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This paper suggests using the configurational temperature Tconf for quantifying how far an active-
matter system is from thermal equilibrium. We measure this “distance” by the ratio of the systemic
temperature Ts to Tconf , where Ts is the canonical-ensemble temperature for which the average
potential energy is equal to that of the active-matter system. Tconf is “local” in the sense that
it is the average of a function, which only depends on how the potential energy varies in the
vicinity of a given configuration; in contrast Ts is a global quantity. The quantity Ts/Tconf is
straightforward to evaluate in a computer simulation; equilibrium simulations in conjunction with
a single steady-state active-matter configuration are enough to determine Ts/Tconf . We validate the
suggestion that Ts/Tconf quantifies the deviation from thermal equilibrium by data for the radial
distribution function of 3d Kob-Andersen and 2d Yukawa active-matter models with active Ornstein-
Uhlenbeck and active Brownian Particle dynamics. Moreover, we show that Ts/Tconf , structure, and
dynamics of the homogeneous phase are all approximately invariant along the motility-induced phase
separation (MIPS) boundary in the phase diagram of the 2d Yukawa model. The measure Ts/Tconf

is not limited to active matter; it can be used for quantifying how far any system involving a
potential-energy function, e.g., a driven Hamiltonian system, is from thermal equilibrium.
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I. INTRODUCTION

Temperature is fundamental in thermodynamics and statistical mechanics. Generalizations of the temperature
concept to deal with out-of-equilibrium systems have been discussed in several publications, useful reviews of which
are given in Refs. 1–5. Non-equilibrium temperatures generally attempt to relate the non-equilibrium system to the
its thermal equilibrium properties. This paper and its companion [6], henceforth referred to as Paper I, propose two
applications of the so-called configurational temperature Tconf [2, 7–9] to active-matter models, both of which are based
on a different philosophy. Paper I showed that Tconf defines an energy scale, which can be used for tracing out lines of
approximately invariant physics of the 3d Kob-Andersen binary Lennard-Jones model with active Ornstein-Uhlenbeck
dynamics. The present paper shows that a similar procedure applies for the 2d Yukawa model with active Brownian
dynamics (ABP), after which we proceed to the main focus: using Tconf for measuring how far an active-matter system
is from thermal equilibrium.

For an ordinary Hamiltonian system in thermal equilibrium, the temperature T is identical to the configurational
temperature Tconf that is defined [2, 8] as follows. If the system consists of N particles with collective coordinate
vector R ≡ (r1, ..., rN ) and potential-energy function U(R), one defines kBTconf ≡ 〈(∇U)2〉/〈∇2U〉. Here kB is the
Boltzmann constant, ∇ is the gradient operator, and the sharp brackets denote canonical-ensemble averages. It is
straightforward to prove that T = Tconf in equilibrium [7], see, e.g., Paper I. Approaching the thermodynamic limit,
the relative fluctuations of both the numerator and the denominator of Tconf goes to zero. Thus if one defines an
R-dependent configurational temperature by

kBTconf(R) ≡ (∇U(R))2

∇2U(R)
, (1)

the identity Tconf(R) ∼= T applies in thermal equilibrium in the sense that deviations vanish as N →∞. Because con-
figurations with ∇2U(R) ≤ 0 become less likely as N →∞, the fact that Eq. (1) is not defined for such configurations
does not present a serious problem.

The derivation and justification of the configurational temperature Tconf is based on the fact that the probability of
configuration R in the canonical ensemble is proportional to exp(−U(R)/kBT ) [2, 6, 7]. This is irrelevant, however,
for the property demonstrated in Paper I that Tconf(R) may be used for tracing out lines of invariant structure and
dynamics in the phase diagram of active-matter models that involve a potential-energy function obeying hidden scale
invariance [10]. This is the symmetry that the ordering of configurations according to their potential energy at a given
density is maintained if these are scaled uniformly to a different density. Hidden scale invariance applies to a good
approximation for many well-known potentials, e.g., systems defined by the Lennard-Jones and Yukawa interactions,
density-functional derived atomic interactions, and simple molecular models [11–13, 15? ].

