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We propose a novel approach that allows efficient numerical simulation of 
systems consisting of flexible chain molecules. The method is especially suitable 
for the numerical simulation of dense chain systems and monolayers. A new type 
of Monte Carlo move is introduced that makes it possible to carry out large 
scale conformational changes of the chain molecule in a single trial move. Our 
scheme is based on the selfavoiding random walk algorithm of Rosenbluth and 
Rosenbluth. As an illustration, we compare the results of a calculation of 
mean-square end to end lengths for single chains on a two-dimensional square 
lattice with corresponding data gained from other simulations. 

1. Introduction 

A potential advantage of  the Monte Carlo (MC) simulation method is its great 
flexibility. In molecular dynamics (MD) simulations, equilibrium averages are sampled 
by following the natural time evolution of a many-body system. In contrast, the MC 
technique allows for 'unphysical' moves in configuration space. Such moves may 
correspond to transformations that only take place over very long times in MD 
simulations. This added flexibility of the MC method is, for instance, exploited in the 
study of  phase equilibria in the Gibbs ensemble [1]. For the special case of simulations 
of flexible chain molecules, for example alkanes or polymers, the MC method has the 
added advantage that simplified but very fast simulations on lattice systems are 
possible. 

Nevertheless, the existing Monte Carlo methods of sampling chain-molecule 
configurations do have certain disadvantages that limit their use. For polymer simu- 
lations, the crucial problem is to achieve configurational equilibrium, i.e., a situation 
in which different conformations of  the chain molecules appear with the correct 
statistical weight. How rapidly this equilibrium situation is attained depends on the 
nature of  the trial moves employed during the simulation. Clearly, the standard 
translational and rotational moves of  the entire molecule do not affect the molecular 
conformation. Hence, additional trial moves are needed to change the conformation. 
The simplest method to achieve this, at least in principle, is by rotation around single 
bonds [2]. However, such trial moves are not very efficient for all but the shortest 
chain molecules, because even a small rotational displacement around one bond may 
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lead to a large displacement of distant parts of  the same molecule. As a consequence, 
any attempt to generate a substantial conformational change through such trial 
moves is likely to result in an inter- or intramolecular overlap. 

Over the past two decades, much effort has been devoted to the development of 
more efficient schemes to sample the different conformations of  chain molecules. Most 
of these schemes are limited to chain molecules on a lattice. An extensive review is 
given by Kremer and Binder [3]. Unfortunately, many of these more sophisticated 
sampling methods break down for dense polymer systems, and those methods that 
would work at high densities, such as the bond breaking schemes of [4] and [5], are 
limited to polydisperse systems. Recently, Pakula et al. [6] proposed a Monte Carlo 
trial move for monodisperse systems that should work up to a reduced density of 
unity. The reduced density is defined as the ratio of the number of occupied lattice 
sites to the total number of lattice sites, e.g., a reduced density of  unity corresponds 
to a system where no empty lattice sites exist. However, this scheme involves a rather 
complicated sampling procedure to move localized topological defects in chain mol- 
ecules on a lattice. 

For monolayer systems the choice of an efficient configurational move is even 
more problematical. This is so because many of the more successful schemes to sample 
bulk systems, in particular those involving 'reptation' moves [3, 7], are based on an 
approach where the molecular conformation can only change if the molecule as a 
whole is moving. Such algorithms are of  no use for the study of  monolayers, where 
one end of the molecule is fixed. 

