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CONFIGURATIONS OF SURFACES IN 4-MANIFOLDS1
BY

PATRICK M. GILMER

Abstract. We consider collections of surfaces {F'¡} smoothly embedded, except for
a finite number of isolated singularities, self-intersections, and mutual intersections,
in a 4-manifold M. A small 3-sphere about each exceptional point will intersect
these surfaces in a link. If [F¡] G H2(M) are linearly dependent modulo a prime
power, we find lower bounds for 2 genus (/)■) in terms of the [F¡], and invariants of
the links that describe the exceptional points.

0. Introduction. The following special case of our main theorem is easy to state.

Theorem 0.1. Let M be a closed smooth 4-manifold and {F¡) a collection of n
smoothly embedded surfaces in general position. Let x¡ = [F¡] G H2(M). Suppose
U F¡ is connected and 2 a,*, = pry where p is a prime, 0 <a¡ <pr, and a¡ ¥= 0
mod p. Let # be the total number of intersection points. Then

# +22 genus(^) > 2y(2 xi - y) - 2 XfXj - sign M
• <J

+ 2(n - 1) - dim H2(M, Z ).

For example, according to a theorem of C. T. C. Wall [W] if M is a smooth
closed simply-connected 4-manifold with indefinite quadratic form, then in M # S2
X S2 any primitive noncharacteristic class may be represented by an embedded
2-sphere. Let M be S2 X S2 and let Fx be a 2-sphere representing (0, 1, 0, 0) G
H2(S2 X S2#S2 X S2) (with respect to the natural basis). Let F2 be a 2-sphere
representing (a, b, 0, 0) transverse to Fx where a > 1, b > 0 and (a, b) = 1. Let #
be the total number of intersection points of Fx and F2. Then we have

# >

ab

ab

ab

if a is even,
b

S([5H
if

if

¥= b mod 2,

= b mod 2,

where d is the largest odd prime power dividing a. To see this, if a is even, let
pr = 2 and apply Theorem 0.1. Otherwise choose

pr = d,    ax = (b -[b/d]d+ d)/2   or   ax = (b - [b/d]d)/2
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354 P. M. GILMER

(whichever is integral) and a2 = (d — l)/2. This is in general a much better bound
than one gets by calculating the algebraic intersection: # > a.

Theorem 0.1 for « = 1 and HX(M) = 0 is a theorem of V. A. Rokhlin [R]. W. C.
Hsiang and R. Szczarba [H-S] proved a similar result. That the HX(M) = 0
hypothesis is unnecessary follows from V. I. Itenberg's higher dimension general-
ization of Rokhlin's results [I2] (see Corollary 2.4 of this paper). Our method of
proof is similar to those above. However, we consider unbranched covers of the
complement of a neighborhood of the surfaces instead of branched covers. Instead
of using the G-Signature Theorem directly, we calculate o(L, xp), a signature
invariant of finite cyclic covers of 3-manifolds, for L the boundary of this
neighborhood. o(L, xp), which was first introduced by A. J. Casson and C. McA.
Gordon, is basically a reformulation of the a-invariant defined by M. Atiyah and I.
M. Singer.

I should mention that bounds similar to those given in Theorem 0.1 follow from
Rokhlin's Theorem together with various ad hoc geometric arguments. In fact in
the situation where

«i = a2 = ■ • • = an (1)

and
x¡ • x¡+,    for 1 < í < « - 1 (2)

and the quantity inside the absolute value sign all have the same sign, one can
derive the same bounds. If not, all the a, are equal; the bounds obtained cannot be
stated in a simple general form. In many particular examples, the bounds obtained
in this manner are significantly worse than those obtained from Theorem 0.1, and
in no known example does one get better bounds. In the above example in
S2 X S2#S2 X S2, one can derive the same bound for a even by this method.
However, consider the family of examples given by (a, b) = (2« + 1, 3« + 2) for
2« + 1 a prime. By Theorem 0.1 # > 6n2 + 7« — 2. The best bound I can get
using Rokhlin's theorem is # > 6« + 9 - 4/«.

This paper is organized as follows. In §1, we give preliminary definitions and
results concerning the homology of finite cyclic covers. In §2, we prove Theorem
2.1 which gives an obstruction to embedding a 4-manifold N with boundary Lina
closed 4-manifold M. We then give a more precise definition of a configuration of
surfaces, define the neighborhood of a configuration, and then specialize Theorem
2.1 to the case N is a neighborhood of a configuration. The obstruction involves
o(L, xp) and t](L, xp), a second invariant of these covers. Next we apply the same
argument to higher dimensional codimension-0 embeddings. See Theorem 2.3. We
conclude the section with a conjectured formula (2.5) for o(L, xp) for certain (L, xp).

In §3, we show how to calculate o(L, xp) and tj(L, xp) for any finite cyclic cover of
a 3-manifold L. Our formula (3.6) generalizes a formula due to Casson and
Gordon. A result of K. Murasugi and a result of A. G. Tristram fall out for free
from (3.6). If L is described as the boundary of a neighborhood of a configuration
of surfaces (and the cover satisfies a certain condition) we give formulas for o(L, xp)
and tj(L, xp) in terms of the signature and nullity invariants of links associated to

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



CONFIGURATIONS OF SURFACES IN 4-MANIFOLDS 355

the links about each exceptional point and the homology classes given by the
surfaces (3.7). In case L is the boundary of a plumbing, this formula is particularly
simple. In a later paper, this simple formula will be used to calculate the Casson-
Gordon invariants of 3-strand Turk's Head Knots.

In the fourth section, we combine the results of §§2 and 3 to give our main result
(4.1). As a corollary, we derive the Tristram-Murasugi bounds for the slice genus of
a link (4.3). This illustrates the well-known relation between Rokhlin's and
Tristram's methods in a particularly vivid manner. We also derive as a corollary a
theorem of O. Ya. Viro generalizing Rokhlin's result to the case of a single surface
with a single singularity given as a cone on a knot. We then work out some explicit
examples of applications of the main theorem.

In §5, we perform some calculations that make our results on 3- and 4-manifolds
independent of the G-Signature Theorem. In the final section, we discuss the ad
hoc geometrical constructions, mentioned above, that together with Rokhlin's
Theorem give bounds of the type given by Theorem 0.1.

I would like to thank my advisor Professor Emery Thomas for much patient
advice, guidance and encouragement. I am indebted to him for many fruitful ideas.
Also I benefited greatly from learning Professor Robion Kirby's point of view on
three and four dimensional manifolds. I thank him for his help.

We adopt the following conventions and definitions. All manifolds will be
assumed smooth, oriented, and compact (unless they are described as an interior of
a closed manifold). All other spaces (except BZd) will be assumed to have the
structure of a finite simplicial complex. The group Zd will be thought of as the
integers modulo d, with a specified generator, the residue class of one. Throughout
co will denote e2m/d, and p will be a prime number. We write ßfjX) for
dim H¡(X, Q) and p¡(X) for dim H¡(X, Zp). The reduction of homology classes
mod d will be indicated by p. 2 and -+- will denote the disjoint union of spaces, as
well as ordinary summation. rX will indicate the disjoint union of r copies of X.
(a, d) denotes the g.c.d. of a and d. l\d will mean / divides d.

1. Preliminaries on finite cyclic covers. Let Zd act on a space Y, with the
generator acting by T: Y —> Y. Hk( Y, C) splits into a direct sum of eigenspaces
Hk(Y,j) = {x\T,x - co>x}. Define ßk(Y,j) = dim Hk(Y,j) and ßk(Y) = ßk(Y, 1).
Define x(YJ) to be ^(-l)kßk(Y,j) and x(Y) = x(^ !)• Make analogous defini-
tions for pairs ( Y, Y').

If Zd acts as a group of orientation preserving diffeomorphisms on a 2A>mani-
fold Y (possibly with boundary) define rj,( Y) to be the signature of the complexi-
fied intersection pairing restricted to Hk(Y,j). This pairing is hermitian if k is even
and skew hermitian if k is odd. The signature of a skew hermitian pairing x • y is
defined to be the signature of the associated hermitian pairing given by x * y =
ix • y.

Isomorphism classes of cyclic cf-fold covers of a fixed space X with specified
generator T for the group of covering translations correspond bijectively to
elements xp of

[X, BZd] = H\X, Zd) = Hom(Hx(X), Zd)
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356 P. M. GILMER

since BZd is the classifying space for principal Zd-bundles. If xp is thought of as a
map HX(X) -, Zd, then the element of Zd defined by lifting a loop y is xp[y]. We let
Xf denote the covering space defined by xp. Thus Xf comes equipped with a
covering translation T. An element x of a Z^-module is called primitive if x = ly,
l G Z, implies (l,d) = l.xp G H X(X, Zd) is primitive if and only if \p: HX(X) -, Zd
is onto. Xf is connected if and only if X is connected and xp is primitive.