This paper proposes an application of Tconf to active-matter models, which addresses the problem of quantifying
how far a system is from ordinary canonical-ensemble thermal equilibrium. This question is important because only
if the system in question is close to thermal equilibrium, does it make good sense to refer to the temperature of the
corresponding canonical-ensemble equilibrium system as a characteristic of the active-matter system. As discussed in
the next section, the ratio between the global “systemic” temperature Ts and the “local” temperature Tconf provides
such a measure. Section III sets the stage by detailing one example, the 2d Yukawa model with active Brownian particle
dynamics. Section IV presents data for the radial distribution function of Kob-Andersen and 2d Yukawa active-matter
models, confirming that when Ts/Tconf is close to unity, the structure is close to that of thermal equilibrium. Also,
Sec. IV evaluates a standard entropy-production-based measure of deviations from thermal equilibrium and compared
to the proposed new measure. Section V shows that the new measure is roughly constant along the motility-induced
phase-separation line, which is consistent with the reasonable assumption that all state points close to this line in the
non-MIPS phase are equally far from equilibrium. Finally, Sec. VI summarizes Papers I and II.

II. HOW FAR IS A GIVEN ACTIVE-MATTER SYSTEM FROM THERMAL EQUILIBRIUM?

The investigations of Papers I and II are limited to active-matter point-particle models characterized by a potential-
energy function. Quantifying the degree of non-equilibrium is usually done by calculating some form of dissipation
(entropy production). The idea is that since the entropy production is zero in thermal equilibrium, this quantity
measures how far a given system is from thermal equilibrium [16–18]. Such measures can be applied to both active-
matter models and driven Hamiltonian systems. A fundamental issue with these measures is the following. Using a
quantity that goes to zero in some limit to quantify the degree of deviation from that limit does not in an obvious
way make possible the identification of when deviations from equilibrium are to be regarded as “large”. If deviations



3

from thermal equilibrium are instead quantified by means of a quantity that goes to unity in the equilibrium limit,
deviations from equilibrium are “small” whenever that quantity does not deviate substantially from unity and “large”
otherwise.

The configurational temperature is local in the sense that when regarded as a function of R, it only depends on
how the potential energy U(R) varies in the immediate surroundings. Note that “local” here refers to the 2N or 3N
dimensional configuration space, not to the two- or three-dimensional space in which the active particles move. This
locality means that by evaluating Tconf for a passive system’s configuration at a given time, one cannot determine
whether the system is in thermal equilibrium corresponding to the temperature T = Tconf(R). For instance, for
an aging glass annealed at temperature T , already after a time on the phonon scale does Tconf(R) ∼= T apply, i.e.,
long before equilibrium has been reached [2]. A completely different, global temperature concept is the systemic
temperature Ts. This quantity was introduced for generalizing isomorph theory to out-of-equilibrium conditions [19],
but Ts may be introduced for any system as the equilibrium canonical-ensemble temperature of the Hamiltonian system
at the same density and average potential energy as that of the out-of-equilibrium system. In thermal equilibrium
one has Tconf = Ts = T .

The idea is to use the ratio of global to local temperature, Ts/Tconf , for quantifying how far an active-matter
system is from thermal equilibrium. We showed in Paper I that the ratio Ts/Tconf is predicted to be constant along
active-matter isomorphs. Since structure and dynamics are also invariant along both active-matter isomorphs and the
corresponding Hamiltonian-system isomorphs, it is consistent to assume that Ts/Tconf measures how far the system
is from thermal equilibrium.

III. THE YUKAWA ACTIVE BROWNIAN-PARTICLE MODEL IN TWO DIMENSIONS

This section details the ABP model in two dimensions based on the single-component Yukawa pair potential [20, 21],

v(r) =
Q2 σ

r
e−r/(λσ) . (2)

This potential obey hidden scale invariance [10, 22, 23], so a procedure for identifying active-matter isomorphs
analogous to that introduced in Paper I for the active Ornstein-Uhlenbeck particle (AOUP) model should apply here,
as well. The idea is that Ts/Tconf , as mentioned, is predicted to be invariant along active-matter isomorphs where the
deviations from thermal equilibrium are also expected to be invariant.