One possible remedy for the problems above is to employ trial moves that 
involve cooperative bond rotations. Such moves are designed to change the confor- 
mation of  a chain molecule locally or even globally. A sampling scheme of this kind 
would be most efficient if the new trial conformation were generated by completely 
reassembling the chain molecule or part thereof. In analogy with the force-bias Monte 
Carlo scheme [8], it is preferable to bias the underlying Markov chain of the MC 
schemes towards generating more probable configurations with a higher frequency. 
This is important, because reassembling the chain molecule completely at random 
will, in the overwhelming majority of cases, result in energetically unfavourable 
configurations. It is therefore important to generate the trial conformation in a 'smart'  
way, i.e., in such a way that it avoids both itself and other chains in the system and 
takes other intramolecular potentials, like the trans-gauche torsional potential, into 
account. We suggest that the (self-) avoiding random walk (SAW) scheme of  Rosen- 
bluth and Rosenbluth [9] can be modified in such a way that it meets these require- 
ments. To be more precise, we shall use the ratio of the 'Rosenbluth' weight factors 
of the new and old conformation to decide if a trial move should be accepted. Below, 
we discuss the approach on which this sampling scheme is based in some detail. In 
particular, we show that it satisfies the condition of detailed balance, and that it does 
indeed allow us to generate appreciable changes in molecular conformation in a single 
trial move. 

2. Configurational-bias Monte Carlo 

In the present section we explain the structure of the new sampling scheme. For  
the sake of  clarity we follow the original Rosenbluth work [9] by considering a system 
of 'hard-core' polymers on a lattice. In fact, all results reported in the present 
communication were obtained for this particular model system. It should be stressed, 
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however, that neither the use of a lattice model nor the choice of the hard-core 
interaction is essential. This point was already discussed by one of  us in a previous 
paper [10], where it was shown that the Rosenbluth self-avoiding random walk 
scheme can be easily extended to arbitrary molecular systems. 

In the course of  a Monte Carlo simulation, we allow for the 'conventional' 
translational and rotational moves of  the entire polymer chain. The novel feature of  
the current Monte Carlo scheme is the way in which we attempt to change the 
conformation of the individual molecules. The initial steps of this new trial move 
consist of  the random selection of  a chain molecule (i, say) and a segment (j,  say) in 
this molecule. We then discard all units in the chain molecule with indices larger than 
j (or, with equal probability, smaller than j ) .  Next, we attempt to regrow the same 
length of  chain using the Rosenbluth (self-) avoiding random walk algorithm. This 
algorithm proceeds as follows. 

1. Check if any of  the lattice sites neighbouring the current end point of  the 
growing chain are unoccupied. The chain growth can only continue if at least 
one neighbouring position is not occupied either by other molecules in the 
system or by any previous unit of the trial chain that we are growing. 

2. From these available positions, one is chosen at random and the next segment 
of  the trial conformation is added at this position. The new Rosenbluth weight 
for the trial conformation of  length m is calculated following the original 
scheme 

Wr~ = (n'/n)Wm_l, (1) 

with n the maximum number of choices (number of  next-nearest neighbour 
sites except the one corresponding to the previous unit, which is dependent only 
on the type of lattice used in the simulation and the geometrical requirements 
for the test molecule), n' the number of  available sites for the walk, and m the 
number of the new unit. W0, the Rosenbluth weight at the start of the regrowth 
sequence, is equal to the Boltzmann factor of the point where the regrowth 
starts. In the example that we consider, W0 = 1. In the case that no free 
neighbour sites are available, the corresponding weight for the trial attempt is 
zero and the attempt to grow a trial conformation has to be abandoned. 

3. Otherwise we proceed with steps 1 and 2 until the desired length of  the trial 
chain is reached. 

4. Finally, we have to decide if we accept the outcome of the selfavoiding 
random walk as a new trial conformation. Below we discuss two criteria to 
decide whether or not a trial conformation is accepted. As we shall show, very 
good results are obtained with one of these criteria: namely, the one based on 
the ratio of the Rosenbluth weight of the trial conformation and the old 
conformations 

Pacceptance ---~ Wtrial/Wold 

(see (8) below). The above test is completely analogous to the corresponding 
test in the force-bias MC scheme [2, 8] (see below). Having accepted the SAW 
outcome as a trial move, we proceed to calculate the energy of  the old and new 
configurations and use the standard Metropolis acceptance criterion [1 l] to 
decide if our system changes from the old into the trial configuration. 