If L is a 2k - 1 manifold and xp G H X(L, Zd) then (L, xp) represents an element
in ñ2¿_ \(BZd). The bordism spectral sequence shows that fi„(point) -» Qt(BZd) is a
rational isomorphism. Thus Q,2k_x(BZd) is torsion and r(L, xp) = d(W, xp) for some
2A>manifold W and integer r. Define o(L, xp) = (ax(Wj) — sign W)/r. Let A' be a
closed 2A>manifold and (N, xp) represent an element in Q,2k(BZd). By the above
r(N, xp) is bordant to some (N', 0) for some integer r. ax( j) and sign are both
bordism invariants and ox(N¿) = sign^'). It follows that ax(Nf) = sign N. Novi-
kov additivity then shows o(L, xp) is well defined. This is a straightforward
generalization of the invariant defined by Casson and Gordon for k = 2 in [C-Gj]
and [C-G2]. Here we adopt the sign convention of the first paper which is opposite
that of the second. Also define t](L, xp) = ßk_x(Lj).

Let xp' be a map HX(L) —> Q/Z. Pick d so the subgroup generated by (l/d) and
isomorphic to Zd includes the image of xp'. This defines a map xp: HX(L) —> Zd. One
can show o(L, xp) and r¡(L, xp) are independent of the choice of d. If (s, d) = 1, it is
easy to see that o(L, sxp) = os( Wf) — sign W and r¡(L, sxp) = ß\(Lf, s). Using
Lemma 7.4 of [T-W] together with the above observation concerning the indepen-
dence of d, one sees these formulae hold even if (s, d) =£ 1.

Proposition 1.1. %Xj) = X(Xf,j) = x(*)-

Proof. A simplex counting argument shows that if X¡ is any /-fold cover of X,
X(X,) — x(^) = (.1 — l)x(^). F°r anv l\d, one has a quotient /-fold cover of X. E.
Thomas and J. Wood analyze the relations between the different eigenspaces of
this collection in [T-W, §7]. They consider the middle dimension of branched
covers of manifolds but the arguments go through unchanged. Lemmas 7.2, 7.4 and
7.5 of [T-W] then give the desired result.

For the rest of this section d will be a power of p. We will need an exact
sequence of Smith homology groups due to E. E. Floyd [F]. We only need this
sequence for unbranched covers or, equivalently, free actions. In this situation, the
concepts and arguments are considerably simpler. On the other hand, we need this
sequence in slightly greater generality ((1.2) is proved for d = p and 1 < m < d in
[F]). For these reasons we outline the results we need.

Give Xf the simplicial structure obtained by lifting the simplices in X. Let C(Xj)
denote the simplicial chain group of Xf and C(Xf, Zp) be the simplicial chain
group with Zp coefficients. Let 8 - 1 - T,: C(Xf, Zp) -, C(Xf, Zp), so 8d = 1 -
Td = 0 and 8d~l = 1 + T, + ■ ■ ■ + Td~x. By considering the subspace gener-
ated by the simplices covering a single simplex one sees kernel 5 = image 8d~x.
Then a simple induction argument shows kernel 8m = image 8d~m for 0 < m < d.
Define Cs"(Xf) = kernel 8m for 0 < m < d. Since 8 is a chain map, Cam(Xj) is a
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subcomplex. Define Hsm(Xj) to be the homology of this complex. Since C(Xf, Zp)
= Cs\Xf) and C(X, Zp) = Cs(Xf), we have H(Xf, Zp) = H*'(Xj) and H(X, Zp)
= Hs(Xf).

There is a short exact sequence of chain complexes:

o 1* cs(Xf) -, cs"(Xf) -i csm-'(Xf) -, 0

where the first map is inclusion and the second is given by z h> 8(z). 8 is onto
because <5(image 8d~m) = image $d~m + x. There is a corresponding long exact
sequence:

-, H*(Xf) -, HfiXf) -, HrXXf) -, H&k_ x(Xf) -, . (1.2)
Proposition 1.3 below is a special case of a theorem attributed to Smith Theory,

concerning branched covers, stated (without proof) by V. S. Itenberg [I2]. He refers
to O. Ya. Viro [V3] for a special case which is still more general than (1.3).

Proposition 1.3. ßk(X+) - ßk(X) < (d - l)ok(X).

Proof. Let ¡i: C(X) —> C(Xj) denote the map which sends a simplex in X to the
sum of simplices covering it. Let IT be C(Xj) modulo the image of p. Y is also a free
chain complex. We have the following short exact sequence

o^c(x)^c(^)^r^o.
If we tensor this sequence with Zp, we will recover the sequence of Smith
complexes for m = d. Thus H(T, Zp) = Hs"~'(Xf). Since /x,: H(X, Q) -h> H(Xf, Q)
is injective (the covering projection yields a left inverse), we have

dim Hk(T, Q) = ßk(Xf) - ßk(X).
*d— 1

So by the universal coefficient theorem, dim H      (Xf) > ßk(Xj) — ßk(X).
Finally since pk(X) = dim Hk(Xj), induction using (1.2) shows dim H* (Xj) <

(d - l)pk(X).

Proposition 1.4. ßk(Xf) < Pk(X).

Proof. Let Xs denote the quotient ps-fold cover of X, 0 < s < r. Lemmas (7.2)
and (7.3) of [T-W] show

prX(p - l)ßk(Xr) = ßk(Xj) - ßk(Xr_x).

By (1.3) ßk(Xr) - ßk(Xr_j) < (p - l)pk(Xr_x). Induction using (1.2) as above but
applied to the cover Xr^ x —> X yields pk(Xr_,) < pr~xpk(X). The result follows.

L. Kaufman and L. Taylor essentially proved (1.5) below for d = 2 (Theorem
(3.8) of [K-T]). Our proof is obtained by substituting an inductive argument using
the Smith sequence above for the single application of the Gysin sequence of [K-T].

Proposition 1.5. If Xf is connected, then ßx(Xf) < px(X) — 1.

Proof. Let y be a wedge of px(X) circles and pick a simplicial map /: Y —* X
inducing an epimorphism HX(Y, Zd) —> HX(X, Zd) and an isomorphism HX(Y, Zp)
—> HX(X, Zp). Pulling back the cover Xf to Y, we get a connected cover Y of Y. If
Y is aps fold connected cover of Y, then an Euler characteristic calculation shows
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358 P. M. GILMER

ßx(Ys) - ßx(Y0) = (ps - l)(px(X) - 1). The Thomas-Wood argument then shows

ßx(Y) = px(X)- 1.
The exact sequence of Smith groups is natural, so we have

HS(Y)     -»     Hfif)     -,     Hsr\Y)     -,     H*(Y)
in 4 i i u

Hf(Xf)     -,     Hr(Xf)     -,     Hr'(Xf)     -,     H*(Xf)

The five lemma permits one to prove inductively that Hf(Y) -, Hxs"(Xf) is an
epimorphism. Taking m = d, we have HX(Y, Zp) —» Hx(Xf, Zp) is onto. So the
induced map HX(Y) -, Hx(Xj)/torsion when reduced modp is onto. It follows that
HX(Y, C) -, Hx(Xf, C) is onto. Thus ßx(Xf) < ßx(Y) = px(X) - 1.

Remark. To see why d is a power of p is a necessary hypothesis for (1.3) and
(1.5), let X be the punctured torus bundle over Sx with monodromy given by
h = [° j"1]. Since det(h — 1) = 1, the Wang sequence shows A' is a homology circle.
In fact X is the complement of the trefoil knot. Since «6 = /, the 6-fold cover X is a
trivial punctured torus bundle over S1. In particular ßx(X) = 1 > px(X) — 1 =0
and ß2(X) - ß2(X) = 2 > p2(X) = 0.

2. Codimension-0 embeddings. Throughout this section d is a power of p.

Theorem 2.1. Let M be a closed connected 4-manifold and N a codimension-0
submanifold with connected boundary L. For each primitive element z of the kernel of
H2(N, Zd) -, H2(M, Zd) there is some xp G HX(L, Zd) with 8(xP) Lefschetz dual to z
for which

px(N) > \o(L, xp) + sign N - sign M\ - p2(M) + p2(N) + p3(N) - 1

-,(L,^) + max{o^L'^-^)-^A/) + 1

r,(L, xp) - V(N) - p3(N) + 1
0

where ■q(N) is the nullity of H2(N, ZB) -^ H2(M, ZAp
Proof. Let X = M - Int N so dX = -L and consider the following commuta-

tive diagram with Zd coefficients.