If ri is the position vector of particle i, the ABP equations of motion in two dimensions are

ṙi = µFi + ξi(t) + v0 oi(t) . (3)

Here, µ is the mobility, Fi(R) = −∇iU(R) is the force on particle i, ξi(t) is a Gaussian random white-noise vector,
v0 is a constant velocity, and oi(t) = (cos(θi(t)), sin(θi(t))) is a stochastic unit vector. The direction vector angle θi(t)
is controlled by a white Gaussian noise of magnitude Dr,

〈θ̇i(t)θ̇j(t′)〉 = 2Drδij δ(t− t′) , (4)

and the white-noise vector has magnitude Dt,

〈ξαi (t)ξβj (t′)〉 = 2Dtδijδαβδ(t− t′) . (5)

The ABP model has four parameters. Regarding µ as a system-specific constant, the dimensionless versions of the
three other parameters must be constant in order to have invariant physics when the density is changed. Following
the procedure of Sec. III of Paper I, we take as length unit l0 = ρ−1/2 (the exponent is −1/2 and not −1/3 as in
Paper I because the model here is two-dimensional) and as time unit t0 = 1/Dr, and write the equation of motion
in terms of the corresponding reduced variables. Substituting ri = ρ−1/2r̃i and t = t̃/Dr into Eq. (3) and making
use of Eq. (8) of Paper I and the definition of the systemic temperature Ts [19] in which Sex(R) is the microscopic
excess-entropy function [12, 19],

Ts(R) ≡ Teq(ρ, Sex(R)) = Teq(ρ, U(R)) , (6)
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we get

˙̃ri = −µρ(Ts/Dr)∇̃iSex(R̃) + ξ̃i(t) + ṽ0 oi(t) . (7)

Here ṽ0 = (ρ1/2/Dr)v0, ξ̃i = (ρ1/2/Dr)ξi, Ts is brief for Ts(R),

〈ξ̃αi (t)ξ̃βj (t′)〉 = 2ρ(Dt/Dr)δijδαβδ(t̃− t̃′) , (8)

and dots now mark the derivative with respect to t̃,

〈θ̇i(t)θ̇j(t′)〉 = 2δij δ(t̃− t̃′) . (9)

These equations are invariant under a change of density if µρTs/Dr, ρDt/Dr, and ṽ0 are kept constant. Since µ
is a (system-specific) constant, this implies (where the subscript zero refers to a reference state of density ρ0 and

Ts(ρ) ≡ Teq(ρ, Sex(R̃)) can be used instead of Ts(R) because fluctuations go to zero in the thermodynamic limit)

Dr = Dr,0
ρ

ρ0

Ts(ρ)

Ts(ρ0)

Dt = Dt,0
Ts(ρ)

Ts(ρ0)
(10)

v0 = v0,0

(
ρ

ρ0

)1/2
Ts(ρ)

Ts(ρ0)
.

By the same argument as in Sec. III of Paper I one can here replace the Ts ratios by Tconf ratios, leading to

Dr = Dr,0
ρ

ρ0

Tconf
(
(ρ0/ρ)1/2R0

)
Tconf(R0)

Dt = Dt,0

Tconf
(
(ρ0/ρ)1/2R0

)
Tconf(R0)

(11)

v0 = v0,0

(
ρ

ρ0

)1/2 Tconf
(
(ρ0/ρ)1/2R0

)
Tconf(R0)

.

In passing we note that while the Peclet number v0/
√

2DrDt [24, 25] is invariant along the active-matter isomorph,
this requirement is not enough to determine how to scale the model parameters – thus Peclet-number invariance is a
necessary, but not sufficient condition for identifying an active-matter isomorph.

ρ Dr Dt v0 Tconf

1.0 3.000 1.000 25.00 1.489

1.5 12.37 2.750 84.20 4.093

2.0 30.43 5.072 179.3 7.550

2.5 58.13 7.751 306.4 11.54

3.0 95.82 10.65 461.0 15.85

TABLE I. Values of ρ, Dr, Dt, v0, and Tconf along the active-matter isomorph of the 2d Yukawa ABP model determined by
Eq. (11). By means of Eq. (1) the configurational temperature Tconf(ρ) is determined from a single configuration R0 scaled to
density ρ.