Actually, it is usually advantageous to extend the scheme described above and 
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include all contributions to the Boltzmann weight of  the chain conformations already 
in the Rosenbluth weight factor. We can use the Boltzmann weights of  the neighbour- 
ing positions during one step of  the walk to bias the random choice of the next unit 
and therefore generate chains with a higher statistical weight more often. Instead of 
choosing one of the n' available sites for the walk with equal probability as is the case 
in the original selfavoiding random walk scheme [9], we now select the next position 
j with a probability 

Bj (2) eJ  ~--- n ' 
Ei = I Bi  

with Bj the Boltzmann weight of the position that is actually chosen at random, and 
Y~7=lBi the sum of  the Boltzmann weights of  all the n neighbouring positions. In 
practice, the test described in (2) is carried out as follows. We divide the interval 
{0, 1} into n nonoverlapping segments of  length Pi, P2, . . . ,  P, (as the ~ ' s  are 
normalized these segments cover the entire interval {0, 1 }). We now draw a random 
number r between 0 and 1. If  r is located in segment j, then we accept position j as 
the next step in our trial conformation. Clearly, the probability that r falls in segment 
j is equal to Pj. If we use equation (2) to generate trial conformations, then we must 
change the expression for the Rosenbluth weight (equation (1)) to 

ET= I g i  
W m - -  W i n _  I . ( 3 )  

n 

Here, Y~7=~Bi is the equivalent of  n' of  equation (1). A biased (self-) avoiding 
random walk of a similar type has been successfully employed in previous simulations 
[12, 131 . 

The use of a selfavoiding random walk to generate a trial conformation is crucial 
because such a SAW is biased towards non-overlapping conformations. Such a 
procedure therefore obviates the need to sample large numbers of inaccessible confor- 
mations. It should be stressed that, because we use the Rosenbluth weight factor as 
a bias in the MC scheme, all chain conformations are generated with the correct 
statistical weight. 

Following the normal procedure for smart Monte Carlo schemes to generate the 
underlying Markov chain [2], we can use a standard rejection technique to decide on 
the acceptance of the SAW outcome as a trial conformation. A trial move will be 
accepted if 

rand(0; 1) ~< Wtna~, (4) 

with rand(0; 1) a random number between 0 and 1, and W~na~ the Rosenbluth weight 
of the trial conformation. If the trial conformation is rejected, the 'new' chain 
conformation is simply equal to the old conformation, just as in the usual 'Metropolis'  
Monte Carlo scheme. It is easy to show that the acceptance criterion given by (4) 
satisfies the Monte Carlo conditions of  detailed balance and microscopic reversibility. 
Consider two acceptable chain conformations, m and n. We wish to compute both the 
transition probability ~,,, that a trial move in the configurational bias scheme will 
transform m into n and the transition probability ~,,, for the reverse move. From the 
discussion above it follows that ~tm. and ct,,, are given by 

~x,., = P .W.  

~ . ~  = :',~ w,~, (5) 
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where P~ is the (unweighted) probability that the Rosenbluth selfavoiding random 
walk algorithm will generate configuration m, while W,, is the corresponding Rosen- 
blurb weight. Attention should be drawn to the fact that here the index m for the 
Rosenbluth weight stands for the corresponding weight of the conformation m and 
not, as in equations (1) and (3), for the current length of the trial SAW. Let us denote 
the probability of  finding the chain molecule in state m or n by p,, and p,. To check 
for detailed balance we now compute the ratio of the transition rates from m to n and 
backwards: 

Km._~, = p,,P,W, (6) 
K.., p,P,.W,." 

The Rosenbluth scheme ensures that 

e,,.w~ p~,. 
- ( 7 )  

P,w. p,' 

and hence it follows that detailed balance is fulfilled, i.e., K,,, = K,,,. 
There is, however, a practical problem associated with the use of the rejection as 

in equation (4) to determine acceptance of trial SAWs, because at high densities and 
for long chain molecules most Rosenbluth weights for trial conformations will be 
quite small and hence acceptance of the trial conformation is very unlikely. The 
sampling efficiency can be improved appreciably by making the probability of accept- 
ance of a trial conformation dependent on the ratio of the Rosenbluth weights for the 
new and the old conformations, analogous to the acceptance criterion of  Metropolis 
Monte Carlo. The acceptance criterion from equation (4) changes now to 

rand(0; I) ~< W~nJWold. (8) 