H3(M)      -,      H3(M,N)     -,     H2(N)     -,     H2(M)

Î «
Hl(X)      Z       H3(X,L)       ?

LD

I i
HX(L)      Z H2(L)

Pick xp' G Hl(X,Zd) mapping to z. Since z is primitive, xp' is primitive. Let
xp G Hl(L, Zd) be the restriction to L. The following commutative diagram with Zd
coefficients shows 8\p is Lefschetz dual to z.
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HX(L)     -,     H2(N,d)
||LD ||LD   '

H2(L)     -,       H2(N)

The Mayer-Vietoris sequence shows X is connected. Since xp' is primitive Xf, (which
we denote by X) is connected. X may be used to calculate o(L, xp). In fact

\ox(X)\ =\o(L, xp) + sign N - sign M\. (1)
Using the Mayer-Vietoris sequence for M = N u X, Poincaré duality in M and

Proposition 1.4 we have
_
ß3(X) < p3(X) < px(M) - p3(N). (2)

By considering the first diagram of this proof, only now with Z coefficients,
using Poincaré duality in M and applying Proposition 1.5 we have

ßx(X) < px(X) - 1 < px(M) + V(N) - I. (3)
Whenever we have an exact sequence of complex vector spaces with a Zd action

commuting with the maps, the exact sequence splits as a direct sum of eigenspace
exact sequences. We can get a different bound on ßx(X) using HX(L) —> HX(X) —»
HX(X, L). By definition ßx(L) = ij(L, xp). Lefschetz duality and universal coeffi-
cients show ßx(X, L) = ß3(X). So we have

ßx(X) < i,(L, xp) + px(M) - p3(N). (4)

Consider the sequence H2(X) ^» H2(X, L) -> HX(L) -+ HX(X). The map
H2(X, C) -^ H2(X, L, C) with respect to a suitable basis is given by a matrix that
also represents the intersection pairing, see [H-N-K, p. 60]. Thus the mapj above
can be represented by a matrix that gives the hermitian form on H2(X). Let r\ be
the nullity of this matrix. We have

n(L, xp) - V(N) - px(M) + 1
0

and

ß2(X) >\ox(X)\+ T,. (6)

By Proposition 1.1 x(^) = x(^0- Since L is odd dimensional x(^) = 0 so
X(X) = x(M) - X(A^). Since X is connected, ß0(X) = 0. We have

UX) = X(M) - x(N) + UX) + Uñ (7)
Putting together (l)-(7), writing out x(^0 and x(^) m terms of modp Betti
numbers, using px(M) = p3(M), and simplifying leads directly to the result.

Remark. If px(M) = 0 then by (2), p3(N) = 0. Then the two max terms above
will be equal. Since x + \x\ = max(2x, 0) the conclusion of Theorem 2.1 can be
rewritten in the case px(M) = 0 as

Px(N) > \o(L, xp) + sign N - sign M\ - p2(M) + p2(N)

-r,(N)+\V(L,xp)-v(N)+ 11.
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A configuration of surfaces {F¡} in a 4-manifold M is defined to be a map
2 F¡ -, M that arises in the following way. One starts with a smooth proper
(boundary goes to boundary) embedding of 2 F¡ -^ M4 — U Int Dj* where the
Dj4 are disjoint 4-balls in the interior of M and F¡ are the surfaces F¡ with a certain
number of disjoint open 2-balls deleted. Thus each S3 = dD? intersects the image
of 2 ^ in a link £• and each component of £, "belongs" to a given F¡. By coning
off each of these links to a central point in DJ, we get our map 2 F¡ -» M. We refer
to {£j} as the links of the configuration. By abuse of notation, we talk about
configurations {F¡} (thinking of each F¡ as lying in M) and write (J F¡ for the
image and [F¡] G H2[M] for the homology class represented by F¡. A neighborhood
N of a configuration {F¡} is defined to be the union in M of each D? and a closed
tubular neighborhood of each F¡. Define ti(£) to be the number of components in a
link £. We define the modp nullity r¡{F¡} of a configuration to be the number of
surfaces less the dimension of the subspace spanned by [F¡] G H2(M, Zp). We say a
configuration is connected if U F¡ is.

Corollary 2.2. Let {/•)} be a connected configuration of « surfaces in a closed
4-manifold M with links £• and neighborhood N with boundary L. If 2 a¡[F¡] = 0 in
H2(M, Zd) and a¡ ¥^ 0 mod p for some i, there is some xp G HX(L, Zd) with 8xp
Lefschetz dual to 2 a¡[F¡] G H2(N, Zd)for which

2 ßx{Fj) > \o(L, xp) + sign N - sign M\ - p2(M) + 2(« - 1)

~yl(L,xP)-^(p(tj)- 1)

. v(L,xp)- 7/{/;} - px(M)+ 1

-f-max

0
(V(L,xp)-r1{Fi} + 1
lo.

Proof. N is homotopy equivalent to U F¡. By comparing the Mayer-Vietoris
sequences for 2 F¡ (regarded as the union of 2 F¡ and some 2-disks) with the
sequence for (J F¡ (regarded as the union of 2 F¡ and some cones on links) one
sees that p2(U Fj) = «. Clearly p3(U Fj) = 0. A cell counting Euler characteristic
argument then shows p,(U Fj) = 2 ßx(Fj> + 2(K£,) - 1) - (« - 1). These sub-
stitutions in (2.1) give the desired result.

Theorem 2.3. Let M be a closed 2k-manifold and N a codimension-0 submanifold
with boundary L. For each z in the kernel of H2(N, Zd) -, H2(M, Zd), there is some
xp G HX(L, Zd) with 8xp Lefschetz dual to z for which

Pk-i(N) > \o(L, xp) + sign N - sign M\ - pk(M).

Proof. As in the proof of (2.1) let X = M - Int N and consider the following
commutative diagram with Zd coefficients.
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H2k_x(M,N)      -,     H2k_2(N)     -,     H2k_2(M)
T »

H\X)      Z       H2k_x(X,L)       ?
I 1

H\L)      -, H2k   2(L)

Again pick xp' G HX(X) mapping to z, and let xp be the restriction of xp' to HX(L),
and X denote Xf. By Lefschetz duality, excision and the long exact sequence for
the pair (M, V) we have

Pk(X) = Pk(X, L) = Pk(M, N) < pk(M) + Pk.x(N).
By Proposition 1.4 ßk(X) < pk(X). On the other hand

ßk(X) >\ax(X)\ = \o(L,xP) + signV- signA/|.
The result follows easily.

Remark. Theorem 2.1, and (2.2), (2.3) for k ¥= 1, (4.1), (4.2) and (0.1) still hold if
M has boundary a collection of Zp homology spheres and A' or U F¡ are in the
interior of M. To see this let M be M union a cone on each boundary component.
Then M is a Zp homology manifold and Poincaré and Lefschetz duality still hold
with Q or Zp coefficients. Moreover since a Zd cover restricted to the boundary
must be trivial, it is easy to see that o(L, xp) may still be calculated using
X = M — Int N.

Corollary 2.4 (Itenberg [I2]). Let F be a codimension-2 submanifold of a closed
2k-manifold M and suppose [F] G H2k_2(M) is Poincaré dual to x G H2(M) and
ax = dy where y G H2(M) and 0 < a <d. Then

Pk.t(F) >\{e2'(l - tanh x)t(M)}[M]\- pk(M).

Here t(M) denotes the total £ class of M as defined by Hirzebruch.

Proof. Let N be a tubular neighborhood of F and z = a[F] G H2k_2(N). In [I,,
§6], Itenberg calculates using the G-Signature Theorem that

oa(M) = (exp((2a - d)x/d)sech(x)t(M)}[M]

for M a ¿/-fold branched cover of M along [F]. To complete the proof note that for
any xp G H X(X, Zd) with 8xp Lefschetz dual to z, o(L, xp) = Sign M - Sign N -
oa(M). We have also written Itenberg's power series in a slightly different form.

Remark. The above proof of Itenberg's result is not substantially different from
his own. It seems slightly easier to do the Smith Theory for unbranched covers.
Theorem 2.3 is much more general. However one needs to be able to calculate
o(L, xp) in cases of interest. I have nearly proved the following conjecture. A strong
deformation retract F: A X I -^ A onto B G A will be called very strong if
F~X(B) = B X I u A X {1}.