To validate the existence of active-matter isomorphs according to the above prediction we simulated N = 10000
particles of the 2d Yukawa system with Q = 50, λ = 0.16, σ = 1 defining the length unit, and a cutoff at 4.5σ.
The time step used is given by ∆t = ∆t̃(Dt/v0

2), where ∆t̃ = 0.0625 so that ∆t = 0.0001 at the reference state
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FIG. 1. Structure and dynamics of the Yukawa ABP model in two dimensions. (a) The left panel shows the RDF as a function
of the pair distance r along the active-matter isomorph, the middle panel shows the same data in reduced units, and the right
panel shows the reduced RDF for the same parameters (Table I) at the reference density ρ = 1.0. (b) The left panel shows the
MSD as a function of time t along the active-matter isomorph, the middle panel shows the same data in reduced units where
the dashed line marks slope unity, i.e., ordinary diffusion; the right panel shows the reduced MSD for the same parameters at
the reference state-point density ρ = 1.0.

point defined by (ρ,Dr, Dt, v0) = (1.0, 3.0, 1.0, 25.0). The simulations were carried out on GPU cards using a home-
made code. An active-matter isomorph was traced out for densities varying a factor of three using Eq. (11) for a
configuration R0 selected from a steady-state simulation at the reference state point. Table I gives the parameters
obtained from Eq. (11).

Figure 1(a) shows the radial distribution function (RDF). The left two panels show the RDF along the active-
matter isomorph as a function of r and r̃, respectively. For comparison, the right panel shows the results for the same
parameters at the reference state-point density ρ = 1.0. We find a good invariance of the reduced RDF along the
active-matter isomorph. The same applies for the reduced mean-square displacement (MSD) shown in (b).

IV. DEVIATIONS FROM THERMAL EQUILIBRIUM QUANTIFIED BY Ts/Tconf

Figure 2 gives data for the systemic and configurational temperatures of different active-matter models, starting
with the Kob-Andersen model studied in Paper I. Figure 2(a) shows the systemic temperature Ts (black symbols) and
the configurational temperature Tconf (red symbols) for the Kob-Andersen AOUP active-matter model as functions
of the colored-noise correlation time τ for fixed values of the other model parameters. As mentioned, Ts is determined
by identifying the equilibrium temperature at which the system for a standard MD simulation has the same average
potential energy as the AOUP system. The system approaches an equilibrium system for τ → 0, corresponding to
the canonical-ensemble temperature T = 1.6. Figure 2(b) plots the ratio Ts/Tconf . We see that for values of τ above
10−4, the system starts to move away from thermal equilibrium. Figure 2(c) shows Ts and Tconf as functions of τ
for the 2d Yukawa AOUP model for fixed values of the other model parameters. Both Ts and Tconf converge to 5
as τ → 0, confirming the fact that T = 5 is the equilibrium Brownian-dynamics temperature corresponding to the
parameters Dt = 5, µ = 1. Figure 2(d) shows Ts/Tconf and we see that for τ above 10−4, the system begins to deviate
from thermal equilibrium. Figure 2(e) and (f) show Ts and Tconf and their ratio for the 2d Yukawa ABP model as
functions of v0 for fixed values of the other model parameters; here v0 > 10 is the approximate criterion for deviations
from equilibrium.
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FIG. 2. Determination of the ratio of systemic to configurational temperature, Ts/Tconf , quantifying how far an active-matter
system is from thermal equilibrium. (a) shows data for Ts and Tconf for the 3d Kob-Andersen AOUP model (Paper I, [6]) as
functions of τ with the remaining model parameters kept fixed. (b) shows Ts/Tconf for the same data. For τ values around
10−4 the system begins to move away from equilibrium and for τ > 10−3 significant deviations from equilibrium are predicted.
(c) shows data for Ts and Tconf for the 2d Yukawa AOUP model as functions of τ with the remaining model parameters kept
fixed. (d) shows Ts/Tconf for the same data. For τ values above 10−4 the system starts to deviate from equilibrium. (e) shows
data for Ts and Tconf for the 2d Yukawa ABP model as functions of v0 with the remaining model parameters kept fixed. (f)
shows Ts/Tconf for the same data. For v0 values around 10 the system begins to move away from equilibrium.