The computation of the Rosenbluth weight of the old conformation, Wo~, proceeds 
in close analogy to the generation of a trial conformation. However, instead of  
building up the conformation from one segment to the next, we simply compute the 
corresponding weight factors while tracing the 'actual' path of  the chain molecule. It 
is easy to show that this slightly more complex sampling scheme also obeys the 
condition of detailed balance. Again we consider two states m and n with associated 
probabilities p,, and p,. Let us assume that the Rosenbluth weight of conformation 
m, W,,, is larger than IV,. In that case, 

~m. = e . w . / w . ,  

c~,,, = Fm. (9) 

It then follows immediately that the ratio of the transition rates from m to n and 
backwards, is 

K,,, p,.P,W,/Wm 
- ( 1 0 )  

X.,. P, Pm 

Again we see immediately that the condition of detailed balance is fulfilled. 
A Monte Carlo scheme is ergodic if any two permissible configurations are 

connected with a nonzero probability using a finite number of moves from the set of  
allowed trial moves. We make no attempt to prove rigorously the ergodicity of the 
algorithm proposed here. However, we consider it plausible that the scheme is ergodic, 
for the following reasons. First, as the configurational bias scheme allows for direct 
conformational changes from any initial conformation to any trial conformation, it 
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satisfies, unlike many other schemes, the necessary ergodicity requirement for dynamic 
Monte Carlo schemes given by Madras and Sokal [14]. Second, the original self- 
avoiding walk of  Rosenbluth and Rosenbluth [9] is ergodic, as are all other static 
random walk schemes. However, the Rosenbluth scheme corresponds to one possible 
type of move in the present sampling (namely a move where the trial conformation 
is regrown from the first unit). Clearly, any sampling scheme that includes an ergodic 
scheme as a subclass is itself ergodic. 

3. Simulations 

To test whether the Monte Carlo scheme proposed in the previous section is 
indeed efficient, we have carried out some tests on a very simple polymer system. 
Simulations were performed for a single selfavoiding polymer chain on a two- 
dimensional square lattice. For a single polymer in a periodic box we need to consider 
only moves that change the conformation of  the polymer molecule, as uniform 
translations or rotations do not result in a distinct configuration. The only property 
of the polymer chain that we have considered is the mean-square end to end length. 
The calculations that we carried out had a twofold aim. First, we performed simu- 
lations for a wide range of chain lengths and densities with the aim of  comparing these 
results with other simulations and finding the 'universal' exponent v relating the 
mean-square end to end distance to the number N of segments [17] 

<R 2 > oc N 2", (11) 

with N, the number of  units in the chain. The second aim was to compare the 
performance of the present algorithm with that of existing simulation schemes. This 
comparison is discussed in section 3.2. 

3.1. N-dependence of <R 2 > 

For this part of  the work we have carried out a series of simulations with the 
number N of  units of our single polymer ranging from 8 to 441 at three different 
densities. The density or coverage of the system is controlled by the length of the 
periodic simulation cell (N divided by the number of lattice sites in the cell). We 
studied the behaviour of the polymer chains at the following three densities; full 
coverage, approximately half coverage, and a free chain molecule, i.e., with the box 
length set to N. 

The results of these simulations are summarized in the typical log <R 2> versus 
log N plots (figures 1-3). At all densities the graphs show the expected linear behaviour. 
Weighted linear least square fits [18] yield the following universal exponents v: 
1-560 _+ 0.007 for the free chain, 1-360 _+ 0-009 for half coverage, and 1.26 _+ 0.03 
for full coverage (where we have taken the average of the 'odd' and 'even' N points, 
see below). The deviation from the straight line for the longer chain molecules at the 
low and intermediate densities could be caused by the fact that, for small N, correc- 
tions to scaling effects become important and terms should be added to equation (I 1) 
as suggested by Meirovitch and Livne [19]. The values for < R 2 > for small N have small 
standard errors and are therefore given higher weights in the linear fits. The reported 
values for v could therefore be overestimates. Comparison of  the value of v of the free 
chain with previous simulation results for the same problem [9, 20] and with the 
theoretical prediction of  1.5 [17] show good agreement. For  the half coverage simu- 
lations only <R 2 > for the chain molecule of  421 units deviates significantly from the 
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Figure 1. Log-log plot of the mean-square end to end length <R 2 > versus the number N of 
units of a single polymer molecule on a square lattice for a free chain (D = 0). 