Conjecture 2.5. Let N2k be a manifold with boundary L and {F¡) a collection of
« closed codimension-2 submanifolds Lefschetz dual to xi G H2(N, 3). Suppose the
F¡ are in general position and that N very strongly deformation retracts onto U F¡.
Given xp G HX(L, Zd) define integers a¡ by 8xp = p(2 a¡x¡) where 0 < a. < d. If
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(a¡, d) = 1 then

o(L, xp) + sign A4- I e2^ II (1 - tanh x¡)t(N) \[N,d] =0

where .y = ¿/"'2 a¡Xi G H2(N, 3, Q).
That this is true for « = 1 will follow from Itenberg's formula. Proposition 5.2

proves the conjecture for k = 1. Theorem 3.7 and Proposition 3.8 will imply the
conjecture for k = 2. However the proof of (2.5) when all the details are ironed out
will be very different from the proof of (3.7). Finally we note

e2> 11(1 - tanh *.) = 1 + {j2y - £ xj) + 2y(y - £ xj)

+ 2 x¡xj + terms of higher degree.
• <J

This conjecture is made without the requirement that dhe a power of p.

3. Invariants of links and finite cyclic covers of 3-manifolds. By a link £, we will
mean a collection of oriented disjoint smoothly embedded circles K¡ in S3. A
represented link (£, xp) is a link together with a map xp: HX(S3 — £)—»Zd. We
orient the meridian m¡ of each K¡ so m¡ and K¡ link positively. HX(S3 — £)isa free
abelian group generated by {m¡}. Thus xp may be described by the sequence of
mod d integers xp(mj). Define the nullity tj(£, xp) of a represented link to be
ßx((S3 — t)f). We will refer to the link pictured in Figure 1 as the positive Hopf
link. Reversing the orientation on one component gives the negative Hopf link.

Proposition 3.1. If d is a prime power, tj(£, xp) < ti(£) - 1. If £ is a Hopf link
and xp is an epimorphism, then tj(£, v^) = 0.

Proof. The first statement follows immediately from (1.5). The complement of
the Hopf link deformation retracts to a torus. A connected cover of a torus is a
torus homologically fixed by the covering translation.

A represented link (£, xp) is called well represented if for each i, xp(mj) is a
generator for Zd.

Any closed 3-manifold L arises by doing surgery on a framed link £ with
framings, say «,. Let tty for / i=j be the linking number of K¡ and Kj and «,, = «,. If
xp: HX(L) -, Zd, then xp is determined by xp(mj). Moreover specifying xp(mj) de-
termines a map xp: HX(S3 — £) —» Z¿ which extends over all of HX(L) if and only if
27 n¡jXp(mj) = 0 mod d for all i. In this case we say the «, form a compatible
framing for (£, xp). If (£, xp) is well represented, there exist compatible framings
(which are determined mod d).

Proposition 3.2. Let (L, xp) be given by placing a compatible framing on a well
represented link (£, xp). Let Sj denote the branched cover of S3 along £ given by xp.
Then t,(£, xp) = ßx(SJ) = ij(L, xp).

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



CONFIGURATIONS OF SURFACES IN 4-MANIFOLDS 363

Proof. The eigenspace Mayer-Vietoris sequence for Sf as the union of
(S3 — t)f and solid tori along their boundaries shows t)(£, xp) = ßx(Sj,) as both
the solid tori and their boundaries are homologically fixed by Zd. The same
argument works for Lf.

Equivalently we can think of L as the boundary of N, the 4-manifold obtained
by attaching 2-handles to Z)4 along £ with the attaching map specified by the
framings «, (see [K]). H2(N) is free abelian with naturally given basis x¡ formed by
the cores of the 2-handles union the cones on K¡ in D4. The intersection form
relative to this basis is given by the matrix [n¡j\ and the compatibility condition says
that 2 iK«!,)-*, is in the kernel of H2(N, Zd) -* H2(N, 3, Zd).

Kirby [K] has defined certain moves on framed links which allow one to change
from one framed link picture of L to any other. Given a framed link picture of L,
one can display xp by placing xp(mj) in parentheses near K¡. As one makes moves in
the Kirby calculus, one can keep track of xp as follows. In move 0,, one places (0)
near the added unknotted component. In move 02, where one "adds" K¡ to Kj (here
we insist that the band used in forming the sum be compatible with the orientations
of both components) the value of xp(mj) remains the same but the new xp(mj) is
xp(m¡) — xp(mj) in terms of the original values. Finally since we are working with
oriented links, we need a third move 03 which allows one to change the orientation
of a component K¡ and simultaneously the value xp(mj) to — xp(m¡) mod d.

Example 3.3. d = 2.

o

0 0-

I sotopy

We now develop a procedure to calculate o(L, xp) and r/(L, xp), given the above
type link descriptions of (L, xp) in terms of corresponding link invariants. Given a
number 0 < q < 1 and a square complex valued matrix V define

Vq = (1 - e2OT«)F + (1 - e-^V*.

Define the ¿/-signature and ¿/-nullity of a link £ to be a,(£) = o(Vq) and ij?(£) =
i)(Vj) where F is a Seifert matrix belonging to a connected Siefert surface for £.
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This is a slightly different notation for the signatures defined by J. Levine [Le]. The
nullity defined above is smaller by one than the usual one [T], [K-T], [KaJ.

Proposition 3.4. Let F be a connected Seifert surface for a link £ in S3 with
Seifert matrix V. Let D4 be the d-fold branched cyclic cover of D4 along F pushed
into D4. Then the intersection form on H2(D4, s) can be given by the matrix V,s,d,.
Moreover HX(D4) = 0.

Proof. We first remark that the consequence o-(i/(/)(£) = os(D4) is originally due
to Viro [V,]. (3.4) for ¿/ = 2 appears in [K-T]. That HX(D4) = 0 follows from
Kauffman's cut and paste description of D4 [Kaj]. The rest of this proposition
follows from this description and a little algebra. See [D-K, Theorem 5.1].

Remark. It follows that \s/d)(t) = ßx(dD4). Using [T-W, Lemma 7.2], tj(j/(/)(£)
= V/¿)(£)if (J> d) = (■*'' d)= I.

Proposition 3.5. Let L be the boundary of a 4-manifold W and xp G HX(L, ZA
Suppose 8xp is Lefschetz dual to p(2 a¡[F¡\) where F¡ is a collection of disjoint,
smoothly embedded surfaces in W, and (a¡, d) = 1. There exists

xp' G HX(W -   (J  F)

extending xp taking the value a¡ on a positive meridian of F¡. Let W be the associated
branched cover of W. Then we have for 0 < s < d

a(L, sxp) = a,( W) - sign W + -| 2 (<* ~ bj)bí(F¡ » Fj)

where b¡ = sa¡ mod d and 0 < b¡ < d.

Proof. Consider the following commutative diagram with Zd coefficients:

H\W)     -, Hl(L) -, H\W,L) -,     H\W)
Til T V Til

HX(W)     -,     Hx(W-\JFi)     -,     H2(W,W-\JFj)     -*     H2(W)

The Thom isomorphism and excision give an isomorphism <ï>: H\\J F¡, Zd) =
H2(W, W - U F„ ZA Let e, be the generator of H0(F¡, Zd) (Poincaré dual to the
oriented fundamental class). Theny'í>(2 a¡ej) = 8xp (as both sides are Lefschetz dual
to p(2 a¡[Fjf)). An easy diagram chase then manufactures xp' G HX(W — U F¡, Zd)
with the stated properties.

Let L, be the boundary of N¡, the tubular neighborhood of Ft. By (5.4) (using
d/(d, s) in place of d) we have

o(Lt, sxp') = l{d - bj)blFt ° Fj)/d2 - sign A,..
This may also be deduced from Rokhlin's formula (18) [R]. Let V = W —
U Int N¡ and V the cover given by xp'. A Mayer-Vietoris sequence shows as(V) =
os(W). Novikov additivity shows sign V = sign W — 2 sign N¡. Finally

o(L, sxp) - 2 a(L,., *P) = os(V) - sign V.

This completes the proof.
■
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If A" is a component of a link, an algebraic /--cable with twist « along K is
obtained by pushing off algebraically r copies of K with framing « with respect to
the null-homologous framing from K. A cable is called nonempty if at least one
copy of K is pushed off.