By reference to the data in Fig. 2, Fig. 3 compares the RDF of states predicted to be close to and not close to
thermal equilibrium. Each subfigure reports Ts/Tconf ; results for the cases where Ts/Tconf is close to unity are found
in the left column. The RDFs are compared to the equilibrium RDF for T = Ts, i.e., the temperature corresponding
to the potential energy of the active-matter configurations. The black dashed lines give the equilibrium RDF, the red
curves are the active-matter RDFs. Figure 3(a)-(d) show data for RDFAA and RDFBB of the Kob-Andersen AOUP
model studied in Paper I; RDFAB is similar to the AA (data not shown). Figure 3(e) and (f) give data for the 2d
Yukawa AOUP model, while (g) and (h) give data for the 2d Yukawa ABP model (Sec. III). Figure 3 confirms that
when the ratio Ts/Tconf is close to unity, the configurations of the active-matter model are close to thermal equilibrium
configurations.

Next we compare to a previously proposed measure of deviations from thermal equilibrium, focusing on the 2d
Yukawa ABP model. Figure 4(a) shows the dissipated “active” power, i.e., the average of the scalar product of
the particle velocity with the v0 oi(t) term of Eq. (3), plotted as a function of v0, keeping the three other model
parameters constant. From data like these one cannot easily determine when the system is expected to be close to
thermal equilibrium. Figure 4(b) shows the dissipated power plotted against Ts/Tconf , demonstrating a one-to-one
correspondence between the two measures of deviations from thermal equilibrium. Figure 4(b) also includes data for
the reduced-unit power (red points), which shows an interesting almost linear proportionality to Ts/Tconf−1 for which
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FIG. 3. RDFs of active-matter states predicted to be close to (left column) and not close to (right column) thermal equilibrium.
The red curves are the active-matter data and the black dashed lines are the RDFs of the corresponding equilibrium system
for T = Ts. (a)-(d) show results for the AA and BB RDFs of the Kob-Andersen AOUP model for τ = 10−4 and τ = 4 · 10−2

(red curves) corresponding to Ts/Tconf = 1.13 and Ts/Tconf = 6.59. (e) and (f) show results for the 2d Yukawa AOUP model
at states with τ = 10−4 and τ = 8 · 10−3 corresponding to Ts/Tconf = 1.09 and Ts/Tconf = 2.59. (g) and (h) show results for
the 2d Yukawa ABP model at states with v0 = 10 and v0 = 50 corresponding to Ts/Tconf = 1.13 and Ts/Tconf = 2.18.

we have no good explanation. Finally, Figure 4(c) plots the same data in a log-linear scale, which further illustrates
that measuring deviations from thermal equilibrium in terms of a quantity that is zero in equilibrium is not useful for
distinguishing between weak and stronger deviations from equilibrium.
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FIG. 4. Using the ratio of systemic to configurational temperature to quantify how far the 2d Yukawa ABP system is from
thermal equilibrium (corresponding to v0 = 0 in Eq. (3)); the parameters kept fixed here are ρ = 1, Dr = 3, and Dt = 2. (a)
shows how the dissipation (“Power”) varies with v0 (MD units). From Fig. 2(e) we see that when v0 → 0, the two temperatures
become identical (equal to 2 because Dt = 2 corresponds to that thermal equilibrium temperature); at the same time the
dissipation goes to zero. (b) and (c) show the power as a function of Ts/Tconf . The quantity Ts/Tconf goes to unity as thermal
equilibrium is approached, which presents an advantage compared to using the dissipated power for quantifying deviations from
thermal equilibrium.
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circles are gas-like states of minor relevance here). The MIPS phase consists of coexisting phases that differ in density, the
denser phase is a “solid” phase of hexagonal crystal structure. The reference state point (ρ,Dr, Dt, v0) = (1.01, 3, 1, 367) is
located in the homogeneous (solid) phase close to the phase boundary. From this an active-matter isomorph was traced out
using Eq. (11) (black line). The figure gives data in the (ρ,Dt) phase diagram with Dr and v0 given by Eq. (11) at density ρ.
The blue dashed lines mark ±5% variations in density. We see that the phase-transition line is an approximate active-matter
isomorph, which is consistent with the degree of deviation from thermal equilibrium being constant along this line.