straight line for the other chain lengths; this result has been omitted in the calculation 
of  v. We were not able to find any results for this particular system in the literature, 
but one would expect the 'universal' exponent to decrease with increasing density, 
which is the case in our calculation. For the simulations at a density o f  unity the 
results are less clear cut. The <R2> values in figure 3 branch and show an even-odd 
effect depending on the length o f  the simulation box. We believe this feature to be an 
artefact caused by the simulation of  a single chain molecule that will vanish for 
multichain systems. The value o fv  for the even branch is 1-30 + 0.08, and for the odd 
one 1.21 + 0.02. It should be stressed that the quoted uncertainty in v refers only to 
statistical errors. We have made no attempt to estimate the systematic errors caused 
by finite size effects. 
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As figure 1, but for half coverage (D ~ 0-5). 
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Figure 3. As figure 1, but for full coverage (D = 1); crosses for the values with odd number 
of units (odd box length), and circles for the values with even number of units (even box length). 

3.2. Performance of the configurational-bias Monte Carlo scheme 

This section focuses on the performance of different Monte Carlo schemes to 
achieve configurational equilibrium. As seen already from the results of  section 3.1, 
the configurational bias scheme with the improved acceptance criterion works even at 
a density of  unity. All other advanced simulation schemes except that of  Pakula et al. 
[6] fail at this density. For  comparison, we have also performed four short simulations 
of the same system as above, but using more conventional sampling schemes as 
follows. (a) A completely random walk algorithm (RW) with an excluded volume 
condition. In this very naYve sampling scheme the chain is generated step by step and 
every new unit is chosen randomly from the neighbouring lattice sites of the previous 
unit. Afterwards, the position of the new unit is checked for intra-chain overlap and 
the walk is terminated if an overlap occurs. (b) A non reversal random walk (NRRW) 
with an excluded volume condition. This scheme is similar to the RW, with the 
exception that backfolding for the next unit is not allowed. (c) The original self- 
avoiding random walk algorithm of Rosenbluth and Rosenbluth [8] (SAW). (d) A 
'reptation' algorithm (REP), where a trial move consists of  an attempt to move 
one-segment from the 'head' of the chain molecule to the 'tail', or vice versa [7]. 

Results for the four simulation techniques (a-d) have been compared with results 
of simulations obtained using both the acceptance criteria mentioned above, with the 
following abbreviations: RCB, for the scheme using the simple rejection criterion of 
equation (4) as the acceptance criterion, and MCB, for simulations following the 
improved 'Metropolis-like' acceptance criterion, equation (8). All programs have 
been kept as simple and general as possible: in particular, no neighbour table of any 
form or logical array that contains information about the occupancy of lattice sites 
has been used. To check the performance simulation, runs of the same length 
(approximately 1000s of IBM 3084 CPU time) have been performed using all 
methods mentioned above. The standard error for a run has been estimated by 
dividing the run into ten blocks. The results are summarized in table 1, from which 
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Table. 1. Comparison of the results of (R 2) and the corresponding standard errors of the 
mean, 6m, for the six different simulation schemes. Values for the medium density 
simulations are 16/25 for N = 9, 49/64 for N = 49, and 144/169 for N = 144. The 
reptation scheme cannot be used at a density of unity; this is denoted by 'X' in the 
corresponding rows. Simulations that did not yield any successful generation of a chain 
or any successful conformational change have been marked with a dash. 