Theorem 3.6. Let (L, xp) be given by a represented link (£, xp) together with a
compatible framing {«,}. Assume xp is an epimorphism. Let n» be defined as above.
For any integers r¡ with r¡ = xp(mj) mod d, let £ ' be obtained from £ by replacing
each K¡ with a nonempty algebraic rrcable with twist n¡ along K¡. Then for 0 < s < d

2(d — s)s
a(L, sxp) = ai3/d)(t') - sign[«,.,.] +-—-'ZrirJniJ,

V(L, sxp) = rUo/dW) - (*(£') + /*(£)•

Remarks, (a) The formula for o(L, sxp) above when ri = 1 and £' = £ is due to
Casson and Gordon [C-G2, Lemma 3.1] although I was unaware of this when I
derived (3.6). As pointed out in [C-G2], one can calculate o(L, sxp), given any
framed link for (L, xp) by first doing moves in the calculus of framed links until the
r- can all be chosen to be one and then apply their special case.

(b) The nonempty condition is necessary. To see this consider (L, xp) of Example
3.3. If we could drop the nonempty condition, then using the first description one
would calculate o(L, xp) = 0. On the other hand, using the final description, one
sees o(L, xp) = 1, in fact. However, we can use the first description to calculate
o(L, xp) = fj(] /2)(£') = 1 where £' is obtained by replacing the right-hand compo-
nent with a nonempty algebraic 0-cable with twist zero. See Figure 2.

£'

Figure 2

(c) We can use (3.6) to see that the well represented hypothesis is necessary in
(3.2). Consider the represented link given by the first picture in Example 3.3. It is
easy to see rj(t, xp) = 1. On the other hand, using the last description and (3.6),
r,(L, xp) = 0.

(d) Given a link £, we can make it well represented by defining xp(m¡) = 1 for all
i. Let «, be a compatible framing («, are determined mod d) and let £' be formed
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from £ as in (3.6). By identifying the two expressions one gets for o(L, sxp) one
obtains a relation between a^s/d)(t) and er(j/(/)(£'). Similarly one gets a relation
between t\(s/d)(t) and T)(i/<0(£')-

In particular let / = 27?t, nXj and £' be formed by replacing Kx by a nonempty
algebraic dq + 1 cable with twist / and t + 1 components in £ where / + / = 0
mod d. We then have

Wß') = <W£) -2("~/}'[/¿¥ + 2dq(f+ /)]
and

î/ivoC^') " v<s/d)(£) + t.
If we specialize to d = p, s = [p/2], ¿/ = 0 and t = 2, this yields Tristram's
Theorem 3.2 [T].

On the other hand, if d = 2 and letting £ ' be £ with the orientation on some of
the components changed one sees a(£) 4- 21<y «¿, is invariant of the orientation of
the components of £. This is a theorem of Murasugi [M2]. See also [K-T] and [G-L]
for other proofs.

Proof of Theorem 3.6. Let F be a pushed in Seifert surface for £'. Let N be D4
with 2-handles H¡ attached along £ with framing «, so that L = dN. Let F' be the
closed embedded surface formed by F and algebraically r¡ push offs of the core of
H¡. Thus F' n S3 = £'. It is easy to see that F' ° F' = 2 r,/^ and that rS(^) is
Lefschetz dual to p[F']. By (3.5) we can take the ¿Z-fold branched cover N of N
along F' and

c(L, ^) = a,(#) - sign[n,] + 2<rf ~ J>* £ r.O«,.

Let Z), be a 2-disk in 53 transverse to the cable along K¡. The cable will intersect
D¡ in a finite set of (signed) points which when counted algebraically sum to r¡, but
counted geometrically sum to, say, t, + 1. D¡, the cover restricted to D¡, is a
connected surface and ßx(Dj) = (d — l)r¡. By considering the collection of quotient
covers and using the Thomas-Wood argument ßx(D(, s) = t,.

Let H¡ and D be the covers restricted to H¡ and D4 and H¡ be attached to Z)
along A,. Let Z/^ ) denote Hk( , s). We have H¡ = Z), X D2 and ^,. = Z), X Sl.
H2(Hj) = 0, Zf0(y4(.) = 0 and by (3.4) HX(D) = 0. Hx(Aj) -+ Hx(Hj) is surjective
with kernel infinite cyclic and fixed by Zd. It follows that Hx(Aj) —» HX(H,) is an
isomorphism.

These facts together with the following Mayer-Vietoris sequence show HX(N) =
0.

© Hx(Aj) -, HX{DJ) © HX{HJ) -, HX(Ñ) -, © H0(Aj).i / i
Since HX(N) = 0, Lefschetz duality and universal coefficients show H3(N, Lj) = 0.
The long exact sequence

H4(Ñ, Lf) ~> H3(Lf) -, H3(Ñ) -, H3(Ñ, Lj)
then shows H3(Ñ) = 0.
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A different part of the same Mayer-Vietoris sequence then gives

0 -, ®H2(Aj) -, H2(D) -, H2(Ñ) -, 0.

It is easy to see dim H2(Aj) = t,. Moreover the image of H2(A¡) in H2(D) is
annihilated by the form. It follows as(N) = os(D) and the nullity of the intersec-
tion form on N plus 2 t, is the nullity of the intersection form on D. The long exact
sequence

H2(Ñ) -, H2(Ñ, Lf) -, Hx(Lf) -, HX(Ñ) = 0

shows i\(L, sxp) equals the nullity of the intersection form on N. Using fi(£') — /x(£)
= 2 t, and Proposition 3.4 together with the above facts, the result follows.

Using the above methods it is now possible to calculate o(L, xp) and -q(L, xp)
given a link description of (L, xp). Moreover for L arising as the boundary of a
configuration it is possible (in most cases) to give formulas for these invariants in
terms of the corresponding invariants of the links that describe the singularities.
The rest of this section is concerned with this.

Let (£, xp) be a well represented link and «, = «,, some compatible framing. Let
r¡ = xp(m¡) where 0 < r¡ < d and define vectors r = (rx, . . . , rk), F = (d —
rx, . . . ,d — rk) and let <r, r> denote r[n¡j]fT. Let (L, xp) be given by (£, xp) and «,.
Define

ct(£, xp) = o(L, xp) + sign[nij] - — </% f>.

a(£, xp) is independent of the choice of «, and is thus a well represented link
invariant. To see this, let «, and «,' be two choices. Attach handles with framing «,
to S3 X I along £ c S3 X {0} and framing -«/ along - £ c - S3 = S3 X {1}
to form N. The cores of the handles union £ X I form surfaces F¡ c N and
F¡ ° F¡ = «, — «/. An application of (3.5) and a Mayer-Vietoris sequence argument
complete the proof. For more details see the proof of Theorem 3.7 below which is a
more complicated version of this argument.

One may use (3.6) to calculate a(£, xp). In fact let 0 < s < d, (s, d) = 1, r¡ =
\p(m¡) mod d, q¡ = sr¡ mod d, 0 < qi < d, q = (qx, . . . , qk) and q = (d - qx, . . . , d
— qj). We have

a(£, sxp) = o(s/d)(t') +ji((d- s)s(r, r) - (q, q))

where £' is obtained from £ by replacing each K¡ with a nonempty algebraic
/•¡-cable with twist «,. Here «, = nu is a compatible framing for (£, xp) and (x,y}
indicates x[n¡j]yT. In particular if xp(m¡) = 1 for all i, then a(£, sxp) = a(j/d)(£).
Thus o(£,,xp) generalizes Levine's signatures. Let (-£, xp) denote the well repre-
sented link obtained by changing all the crossings of (£, xp). It is not hard to see
a(-£,«/,)= -o(t,xp).

We remind the reader that for a well represented link as above, by (3.2) and (3.6)

r,(£, s*) = Vis/d)(t') + M(£) - p(£>).
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Theorem 3.7. Let Ft be a collection of closed surfaces and F¡ be these surfaces with
the interiors of some disjoint 2-disks removed. Let N be formed by attaching F¡ X D2
to 2 D4 by identifying 2 BF¡ X D2 with tubular neighborhoods of some links £ in
dD4. By coning off the links we get a configuration of surfaces {F¡} in N.

Let L = dN and xp G HX(L, Zd) be such that Sxp is Lefschetz dual to p(Z a,{Fj\)
where (a¡, d) = 1 and 0 < ¿z, < d. By assigning to the meridian of a component K of
£j the value a¡ if K belongs to F¡, we obtain some well represented links (£■, xp). Let
z = 2 a^Fj] and z = 2(¿/ — a,)[Z^], then we have

o(L, xp) = 2 o(£j, xp) + ±-{zz) - sign N,
d

and

■n(L, i/O = 2 Vfai ̂)-
where zz stands for the intersection of z and z in H7(N).

