of parametrization
seems to be very involved in the Lorentzian case. For that
reason, in the next section we discuss the direct imple-
mentation of an inequality constraint in the context of the
Wetterich equation.
We note that even restricting the metric to be globally

hyperbolic likely does not solve the issue. As an example,
we decompose the full metric and the (inverse) background
metric as

gμν ¼ σμν þ nμnν; ḡμν ¼ σ̄μν þ nμnν; ð49Þ

such that the fluctuations of the normal vector n vanish,
which implies that n ¼ n̄. For these choices for ḡ and g, 1 is
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an eigenvalue of ḡ−1g with eigenvector n. Because of the
orthogonality of n to both σ̄ and σ, the remaining eigen-
space of ḡ−1g is spanned by spatial vectors, and we have to
consider the eigenvalues of the product of two spatial
Euclidean metrics σ̄−1σ. Since σ̄−1 and σ do not commute in
general, this product is generally not symmetric. Therefore,
it is not guaranteed that σ̄−1σ features only positive
eigenvalues. We conclude that even restricting the path
integral to globally hyperbolic Lorentzian spacetimes only,
a bijective, signature preserving parametrization of metric
fluctuations of the form (3) and (39) does not exist.

VI. INEQUALITY CONSTRAINTS IN
NONPERTURBATIVE RG FLOWS

We have seen that in the Lorentzian case it is very
difficult to find a parametrization for metric fluctuations
which preserves the (Lorentzian) signature of the metric. In
other words, it is difficult to restrict the gravitational path
integral to Lorentzian spacetimes only. There are therefore
three possibilities: (i) in a quantum theory of gravity,
fluctuations of the metric signature should be allowed,
(ii) the gravitational path integral must be restricted by
means of inequality constraints, or (iii) we have to work
within an altogether different configuration space which
ensures classical equivalence with general relativity but
where quantum fluctuations take a different form. In this
section we discuss option (ii), the implementation of
inequality constraints. We will work within a toy model,
and illustrate how an inequality constraint can be imple-
mented directly within the FRG. Extending this procedure
beyond the simple toy model and using the linear para-
metrization, it might provide a suitable way to restrict the
path integral to include Lorentzian signatures only.
In the literature, inequality constraints have often been

avoided due to the difficulties arising in their implementa-
tion. As a first attempt to study quantum field theories subject
to inequality constraints, in this section we focus on a simple
scalar theory and we propose a method to implement an
inequality constraint at the level of the FRG equations. This
method could be relevant for future studies of asymptotically
safe quantumgravity inLorentzian signature. Let us consider
a scalar field ϕ whose maximum value is bounded from
above, ϕ2 ≤ ϕ2

0. Formally, this condition can be imple-
mented by introducing a Heaviside distribution θ at the level
of the Lorentzian path integral,

Z ¼
Z

Dϕθ

�
1 −

ϕ2

ϕ2
0

�
eiS½ϕ�; ð50Þ

where S is the action of the scalar field. We will interpret the
constraint as an addition to the action by exponentiating it. To
avoid problems due to the nondifferentiable nature of the
Heaviside distribution, we first rewrite it as the limit of a
smooth function,

θðxÞ ¼ lim
α↘0

1

1þ e−
2x
α

: ð51Þ

In this way,

Z ¼
Z

Dϕlim
α↘0

exp

"
iS½ϕ� − ln

 
1þ e

−2
α

�
1−ϕ2

ϕ2
0

�!#
; ð52Þ

such that the inequality constraint adds an additional imagi-
nary component to the scalar potential. For a Euclidean path
integral, the extra term is real. We can now perform the
standard derivation of the Wetterich equation (see, e.g., [91]
for a detailed review of the derivation in the case of uncon-
strained systems, and [66,67,73,92] for considerations on the
Lorentzian case) to arrive at

∂tΓk ¼ lim
α↘0

1

2
STr

2
664 ∂tRk

Γð2Þ
k þ Rk þ i∂2ϕ ln

�
1þ e

−2
αð1−ϕ2

ϕ2
0

Þ�
3
775:

ð53Þ
At the level of the flow equation, and after taking the second
derivative, we can take the limit α → 0. We have to discuss
three different cases. For ϕ2 > ϕ2

0, the second derivative of
the constraint diverges like 1=α, and therefore the contribu-
tion of these field configurations to the RG flow is sup-
pressed, as required by the inequality constraint. For
ϕ2 < ϕ2

0, the contribution of the constraint vanishes expo-
nentially quickly, and thus the RG flow is unaltered in the
strict limit α → 0. Finally, at the boundary ϕ2 ¼ ϕ2

0, the
constraint gives a contribution which diverges quadratically,
as∝ 1=α2.12With this, in the limit of enforcing the constraint
strictly, the flow equation reads