Program N Free chain Medium density Full coverage 

RW 9 50-18 + 0.33 32.05 + 0.63 29-3 + 1-2 
NRRW 47-269 __+ 0.054 32-022 __+ 0.025 22-57 + 0-15 
SAW 47.261 _ 0.037 32-011 + 0-033 22-493 + 0.060 
REP 47-094 + 0-084 32-037 _+ 0-080 X 
RCB 47.280 _+ 0.067 31.98 + 0.21 27.4 +_ 1.6 
MCB 47.252 + 0.072 31.86 __+ 0.17 25.49 _+ 0.51 

RW 49 - -  - -  - -  
NRRW 263.8 + 1.5 - -  - -  
SAW 263-7 + 2-2 96.8 + 3-6 76-6 + 9-3 
REP 264-2 +_ 2.2 106-9 _ 11.7 X 
RCB 261.2 + 2.9 146 ___ 21 - -  
MCB 261.0 + 1.2 115.5 _ 3-4 96-0 + 6.3 

RW 144 - -  - -  - -  
NRRW - -  - -  - -  
SAW 1204 + 142 - -  - -  
REP 1238 _ 36 335.5 + 3.6 X 
RCB 828 + 97 246 +__ 19 - -  
MCB 1377 +__ 66 186 + 31 565 + 70 

it can be seen that  for the full coverage runs and  for the runs  with N = 144 the 

s imulat ion were too short  to yield good statistics. For  some of the values we have 
results f rom the longer s imulat ions described in section 3.1. These are 91-2 + 1.5 for 
N = 49, D = I; 1347 _ 21 f o r N  = 144, D = 0 ; a n d  732 + 37 fo r  the same length 
at D = 1. It  can be seen that, as chain length and  density increase, the configurat ional  
bias scheme becomes more  efficient than other schemes. F r o m  table 1 it is very difficult 
to decide if the new scheme is more efficient than the reptat ion algori thm; in par- 
ticular, for N = 144 at the intermediate density, the reptat ion algori thm appears to 
yield an extremely small error. However,  this small value of the error estimate may 
arise from the fact that most  configurat ions calculated using the repta t ion algori thm 
are strongly correlated over long times and that therefore the block-averages obta ined 
from the s imula t ion  are not  independent .  

As a check, long s imulat ions  using REP  and  MCB were performed for the medium 
densities. The lengths of these s imulat ions were approximately 20 000 s for N = 49, 
and approximately 50000s  for N = 144. As a test of  the convergence of the two 
algori thms we have plotted the runn ing  average of (R 2) versus the C P U  time. This 
is shown in figures 4 and  5. F rom the plots it is clear that for the reptat ion scheme 
the configurat ions are indeed strongly correlated over times corresponding to the 
length of the earlier s imulat ions (1000s). For  the longer chain there is no real 
convergence to a l imiting value even after the full length of  the simulation.  This 
behaviour  can be seen very well if we follow a 'movie '  of  the s imulat ion;  the configur- 
at ions generated with the reptat ion algori thm sometimes get ' locked' ,  i.e., oscillate 

between very similar configurations, for times of up to 15 000 s (2 x 107 trial attempts). 
In  contrast ,  the new scheme achieves reasonable  results for N = 144 after some 
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Figure 4. Plot of  the mean-square end to end length (R  2 > as a function of  the CPU-time.  This 
plot is used to show the convergence for the results o f  the two most advantageous 
schemes for N = 49; crosses for the configurational bias scheme using the improved 
acceptance criterion, MCB, see equation (8), and circles for the reptation algorithm, 
REP. 

10000s (300000 trial moves).  We have attempted to make a more quantitative 
comparison o f  the statistical error of  both schemes. To this end we first computed the 
autocorrelation function o f  the statistical fluctuations [2]. From this function we can 
estimate the 'correlation time'. As expected, the MCB method does not yield signifi- 
cant correlations over the time-scale o f  this study; the effective correlation time is 
approximately 600s. However,  the reptation method yields strongly correlated 
results. Our estimate from the initial slope o f  the correlation function gives a corre- 
lation time between l0 000 and 15 000 s. The large uncertainty is due to the fact that 
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the correlation function shows large fluctuations for longer times. If we assume that 
for both methods the correlations decay exponentially we arrive at the following 
values of  ( R  2) and the corresponding error estimates for a chain of 144 units and a 
simulation time of 50000s: 301 + 21 for MCB and 270 +_ 105 for REP. This implies 
that for the given example the reptation method would require roughly 25 times more 
CPU time than the new scheme to yield a result with similar accuracy. We expect the 
relative performance of  the configurational-bias scheme to become even better at 
higher densities. On the other hand, due to ergodicity problems of the reptation 
scheme, it is not certain if the results of  the reptation scheme are reliable at all. Even 
for free chains the nonergodicity of  the reptation scheme has a minor influence on the 
computed values for (R  2) as shown by Madras and Sokal [14]. If the density 
increases, the ergodicity problem becomes far more severe, and it is expected to have 
a stronger influence on the results. 