Proof. Let Dj be a smaller concentric 4-disk in each D4. Construct N' as
follows. Remove Int Dj from each D4 and then attach 2-handles along £, with
framings compatible to (£,, xp) to what remains. This is pictured schematically in
Figure 3. We have L' = dN' = L — 2 Ly where L, is gotten by doing surgery to S3
according to £y so framed. Each L, inherits xp G Hx(Lj, Zd) from (£y-, xp). Using the
cores of the new 2-handles we have a natural embedding of 2 F[ in V where F[ is
another copy of F¡. Define xp' G H l(L', Zd) using (L, xp) and (Lj, xp). We have

o(L',xP) = o(L,xp)-^o(Lj,xp). (1)

Figure 3
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Let Nj be formed by attaching 2-handles to S3 along — £7 with the negatives of
the above framings. H2(Nj) is free abelian generated by classes xJa represented by a
pushed in Seifert surface for KJa (the ath component of — £•) union the core of
appropriate handle. Let r'' = 2 a{xJa and F = 2(¿/ - aJj)xJa where a{ = ai if K{
belongs to F¡. Since Lj = -dNj,

a(tj, xp) = a(Lj, xp) - sign A, + 2(W)/d2. (2)

If we view N' as A #, A, and ZZ2(A') as ZZ2(A) 0y. ZZ2(A7), then [F/] = [FJ +
2r x¿ where (/, a) e T, if KJa belongs to Ft, One can see that 8xp' is Lefschetz dual
to p(2 a¡[F¡']). So we can use (3.5) to calculate a(L', xp'). The above decomposition
of H2(N') is orthogonal. Moreover F¡ ° Fj = 0 if i ¥^j. So we have

2 (d - a,)a,F¡ • F/ - (^[F/])(£(<* - <0[#])

-(2^([^] + 2^)(2(rf-a')([F'] + 2^))

= zz + 2 ^-

Let A' be the branched cover of N' along U F' given by (3.5). We have

o(L', xp') = ox(Ñ') - sign A' + 2(zz + 2 ^)/¿/2 (3)

ano

sign A' = sign A + 2 siS11 ty- (4)

If one thinks of A' as the union of disk bundles over F' and (S3 — £y) X I for
each y and decomposes the cover N' accordingly, our usual Mayer-Vietoris argu-
ment shows that the intersection form on H2(N') is identically zero. Thus ox(N') =
0. Together with (l)-(4) this gives the stated formula for o(L, xp).

Since (tj,xpj) is well represented 3(F) X Sx)f is homologically fixed by Zd.
(F¡ X Sx). = F¡ X Sx is also homologically fixed. Thus the Mayer-Vietoris se-
quence for Lf as the union of (F¡ X S )f and (S   — £.)+ gives the final formula.

Proposition 3.8. Z/(£, xp) is any well represented positive Hopf link a(£, xp) = -I.

Proof. Let r{ = xp(m¡) mod d where 0 < r, < d. Pick compatible «, with «, < -1.
Then sign[«y] = -2. Let q¡ = -«,. Then mod d, rx = q2r2 and r2 = qxrx. (L, xp) is
the boundary of a plumbing and

(L, xp) = (L(qxq2 - 1, q2), q^^)

where x is the map specified in [C-G,, pp. 6-7]. So a(L, xp) is 4(area A — Int A)
where A is the right triangle in the plane with vertices (0, 0), ((qxq2 — l)r2/d, 0)
and ((qxq2 - l)r2/d, r2q2/d). See Example 3.9 below for more details and the
definition of Int A. The line x = qxy goes through an integral lattice point for each
integral v. The hypotenuse lies on the line x = (qx — (l/qj))y. It is easy to see that
all integral points in A lie on or to the right of the line x = qxy. Also [r2q2/d] =
(r2q2 — rj)/d. Under these circumstances Int A and thus a(£, xp) is an elementary
if tedious calculation.
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Remarks, (a) If xp(mx) = xp(m2), then a(£, xp) = a(i/d)(£) = -1. Similarly I have
checked (3.8) in the case xp(mx) = 2xp(m2) using the formula involving os/d(t'),
however this is considerably more difficult.

(b) Let A be a plumbing of 2-disk bundles over / surfaces according to a
weighted graph with k edges and matrix B. Suppose xp G Hx(dN, Zd) and let a¡
(0 < ai < d) be defined to be the value xp assigns to the circle fiber over a point in
the ith surface. Let a = (ax, . . . , aj) and ä = (d — ax, . . . , d — aj). If (a¡, d) = 1
for all /, then a(3A, xp) = 2(aBaT)/d2 - sign B - k. This follows from (3.7) and
(3.8). It also follows from Conjecture 2.5.

Example 3.9. According to Hirzebruch [H-N-K, p. 70], the lens space L(n, q) is
the boundary of the plumbing

where

nll "[¿i. ■ ■ -,c¡] = c

- cx     -c2      . . .   - c,•-—•-=—• •--»

c2      -    ±
c-.

c,

Let d\n and x be the element of H x(L(n, q), Zd) which assigns to a circle fiber over
a point on the first 2-sphere (with weight — cx) the value 1. One can check that this
is the same x as specified by Casson and Gordon on pp. 6-7 of [C-G,]. They show
for 0 < r < d

a(L(n, q), rqx) = 4(area A — Int A)

where A is the triangle with vertices (0, 0), (nr/d, 0), (nr/d, qr/d). Int A is the
number of integer lattice points in A, where boundary points count 1/2, vertices
count 1 /4, and (0, 0) is not counted.

On the other hand if we write n/q = [c„ . . . ,cn] where c, > 1 and given
0 < a < d define ¿z, recursively by ¿z0 = 0, a, = a and ai+x = c,¿z, — ¿z,_, mod d
and 0 < ai+x < d, then by Remark (b) above

o(L(n, q), ¿rx) = 1 - ^( 2 (d ~ aj)atct + £ (2a¡ai+x - d(a¡ + ai+x))\.

If (a, d) =£ 1, then interpret ax as a map Hx(L)—>Zd, where d' = d/(a, d). To
apply Remark (b) in this situation, we also need (a, d) = (a¡, d) for all i. However
it is possible to reduce to this case by "blowing up and down" along the graph. It
turns out the above formula holds as stated.

Casson was already aware of this formula or one like it. According to Casson,
the equivalence of these two formulas (choose a in the second to equal rq mod d) is
due to Eisenstein although I have not been able to find the reference.
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4. Main results. Throughout this section d will be a power of p.

Theorem 4.1. Let {F]} be a connected configuration of n surfaces with links £ in a
closed 4-manifold M. Let x¡ = [F¡] G H2(M) and z = 2 aixi = dy where 0 < a, < ¿/
and a¡ =£ 0 mod p. Use the a¡ to make the £, well represented links (£7, xp). We then
have

2 ßi(Fj) + 2 ( ¥ify - 1) > |2^( 2 *, - y) + 2 "(£,-. *) - sign M\
-p2(M) + 2(n-l)-^v{tj,xp)

rí I¡v(tj,^-v{Fi}-px(M)+lmax

+ max

to
ÍS#^)-i{í;} + i
lo.

Proof. Apply (2.2) and then use (3.7) to evaluate a(L, xp) + sign A and r\(L, xp).
If an F¡ in a configuration has an intersection with itself that is given by a Hopf

link this intersection is called an ordinary double point (positive or negative
accordingly as the Hopf link is). The algebraic number of double points of a
configuration is the sum over these points of their indices ±1.

Corollary 4.2. Let {F,} and a¡ be as above. Assume in addition that each £• is
either a Hopf link or a knot. Let # be the total number of Hopf links. Let {A/}?_,
be the collection of knots belonging to F¡ and I the algebraic number of double points.
We have

# + 2 ßAFj) > 2y{ 2 x, - y) - 2 *,•*,• - J + 2 2 <w<o(*/) ~ ^s11 M
i<j i        I

-p2(M) + 2(« - 1).

Proof. The nullity of a well represented knot or Hopf link is zero (3.1). The
signature of a well represented Hopf link is ± 1 accordingly. Since z = dy,
■q{F¡} > 0. The algebraic number of Hopf links that do not give ordinary double
points is 2J<; x¡j. The formula for the signature of a well represented link
completes the proof.

Remarks, (a) Let « = ¿/, = 1 and assume in addition that F, has no ordinary
double points. Then one has

£,(F) >
„ a(d — a)   2  . / t^\       •      %é
2      d2      x   + a(a/d){K) - sign M p2(M).

This is a theorem of O. Ya. Viro [V2]. He states the result for d = 2 and says there
are analogous results for d a prime power.