∂tΓk ≃
1

2
STr

�
θ

�
1 −

ϕ2

ϕ2
0

�
∂tRk

Γð2Þ
k þ Rk

�
; ð54Þ

where we have indicated that potentially boundary terms
have to be treated carefully, due to the distributional character
of the Heaviside distribution. In conclusion, an inequality
constraint can be implemented directly at the level of the
Wetterich equation. The above form makes it clear that no
polynomial truncation of the action in the field will be
influenced by inequality constraints, with the exception of an
expansion point directly on the boundary.
Let us finally discuss implications of this result on

calculations using the background field method and the

12Let us note that the precise way in which the flow is
suppressed at small but finite smearing parameter α depends
on the specific function chosen to define the Heaviside distri-
bution [in our case (51)], but the flow of Γk obtained by taking the
strict limit α → 0 is independent of it.
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FRG. In most calculations, a finite order expansion in the
fluctuation field is performed. Such an expansion is insensi-
tive to the Heaviside distribution in the flow, since its Taylor
expansion around almost any configuration is trivial.
Therefore, only calculations that include the full field
dependence [82] are sensitive to inequality constraints.
We close with a word of caution by illustrating the case

of an Ising model with the above constraint, in three
dimensions. The unconstrained system features a single
fixed-point solution, namely the Wilson-Fisher fixed point,
which is relevant for many condensed matter applications.
Studying the differential equation for the scalar potential
reveals that the condition of global existence of the solution
singles out the Wilson-Fisher fixed point. Concretely, if ϕ0

in the above inequality constraint is chosen large enough,
then the Wilson-Fisher fixed point is still the single solution
to the fixed point equation. Conversely, if ϕ0 is smaller than
the critical value, we expect infinitely many fixed point
solutions to exist. This expectation springs from local
existence theorems for differential equations. We conclude
that an inequality constraint potentially changes the struc-
ture of the RG flow dramatically.

VII. SUMMARY AND CONCLUSIONS

In this work we discussed some details and problems in
the construction of the metric configuration space for the
gravitational path integral in both Euclidean and Lorentzian
signature. Continuum approaches to quantum gravity based
on this path integral typically make use of the background
field formalism. The spacetime metric is parametrized in
terms of a fluctuation field around a fixed, albeit arbitrary,
background metric. The path integral is then written as a
sum over all possible metric fluctuations. A key question is
how to constrain the metric fluctuations such that the
functional integral extends over spacetime configurations
belonging to a subset of all possible metrics, e.g., metrics
having a fixed signature and/or topology, without over-
counting certain configurations or missing out on others.
A possible strategy to implement the constraint on the

configuration space of the gravitational path integral con-
sists of selecting suitable parametrizations for the metric
fluctuations that naturally allow us to reach only a subset of
all possible metrics. Mathematically, this procedure pro-
vides a bijective map between the space of metrics of fixed
signature and topology, and the space of real symmetric
metric fluctuations, cf. Fig. 1. Concretely, we showed that
for Euclidean spacetimes of fixed topology, there exist
infinitely many bijective parametrizations, see, e.g., (23).
Thus, restricting the signature of the metrics in a Euclidean
path integral can be done within the standard background
field method, simply by choosing an appropriate para-
metrization, as outlined in Sec. III B. Furthermore, in
Sec. IV we found indications that the same parametriza-
tions, together with the choice of a foliatable Euclidean
background, is sufficient to implement a foliation structure

for the full metric. Thus, restricting the path integral further
to only include foliatable Euclidean manifolds does not
pose additional constraints.
A more severe problem in the construction of the

configuration space for quantum gravity arises when
trying to restrict the set of all possible metrics to
Lorentzian spacetimes only. Specifically, our discussion
in Sec. V has highlighted the difficulty in combining the
background field method with a path integral that includes
Lorentzian metrics only. In particular, we have con-
structed an explicit example which shows that paramet-
rizations that work for Euclidean spacetimes fail in the
Lorentzian case. This could constitute a major challenge
for the asymptotic safety program using FRG techniques,
which is currently explored almost exclusively in a
Euclidean setting (see [66,73–75] for exceptions).
To explore the Lorentzian setting, one might hope to

obtain the results in Lorentzian signature by means of an
analytic continuation of the Euclidean results, i.e., a Wick
rotation. While in the case of quantum field theories on a flat
background this procedure is expected to give the correct
result, in the case of quantum field theories on a curved and
fluctuating spacetime defining an analytical Wick rotation is
an outstanding open problem [5]. Moreover, an aspect of
Wick rotation that is typically less explored is the question
whether the two configuration spaces are in a one-to-one
correspondence. Our results highlight that within the back-
ground field method this is not the case, since parametriza-
tions of metric fluctuations that provide a bijective map
between metric fluctuations hμν and the full metric in
Euclidean spacetimes fail to do so in Lorentzian spacetimes.
Therefore, an analytic continuation of the Euclidean results
can—at best—give access to those Lorentzianmetrics which
are continuously connected to the flat Minkowski metric.
Our results indicate that any path integral approach to