V. THE MIPS BOUNDARY OF THE 2D ABP YUKAWA MODEL

For certain parameters of the 2d ABP Yukawa model, motility-induced phase separation (MIPS) is observed. This
is the striking active-matter phenomenon that even a purely repulsive system may phase separate into high- and low-
density phases [26–32]. It is reasonable to assume that, when the phase transition is approached from the homogeneous
phase, the deviations from thermal equilibrium are the same for all parameter values. Thus if Ts/Tconf indeed provides
a measure of the deviation from equilibrium, this quantity should be roughly constant approaching the MIPS phase
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transition. Since the 2d Yukawa ABP model obeys hidden scale invariance, this means that the phase transition should
approximately follow an isomorph (because the physics is approximately invariant along an active-matter isomorph,
such a curve cannot cross the MIPS boundary, compare Refs. 11 and 33 and 34). Thus if one has identified a state
point in the homogeneous solid phase close to the MIPS boundary and uses this as reference state point for generating
an active-matter isomorph, all state points identified by Eq. (11) should be close to the MIPS boundary. A similar
line of reasoning was validated for the melting line of the ordinary Lennard-Jones system [33, 34].
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FIG. 6. Structure and dynamics probed along the active-matter isomorph approximately delimiting the MIPS phase boundary
of the 2d ABP Yukawa system, slightly into the homogeneous phase (Fig. 5). (a) and (b) show log-log plots of the RDF and
MSD, respectively, (c) and (d) show the same data in reduced units.

We studied the 2d Yukawa model with parameters Q = 1000 and λ = 0.12 with a cutoff at 4.2σ and (Dr, Dt, v0) =
(3, 1, 367), by systematically decreasing the density from a high value well within the homogeneous solid phase.
Initially, a system of 40000 particles was simulated for 40 million time steps, and the occurrence of MIPS was
detected by visual inspection. The lowest density before observing MIPS was ρ = 1.01. We then used (ρ,Dr, Dt, v0) =
(1.01, 3, 1, 367) as reference state point for generating an active-matter isomorph according to Eq. (11). This is the
black full line in Fig. 5, which shows the results of investigating the existence of MIPS in a (ρ,Dt) phase diagram
(along the isomorph the remaining parameters Dr(ρ) and v0(ρ) are given by Eq. (11)). The black squares denote state
points of the homogeneous solid phase, the red stars denote state points where MIPS appears, and the green circles
denote gas-phase state points. The blue dashed lines mark the active-matter isomorph ±5% in density. We see that
the phase transition line is predicted reasonably well though not accurately; this is consistent with the approximate
nature of the argument. Nevertheless, the simulations demonstrate that Eq. (11) can be used for roughly identifying
the MIPS phase boundary. This confirms the physical expectation that the deviation from thermal equilibrium is
virtually constant along the phase-transition line because it is an approximate active-matter isomorph characterized
by constant Ts/Tconf .

In order to confirm that the black line of Fig. 5 is a line of approximately invariant physics, i.e., an active-matter
isomorph, we show in Fig. 6 how structure and dynamics vary along it. The upper figures show the RDF and MSD
in standard units, the lower figures show the same data in reduced units.

VI. SUMMARY OF PAPERS I & II AND OUTLOOK

The configurational-temperature concept has traditionally been used in connection with liquid models based on
Newton’s laws of motion with forces derived from a potential-energy function U(R) [2]. Indeed, the derivation of
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Tconf refers to the canonical ensemble, and for this reason it is not obvious that Tconf has relevance also for non-
Hamiltonian and non-time-reversible systems like those of active matter. We have suggested that the configurational
temperature may be useful also in that context and have presented two applications of Tconf . Paper I demonstrated
how Tconf may be used for tracing out lines of approximately invariant structure and dynamics in the phase diagram
of models described by AOUP dynamics if the potential-energy function obeys hidden scale invariance; such lines are
referred to as active-matter isomorphs. Specifically, Paper I gave the equations for how to change the model parameters
with density in order to have invariant physics, and Paper II derived a similar procedure for ABP models. In both
cases, by effectively reducing the number of model parameters by one, this approach provides a tool for simplifying the
exploration of phase diagrams of active-matter models with hidden scale invariance of the potential-energy function.