(b) Suppose (4.1) shows that a certain configuration {F¡} cannot arise in M with
[F¡] = x¡. Reorient M, if necessary, so that the expression inside that absolute value
sign is positive. Consider a configuration {F¡} identical to that above except {F¡}
has some additional ordinary negative double points. The obstruction to realizing
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x¡ with {F/} is identical to that for {Fj}. For example one cannot represent
3[F,] E H2(P2) by a smoothly immersed 2-sphere with only negative double points.
This observation also follows from the arguments of §6 but perhaps would not have
been noticed without the aid of (4.1).

(c) The hypothesis in (4.1) that the configuration be connected is not very
restrictive. In fact any configuration may be made connected by picking paths in
M between two surfaces that otherwise miss U F(, A neighborhood of such a path
is a 4-disk and (J F¡ intersects the boundary of this 4-disk in a link £ that consists
of two unknotted unlinked components. |i(£) = 2 and for any well representation
tj(£,i/0 = 1 and o(t,xp) = 0.

Examples. If S2 smoothly embeds in P2 except for a point where it is a cone on a
knot K and represents dq[Px] G H2(P2) then for 0 < s < d

m    I ~2s(d- s^2 or
•e/*)l   )     | 2 _ 2s{d _ s)q2 = 0(s/d)(K{dq, dq - i)).

Here K(m, n) will denote the (m, n) torus link and to fix orientation conventions
K(2, 2) is the positive Hopf link. One needs to know that os/d(knot) is even. This
follows from equations (3.1), (3.6) and the definition. The identification with
o(s/d)(K(dq, dq — 1)) can be shown using (5.1). If s = 0 modp then we must use
d' = d/(s, d) for d in (4.2) to get the above result.

The curve z0zxm~x = z2 in P2 is an embedded 2-sphere F with a single singular-
ity at [1, 0, 0] given by the cone on K(m, m — I) and [F] = m[Px]. See [H-N-K, p.
90]. Thus letting m — dq we see K(dq, dq — I) can actually be realized. Which
other signatures can be realized? Kervaire and Milnor [K-M] show how K(2, 3) can
appear as the singularity of a 2-sphere representing 2[F,].

Now let m = dq — 1 instead and suppose F intersects another 2-sphere F2
representing the generator in a single point away from [1,0,0] and that F2 is
smooth away from its intersection with F. Let £ be the link that gives the
intersection. It has two components with linking number m. The normal sphere
bundle of one component of £ is a torus embedded in the complement. This
embedding induces an isomorphism on Hx( , Zd). By an argument similar to the
proof of (1.5), it follows that tj(í/</)(£) = 0. Then o(s/d)(t) is determined by (4.1):

°(s/d)(£) = 1 - 2sq2(d - s) - o{s/d)(K(m, m - I))

for 0 < s < d. Here again use d' = d/(s, d).
In fact F intersects the Px given by z0 = 0 in one point [0, 1, 0]. The intersection

is given by the cone on £ (see Figure 4) which is actually K(2, 2m). Using (5.1) one
can show

o(s/d)K(2, 2m) = 1 + 2[2s/d] - 4sq

for 2s < d. The link £' (see Figure 4) has Seifert matrix [ — m] so o(i/rf)(£') = -1. It
follows that F cannot intersect another 2-sphere with intersection given by £'
unless m = 1 (in which case £ = £')•
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m full right handed twists

m full left handed twists

Figure 4

We now derive the Tristram-Murasugi bounds for the slice genus of links. Define
the genus g(F) of a surface F to be the genus of the closed surface obtained by
adjoining a 2-disk to each boundary component of F.

Corollary 4.3. Let & be a link bounding a surface F smoothly embedded in D4
with no closed components. Then

2g(F) > \o(s/d)(t)\ - ,x(£) + ß0(F)+\V{s/d)(t) - ß0(F) + 1|.

Proof. Consider the connected configuration of ß0(F) surfaces in S4 formed by
adjoining the cone on £ in a second copy of D4 and apply (4.1).

Remarks. Murasugi [M,] first proved (4.3) for d = 2 but he left out the
expression given in the second absolute value sign. Tristram then proved (4.3) for
the case d = p and í = [p/2] (though his proof probably works in general). The
methods of both Murasugi and Tristram are very geometric and involve no
mention of covers. Next Kauffman and Taylor [K-T] gave a proof of (4.3) in the
case d = 2 by relating the signature and nullity to branched covers. Recently
Kauffman [KaJ gave a proof of (4.3) in the case ß0(F) — 1 using the same
approach as [K-T].
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5. Signature calculations. The main purpose of this section is to make the results
of this paper (except for 2.4) independent of the G-Signature Theorem. In fact, it is
an easy matter using the results of this section to prove the G-Signature Theorem
for finite cyclic semifree actions on 4-manifolds with orientable fixed point set. In
the spring and early summer of 1975, I found such a geometric proof, similar but
not identical to that indicated below. C. McA. Gordon has found a similar proof of
this case of the theorem. Also R. A. Litherland has a proof where the fixed point
set is assumed to consist of orientable surfaces.

We begin by deriving Brieskorn type formulas for the signature and nullity of
torus links. The formula for a(j/i/) below follows from [Z, Theorem 1, p. 118] and
(3.4). It also appears in [Li].

Figure 5

Proposition 5.1.

\s/d)

>(*(m,«))«    2    {i + Ln+^\0<i<m    \ m " " I
0<J<n

(K(m,n))=    2    ö(- + - + 4,
0<7<m   \m      n      d)

where

s(x) =

0<J<n

1        ifO <x < 1 mod 2
0       if x G Z
-1     if I < x < 2 mod 2

and   8(x) =
1,     x e Z,
0,     x £ Z.

Proof. We will use the Seifert surface F pictured in Figure 5. There are m
concentric disks lying over one another and (m — 1) X « connecting bands. Let T
be the symmetry of F given by rotating F through an angle 2-rr/n. Let
Yi» • • • > Yjw-i De the curves indicated by the dotted lines in Figure 5. {TJy¡} for
0 < i < m and 0 < j < n with the lexigraphical ordering (beginning
T'y,, F2?,, . . . ) forms a basis $ for HX(F). With respect to <S, the Seifert form is
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given by — A„ <8> Am, and the map T is given by Tn <8> Im_, where

375

A. =

1     -1
1      -1 O

1     -1
O

T. =

O
0

1       0.

O

-1

-1

0 -1

1 -1
n—1Xn—1

This suggests the observation that Tn preserves the form given by A„. To see this
visually let m = 2. Tn has eigenvalues {X1, . . . , X""1} where A = ear"/n\ So the
eigenvectors of u, (determined up to a scalar factor) diagonalize A„ as a
sesquilinear form. In fact there is a basis of eigenvectors with respect to which the
form is given by

A„ =

1 -A
O

1 -A"-

See [D-K] or [KaJ.
So -A„ <8> Am is the matrix for the Seifert form (over Ç). Then ( — A„ <8> Am)(i/(/)

is also diagonal with entries on the diagonal {dy} for 0 < i < m and 0 <j < n
where

dtj = -2 Real part(l - A')(l - ßJ){l ~ «*)    and    ß = e2m/m.

It is easy to see that dtj is positive, negative or zero accordingly as

e(i/m +j/n + s/d)
is + 1, -1, or zero. This completes the proof.

We now explain the connection between a(L, xp) and the Atiyah-Singer a-in-
variant. Let T act with finite order on a 2/V-manifold M. Atiyah and Singer [A-S, p.
578] define a complex number sign(F, M) (the F-signature). Specify that T acts on
the homology preserving the intersection pairing (as opposed to cohomology) to get
correct signs. Now suppose F acts freely with order d on a 2k — 1 manifold A.
Then by arguments in §1 r(T, N) bounds a free action on some 2&-manifold
(T, M). Then define

a(T,N) = (l/r)sign(T,M).
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One can show
d-\

sign(T,M) = 2 <^Oj(M).
7=0

It follows that (see [C-Gt, p. 6])
d-\

"(T,Lf)= 2 ^MF,^)i=i
and

°(L,*)-^ 2 («_I- ^MT\Lf)."    5=1

Let B be the ¿/-fold branched cover of S2 along d points given by xp: (S2 — d
points) -, Zd where xp maps the "meridian" of each point to one. The following
proposition was probably first proved directly by Erich Ossa [O] in his proof of the
G-Signature Theorem for finite groups. It is given as an unproved axiom in [G].

Proposition 5.2. Oj(B) = 2j - d and s\gn(TJ, B) = d{u> + l)/(coy - I) for 0 <j
<d.