quantum gravity, which is based on the metric, has to
consider an explicit inequality constraint when exploring
Lorentzian quantum gravity. In Sec. VI we discussed how
to implement this inequality constraint within a simple
scalar field theory and we showed how the FRG equation is
modified in the presence of a simple inequality constraint.
An interesting, alternative interpretation of our results is

that quantum fluctuations of spacetime could also trigger
signature changes. In this case, one should not limit the
quantum-gravitational path integral to configurations having
a specific signature. This is in line with the old idea
[45,93,94] that the universe might have been a (static)
Euclidean manifold, which then turned into the evolving
Lorentzian universe which we observe today. If instead one
sticks on the idea that the spacetime signature should not
fluctuate, an alternative setup to search forAsymptotic Safety
inLorentzian signature isworthwhile exploring. In [95,96], it
has been proposed that the causal set setup could be such a
setting. Causal sets [97–99] can be viewed as discrete, causal
networks of spacetime points. Both geometric as well as
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topological properties of a manifold can to a large extent be
encoded in its causal order, see [100] for recent examples.
The subset of causal sets knownas sprinklings corresponds to
discretizations of Lorentzian manifolds. If the discretization
scale can be taken to zero at a higher order phase transition in
the phase diagram of causal sets (spanned by the bare values
of the couplings), then a universal continuum limit exists for
the path integral over Lorentzian manifolds, such that
Lorentzian asymptotic safety is realized. For studies of the
phase diagram of causal sets in restricted configuration
spaces, see [101–104]. For related work in discrete networks
for quantum gravity, see also [105].
We close our discussion with a comment on degenerate

metrics and spatial topology changes in view of our results,
highlighting key differences between the Euclidean and
Lorentzian cases. Keeping the signature of the full metric
fixed implies that the metric cannot be degenerate. In fact,
parametrizing the metric fluctuations by means of a map
which satisfies Silverster’s law of inertia, (5), automatically
excludes degenerate metrics, since the map f has to be
invertible.
In a Lorentzian universe, there are many examples of

spacetimes which can undergo a variation (with time) of the
topology of the spatial slices. An emblematic example is that
of “trousers spacetimes,” where the universe (the “trunk”)
branches off as a function of time and splits into two baby
universes (the “legs” of the trousers). The metric of this
spacetime is thus degenerate at the branch point. Using the
background field method and a suitably implemented con-
straint on metric fluctuations, such a metric would be
excluded by the “sum over paths” in the gravitational path
integral.
Spacetimes exhibiting changes of topology can also be

defined in the Euclidean. In this case, a topology change
does not occur in time, but in space. A key example is that
of Euclidean wormhole, where a “spatial tube” connects
different (spatial) regions of the Euclidean manifold. At
variance with the trousers spacetimes of the Lorentzian
case, Euclidean wormholes do not feature degeneracies in
the metric [106,107]. Therefore, the corresponding metric
would not be excluded by the (Euclidean) gravitational path
integral, provided that the metric fluctuations are para-
metrized with a map satisfying (5).
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APPENDIX: PROOF THAT STḡS= ḡS2

According to Sylvester’s law of inertia [81], a symmetric
square matrix gμν and another symmetric square matrix ḡμν
share the same number of positive, negative and zero
eigenvalues if and only if they are related by the similarity
transformation in (5). In this appendix we show that
STḡS ¼ ḡS2, provided that the matrix S depends only on
the combination h ¼ ḡ−1h and on the identity.
In order to prove that STḡS ¼ ḡS2, it is sufficient to

notice that if S is a matrix that depends on h only, then it
admits the representation [81]

S ¼ S01þ S1hþ S2h2 þ S3h3; ðA1Þ

We can thus write

STḡS ¼ STðS0ḡþ S1hþ S2hḡ−1hþ S3hḡ−1hḡ−1hÞ
¼ STðS0ḡþ S1hþ S2hḡ−1hþ S3hḡ−1hḡ−1hÞT
¼ ððS0ḡþ S1hþ S2hḡ−1hþ S3hḡ−1hḡ−1hÞSÞT
¼ ðS0ḡþ S1hþ S2hḡ−1hþ S3hḡ−1hḡ−1hÞS
¼ ḡS2: ðA2Þ

In the first step we inserted S and multiplied it by ḡ. In the
second step, we used that the bracket is a symmetric matrix,
so that we can take the transpose without changing any-
thing. The third step combines the product of transposes to
the transpose of the product in reverse order. We again
realize that the bracket is a symmetric matrix, so we can
remove the transpose. Finally, we notice that the bracket is
nothing else than ḡS, which completes the proof. This is
nontrivial, and only works because S is a function of h (and
the identity) only.
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