For the AOUP and the ABP models the ratio of systemic to configurational temperature is predicted to be constant
along an active-matter isomorph. Since both the active-matter physics and the corresponding passive-matter physics
are invariant along their common systemic isomorph (defined as the thermal equilibrium isomorph mapped into the
density systemic-temperature phase diagram [19]), this is consistent with the present paper’s proposal that Ts/Tconf
quantifies how far a given active-matter system is from thermal equilibrium.

The ratio Ts/Tconf is defined for any active-matter system based on a potential-energy function, whether or not
hidden scale invariance applies. We suggest that an active-matter system may be regarded as “close to thermal
equilibrium” whenever Ts/Tconf is close to unity and “far from thermal equilibrium” whenever this is not the case. We
illustrated the use of Ts/Tconf for quantifying deviations from thermal equilibrium by showing that when this quantity
is close to unity, the RDF of the active-matter system is close to that of the corresponding thermal-equilibrium system
with T = Ts. Moreover, Ts/Tconf is roughly constant along the motility-induced phase separation (MIPS) boundary
along which the deviation from equilibrium are expected not to vary, compare Fig. 6.

The advantages of using the quantity Ts/Tconf for quantifying how far an active-matter system is from thermal
equilibrium are threefold:

• A measure that converges to unity when the system in question approaches thermal equilibrium allows for
answering the question: how to quantify the deviation from thermal equilibrium? This is not the case for a
measure that converges to zero when equilibrium is approached.

• Ts/Tconf is easy to evaluate because it can be determined from a single configuration R of a steady-state simula-
tion of the active-matter system in conjunction with equilibrium simulations of the corresponding Hamiltonian
system.

• Ts/Tconf is general measure because this quantity is defined for any system characterized by a potential-energy
function, whether or not in the context of an active-matter model. For instance, in the case of a non-linear
steady-state shear flow of an ordinary Hamiltonian system, it is also possible to quantify the deviation from
thermal equilibrium by means of Ts/Tconf .

An interesting question that remains to be explored is the following: What is the difference between the cases
Ts/Tconf > 1 and Ts/Tconf < 1?
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[26] T. Vicsek, A. Czirók, E. Ben-Jacob, I. Cohen, and O. Shochet, “Novel type of phase transition in a system of self-driven

particles,” Phys. Rev. Lett. 75, 1226–1229 (1995).
[27] S. K. Das, S. A. Egorov, B. Trefz, P. Virnau, and K. Binder, “Phase behavior of active swimmers in depletants: Molecular

dynamics and integral equation theory,” Phys. Rev. Lett. 112, 198301 (2014).
[28] M. E. Cates and J. Tailleur, “Motility-induced phase separation,” Ann. Rev. Cond. Mat. Phys. 6, 219–244 (2015).
[29] S. Ramaswamy, “Active matter,” J. Stat. Mech. , 054002 (2017).
[30] D. Geyer, D. Martin, J. Tailleur, and D. Bartolo, “Freezing a flock: Motility-induced phase separation in polar active

liquids,” Phys. Rev. X 9, 031043 (2019).
[31] M. Das, C. F. Schmidt, and M. Murrell, “Introduction to active matter,” Soft Matter 16, 7185–7190 (2020).
[32] C. Merrigan, K. Ramola, R. Chatterjee, N. Segall, Y. Shokef, and B. Chakraborty, “Arrested states in persistent active

matter: Gelation without attraction,” Phys. Rev. Research 2, 013260 (2020).
[33] L. Costigliola, T. B. Schrøder, and J. C. Dyre, “Freezing and melting line invariants of the Lennard-Jones system,” Phys.

Chem. Chem. Phys. 18, 14678 – 14690 (2016).
[34] U. R. Pedersen, L. Costigliola, N. P. Bailey, T. B Schrøder, and J. C. Dyre, “Thermodynamics of freezing and melting,”

Nat. Commun. 7, 12386 (2016).