Proof. Consider the surface F used in the proof of (5.2) and let m = « = d. T
acts on F with d fixed points. A fundamental domain for this action is cut out by a
pie-shaped region of space with angle 2tr/d. It is easy to see that F is the ¿/-fold
cover of a 2-disk along d points. By Novikov additivity we only need to calculate
Oj(F).

The intersection pairing on F is given by ( — Ad <8> Ad) — ( - Ad <8> Ad)T with
respect to 9>. Here we are using a well-known relation between the intersection
pairing and the Seifert pairing. This form restricted to the co7 eigenspace is given by
the matrix — (1 — uJ)Ad + (1 — üJ)A*. The associated hermitian pairing is given
by the matrix - i(l - uJ)àd + i(l — üJ)A^. This has entries down the diagonal
{ -2 Real ;(1 - co^)(l - co*)} for 0 < k < d. Thus

Oj{F) = -    2     *(U + k)/d) = 2/ - d.
0<k<d

The second formula follows easily.
The derivation in [C-G,] of the formula for o(L(m, «), x) given in Example 3.9

and used in the proof of (3.8) requires the following formula for the a-invariant of
free orthogonal actions on S3.

Proposition 5.3. Let T act on C by T(zx, . . . , zn) = (uJizx, . . . , co^z,,) where
(jk, d) = 1. Let S2n~l be the unit sphere in C oriented as the boundary of the unit
disk

a(T,s2"-x) = - n 4^-
k =1 u>« - 1

Proof. Consider Wk(TJk, B). This is a closed Zd manifold with d" isolated fixed
points. The action at each of these points is that given above. The multiplicative
property of the G-signature gives the result.
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Proposition 5.4. Let N be a closed oriented 2-disk bundle over a closed connected
surface F with self-intersection dq. Let L = 3A and xp G H X(L, Zd) with 8xp Lefschetz
dual to a[F] with 0 < a < d and (a, d) = 1. Then

ít    i\      2(d-a) qo{F, xp) =-—'-aq - T-r
d \q\

(interpret 0/|0| = 0).

Proof. We first remark that given F, dq, and a, any such cover L is equivalent to
the action on the S ' bundle over F with Euler class q given multiplication by co".

We only need to consider q > 0. (If q < 0, reverse the orientation of the bundle.)
Suppose first F = S2 and q = 1, so

o(L, xp) = o(-L(d, 1), x") = 4(Int A - Area A) = 2(d - a)a/d - 1.
Here A has vertices (0, 0), (a, 0), (a, a/d). We will refer to this cover as Vf. The
above calculation can also be done directly using (5.3).

Let W be a bordism between F and q copies of S2 and x G H2( W) be Lefschetz
dual to a collection of q paths in W each joining F to a different S2. Let Q and R
be the S ' bundles over W with Euler classes x and dx. Q is a ¿/-fold cover of R. If
T: Q -* Q is given by multiplication by co", then d(Q, T) = Lf — qL'f. Since
multiplication by to" is homotopic to the identity, ox(Q) = 0. Since the signature of
the boundary of the disk bundle of R is zero, sign(Z?) = (q — l)q/\q\. The result
now follows easily.

Remark. We can now outline a very geometric proof that ti3(BZd) is torsion. In
the proof of (3.6), an explicit branched cover of a 4-manifold is given extending a
given free Zd action on a 3-manifold. This provides a bordism of free Zd actions to
one of the type considered in (5.4). The proof of (5.4) gives a rational bordism to
actions on 3-spheres. The proof of (5.3) gives a rational null bordism for these
actions.

6. Ad hoc geometric arguments and Rokhlin's Theorem. We consider the situation
of Theorem 0.1. Namely we have a collection of « smoothly embedded surfaces F,
in general position in a closed 4-manifold M. Moreover we have a relation
2 a¡x¡ = ay where x¡ = [F-] G H2(M, Z). We would like to say something about
ßx(Fj) and aiJy the geometric number of intersections between F, and Fj, using only
Rokhlin's Theorem (namely Theorem 0.1 for « = 1).

The basic idea is to use the surfaces F¡ to construct a single connected F
representing dy in M and express ßx(F) in terms of ßx(Fj) and atj. One can then
apply Rokhlin's Theorem and get a lower bound on ßx(F). I first became aware of
this possibility in spring 1974 and gave a seminar talk on what this said about the
homology class (2, 3) in S2 X S2. Just recently S. Weintraub has informed me that
he has made a similar observation [We].

The construction of F goes as follows. Begin by pushing off a¡ copies of each Fj,
creating a configuration of 2 a¡ surfaces in M with only Hopf link singularities.
One then may resolve such singularities by removing two 2-disks, one from each
sheet of an intersection, and replacing these disks with a single cylinder. One can
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do this since both Hopf links bound cylinders in D4 (actually in S3). If the two
sheets that intersect belong to the same surface, this process raises ßx(F) by two.
Otherwise the two surfaces are joined to form a single surface with Betti number
the sum of the original Betti numbers.

One could proceed in this manner and eventually end up with a connected
surface F representing 2 a,*,. However if at any point in this process a connected
surface G possesses both a positive and negative intersection point, there is a way
to resolve this in a way that is less "expensive" in terms of the final ßx(F). Pick a
path y on G running between these two intersection points and missing all other
intersection points and look at the normal Sx bundle of G in M restricted to y. This
is a cylinder which may be used to resolve two intersection points at once.

Given a relation 2 aixi = 0 mod d with 0 < ¿z, < d, there are many related
relations obtained by changing each ¿z, by the same scalar factor. One may also
reverse the orientation F, and change ¿z, for (d — aj). To get the best information,
one should choose [F] wisely. For example, if all the ¿z, are equal, one should
construct F to represent 2 x¡.

We illustrate this procedure with an example discussed in the introduction where
F, and F2 are 2-spheres representing xx = (0, 1, 0, 0) and x2 = (2m + 1, 3m +
2, 0, 0) in H2(S2 X S2#S2 X S2) and 2m + 1 is a prime.

Suppose F, intersects F2 at ¿z positive and b negative points. So a + b = # and
a — b = 2m + 1. Construct F representing 2m + 1(1, 2, 0, 0) by pushing off m
copies of F, and tubing to F2. First tube each copy of F, to F2 at a positive
intersection point. One then has an immersed 2-sphere with (a — l)m positive
double points and bm negative double points. One then removes cancelling
pairs of double points until one has an immersed surface with ßx = 2bm with
(a — b — l)m positive double points. Finally resolve these to get F with ßx(F) =
2bm + 2(a — b - l)m — m(# + 2m - 1). By Rokhlin's Theorem (choosing ¿z, =
m), ßx(F) > Sm2 + 8m - 4. So # > 6m + 9 - (4/m).

If not all the ¿z, are equal, then one will never get an expression for ßx(F)
involving 2 ß\(Fj). Thus one cannot hope to derive Theorem 0.1 in this way.
Suppose now all the ¿z, = a and (2(d - ¿z)¿z/¿/2)(2 xj)2 > 2I<; x¡x- + sign M. As-
sume moreover that there is a sequence of (« — 1) positive intersection points
between the « surfaces F¡, such that, after resolving each of these surfaces to form
an immersed surface G, G is connected. This last condition may be guaranteed by
various conditions involving x¡Xj including the one given in the introduction. A
surface G so constructed will have ßx(G) = 2 ß\(Fj) and k positive double points
and / negative double points where k + I = # — (n — I) and k — I = 2 x¡Xj —
(n — 1). If k > I, then we can derive the conclusion of Theorem 0.1 by the above
"tubing" procedure.

To get this same conclusion in general, we need to introduce another technique
for resolving double points. We can "blow up" a positive (respectively negative)
double point by replacing a 4-ball neighborhood of this point with a punctured P2
(respectively F2). The original surface may then be extended to an embedding in
the blown-up part of the manifold. One sheet will cross F, c P2 positively and one

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



CONFIGURATIONS of surfaces in 4-MANIFOLDS 379

negatively. If we blow up all the double points of G in the above example, we will
get a surface F with ßxF = 2 ß\(Fj) embedded in M' = M #* P2 #' P2 represent-
ing (2 x„ 0, . . . , 0) G H2(M'). We have sign AT = sign M + 21<0 x¡Xj - (n - 1)
and p2(M') = p2(M) +#-(«- 1). Applying Rokhlin's Theorem now yields

ßx(F) > |(2(¿/ - a)a/d2)( 2 *,)* - sign A/'| - p2(M').

This is also the conclusion of Theorem 0.1. The blowing-up construction also gives
a geometric explanation of the phenomena discussed in Remark (b) following (4.2).
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