4. Discussion and extensions 

The configurational bias Monte Carlo scheme introduced in this paper does 
indeed appear to be more efficient than all other Monte Carlo schemes for chain 
molecules considered in this paper. In particular, at very high densities, it seems to be 
the only universal scheme that will work. In comparison, the cooperative motion 
algorithm of  Pakula et aL [6] seems to be rather complicated, and it is most probably 
non-ergodic because it is based on a finite repertoire of  local moves. Moreover, the 
cooperative motion algorithm cannot be used for nonlattice systems. In contrast, 
selfavoiding random walks are not limited to lattice systems, and the configurational- 
bias method can be easily extended to other situations [10]. This point is of  particular 
importance because it is far from trivial to find a Monte Carlo scheme that works for 
long flexible molecules in continuous space [2]. 

Furthermore, the use of  neighbour tables should increase the performance of  our 
scheme much more than it would increase the speed of the other algorithms. This is 
due to the fact that, for example for the square lattice, our scheme MCB has to check 
for each step of the walk six lattice sites for their availability (three for the confor- 
mation that is generated and another three for the old conformation). In contrast, our 
simpler scheme, RCB, and the SAW scheme have to check three lattice sites; and all 
other schemes only one. 

All the simulations described in this work deal with a single chain system only. 
Extending the scheme to multichain systems is straightforward, at least for all den- 
sities except the highest. If  there are still some nonoccupied lattice sites available, the 
only modification required is that at the start of each trial attempt we have to select 
a chain molecule at random. In this case we do not need any other type of  move 
because our scheme will change the conformations of  all chain molecules and will in 
the process lead to translations and rotations of the polymers. At a reduced density 
of unity, where no empty sites are available in the simulation box, we will need a 
multichain configurational bias move. Configurational bias moves of  a single mol- 
ecule will only rearrange the conformation of the molecule under consideration within 
exactly the same space the chain occupied before. Clearly this alone would not lead 
to configurational equilibrium and would only sample a subset of  the total phase 
space. We can, however, design a move that will allow us to sample the complete 
phase space. Instead of attempting to change only the conformation of one chain 
molecule we can regrow two or three neighbouring chains or parts thereof at the same 
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time. This has to be done in a step by step process, i.e., one unit is added in turn to 
each of  the chains selected for the move until all chains have their former length. 

Finally, we believe that the present scheme will allow us to study models for 
polymer systems that could not be examined before. An interesting application is to 
use the scheme for simulations of  mixtures of  chain molecules of different length. Thus 
far, all polymer simulations of mixtures have been confined to chains of the same 
length but different interaction potentials [3]. This is due to the very slow diffusion of 
the chains and the fact that all other schemes are unable to interchange chain 
molecules of different length. An extended configurational bias scheme could be used 
to swap parts of chain molecules in the simulation, thus allowing the change of a 
shorter molecule into a longer one and vice versa. Similarly, in combination with the 
chain insertion method previously proposed [10], we can perform simulations in the 
grand canonical and Gibbs ensemble which have been previously impossible for all 
but the shortest chain molecules. 
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Note added & proof: We have recently become aware of a paper by J. Harris and 
S. A. Rice (1988, J. chem. Phys., 88, 1298) in which a simple version of the 
configurational-bias MC method on a lattice is used. We thank Dr H. Stettin for 
bringing this paper to our attention. 
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